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DIVIDED DIFFERENCES OF IMPLICIT FUNCTIONS

GEORG MUNTINGH AND MICHAEL FLOATER

Abstract. Under general conditions, the equation g(x, y) = 0 implicitly de-
fines y locally as a function of x. In this article, we express divided differences

of y in terms of bivariate divided differences of g, generalizing a recent result
on divided differences of inverse functions.

1. Introduction

Divided differences can be viewed as a discrete analogue of derivatives and are
commonly used in approximation theory; see [1] for a survey.

Recently, the second author and Lyche established two univariate chain rules for
divided differences [2], both of which can be viewed as analogous to Faà di Bruno’s
formula for differentiating composite functions [6], [7]. One of these formulas was
simultaneously discovered by Wang and Xu [5]. In a follow-up preprint, the other
chain rule was generalized to the composition of vector-valued functions of several
variables [4], yielding a formula analogous to a multivariate version of Faà di Bruno’s
formula [8].

In [3], the univariate chain rule was applied to find a formula for divided differ-
ences of the inverse of a function. In Theorem 1, the Main Theorem of this paper,
we use the multivariate chain rule to prove a similar formula for divided differences
of implicitly defined functions. Equation 16 shows that the formula for divided
differences of inverse functions in [3] follows as a special case.

More precisely, let y be a function that is defined implicitly by a function g :
R

2 → R via g
(
x, y(x)

)
= 0 and ∂g

∂y

(
x, y(x)

)
�= 0, for every x in an open interval

U ⊂ R. Then the Main Theorem states that for any

x0, . . . , xn ∈ U, y0 := y(x0), . . . , yn := y(xn) ∈ y(U)

we can express [x0, . . . , xn]y as a sum of terms involving the divided differences
[xi0 , . . . , xis ; yis , . . . , yir ]g, with 0 ≤ i0 < i1 < · · · < ir ≤ n.

In Section 2, we define these divided differences and explain our notation. In
Section 3, we apply the multivariate chain rule to derive a formula that recursively
expresses divided differences of y in terms of divided differences of g and lower order
divided differences of y. Finally, in Section 4, we solve this recursive formula to
obtain a formula that expresses divided differences of y solely in terms of divided
differences of g. We end the section with applying the Main Theorem in some
special cases.
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2. Divided differences

Let [x0, . . . , xn]f denote the divided difference of a function f : (a, b) → R at the
points (x0, . . . , xn), with a < x0 ≤ · · · ≤ xn < b. If all inequalities are strict, this
notion is recursively defined by [x0]f := f(x0) and

[x0, . . . , xn]f =
[x1, . . . , xn]f − [x0, . . . , xn−1]f

xn − x0
if n > 0.

If some of the {xi} coincide, we define [x0, . . . , xn]f as the limit of this formula
when the distances between these {xi} become arbitrarily small, provided f is
sufficiently smooth there. In particular, when x0 = · · · = xn, one can show that
[x0, . . . , xn]f = f (n)(x0)/n! . For a given i = (i0, . . . , ik) satisfying i0 ≤ i1 ≤ · · · ≤
ik, we shall sometimes shorten the notation to

(1) [i0i1 · · · ik]f := [xi0 , xi1 , . . . , xik ]f.

The above definitions generalize to bivariate divided differences as follows. Let
f : U → R be defined on some 2-dimensional interval

U = (a1, b1)× (a2, b2) ⊂ R
2.

Suppose we are given m,n ≥ 0 and points x0, . . . , xm ∈ (a1, b1) satisfying x0 <
· · · < xm and y0, . . . , ym ∈ (a2, b2) satisfying y0 < · · · < ym. The Cartesian product

{x0, . . . , xm} × {y0, . . . , yn}
defines a rectangular grid of points in U . The (bivariate) divided difference of f at
this grid, denoted by

(2) [x0, . . . , xm; y0, . . . , yn]f,

can be defined recursively as follows. If m = n = 0, the grid consists of only one
point (x0, y0), and we define [x0; y0]f := f(x0, y0) as the value of f at this point.
In the case m > 0, we can define (2) as

[x1, . . . , xm; y0, . . . , yn]f − [x0, . . . , xm−1; y0, . . . , yn]f

xm − x0
,

or if n > 0, as

[x0, . . . , xm; y1, . . . , yn]f − [x0, . . . , xm; y0, . . . , yn−1]f

yn − y0
.

If both m > 0 and n > 0, the divided difference (2) is uniquely defined by either
recursion formula.

As for univariate divided differences, we can let some of the points coalesce by
taking limits, as long as f is sufficiently smooth. In particular, when x0 = · · · = xm

and y0 = · · · = yn, one has

[x0, . . . , xm; y0, . . . , yn]f =
1

m!n!

∂m+nf

∂xm∂yn
(x0, y0).

Similarly to Equation 1, we shall more often than not shorten the notation for
bivariate divided differences to

(3) [i0i1 · · · is; j0j1 · · · jt]f := [xi0 , xi1 , . . . , xis ; yj0 , yj1 , . . . , yjt ]f,

sometimes even leaving out the reference to the function f .
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3. A recursive formula for implicit functions

Let y be a function implicitly defined by g
(
x, y(x)

)
= 0 as in Section 1. The

first step in expressing divided differences of y in terms of those of g is to express
those of g in terms of those of y. This link is provided by a special case of the

multivariate chain rule of [4]. Let R
f−→ R

2 g−→ R be a composition of sufficiently
smooth functions f = (φ, ψ) and g. In this case, the formula of [4] for n ≥ 1 is

[x0, x1, . . . , xn](g ◦ f) =
n∑

k=1

∑
0=i0<i1<···<ik=n

k∑
s=0

(4)

[φ(xi0), φ(xi1), . . . , φ(xis);ψ(xis), ψ(xis+1
), . . . , ψ(xik)]g

×
s∏

l=1

[xil−1
, xil−1+1, . . . , xil ]φ

k∏
l=s+1

[xil−1
, xil−1+1, . . . , xil ]ψ.

Now we choose f to be the graph of a function y, i.e., f : x 	→
(
φ(x), ψ(x)

)
=(

x, y(x)
)
. Then the divided differences of φ of order greater than one are zero,

implying that the summand is zero unless (i0, i1, . . . , is) = (0, 1, . . . , s); below, this
condition is realized by restricting the third sum in Equation 4 to integers s that
satisfy s = is − i0. Since additionally divided differences of φ of order one are one,
we obtain

[x0, x1, . . . , xn]g
(
·, y(·)

)
=

n∑
k=1

∑
0=i0<i1<···<ik=n

k∑
s=0

s=is−i0

(5)

[x0, x1, . . . , xs; yis , yis+1
, . . . , yik ]g

k∏
l=s+1

[xil−1
, xil−1+1, . . . , xil ]y,

where yj := y(xj) for j = 0, 1, . . . , n. For example, when n = 1 this formula
becomes

[x0, x1]g
(
·, y(·)

)
= [x0; y0, y1]g [x0, x1]y + [x0, x1; y1]g,

and when n = 2,

[x0, x1, x2]g
(
·, y(·)

)
= [x0; y0, y2]g [x0, x1, x2]y

+ [x0; y0, y1, y2]g [x0, x1]y [x1, x2]y

+ [x0, x1; y1, y2]g [x1, x2]y

+ [x0, x1, x2; y2]g.

In case y is implicitly defined by g
(
x, y(x)

)
= 0, the left-hand side of Equation

5 is zero. In the case n = 1, therefore, we see that

(6) [01]y = − [01; 1]g

[0; 01]g
,

where we now used the shorthand notation from Equations 1 and 3. For n ≥ 2, the
highest order divided difference of y present in the right-hand side of Equation 5
appears in the term [0; 0n]g [01 · · ·n]y. Moving this term to the left-hand side and
dividing by −[0; 0n]g, one finds a formula that expresses [01 · · ·n]y recursively in
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terms of lower order divided differences of y and divided differences of g,

[01 · · ·n]y = −
n∑

k=2

∑
0=i0<···<ik=n

k∑
s=0

s=is−i0

(7)

[01 · · · s; isis+1 · · · ik]g
[0; 0n]g

k∏
l=s+1

[il−1(il−1 + 1) · · · il]y.

We shall now simplify Equation 7. By Equation 6, the first order divided differ-
ences of y appearing in the product of Equation 7 can be expressed as quotients of
divided differences of g. To separate, for every sequence (i0, i1, . . . , ik) appearing
in Equation 7, the divided differences of g from those of y, we define an expression
involving only divided differences of g,

(8) {i0 · · · ik}g := −
k∑

s=0
s=is−i0

[i0 · · · is; is · · · ik]g
[i0; i0ik]g

k∏
l=s+1

il−il−1=1

(
− [il−1il; il]g

[il−1; il−1il]g

)
.

Note that if a sequence (i0, . . . , ik) starts with precisely s consecutive terms, the
expression {i0 · · · ik}g will comprise s terms. For instance,

{023}g =
[0; 023]g

[0; 03]g

[23; 3]g

[2; 23]g
,

{013}g =
[0; 013]g

[0; 03]g

[01; 1]g

[0; 01]g
− [01; 13]g

[0; 03]g
,

{012}g = − [0; 012]g

[0; 02]g

[01; 1]g

[0; 01]g

[12; 2]g

[1; 12]g
+

[01; 12]g

[0; 02]g

[12; 2]g

[1; 12]g
− [012; 2]g

[0; 02]g
.

The remaining divided differences [il−1 · · · il]y in the product of Equation 7 are
those with il − il−1 ≥ 2, and each of these comes after any s satisfying s = is − i0.
Therefore, we might as well start the product of these remaining divided differences
at l = 1 instead of at l = s+ 1, which has the advantage of making it independent
of s. Equation 7 can thus be rewritten as

(7′) [0 · · ·n]y =
n∑

k=2

∑
0=i0<···<ik=n

{i0 · · · ik}g
k∏

l=1
il−il−1≥2

[il−1 · · · il]y.

For n = 2, 3, 4 this expression amounts to

[012]y = {012}g,(9)

[0123]y = {0123}g + {023}g [012]y + {013}g [123]y,(10)

[01234]y = {01234}g + {0134}g [123]y + {034}g [0123]y(11)

+ {0124}g [234]y + {0234}g [012]y + {014}g [1234]y
+ {024}g [012]y [234]y.
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4. A formula for divided differences of implicit functions

In this section we shall solve the recursive formula from Equation 7′. Repeatedly
applying Equation 7′ to itself yields

[012]y = {012}g,(12)

[0123]y = {0123}g + {023}g {012}g + {013}g {123}g,(13)

[01234]y = {01234}g + {0134}g {123}g + {034}g {013}g {123}g(14)

+ {034}g {0123}g + {034}g {023}g {012}g + {0124}g {234}g
+ {0234}g {012}g + {014}g {134}g {123}g + {014}g {1234}g
+ {014}g {124}g {234}g + {024}g {012}g {234}g.

Examining these examples, one finds that each term in the right-hand sides of the
above formulas corresponds to a partition of a convex polygon in a manner we shall
now make precise.

With a sequence of labels 0, 1, . . . , n we associate the ordered vertices of a convex
polygon. A partition of a convex polygon is the result of connecting any pairs of
nonadjacent vertices with straight lines, none of which intersect. We refer to these
straight lines as the inner edges of the partition. We denote the set of all such
partitions of a polygon with vertices 0, 1, . . . , n by P(0, 1, . . . , n). Every partition
π ∈ P(0, 1, . . . , n) is described by its set F (π) of (oriented) faces. Each face f ∈
F (π) is defined by some increasing sequence of vertices i0, i1, . . . , ik of the polygon,
i.e., f = (i0, i1, . . . , ik). We denote the set of edges in π by E(π).

Let y be a function implicitly defined by g
(
x, y(x)

)
= 0 and (x0, y0), . . . , (xn, yn)

be as in Section 1. Equations 12–14 suggest the following theorem.

Theorem 1 (Main Theorem). For y and g defined as above and sufficiently smooth
and for n ≥ 2,

(15) [0 · · ·n]y =
∑

π∈P(0,...,n)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g,

where {v0 · · · vr}g is defined by Equation 8.

Before we proceed with the proof of this theorem, we make some remarks. For
n = 2, 3, 4 this theorem reduces to the statements of Equations 12–14. To prove
Theorem 1, our plan is to use Equation 7′ recursively to express [01 · · ·n]y solely
in terms of divided differences of g. We have found it helpful to assign some visual
meaning to Equation 7′. Every sequence i = (i0, i1, . . . , ik) that appears in Equation
7′ induces a partition πi ∈ P(0, 1, . . . , n) whose set of faces comprises an inner face
(i0, i1, . . . , ik) and outer faces (ij , ij + 1, . . . , ij+1) for every j = 0, . . . , k − 1 with
ij+1− ij ≥ 2. We denote by Pi the set of all partitions of the disjoint union of these
outer faces. An example of such a sequence i, together with its inner face, outer
faces, and partition set Pi is given in Figure 1.

We shall now associate divided differences to these geometric objects. To each
outer face (ij , ij+1, . . . , ij+1) we associate the divided difference [ij(ij+1) · · · ij+1]y,
and to each inner face (i0, i1, . . . , ik) we associate the expression {i0 · · · ik}g. For
any sequence i that appears in the sum of Equation 7′, the corresponding inner face
therefore represents that part of Equation 7′ that can be written solely in terms
of divided differences of g, while the outer faces represent the part that is still
expressed as a divided difference of y.
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0=i
0

1=i
1

2=i
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3 4=i
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Figure 1. For n = 7, the sequence i = (0, 1, 2, 4, 5, 7) gives rise to
the two outer faces (2, 3, 4) and (5, 6, 7), which are shaded in the
figure. The set Pi contains in this case just 1 × 1 = 1 partition,
namely the union of the unique partitions {(2, 3, 4)} and {(5, 6, 7)}
of the outer faces.

Repeatedly applying Equation 7′ yields a recursion tree, in which each node
represents a product of divided difference expressions associated to inner and outer
faces. These recursion trees are depicted in Figure 2 for n = 2, 3, 4. Equation 7′

roughly states that the expression of any nonleaf vertex is equal to the sum of the
expressions of its descendants.

Proof of the Main Theorem. This theorem is a generalization of Theorem 1 in [3],
and the proofs are analogous. We prove the formula by induction on the order n of
the divided difference of y.

By the above discussion, the formula holds for n = 2, 3, 4. For n ≥ 5, assume
the formula holds for all smaller n. Consider the recursive formula from Equation
7′. For every sequence i that appears in this equation, the corresponding outer
faces have fewer vertices than the full polygon. By the induction hypothesis, we
can therefore replace each divided difference [il · · · il+1]y appearing in the product
of Equation 7′ by an expression involving only divided differences of g.

As before, let Pi denote the set of all partitions of the disjoint union of the outer
faces induced by i. Then, by the induction hypothesis, the product in Equation 7′

is equal to ∑
π∈Pi

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g.

For a given inner face i, the set Pi can be identified with {π ∈ P(0, . . . , n) : i ∈
F (π)} by the bijection F (π) 	→ F (π) ∪ {i}. Substituting the above expression into
Equation 7′ then yields

[0 · · ·n]y =
∑

inner faces
i=(i0,...,ik)

{i0 · · · ik}g
∑
π∈Pi

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g

=
∑

inner faces
i=(i0,...,ik)

∑
π∈P(0,...,n)

i∈F (π)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g

=
∑

π∈P(0,...,n)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g. �

Intuitively, this proof can be expressed in terms of the recursion tree as follows.
As remarked in the previous section, Equation 7′ states that the expression of
any nonleaf vertex is equal to the sum of the expressions of its descendants. By
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Figure 2. For n = 2, 3, 4, the figure depicts the recursion trees
obtained by repeatedly applying Equation 7′. The top levels of
these recursion trees correspond to Equations 9–11.

induction, the expression [01 · · ·n]y of the root vertex is therefore equal to the sum
of the expressions of the leaves, which, by construction, correspond to partitions of
the full polygon.

Example 1. Let us apply Theorem 1 to find a simple expression for divided differ-
ences of the function y(x) =

√
1− x2 defined on the interval (−1, 1). This function

is implicitly defined by the polynomial g(x, y) = x2 + y2 − 1 = 0. For any knots
xa, xb, xc, xd satisfying −1 < xa ≤ xb ≤ xc ≤ xd < 1 and corresponding function
values ya, yb, yc, yd, one finds

[xa, xb; yc]g = xa + xb, [xa, xb, xc; yd]g = 1,

[xa; yb, yc]g = yb + yc, [xa; yb, yc, yd]g = 1,

and all other divided differences of g of nonzero order are zero. In particular, every
divided difference of g of total order at least three is zero, which means that the
sum in Equation 15 will only be over triangulations (i.e., partitions in which all
faces are triangles). For a polygon with vertices 0, 1, . . . , n, Exercise 6.19a of [12]
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states that the number of such triangulations is given by the Catalan number

C(n− 1) =
1

n

(
2n− 2

n− 1

)
.

Consider, for a given triangulation π ∈ P(0, 1, . . . , n), a face (a, b, c) ∈ F (π) from
the product in Equation 15. As any divided difference of the form [xa, xb; yb, yc]g is
zero for this g, Equation 8 expresses {abc}g as a sum of at most two terms. There
are four cases.

{abc}g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

ya + yc

[
1 +

xa + xb

ya + yb
· xb + xc

yb + yc

]
a, b, c consecutive;

1

ya + yc
· xa + xb

ya + yb
only a, b consecutive;

1

ya + yc
· xb + xc

yb + yc
only b, c consecutive;

−1

ya + yc
otherwise.

For example, when n = 3, our convex polygon is a quadrilateral, which admits
C(3− 1) = 2 triangulations π1 and π2 with sets of faces

F (π1) = {(0, 1, 2), (0, 2, 3)}, F (π2) = {(0, 1, 3), (1, 2, 3)}.
One finds

[x0, x1, x2, x3]
√
1− x2 = {012}g {023}g + {013}g {123}g

=
−1

(y0 + y3)(y0 + y2)

[
1 +

x0 + x1

y0 + y1
· x1 + x2

y1 + y2

]
· x2 + x3

y2 + y3

+
−1

(y0 + y3)(y1 + y3)

[
1 +

x1 + x2

y1 + y2
· x2 + x3

y2 + y3

]
· x0 + x1

y0 + y1
.

Example 2. Next we show that Theorem 1 is a generalization of Theorem 1 of [3],
which gives a similar formula for inverse functions. To see this, we apply Theorem
1 to a function y implicitly defined by a function g(x, y) = x − h(y). Referring to
Equation 8, we need to compute [i0 · · · is; is · · · ik]g for this choice of g and various
indices i0, . . . , ik and s ∈ {0, . . . , k}. Applying the recursive definition of bivariate
divided differences, one obtains

[i0 · · · is; is · · · ik]x =

⎧⎨
⎩

xi0 if s = 0, s = k;
1 if s = 1, s = k;
0 otherwise,

[i0 · · · is; is · · · ik]h(y) =
{

[is · · · ik]h if s = 0;
0 otherwise.

Consider a face f = (v0, . . . , vr) of a given partition π ∈ P(0, . . . , n) in Equation
15. Since r ≥ 2, the divided difference [v0 · · · vs; vs · · · vr]

(
x−h(y)

)
is zero for s ≥ 1.

Using this, Equation 8 expresses {v0 · · · vr}g as a single term

{v0 · · · vr}g =− [v0; v0 · · · vr]g
[v0; v0vr]g

r∏
l=1

vl−vl−1=1

(
− [vl−1vl; vl]g

[vl−1; vl−1vl]g

)

=− [v0 · · · vr]h
[v0vr]h

r∏
l=1

vl−vl−1=1

1

[vl−1vl]h
.
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Taking the product over all faces in the partition π, the denominators of the factors
in the above equation correspond to the edges of the partition, while the numerators
correspond to the faces of the partition. As there is a minus sign for each face in
the partition, we arrive at the formula

(16) [01 · · ·n]y =
∑

π∈P(0,...,n)

(−1)#F (π)

∏
(v0,...,vr)∈F (π)

[v0v1 · · · vr]h

∏
(v0,v1)∈E(π)

[v0v1]h
,

which appears as Equation 11 in [3].

Note that the inverse of the algebraic function y =
√
1− x2 in Example 1 is

again an algebraic function. Equation 16 would therefore not have been of much
help to find a simple expression for divided differences of y. In fact, Example 1 can
be thought of as one of the simplest examples for which Theorem 1 improves on
Equation 16, as it concerns a polynomial g with bidegree as low as (2,2).

Example 3. In this example we shall derive a quotient rule for divided differences.
That is, we shall find a formula that expresses divided differences of the quotient
y = P (x)/Q(x) in terms of divided differences of P and of Q. Let g(x, y) =
Q(x)y − P (x). Then, in Equation 8,

(17) [i0 · · · is; is · · · ik]g =

⎧⎨
⎩

yis [i0 · · · is]Q− [i0 · · · is]P if s = k;
[i0 · · · is]Q if s = k − 1;

0 otherwise.

In Equation 15, therefore, the only partitions with a nonzero contribution are
those whose faces have all their vertices consecutive, except possibly the final one.
In particular, the inner face with vertices 0 = i0 < · · · < ik = n should either be
the full polygon, or should have a unique inner edge (ik−1, n). By induction, it
follows that the partitions with a nonzero contribution to Equation 15 are precisely
those for which all inner edges end at n. These partitions correspond to subsets
I ⊂ {1, 2, . . . , n − 2}, including the empty set, by associating with any such I the
partition with inner edges {(i, n) : i ∈ I}. Equation 15 becomes

[0 · · ·n]P
Q

= {0 · · ·n}g(18)

+
n−2∑
r=1

r∑
k=1

∑
0=i0<i1<···<ik=r

{r · · ·n}g
k∏

j=1

{ij−1 · · · ijn}g,

where the dots represent consecutive nodes and an empty product is understood to
be one. A long but straightforward calculation, involving Equations 8, 17, and 18,
yields

[0 · · ·n]P
Q

=
[0 · · ·n]P

Q0

+

n∑
r=1

[r · · ·n]P
Qr

r∑
k=1

(−1)k
∑

0=i0<i1<···<ik=r

k∏
j=1

[ij−1 · · · ij ]Q
Qij−1

,

where Qi := Q(xi) for i = 0, . . . , n. Alternatively, this equation can be found
by applying a univariate chain rule to the composition x 	→ Q(x) 	→ 1/Q(x), as
described in Section 4 of [2].
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Finally, we note that taking the limit x0, . . . , xn → x in Equations 6, 8, 12, and
13 yields

y′(x) =− g10
g01

,

y′′(x) =− g20
g01

+ 2
g11g10
g201

− g02g
2
10

g301
,

y′′′(x) =− g30
g01

+ 3
g21g10
g201

+ 3
g20g11
g201

− 3
g20g10g02

g301
− 3

g12g
2
10

g301

− 6
g211g10
g301

+
g310g03
g401

+ 9
g11g

2
10g02
g401

− 3
g310g

2
02

g501
,

where we have introduced the shorthand

gst :=
∂s+tg

∂xs∂yt
(
x, y(x)

)
.

These formulas agree with the examples given in [10], [11, page 153] and with a
formula stated as Equation 7 in [9].
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J. Comput. Math. 25 (2007), no. 6, 697–704. MR2359959 (2008h:65009)
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