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COMPUTING GENERATORS OF FREE MODULES

OVER ORDERS IN GROUP ALGEBRAS II

WERNER BLEY AND HENRI JOHNSTON

Abstract. Let E be a number field and G a finite group. Let A be any
OE-order of full rank in the group algebra E[G] and X a (left) A-lattice. In a
previous article, we gave a necessary and sufficient condition for X to be free
of given rank d over A. In the case that (i) the Wedderburn decomposition
E[G] ∼=

⊕
χ Mχ is explicitly computable and (ii) each Mχ is in fact a matrix

ring over a field, this led to an algorithm that either gives elements α1, . . . , αd ∈
X such that X = Aα1 ⊕ · · · ⊕Aαd or determines that no such elements exist.

In the present article, we generalise the algorithm by weakening condition (ii)
considerably.

1. Introduction

Let E be a number field and G a finite group. Let A be any OE-order of full
rank in the group algebra E[G] and X a (left) A-lattice, i.e., a (left) A-module
that is finitely generated and torsion-free over OE . The main theoretical result of
[BJ08] is a necessary and sufficient condition for X to be free of given rank d over
A. In order to use this criterion for computational purposes, we had to impose two
hypotheses:

(H1) TheWedderburn decomposition E[G]∼=
⊕

χ Mχ, where eachMχ=Mnχ
(Dχ)

is a matrix ring over a skew field Dχ, is explicitly computable.
(H2) The Schur indices of all E-rational irreducible characters of G are equal to

1, i.e., each Dχ above is in fact a number field.

Under these hypotheses, an algorithm was given that either computes elements
α1, . . . , αd ∈ X such that X = Aα1⊕· · ·⊕Aαd or determines that no such elements
exist. In the present article, we generalise this result by retaining hypothesis (H1)
but relaxing (H2) considerably.

Before outlining the new hypothesis (H2′) which replaces (H2), we briefly intro-
duce some notation. Let D be a skew field that is central and finite-dimensional
over a number field F . Let nr : D −→ F denote the reduced norm map and let
Δ ⊆ D be a maximal OF -order. Then nr(Δ×) ⊆ O×+

F , where O×+
F is a certain

subgroup of finite index in O×
F .

(H2′) For every Wedderburn component Mnχ
(Dχ) of E[G], the following condi-

tions hold (we omit the χ subscripts and use the notation from above):
(a) if nd > 1, then Δ has the locally free cancellation property (see §4.3);
(b) if nd > 1, then nr(Δ×) = O×+

F (see §4.4);
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(c) if nr(Δ×) �= O×+
F , then we can compute a set of generators of Δ×,

else we can compute a set of representatives of nr : Δ× −→ O×+
F (see

§4.5); and
(d) we can solve the principal ideal problem for fractional left Δ-ideals

(see §4.6).
In particular, (H2′) holds whenever E = Q and |G| < 32, or (H2) holds (for

example, if G is abelian, dihedral, symmetric on any number of letters, or nilpotent
of odd order). If we assume that d = 1, then (H2′) is satisfied whenever E = Q and
G is any generalised quaternion group. Furthermore, if Dχ is not a totally definite
quaternion algebra, then (a) and (b) hold; if Dχ is a totally definite quaternion
algebra, then (c) holds; if Dχ is any quaternion algebra, then (d) holds; and if
F = Q, then (b) holds. We note that if the full strength of (H2′) does not hold,
then it may still be possible to run the algorithm and find generators if they exist,
though this is not guaranteed (see Remark 4.8). For a detailed discussion of (H2′)
and the conditions under which it is satisfied, we refer the reader to §4.

The original motivation for this work comes from the following special case.
Let L/K be a finite Galois extension of number fields with Galois group G such
that E is a subfield of K and put d = [K : E]. One can take X = OL and
A = A(E[G];OL) := {λ ∈ E[G] | λOL ⊆ OL}. The application of the algorithm
to this special situation is implemented in Magma ([BCP97]) under certain extra
hypotheses when K = E = Q (see §8). The source code and input files are available
from http://www.mathematik.uni-kassel.de/∼bley/pub.html. For further dis-
cussion of the motivating special case and a review of the relevant literature, we
refer the reader to the introduction of [BJ08].

2. A necessary and sufficient condition for freeness

We briefly recall (with some minor differences and corrections) relevant notation
and results from [BJ08, §2]. For further background material we refer the reader
to [Rei03].

Let E be a number field with the ring of integers OE and let G be a finite group.
Let A be any OE-order in the group algebra A := E[G], and let M denote some
fixed maximal OE-order in A containing A. (In fact, the results of this section still
hold if A is replaced by any finite-dimensional semisimple E-algebra.)

If p is a prime of OE , we write OE,p for the localisation (not completion) of OE

at p. More generally, if M is an OE-module, we write Mp := OE,p ⊗OE
M for

the localisation of M at p. Let X be a left A-lattice, i.e., a left A-module that is
finitely generated and torsion-free over OE . Then we say that X is locally free of
rank d ∈ N if for every prime p of OE we have Xp free of rank d over Ap. We set
MX := {

∑r
i=1 λixi | λi ∈ M, xi ∈ X, r ∈ N}, which is an OE-submodule of the

E-vector space E ⊗OE
X. If X is locally free over A, then we can (and often do)

identify MX with M⊗A X.
Let e1, . . . , er denote the primitive central idempotents of A. Setting Ai := Aei

and Mi := Mei, we have the decompositions

A = A1 ⊕ · · · ⊕Ar and M = M1 ⊕ · · · ⊕Mr.

Let f be any full two-sided ideal of M contained in A. Then we have f ⊆ A ⊆ M ⊆
A. Set M := M/f and A := A/f so that A ⊆ M are finite rings, and denote the
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canonical map M −→ M by m 	→ m. Note that we have the decompositions

f = f1 ⊕ · · · ⊕ fr and M = M1 ⊕ · · · ⊕Mr,

where each fi is a nonzero ideal of Mi and Mi := Mi/fi.
Now fix d ∈ N, and for the rest of this section suppose 1 ≤ i ≤ r and 1 ≤

j ≤ d. (We shall now abuse notation slightly by not distinguishing between a
noncommutative ring R and its opposite ring Rop since they are equal as sets; see
[BJ08, top of p. 839].) For each i, let Ui ⊂ GLd(Mi) denote a set of representatives
of the image of the natural projection GLd(Mi) −→ GLd(Mi). We now recall
without proof [BJ08, Corollary 2.4], which is the key theoretical result leading to
Algorithm 3.1.

Theorem 2.1. Let X be a left A-lattice. Suppose that

(a) X is a locally free A-lattice of rank d, and
(b) for each i, there exist βi,1, . . . , βi,d such that MiX = Miβi,1⊕· · ·⊕Miβi,d.

Then X is free of rank d over A if and only if

(c) there exist λi ∈ Ui such that each αj ∈ X, where αj :=
∑r

i=1 αi,j and
(αi,1, . . . , αi,d)

T := λi(βi,1, . . . , βi,d)
T.

Furthermore, when this is the case, X = Aα1 ⊕ · · · ⊕ Aαd.

3. The main algorithm

Let E be a number field and let G be a finite group. Let A be any OE-order of
full rank in the group algebra E[G] and let X be a left A-lattice. In this section, we
give the outline of an algorithm based on Theorem 2.1 (i.e. [BJ08, Corollary 2.4])
that either computes elements α1, . . . , αd ∈ X such that X = Aα1 ⊕ · · · ⊕ Aαd, or
determines that no such elements exist. In other words, the algorithm determines
whether X is free over A, and if so, computes explicit generators.

We require the hypotheses (H1) and (H2′) formulated in the introduction. We
discuss the conditions under which these hypotheses hold in §4. The sketch of the
algorithm given here is essentially the same as [BJ08, Algorithm 3.1]; the main
work in the present article is in generalising the detailed versions of steps (5) and
(7) below.

We assume that both A and X are given by OE-pseudo-bases as described, for
example, in [Coh00, Definition 1.4.1]. In other words, X = a1w1 ⊕ · · · ⊕ amwm

where each ai is a fractional ideal of OE and each wi ∈ V := E ⊗OE
X. Similarly,

A = b1λ1 ⊕ · · · ⊕ bnλn with fractional OE-ideals bi and λi ∈ E[G]. Furthermore,
we assume that V is given by an E-basis v1, . . . , vm together with matrices A(σ) ∈
GLm(E) for each σ ∈ G describing the action of G with respect to v1, . . . , vm.

Algorithm 3.1. Input: A and X as above.

(1) Compute d := dimE(V )/|G| and check that d ∈ N.
(2) Compute a maximal OE-order M in E[G] containing A.
(3) Compute the central primitive idempotents ei and the components Mi :=

Mei.
(4) Compute the conductor c of A in M and the components ci := cei.

Then compute the ideals gi := ci ∩ OEi
and fi := giMi for each i.

(5) For each i, we try to compute βi,1, . . . , βi,d such that MiX = Miβi,1 ⊕
· · · ⊕ Miβi,d. If such βi,1, . . . , βi,d do not exist, we terminate with ‘MX
not free over M’.
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(6) Check that X is locally free of rank d over A.
(7) For each i, compute a set of representatives Ui ⊂ GLd(Mi) of the image of

the natural projection map GLd(Mi) −→ GLd(Mi), where Mi := Mi/fi.
(8) Try to find a tuple (λi) ∈

∏r
i=1 Ui such that each αj ∈ X, where αj :=∑r

i=1 αi,j and (αi,1, . . . , αi,d)
T := λi(βi,1, . . . , βi,d)

T. For such a tuple,
X = Aα1 ⊕ · · · ⊕ Aαd. If no such tuple exists, terminate with ‘X not
free over A’.

Before commenting on the individual steps, we remark that steps (1) to (4) can
be performed in full generality without assuming hypotheses (H1) or (H2′).

(1) If we replace E[G] by a finite-dimensional semisimple E-algebra A (see
Remark 4.9), then we define d := dimE(E ⊗OE

X)/ dimE(A).
(2) An algorithm for computing M is described in [Fri00, Kapitel 3 and 4].
(3) Each central primitive idempotent corresponds to an irreducible E-character

χi and we have ei =
ni

|G|
∑

g∈G χi(g
−1)g with ni = χi(1). If we replace E[G]

by a finite-dimensional semisimple E-algebra A, then we can use the algo-
rithm of [Ebe89, §2.4].

(4) In practice, we compute some multiple of the conductor. For example, one
can use the method outlined in [BB06, 3.2 (f) and (g)]. Also, see [BB06,
Remark 3.3].

(5) This step is described in §6, using the results of §5.
(6) Successful completion of step (5) shows that MX is a free M-module of

rank d. Therefore, X is locally free of rank d over A except possibly at
the (finite number of) primes of OE dividing the generalised module index
[M : A]OE

(if OE [G] ⊆ A, then all such primes must divide |G|). An
algorithm to compute local basis elements (and thus to check local freeness)
at these primes is given in [BW09, §4.2].

(7) This step is described in §7.
(8) The number of tests for this step can be greatly reduced by using the

method described in [BJ08, §7].

Remark 3.2. Suppose X is a finitely generated OE [G]-module in a free E[G]-space
V = E⊗OE

X (for example, L/K is a finite Galois extension of number fields with
E ⊆ K, G = Gal(L/K) and X = OL). Then it is often necessary to first compute
the associated order A = A(E[G];X) := {λ ∈ E[G] | λX ⊆ X}, over which we
wish to work (this is the only OE-order in E[G] over which X can possibly be free).
This can be done by the method described in [BJ08, §4].

4. Hypotheses (H1) and (H2
′
)

We recall and discuss the hypotheses (H1) and (H2′) required for Algorithm 3.1.

4.1. Explicitly computing Wedderburn decompositions — (H1). We note
that satisfying (H1) is equivalent to explicitly finding all irreducible E[G]-modules
up to isomorphism. If G is abelian, the required isomorphism can be explicitly
computed using the character table. For G nonabelian, many decompositions can
be found in the literature or ‘by hand’. In general, explicitly computing Wedderburn
decompositions of group algebras is a problem of major interest in its own right; we
refer the reader to the Magma documentation for a survey of some of the methods
currently implemented.
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4.2. The Eichler condition. Let F be a number field and let A be a central
simple F -algebra. We say that A satisfies the Eichler condition relative to OF and
write ‘A is Eichler/OF ’ if and only if A is not a totally definite quaternion algebra
(see [CR87, (45.5)(i)] or [Rei03, (34.4)]). More generally, if A is a finite-dimensional
semisimple F -algebra we say that A is Eichler/OF if and only if each Wedderburn
component Ai is Eichler/OFi

, where Fi is the center of Ai.

4.3. The locally free cancellation property — (H2′)(a). Let F be a number
field and let Λ be anOF -order in a finite-dimensional semisimple F -algebra A. Then
we say that Λ has locally free cancellation if for any locally free finitely generated
left Λ-modules X and Y we have

X ⊕ Λ(k) ∼= Y ⊕ Λ(k) for some k =⇒ X ∼= Y.

The Jacobinski Cancellation Theorem says that if A is Eichler/OF , then Λ has
locally free cancellation (see [CR87, (51.24)]). It therefore remains to consider the
case where A is not Eichler/OF , i.e., at least one of the Wedderburn components
Ai is a totally definite quaternion algebra.

We now restrict to the case that Λ is a maximal OF -order in A. Note that Λ has
locally free cancellation if and only if all of the corresponding maximal orders Λi

in each Wedderburn component Ai have locally free cancellation (for example, use
Fröhlich’s result [CR87, (51.26)]). Hence we may restrict further to the case that A
is a totally definite quaternion algebra and use the complete classification of maxi-
mal orders in such algebras with locally free cancellation given in [HM06]. However,
we take a different approach better suited to consideration of group algebras.

Let E be a number field and G be a finite group. We wish to give criteria for
E[G] to satisfy (H2′)(a) in terms of conditions on G. Fix a Wedderburn component
Mn(D) = Mnχ

(Dχ) of E[G]. Let F be the center of D and fix a maximal OF -order
Δ ⊆ D. Recall that (H2′)(a) requires that Δ has locally free cancellation if nd > 1.
(Note that this is independent of the choice of Δ ⊆ D; see [HM06, Proposition 9].)
If n > 1, then Mn(D) is Eichler/OF and so any OF -order in Mn(D) has locally
free cancellation; however, we still require that Δ ⊆ D has locally free cancellation,
which is not necessarily the case. On the other hand, assuming that d > 1, a
necessary condition for (H2′)(a) to hold is that any maximal OE-order in E[G] has
locally free cancellation. For any d ∈ N, this condition is sufficient if nχ = 1 for
each χ such that Dχ is a totally definite quaternion algebra.

Let Λ be a maximal OE-order in E[G]. In light of the above discussion, we
consider criteria on G for Λ to have locally free cancellation. Let Q4n denote
the generalised quaternion group of order 4n, and let E24, E48, E120 denote the
binary tetrahedral, octahedral and icosahedral groups of orders 24, 48 and 120,
respectively. Then by [CR87, (51.3)] (where Q4n, E24, E48, E120 are denoted by

Qn, T̃ , Õ, Ĩ, respectively) E[G] is Eichler/OE (and so Λ has locally free cancellation)
if G has no quotient isomorphic to Q4n (n ≥ 2), E24, E48, or E120. In the case
E = Q, we have the following result due to Swan.

Theorem 4.1 ([Swa83, Theorem II]). Let G be a binary polyhedral group and let Λ
be a maximal order in Q[G]. Then Λ has locally free cancellation if and only if G is
one of the following 11 groups: Q8, Q12, Q16, Q20, Q24, Q28, Q36, Q60, E24, E48, E120.

This leads to the following useful result.

Lemma 4.2. Let G be any group with |G| < 32. Then Q[G] satisfies (H2′)(a).
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Proof. Let G be a group such that Q[G] has a Wedderburn component Mnχ
(Dχ)

where Dχ is a totally definite quaternion algebra (for all other groups, the as-
sertion follows from the Jacobinksi Cancellation Theorem) and |G| < 32. It is
straightforward to check using Magma that when Dχ is a totally definite quater-
nion algebra, we have nχ = 1 (in the case that G is a generalised quaternion group,
this also follows from [CR81, (7.40)]). Hence, by the discussion above, it suffices
to show that any maximal order in Q[G] has locally free cancellation. So if G is
Q8, Q12, Q16, Q20, Q24, Q28, or E24, the assertion now follows from Theorem 4.1.

The remaining possibilities forG (determined using Magma) are C2×Q8, C3×Q8,
C2 × Q12, S16,4, and S24,1, where Sn,i denotes the group returned by the Magma
function Smallgroup(n,i). In the last two cases, the quaternion component comes
from surjections S16,4 � Q8 and S24,1 � Q12. Hence the result now follows by
combining Theorem 4.1 and the fact that locally free cancellation for a maximal
order Λ in Q[G] is equivalent to locally free cancellation for each Wedderburn
component Λi (see discussion above). �

Remark 4.3. By Theorem 4.1, maximal orders in Q[Q32] do not have locally free
cancellation. Hence Q[Q32] does not satisfy (H2′)(a) when d > 1; however, (H2′)(a)
is satisfied when d = 1 since the only Wedderburn component Mnχ

(Dχ) with Dχ

a totally definite quaternion algebra has nχ = 1, and so locally free cancellation is
not required since nχd = 1.

4.4. Surjectivity of the reduced norm map — (H2′)(b). Let F be a number
field and let A be central simple F -algebra. Let nr = nrA/F : A −→ F denote the
reduced norm map as defined in [CR81, §7D] or [Rei03, §9]. Let H be the skew
field of real quaternions. Let P be a real prime of F , let AP be the completion of
A at P , and let σP : F ↪→ R be the corresponding embedding. We say that P is
ramified in A if and only if AP is isomorphic to Mn(H) for some n ∈ N. We define

U(A) := {α ∈ F× | σP (α) > 0 for every real prime P of F ramified in A}.
The Hasse-Schilling-Maass Norm Theorem (see [Rei03, (33.15)] or [CR81, (7.48)])

says that nr(A×) = U(A). Now let Λ be a maximal OF -order in A. Then
nr(Λ×) ⊆ O×+

F := O×
F ∩U(A). Note that (O×

F )
2 ⊆ O×+

F and so O×+
F is a subgroup

of index some power of 2 in O×
F which can easily be computed (provided O×

F can
be computed).

The question of whether nr(Λ×)=O×+
F is directly relevant to hypothesis (H2′)(b).

If A is Eichler/OF , then by [CR87, (51.22)] we in fact have equality. However, if A
is not Eichler/OF , then we may or may not have equality. For example, if F = Q

and A is a totally definite quaternion algebra, then we have O×+
F = {1} and so

equality is clear. On the other hand, [Swa80, pp. 198-199] gives an example in

which A is a totally definite quaternion algebra over its center F = Q(
√
3) for

which equality does not hold.

Lemma 4.4. Let G be any group with |G| < 40. Let Mn(D) = Mnχ
(Dχ) be a

Wedderburn component of Q[G], let F be the center of D, and let Δ ⊆ D be any
maximal OF -order. Then nr(Δ×) = O×+

F . In particular, Q[G] satisfies (H2′)(b).

Proof. See Magma sample file. �

Remark 4.5. When G = Q40, the generalised quaternion group of order 40, there
are two Dχ which are totally definite quaternion: one with center Q; the other with



COMPUTING GENERATORS OF FREE MODULES 2417

center F := Q(ζ20)
+, the maximal totally real subfield of Q(ζ20). In the latter case,

there are three maximal orders Δ ⊆ Dχ, only two of which satisfy nr(Δ×) = O×+
F .

4.5. Computing unit groups of maximal orders in skew fields — (H2′)(c).
Let D be a skew field that is central and finite-dimensional over a number field
F . Let Δ ⊆ D be a maximal OF -order. The unit group Δ× is always finitely
presentable (see [Kle94], for example). We consider the problem of computing a set
of generators of Δ×.

If D is commutative (i.e. D = F ), then a set of generators of Δ× = O×
F is

computable by [Coh93, Algorithm 6.5.8] (the Magma command is UnitGroup).
When D is a totally definite quaternion algebra, then in fact [Δ× : O×

F ] < ∞. In

this case, the Magma command Units computes a set of representatives of Δ×/O×
F

and thus reduces the problem to the previous case (also see [KV10, Remark 7.5]).
The authors are unaware of any algorithms to compute a set of generators of

Δ× in other cases. However, when nr(Δ×) = O×+
F (which by the discussion in §4.4

must be the case whenever D is not a totally definite quaternion algebra), it suffices
for our purposes to solve the following somewhat easier problem: compute a set of
representatives of the map nr : Δ× −→ O×+

F , i.e., compute a finite subset S ⊆ Δ×

such that nr(S) generates O×+
F . Note that, in particular, S can be taken to be a

set of generators of Δ×.
We note that (H2′)(c) is satisfied whenever D = Dχ is commutative or a totally

definite quaternion algebra: in this case, we can always compute a set of generators
of Δ× and hence we can compute a set of representatives of nr : Δ× −→ O×+

F when

nr(Δ×) = O×+
F .

4.6. The principal ideal problem for maximal orders in skew fields —
(H2′)(d). Let D be a skew field that is central and finite-dimensional over a num-
ber field F . Let Δ ⊆ D be a maximal OF -order and let a, b be fractional left
Δ-ideals. Then we say that we can solve the principal ideal problem for left ideals
if we have an algorithm to

(i) decide whether a ∼= b as left Δ-ideals; and
(ii) if a ∼= b, compute ξ ∈ D such that a = bξ (see Lemma 5.5).

Dually, we may formulate the principal ideal problem for right ideals.
If D is commutative (i.e. D = F ), then the problem is solved by [Coh93, Al-

gorithm 6.5.10] and implemented in Magma. The algorithms in [KV10] solve the
principal ideal problem when D is any quaternion algebra, and are implemented in
Magma when F is totally real. (In both cases, the relevant Magma command is
IsPrincipal.)

The authors are unaware of any algorithms solving this problem completely
in other cases. However, if D is Eichler/OF , then by [Rei03, (34.9)] a left Δ-
ideal a is principal if and only if nr(a) is a principal OF -ideal with a generator
α ∈ U(D), solving (i). Furthermore, it is straightforward to show that for any D
(not necessarily Eichler/OF ) a left Δ-ideal a is principal if and only if there exists
ξ ∈ a such that nr(a) = nr(ξ)OF .

4.7. Choice of Δ ⊆ D. We note that (H2′)(a) is independent of the choice of
Δ ⊆ D (see §4.3), but (H2′)(b) is not (see Remark 4.5). Moreover, (H2′)(c) and
(H2′)(d) are independent of the choice of Δ in the cases where they are known to
hold (i.e. when D is a number field or totally definite quaternion algebra). This is
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important because if n = 1, then Δ is determined by M, and the choice of M may
be limited by the requirement that A ⊆ M. On the other hand, if n ≥ 2, then we
can make any choice of Δ. (The differences between the n = 1 and n ≥ 2 cases are
made clear in §6.4.)

4.8. Particular cases in which (H2′) holds. Let E be a number field, let G
be a finite group, and let d ∈ N. We consider particular cases in which the pair
(E[G],d) satisfies (H2′). We note that (H2′) holds whenever (H2) holds, and the
latter does not depend on d.

Proposition 4.6. The pair (E[G],d) satisfies (H2′) in the following cases:

(i) G is abelian, dihedral, or symmetric;
(ii) G is a nilpotent group of odd order (e.g. G is a p-group where p is an odd

prime);
(iii) E contains a primitive mth root of unity, where m is the exponent of G;
(iv) G is a generalised quaternion group, E = Q, and d = 1;
(v) |G| < 32 and E = Q.

Proof. In cases (i), (ii) and (iii), in fact the stronger hypothesis (H2) holds (for a
general discussion of Schur indices, see [CR87, §74B]). In case (iv), the claim follows
from [CR81, (7.40)]. Indeed, for any Wedderburn component Mnχ

(Dχ) of Q[G],
either Dχ is a number field or nχ = 1 (so nχd = 1) and Dχ is a totally definite
quaternion algebra. In case (v), it is straightforward to check using Magma that
each Dχ is either a number field or a totally definite quaternion algebra, so (H2′)(c)
and (d) are satisfied. Hypotheses (H2′)(a) and (b) now follow from Lemmas 4.2
and 4.4, respectively. �

Remark 4.7. Using the Magma commands CharacterTable, SchurIndex and
SchurIndices, one can often check whether a particular pair (Q[G], d) satisfies
(H2′). For example, of the 1268 groups G with |G| < 128, there are 433 such that
(Q[G], 1) does not satisfy (H2), whereas only 181 are such that (Q[G], 1) does not
satisfy (H2′).

Remark 4.8. Algorithm 3.1 can still be run in certain situations where the full
strength of (H2′) does not hold. For example, (b) and (c) are only needed for
step (7) of Algorithm 3.1 and so are unnecessary if A = M. In the case that
A �= M, if (b) is dropped and (c) is weakened to being able to compute a ‘large’
subset of representatives of nr : Δ× −→ nr(Δ×) ⊆ O×+

F , we may have enough
respresentatives to successfully find generators (if they exist) in step (7); however,
failure to find generators will not prove that X is not free over A. Similarly, if (a)
is dropped, then it may still be possible to find generators over the maximal order;
see Remark 6.4. Finally, we note that (H2′)(d) is always needed.

Remark 4.9. Algorithm 3.1 still works if the group algebra A := E[G] is replaced
by a finite-dimensional semisimple E-algebra, in which case analogous versions of
(H1) and (H2′) are required (also note the minor changes needed in steps (1) and
(3); see §3). However, note that it will not be possible to apply the Grunwald-
Wang Theorem if the ‘special case’ occurs; see proof Lemma 7.4 and Remark 7.5.
Of course, the modified version of (H1) is not necessary if A is given directly as a
product of matrix rings.
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5. Algorithms for modules over maximal orders in skew fields

5.1. Algorithmic version of Roiter’s Lemma. Let R be a Dedekind domain
with field of fractions F . Let Λ ⊆ A be any R-order in the finite-dimensional
semisimple F -algebra A. Recall that two Λ-lattices M,N are in the same genus
(denoted M∨N) if for each prime ideal p of R, there is a Λp-isomorphism Mp

∼= Np.

Theorem 5.1 (Roiter’s Lemma). Let M,N be Λ-lattices. Then M ∨N if and only
if for any nonzero integral ideal a of R there exists an injective homomorphism of
Λ-lattices ϕ : M ↪→ N such that a+ annR(cokerϕ) = R.

Proof. See [Rei03, (27.1)] or [CR81, (31.6)], for example. �

Let M,N be locally free Λ-lattices (i.e. M,N are both in the genus of Λ(d)

for some d ∈ N) and let a be a nonzero integral ideal of R. We wish to make
Roiter’s Lemma algorithmic in this situation, i.e., explicitly compute ϕ such that
a+ annR(cokerϕ) = R.

Let p1, . . . , pn denote the prime divisors of a (or choose any prime p1 if a = R).
By the method described in [BW09, §4.2], for each i = 1, . . . , n we compute local
bases

Mpi
= Λpi

ωi,1 ⊕ · · · ⊕ Λpi
ωi,d,

Npi
= Λpi

νi,1 ⊕ · · · ⊕ Λpi
νi,d,

set ψi(ωi,k) = νi,k for k = 1, . . . , d, and extend linearly. Hence ψi : Mpi
−→ Npi

is
an isomorphism of Λpi

-modules for i = 1, . . . , n. By multiplying the basis elements
νi,k by elements of R×

pi
if necessary, we may assume that ψi(M) ⊆ N for each i.

Following [Rei03, Exercise 18.3], we now compute β1, . . . , βn ∈ R such that

βi ≡ 1 (mod pi),

βi ≡ 0 (mod pj) for j �= i,

(one can use the CRT function of Magma; also see [Coh00, Proposition 1.3.11]) and
set ϕ : M −→ N to be the restriction of

∑n
j=1 βjψj . By Nakayama’s Lemma each

localised map ϕpi
: Mpi

−→ Npi
is surjective. Since Mpi

is Rpi
-torsion-free, a rank

argument shows that each ϕpi
is in fact an isomorphism.

We now follow the proof of [Rei03, (27.1)]. Since (kerϕ)pi
= kerϕpi

= 0 for
each i and kerϕ is R-torsion-free, we see that kerϕ = 0 and so ϕ is injective.
Furthermore, (cokerϕ)pi

= cokerϕpi
= 0 and so pi + annR(cokerϕ) = R for each i.

Therefore, a+ annR(cokerϕ) = R.

Remark 5.2. We can replace the hypothesis that M,N are locally free with M ∨N
by the assumption that we can explicitly compute isomorphisms ψi : Mpi

−→ Npi

for i = 1, . . . , n.

The main application we have in mind is as follows. Let D be a skew field that
is central and finite-dimensional over a number field F . Let Δ ⊆ D be a maximal
OF -order. We take Λ = Δ, A = D, R = OF , and M,N to be fractional left
Δ-ideals. Then for each i we have

Mpi
= Δpi

ωi, Npi
= Δpi

νi, ψi(ωi) = νi = ωi(ω
−1
i νi),

i.e., ψi is right multiplication by ξi := ω−1
i νi. The map ϕ in the algorithmic version

of Roiter’s Lemma is then right multiplication by ξ :=
∑n

j=1 βjξj .
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5.2. The noncommutative extended Euclidean algorithm. Let D be a skew
field that is central and finite-dimensional over a number field F . Let Δ ⊆ D be a
maximal OF -order. We briefly recall the following definitions and facts from [Rei03,
§8 and §22]. Let M be any full left Δ-lattice in D (for example, a fractional left
ideal of Δ). The right order of M is defined to be

Or(M) := {x ∈ D | Mx ⊆ M}.
Then Or(M) is an OF -order in D. The left order Ol(M) is defined analogously.
We define

M−1 := {x ∈ D | M · x ·M ⊆ M}
and note that this is a full right Δ-lattice in D. If Δ = Ol(M) and Δ′ = Or(M),
then Δ′ = Ol(M

−1) and Δ = Or(M
−1). By [Rei03, (22.7)] we have

(1) M ·M−1 = Δ, M−1 ·M = Δ′, (M−1)−1 = M.

We consider the following problem. Let a, b, c be fractional left Δ-ideals such
that a + b = c. We wish to find α ∈ c−1a and β ∈ c−1b such that α + β = 1.
Observe that c−1a and c−1b are left ideals over Δ′ := Or(c) and we have

a+ b = c ⇐⇒ c
−1

a+ c
−1

b = c
−1

c = Δ′.

We shall essentially give the argument of [Coh00, Algorithm 1.3.2], to which
we refer the reader for more details. For background material on the Hermite
Normal Form (henceforth abbreviated to HNF) over Z, see [Coh93, §2.4]. Let
ω′
1, . . . , ω

′
n be a Z-basis of Δ′ chosen so that ω′

1 = 1. Then the underlying Z-
modules of c−1a, c−1b are given by HNFs over Z with respect to {ω′

1, . . . , ω
′
n}, say

Ha, Hb ∈ Mn×n(Z). Consider the matrix (Ha | Hb). Then by [Coh93, §2.4.2] we
can compute U ∈ GL2n(Z) such that

(Ha | Hb)U = (0 | H),

where H is the HNF of (Ha | Hb). Then H must be the identity matrix since
c−1a+ c−1b = Δ′. Let Z = Un+1 be the (n+ 1)-st column of U . Then

(Ha | Hb)Z = (Ha | Hb)

(
Za

Zb

)
= HaZa +HbZb =: za + zb.

The column vectors za and zb correspond to α ∈ c−1a and β ∈ c−1b.
We now consider the following slightly more general problem. Let a1, . . . , am, c be

fractional left Δ-ideals such that a1+ · · ·+am = c. We wish to compute αj ∈ c−1aj

such that

α1 + · · ·+ αm = 1.

Let b = a1 + · · ·+ am−1. Assume that we have βj ∈ b−1aj such that

β1 + · · ·+ βm−1 = 1.

By the above we can find ξ ∈ c−1b and η ∈ c−1am with ξ + η = 1. Then

1 = ξ(β1 + · · ·+ βm−1) + η = ξβ1 + · · ·+ ξβm−1 + η

and ξβj ∈ c−1bb−1aj = c−1aj . Hence we are reduced to the case m = 2 solved
above.

Remark 5.3. It is straightforward to give an analogous ‘right version’ of this algo-
rithm.
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5.3. Noncommutative Hermite Normal Forms. Let D be a skew field that is
central and finite-dimensional over a number field F . Let Δ ⊆ D be a maximal
OF -order. Let X be a left Δ-lattice such that FX ∼= Dr, for some r > 0. By
[Rei03, (2.44) and (2.45)(ii)] there exist x1, . . . , xr ∈ FX and fractional left Δ-
ideals a1, . . . , ar such that

X = a1x1 ⊕ · · · ⊕ arxr.

Our aim is to explicitly compute such a noncommutative pseudo-basis under the
assumption that we have the following:

(i) a Z-basis ω1, . . . , ωn for Δ with ω1 = 1;
(ii) a left D-basis v1, . . . , vr for FX, i.e., FX = Dv1 ⊕ · · · ⊕Dvr; and
(iii) y1, . . . , yk ∈ FX and fractional left Δ-ideals bi such that X = b1y1 + · · ·+

bkyk.

Note that we must have k ≥ r. We write

yj =

r∑
i=1

aijvi with aij ∈ D

and set

A := (aij) ∈ Mr×k(D).

Then we have a ‘pseudo-matrix’ A := (A, (b1, . . . , bk)) representing X. We give
noncommutative versions of some of the results of [Coh00, §1.4.2] to transform A
to a HNF over Δ (the key difference being that one needs to consider carefully
whether the required multiplications are on the left or the right). In other words,
we compute a pseudo-matrix

((0 | H), (a1, . . . , ar)) where H =

⎛
⎜⎜⎜⎝

1 ∗ · · · ∗
0 1 · · · ∗
...

. . .
. . .

...
0 · · · 0 1

⎞
⎟⎟⎟⎠ ∈ Mr×r(D)

such that

b1A1 + · · ·+ bkAk = a1H1 ⊕ · · · ⊕ arHr,

where Aj and Hj denote the jth columns of the matrices A and H respectively.
(Note that the sum a1H1 + · · · + arHr must be direct since the Hj ’s are clearly
linearly independent.)

We describe the first step, the rest being induction. We set

b
′
j :=

{
bjarj , if arj �= 0,

bj , if arj = 0
and a′ij :=

{
a−1
rj aij , if arj �= 0,

aij , if arj = 0.

By relabelling (removing the ′ notation) and reordering if necessary, we may there-
fore assume that A is of the form

((B1 | B2) , (b1, . . . , bk)) where B1 =

⎛
⎜⎜⎜⎝

∗ . . . ∗
...

. . .
...

∗ · · · ∗
0 · · · 0

⎞
⎟⎟⎟⎠ and B2 =

⎛
⎜⎜⎜⎝

∗ · · · ∗
...

. . .
...

∗ · · · ∗
1 · · · 1

⎞
⎟⎟⎟⎠ .

It suffices to consider the matrix B2, so without loss of generality we may assume
that A = B2 and A = (A, (b1, . . . , bk)).
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We explicitly compute c := b1 + · · ·+ bk by HNF techniques over Z (see [Coh93,
§2.4]). Using §5.2, we then compute αj ∈ c−1bj such that

α1 + · · ·+ αk = 1.

Let c := α1A1 + · · · + αkAk and let A′ := (A1 − c, . . . , Ak − c, c) ∈ Mr×(k+1)(D),
the matrix formed by column vectors in the obvious way. We consider the pseudo-
matrix

A′ := (A′, (b1, . . . , bk, c)) .

For a pseudo-matrix C = (C, (c1, . . . , cm)) with C ∈ Mn×m(D) we set

〈C〉 := c1C1 + · · ·+ cmCm.

Lemma 5.4. We have 〈A〉 = 〈A′〉.

Proof. ‘⊆’ Let s ∈ bj . Then sAj = s(Aj − c) + sc ∈ 〈A′〉 because s ∈ bj ⊆ c.
‘⊇’ Again let s ∈ bj . Then

s(Aj − c) ∈ 〈A〉 ⇐⇒ sc ∈ 〈A〉 ⇐⇒ s(α1A1 + · · ·+ αkAk) ∈ 〈A〉
⇐= sαj ∈ bj for j = 1, . . . , k.

Since αj ∈ c−1bj and s ∈ bj ⊆ c, we have sαj ∈ cc−1bj = bj .
Now suppose s ∈ c. Since αj ∈ c−1bj each sαj ∈ bj for j = 1, . . . , k. Hence

sc ∈ 〈A〉. �
Finally, note that A′ is of the form(

A1 ∗
0 1

)
for some A1∈M(r−1)×k(D). Hence we can now repeat the process with (A1, (b1, . . . ,
bk)) and continue inductively until we obtain a pseudo-matrix of the desired form.

5.4. Noncommutative Steinitz form. We assume the notation and setting of
§5.3. The aim of this section is to give an algorithmic version of [Rei03, (27.4)].
Given fractional left Δ-ideals a1, . . . , ar and x1, . . . , xr ∈ FX such that

X = a1x1 ⊕ · · · ⊕ arxr,

we wish to compute a Steinitz form, i.e., a fractional left Δ-ideal b and z1, . . . , zr ∈
FX such that

X = Δz1 ⊕ · · · ⊕Δzr−1 ⊕ bzr.

(Note that without loss of generality we can in fact take b to be integral.) In
general, we argue as follows:

X = a1x1 ⊕ · · · ⊕ arxr

= Δx′
1 ⊕ b2x

′
2 ⊕ a3x3 ⊕ · · · ⊕ arxr

= Δx′
1 ⊕Δx′′

2 ⊕ b3x
′′
3 ⊕ a4x4 ⊕ · · · ⊕ arxr

= etc.,

so we may restrict to the case r = 2.
We first note the following lemma.

Lemma 5.5. Let a, b be fractional left Δ-ideals. Then

a ∼= b as left Δ−modules ⇐⇒ a = bξ for some ξ ∈ D.

Proof. Obvious, but pay attention to the fact that ξ is on the right side of b. �
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We first consider the special case that X = a1x1 ⊕ a2x2 with a1 + a2 = Δ. We
compute α1 ∈ a1 and α2 ∈ a2 such that α1 + α2 = 1. Then there is a short exact
sequence of left Δ-modules

0 −→ a1 ∩ a2
f−→ a1 ⊕ a2

g−→ Δ −→ 0

with f(a) = (a,−a), g((a1, a2)) = a1+a2. The sequence is split by s : Δ −→ a1⊕a2

defined by s(1) = (α1, α2). Therefore, a1 ⊕ a2 = Img(f)⊕ Img(s) and so

X = Δ(α1x1 + α2x2)⊕ (a1 ∩ a2)(x1 − x2).

We now consider the general case. Without loss of generality we may assume
a1, a2 ⊆ Δ. In order to reduce to the special case it remains to find ã2 = a2ξ with
ξ ∈ D such that a1 + ã2 = Δ. We follow the proof of [Rei03, (27.7)]. By [Rei03,
(27.4)] we have a2 ∨Δ, so we can apply the algorithmic version of Roiter’s Lemma
(see §5.1). We choose α ∈ a1 ∩ OF and construct ϕ : a2 −→ Δ and an OF -torsion
module T such that

0 −→ a2
ϕ−→ Δ −→ T −→ 0

is exact and αOF +annOF
(T ) = OF . Then we claim that ϕ(a2)+a1 = Δ. Indeed, if

1 = ρα+β with ρ ∈ OF , β ∈ annOF
(T ), then βΔ ⊆ ϕ(a2); in particular, β ∈ ϕ(a2).

6. Modules over maximal orders

Let D be a skew field that is central and finite-dimensional over a number field
F , and let n ∈ N.

6.1. Maximal orders up to isomorphism.

Proposition 6.1 ([Rei03, (27.6)]). Let Δ ⊆ D be any maximal OF -order. For
each right ideal a of Δ, let Δ′ = Ol(a) := {x ∈ D | xa ⊆ a}, and let

Λa,n :=

⎛
⎜⎜⎜⎝

Δ . . . Δ a−1

...
. . .

...
...

Δ . . . Δ a−1

a . . . a Δ′

⎞
⎟⎟⎟⎠

denote the ring of all n × n matrices (xij) where x11 ranges over all elements of
Δ, . . . , x1n ranges over all elements of a−1, and so on. (For n = 1, we take
Λa,n := Δ′.) Then Λa,n is a maximal OF -order in Mn(D), and every maximal
OF -order in Mn(D) is isomorphic to Λa,n, for some right ideal a of Δ.

6.2. Nice maximal orders. We fix a maximal OF -order Δ ⊆ D and suppose that
n ≥ 2. We say that a maximal OF -order Λ in Mn(D) is ‘nice’ if it is equal to Λa,n

for some right ideal a of Δ. We fix such a Λ for the rest of this subsection.
We now give a noncommutative version of [BJ08, Proposition 5.3]. In other

words, we solve the problem of determining whether a left Λ-module X is free of
finite rank, and if so, whether generators can be computed. Let ek,l denote the
matrix (xi,j) ∈ Mn(D) with xi,j = 0 for (i, j) �= (k, l) and xk,l = 1.

Proposition 6.2. Let X be a left Λ-module. Then X is free of rank d over Λ if
and only if there exist ωi,j ∈ X such that
(2)
e1,1X = (Δω1,1⊕· · ·⊕Δω1,n−1⊕a−1ω1,n)⊕· · ·⊕(Δωd,1⊕· · ·⊕Δωd,n−1⊕a−1ωd,n).
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Further, when this is the case, X = Λω1 ⊕ · · · ⊕ Λωd where ωj := e1,1ωj,1 + · · · +
en,1ωj,n, j = 1, . . . , d.

Proof. Suppose that X is free of rank d over Λ. Then e1,1 ‘cuts out the first row of

each Λ’ in X ∼=
⊕d

i=1 Λ and so e1,1X is of the desired form.
Conversely, suppose that e1,1X is of the form given in (2). Note that since a is

a right Δ-ideal, a−1 is a left Δ-ideal and by (1) (with left and right reversed) we
have

1 ∈ a
−1

a = Δ and 1 ∈ aa
−1 = Δ′ = Ol(a).

We claim that Λω1 ⊕ · · · ⊕ Λωd ⊆ X, which reduces to showing that ωj ∈ X
for each j. If i �= n, then ωj,i ∈ e1,1X ⊆ X; therefore, ei,1ωj,i ∈ ei,1X ⊆ X.
Furthermore, ωj,n ∈ ae1,1X ⊆ aX and hence en,1ωj,n ∈ en,1aX ⊆ X (because
en,1a ⊆ Λ).

It remains to show that X ⊆ Λω1⊕· · ·⊕Λωd. Note that X = e1,1X+· · ·+en,nX.
We use the equality e1,kωj = ωj,k and note that for i, j one has ei,ja = aei,j . Then

e1,1X = Δe1,1︸ ︷︷ ︸
⊆Λ

ω1 ⊕ · · · ⊕Δe1,n−1︸ ︷︷ ︸
⊆Λ

ω1 ⊕ a
−1e1,n︸ ︷︷ ︸
⊆Λ

ω1 ⊕ · · · ⊕Δe1,n−1︸ ︷︷ ︸
⊆Λ

ωd ⊕ a
−1e1,n︸ ︷︷ ︸
⊆Λ

ωd

⊆ Λω1 ⊕ · · · ⊕ Λωd.

For i �= 1, n we have

ei,iX = ei,1e1,1e1,iX ⊆ ei,1e1,1X

⊆ ei,1(Λω1 ⊕ · · · ⊕ Λωd) ⊆ Λω1 ⊕ · · · ⊕ Λωd.

Finally, we observe

en,nX = en,1e1,1e1,nX ⊆ en,1e1,1a a
−1e1,n︸ ︷︷ ︸
⊆Λ

X

⊆ en,1e1,1aX = en,1ae1,1X

⊆ en,1a︸ ︷︷ ︸
⊆Λ

(Λω1 ⊕ · · · ⊕ Λωd) ⊆ Λω1 ⊕ · · · ⊕ Λωd.

Therefore, X = e1,1X ⊕ · · · ⊕ en,nX ⊆ Λω1 ⊕ · · · ⊕ Λωd. �

6.3. Arbitrary maximal orders. We can compute a maximal order containing
a given order using [Fri00, Kapitel 3 and 4]. However, the resulting maximal order
is not necessarily nice. We address this problem by generalising [BJ08, Lemma 5.2]
in the following way.

We fix a maximal OF -order Λ ⊆ Mn(D) and assume that it is given by an
OF -pseudo-basis. We fix any maximal OF -order Δ ⊆ D and suppose n ≥ 2. We
construct a right Δ-lattice N ⊆ V := Dn (column vectors) by following the proof
of [Rei03, (21.6)]. Let M := Δn ⊆ V and Λ′ := Ol(M). Then Λ′ = Mn(Δ)
and by Proposition 6.1 we see that Λ′ is a maximal OF -order in Mn(D). Since
Λ and Λ′ are a pair of full OF -lattices in Mn(D), for all but finitely many primes
p of OF we have Λp = Λ′

p. The primes p1, . . . , pr for which Λpi
�= Λ′

pi
are deter-

mined by the generalised module index [Λ : Λ′]OF
, which can be computed as fol-

lows. Compute OF -pseudo-bases so that Λ =
⊕t

i=1 aiωi and Λ′ =
⊕t

i=1 biνi where

ai, bi are fractional OF -ideals and find cij ∈ F such that νi =
∑t

j=1 cijωj . Then

[Λ : Λ′]OF
= det(cij)

∏t
i=1 bia

−1
i .
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For each prime p of OF , we compute up ∈ GLn(D) such that upΛ
′
pu

−1
p = Λp,

taking up = 1 for p �= p1, . . . , pr. To do this, we follow the proof of [Rei03, (17.3)(ii)],
to which we refer the reader for more details. Note that ΛpΛ

′
p is a full right Λ′

p-
lattice in Mn(D). In fact, ΛpΛ

′
p is a free rank 1 right Λ′

p-module. So using the
algorithm given in [BW09, §4.2] we compute up such that ΛpΛ

′
p = upΛ

′
p. In fact,

up is the element we require.
We now define N :=

⋂
p
upMp, giving Λ = Ol(N). Without loss of generality,

we may assume that upi
∈ Λ for i = 1, . . . , r and hence that N ⊆ M . Therefore, it

remains to compute the finite intersection N =
⋂r

i=1(upi
Mpi

∩M).
We can compute each upi

Mpi
∩M as follows. Let Ai be a set of representatives

of M/upi
M . Set Bi := Ai ∩ upi

Mpi
. Note that for each individual element a ∈ Ai

one can easily check whether a ∈ upi
Mpi

. Let Ci be a Z-spanning set of upi
M .

Then Bi ∪ Ci spans upi
Mpi

∩M .
Hence we are reduced to computing the intersection of any two fullOF -sublattices

X,Y ⊂ Mn(D). For any full OF -sublattice Z ⊂ Mn(D), we set Z∗ := {α ∈
Mn(D) | tr(α,Z) ⊆ OF } where tr : Mn(D)×Mn(D) −→ F is the bilinear reduced
trace form (see [Rei03, p.126]). Then we have X ∩ Y = (X∗ + Y ∗)∗, which can be
computed using HNF techniques over OF .

In summary, we have computed a lattice N such that Λ = Ol(N). We now apply
(the right version of) the Steinitz form algorithm of §5.4 to compute z1, . . . , zn ∈ V
and a right Δ-ideal a such that

N = z1Δ⊕ · · · ⊕ zn−1Δ⊕ zna.

Lemma 6.3. Let S = (z1, . . . , zn) ∈ GLn(D) be the matrix with columns z1, . . . , zn.
Then Λ = SΛa,nS

−1.

Proof. Let Δ′ = Ol(a). Then we have

λ ∈ Λ = Ol(N) ⇐⇒ λN ⊆ N ⇐⇒ λS

⎛
⎜⎜⎜⎝

Δ
...
Δ
a

⎞
⎟⎟⎟⎠ ⊆ S

⎛
⎜⎜⎜⎝

Δ
...
Δ
a

⎞
⎟⎟⎟⎠

⇐⇒ S−1λS ∈ Ol

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

Δ
...
Δ
a

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Δ · · · Δ a−1

...
. . .

...
...

Δ · · · Δ a−1

a · · · a Δ′

⎞
⎟⎟⎟⎠ = Λa,n.

�
Hence replacing Λ by S−1ΛS and a Λ-module X by S−1X, we may, without loss

of generality, suppose that our maximal order is nice.

6.4. Step (5) of Algorithm 3.1. Input: Mi and MiX (i fixed). We abuse
notation by abbreviating MiX to X.

(i) Suppose n = 1. Then Mi = Δ for some maximal OF -order Δ ⊆ D. Use
§5.4 to compute a Steinitz formX = Δb1⊕· · ·⊕Δbd−1⊕bbd. Using (H2′)(d),
check whether b is principal, and if so, compute ξ ∈ D such that b = Δξ;
in this case, b1, . . . , bd−1, ξbd is the required Mi-basis for X. Otherwise
the algorithm terminates with the conclusion that the desired generators
do not exist, thanks to (H2′)(a).
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(ii) We are now reduced to the case n ≥ 2. Fix any maximal OF -order Δ ⊆ D.
(iii) Set Λ = S−1MiS and replace X by S−1X where S is as in Lemma

6.3. It is straightforward to see that it now suffices to determine elements
ω1,1, . . . , ωd,n satisfying equation (2) in Proposition 6.2.

(iv) Use §5.4 to compute a Steinitz form

e1,1X = Δb1 ⊕ · · · ⊕Δbdn−1 ⊕ bbdn.

(v) Again use §5.4 to compute a left Δ-ideal c and an explicit isomorphism

ϕ :

d⊕
j=1

a
−1 ∼−→

d−1⊕
j=1

Δ⊕ c.

(vi) Using (H2′)(d), check whether b ∼= c as left Δ-ideals, and if so, compute
ξ ∈ D such that b = cξ. Otherwise the algorithm terminates with the
conclusion that the desired generators do not exist, thanks to (H2′)(a) (see
Remark 6.4).

(vii) If a suitable ξ ∈ D is found in the previous step, then we have

Δbd,(n−1)+1 ⊕ · · · ⊕Δbdn−1 ⊕ bbdn

= Δbd(n−1)+1 ⊕ · · · ⊕Δbdn−1 ⊕ cξbdn

= a
−1b′d(n−1)+1 ⊕ · · · ⊕ a

−1b′dn,

where the b′d(n−1)+1, . . . , b
′
dn are computed from bd(n−1)+1, . . . , bdn−1, ξbdn

using the isomorphism ϕ. It is now clear how to choose the elements
ω1,1, . . . , ωd,n.

Remark 6.4. Suppose that b and c are as described in steps (iv) and (v). Then

b ∼= c =⇒ Δd−1 ⊕ b ∼= Δd−1 ⊕ c

=⇒ Δdn−1 ⊕ b ∼= Δ(n−1)d ⊕

⎛
⎝ d⊕

j=1

a
−1

⎞
⎠

⇐⇒ e11X ∼= Δ(n−1)d ⊕

⎛
⎝ d⊕

j=1

a
−1

⎞
⎠

⇐⇒ X is free over Mi.

If b ∼= c, then the desired generators can be computed as described above, whether
or not (H2′)(a) holds. The purpose of (H2′)(a) is to ensure that the first two
implication arrows above are in fact equivalences; so if b � c, then the algorithm
terminates in step (iv) with the conclusion that the desired generators do not exist.
However, if (H2′)(a) does not hold and b � c, then generators may or may not exist.

Remark 6.5. If nd = 1, then we are immediately reduced to solving the principal
ideal problem (i.e. applying (H2′)(d)) in step (i), so there is no need for Δ to have
locally free cancellation; this is the reason for ‘if nd > 1’ in (H2′)(a). Also note
that a simplified version of Remark 6.4 applies to step (i) when n = 1 and d > 1.
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7. Enumerating Units

Let d, n ∈ N and let F be a number field. Let D be a skew field with center
F and let Λ be some maximal OF -order in Mn(D). If n = 1, then Λ = Δ for
some maximal OF -order Δ of D. If n ≥ 2, we may choose a maximal OF -order
Δ of D and by Lemma 6.3 we may assume that Λ is nice, i.e., of the form Λa,n

for some right Δ-ideal a. Let g be some nonzero ideal of OF and set Δ := Δ/gΔ.
Let f := gΛ and set Λ := Λ/f. Throughout this section, we identify Md(Λ) with a
subring of Mdn(D) in the obvious way. We wish to compute a set of representatives
U ⊂ GLd(Λ) of the image of the natural projection map π : GLd(Λ) −→ GLd(Λ),
thereby generalising the results of [BJ08, §6].

7.1. A reduction step. As in the last paragraph of §5.4, we compute ξ ∈ D and
a right Δ-ideal b such that a = ξb and b + gΔ = Δ. By a special case of the
noncommutative extended Euclidean algorithm given in §5.2, we can find b ∈ b and
y ∈ gΔ such that b+ y = 1. We define the diagonal matrices

Φ1 :=

⎛
⎜⎜⎜⎝

1
. . .

1
ξ−1

⎞
⎟⎟⎟⎠ and Φ2 :=

⎛
⎜⎜⎜⎝

1
. . .

1
ξb

⎞
⎟⎟⎟⎠

in GLn(D). Then we have homomorphisms

f1 : GLnd(Δ) −→ GLd(Λ),

A = (Aij)1≤i,j≤d 	→ (Φ2AijΦ1)1≤i,j≤d

and

f2 : GLd(Λ) −→ GLnd(Δ),

B = (Bij)1≤i,j≤d 	→ (Φ1BijΦ2)1≤i,j≤d ,

where Aij ∈ Mn(Δ) and Bij ∈ Λ. Note that the induced map f̄1 : GLnd(Δ) −→
GLd(Λ) is an isomorphism with inverse f̄2. In summary, we have a commutative
diagram

GLnd(Δ)
f1 ��

��

GLd(Λ)
f2

��

π

��
GLnd(Δ)

f̄1 �� GLd(Λ)
f̄2

��

where the lower horizontal arrows are isomorphisms. We set k := dn and conclude
that it suffices to compute a set of representatives U ⊆ GLk(Δ) of the image of the
natural projection map GLk(Δ) −→ GLk(Δ), which by abuse of notation we also
denote by π.

7.2. Computing a set of representatives of the map π : GLk(Δ) −→ GLk(Δ).
We assume that k > 1 and deal with the case k = 1 in §7.4.

We first recall some definitions from algebraic K-theory and refer the reader to
[CR87, §40] for more details. Let R be a unital ring and let m ∈ N. For x ∈ R
and i, j ∈ {1, . . .m} with i �= j, the elementary matrix Eij(x) is the matrix in
GLm(R) that has 1 in every diagonal entry, has x in the (i, j)-entry and is zero
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elsewhere. Let Em(R) denote the subgroup of GLm(R) generated by all elementary
matrices. Let E(R) and GL(R) be the direct limits given by the obvious inclusions
Em(R) −→ Em+1(R) and GLm(R) −→ GLm+1(R). Then K1(R) is defined to be
the abelian group GL(R)/E(R).

Lemma 7.1. We have Ek(Δ) = π(Ek(Δ)) = π(GLk(Δ) ∩E(Δ)).

Proof. The first equality is clear. The quotient ring Δ is semilocal and so has
stable range 1 by [CR87, (40.31)] (see [CR87, (40.39)] for the definition of stable
range). Then by the Injective Stability Theorem (see [CR87, (40.44)]), we have
E(Δ) ∩GLk(Δ) = Ek(Δ).

We consider π to be the restriction of the natural projection map GL(Δ) −→
GL(Δ), which we also denote by π. Then in GL(Δ) we have

π(E(Δ) ∩GLk(Δ)) ⊆ π(E(Δ)) ∩ π(GLk(Δ))

= E(Δ) ∩ π(GLk(Δ))

⊆ E(Δ) ∩GLk(Δ)

= Ek(Δ) = π(Ek(Δ)).

However, it is clear that Ek(Δ) ⊆ GLk(Δ)∩E(Δ) and so π(Ek(Δ)) ⊆ π(GLk(Δ)∩
E(Δ)). As we have shown the reverse inclusion above, the desired equality now
follows. �

Lemma 7.2. Let U ′ be a set of representatives of the map GL2(Δ) −→ K1(Δ).
Then π(GLk(Δ)) is generated by Ek(Δ) and π(U ′).

Proof. The map GLk(Δ) −→ K1(Δ) is surjective by [CR87, (41.23)] and so

GLk(Δ)/(GLk(Δ) ∩E(Δ)) ∼= K1(Δ).

Hence GLk(Δ) is generated by U ′ and E(Δ) ∩ GLk(Δ), and so the result now
follows from Lemma 7.1. �

Let nr : GLk(Δ) −→ O×
F denote the reduced norm map as defined in [CR81,

§7D] and write nr : K1(Δ) −→ O×
F for the induced map. Then define

(3)
SLk(Δ) := {x ∈ GLk(Δ) : nr(x) = 1} and SK1(Δ) := {x ∈ K1(Δ) : nr(x) = 1}.
Since k = nd > 1, by (H2′)(b) we have nr(Δ×) = O×+

F . Hence by (H2′)(c) we can

compute a set V of representatives of the map nr : Δ× −→ O×+
F . Let U be a set

of representatives of the map SL2(Δ) −→ SK1(Δ). (We shall see how to compute
U in §7.3.)

Proposition 7.3. Assuming (H2′)(b), π(GLk(Δ)) is generated by Ek(Δ), π(V )
and π(U). (We consider Δ× = GL1(Δ) as a subgroup of GLk(Δ) in the natural
way.)

Proof. By Lemma 7.2 we are reduced to showing that π(U ′) ⊆ 〈π(V ), π(U)〉 where
U ′ is a set of representatives of the map GL2(Δ) −→ K1(Δ). By [CR87, (45.15)]
we have a short exact sequence

1 −→ SK1(Δ) −→ K1(Δ)
nr−→ O×+

F −→ 1.

However, the map nr : Δ× −→ O×+
F factors via K1(Δ) and is surjective, and so

the desired result now follows. �
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7.3. Computing a set of representatives of the map SL2(Δ) −→ SK1(Δ).
We first recall that the map GL2(Δ) −→ K1(Δ) is surjective by [CR87, (41.23)];
hence by the definitions given in (3), the map SL2(Δ) −→ SK1(Δ) is also surjective.

Let m denote the index of D, i.e., [D : F ] = m2. For any prime p of F , let Fp

denote the p-adic completion of F and define Dp := Fp ⊗F D. Following [CR87,
(45.14)], we may write

Dp
∼= Mκp

(Ωp) and [Ωp : Fp] = m2
p,

where Ωp is a skew field with center Fp and index mp. For each p, we have m =
κpmp, so mp divides m. We say that p is ramified in D if mp > 1, and unramified
if mp = 1. (Note that the definition of ramification here depends crucially on the
fact that F is the center of D; in what follows below, the notion of ramification in
finite extensions of number fields is the usual one.) Let Sram be the set of finite
primes of F that ramify in D, and note that this is a finite set by [Rei03, (32.1)].

Lemma 7.4. There exists a number field W such that

(a) F ⊆ W ⊆ D;
(b) W/F is cyclic of degree m; and
(c) all primes in Sram are inert (i.e. unramified and nonsplit) in W/F .

Proof. We wish to apply Grunwald-Wang Theorem (see [NSW08, Theorem 9.2.8],
for example). However, we first have to check that we are not in the ‘special case’.
Suppose for a contradiction that we are in the ‘special case’; then by [NSW08,
top of p. 528], in particular we have m = 2rm′ where m′ is odd and r ≥ 3 and
F (ζ2r)/F is not cyclic. However, by the Benard-Schacher Theorem (see [BS72] or
[CR87, (74.20)]) we must have ζm ∈ F and so F (ζ2r) = F , giving a contradiction.
Hence we may apply the Grunwald-Wang Theorem to show that there exists a
cyclic extension W/F of degree m in which all primes in Sram are inert, and every
real prime is ramified (so W is totally imaginary). Now [Rei03, (32.15)] shows that
W is a splitting field for D and [Rei03, (28.10)] shows that W can be embedded in
D. �

Remark 7.5. If D is a quaternion algebra (i.e. m = 2) then the required field W
is a quadratic extension of F and can be found easily in practice; this has been
done for all Wedderburn components of group rings Q[G] where G is a generalised
quaternion group with |G| < 48 (see the sample file). In the general case, one can
employ the algorithmic ‘weak’ Grunwald-Wang Theorem of [Fie09, Algorithm 13].
As stated, this algorithm does not control ramification at primes above 2, but this
is only a problem in the aforementioned ‘special case’; as shown in the proof of
Lemma 7.4, this case does not occur in the situation of interest to us.

Let T be the category of finitely generated OF -torsion Δ-modules. For each
finite prime p of OF , set Δp := OFp

⊗OF
Δ (so Δp is a maximal OFp

-order in
Dp), and let Tp be the category of finitely generated p-torsion Δ-modules. Let
εp : K1(Tp) −→ K1(Δp) be the map defined in the proof of [CR87, (45.13)], where
εp is denoted ε and it is shown that SK1(Δp) = Img(εp). Define ε : K1(T ) −→
K1(Δ) analogously to εp; in the proof of [CR87, (45.15)] ε is unlabelled and it
is shown that SK1(Δ) = Img(ε). Furthermore, there is a canonical isomorphism
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K1(T ) ∼=
∐

p
K1(Tp). Therefore, we have a commutative diagram

∐
K1(Tp)

∼= ��

∐
εp

��

K1(T )

ε

��∐
SK1(Δp)

∼= �� SK1(Δ),

where the vertical maps are surjective.
Write Sram = {p1, . . . , ps}. To ease notation, we abbreviate mpi

to mi, etc.
By [CR87, (45.15)], we in fact have that SK1(Δ) ∼=

∐s
i=1 SK1(Δpi

) and each
SK1(Δpi

) is cyclic of order (qmi
i −1)/(qi−1), where qi := |OF /pi|. It is also shown

that K1(Tpi
) is cyclic of order qmi − 1. Hence our strategy shall be as follows:

for each i, find an element of K1(Tpi
) that maps to a generator of SK1(Δpi

), and
compute a representative in SL2(Δ) of this generator.

We now fix i ∈ {1, . . . , s}. Let Wi ⊆ W denote the unique subfield with [Wi :
F ] = mi and write σi ∈ Gal(W/F ) for the Frobenius substitution associated to pi.
Write Pi for the unique prime of W above pi and ξi ∈ OW /Pi for a primitive root
of unity of order qmi

i − 1. If p̂i denotes the unique prime of Wi lying over pi, then
we can in fact choose ξi ∈ OWi

/p̂i.
By the Skolem-Noether Theorem (see [Rei03, (7.21)]) there exists αi ∈ Δ such

that βσi = αiβα
−1
i for all β ∈ W . Such an element αi can be computed as

follows. Fix an F -basis of β1, . . . , βm of W and an F -basis ω1, . . . , ωm2 of D. Write
αi = x1ω1 + · · ·+ xm2ωm2 where x1, . . . , xm2 are elements of F to be determined.
Then βσi = αiβα

−1
i for all β ∈ W is equivalent to αiβ

σi
j = αiβj for j = 1, . . . ,m.

Hence we have a system of linear equations for x1, . . . , xm2 , which can be easily
solved using standard algorithms. Once a solution is found, it only remains to clear
denominators to ensure that αi ∈ Δ.

The following construction is inspired by the proof of [CR87, (45.13)]. Choose
any nonzero ρi ∈ αiΔ ∩W and let {Q1, . . . ,Qt} be the union of {Q divides (ρi)}
and {Pi}. Assume that Q1 = Pi and apply the Chinese Remainder Theorem
(one can use the CRT function of Magma; also see [Coh00, Proposition 1.3.11]) to
compute ηi ∈ OW such that

ηi ≡ ξσi
i (mod Pi) and ηi ≡ 1 (mod Qj) for j = 2, . . . , t.

We set ωi := η
σ−1
i

i . Then we have

ωσi
i = ηi ≡ ξσi

i ≡ ξqii (mod Pi), ωi ≡ ξi (mod Pi), and (ωσi
i , ρi) = OW .

Now for each i ∈ {1, . . . , s} we have ωσi
i αi = αiωi by definition of αi. Hence we

have a commutative diagram with exact rows

0 �� Δpi

αi ��

ωi

��

Δpi
��

ω
σi
i

��

Δpi
/αiΔpi

��

τi

��

0

0 �� Δpi

αi �� Δpi
�� Δpi

/αiΔpi
�� 0,

where the maps in the left-hand square are induced by left multiplication and
the map τi is induced by the middle vertical map. Note that all vertical maps
are isomorphisms. It follows that [Δpi

/αiΔpi
, τi] ∈ K1(Tpi

) is mapped by εpi

to [Δpi
, ωσi−1

i ] ∈ SK1(Δpi
). There is a natural homomorphism K1(Δpi

) −→
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K1(Δpi
/radΔpi

) ∼= (OWi
/p̂i)

×
= 〈ξi〉, under which [Δpi

, ωσi−1
i ] maps to ξqi−1

i .

However, both SK1(Δpi
) and 〈ξqi−1

i 〉 are cyclic of order (qmi
i − 1)/(qi − 1). There-

fore, εpi
([Δpi

/αiΔpi
, τi]) = [Δpi

, ωσi−1
i ] generates SK1(Δpi

).
It remains to compute a representative in SL2(Δ) of the image of

[Δpi
/αiΔpi

, τi] ∈ K1(Tpi
) ⊆

∐
K1(Tp) ∼= K1(T )

under the map ε : K1(T ) −→ K1(Δ). To that end, it suffices to construct a
commutative diagram of the form

0 �� Δ2 ��

��

Δ2 ��

��

Δpi
/αiΔpi

��

τi

��

0

0 �� Δ2 �� Δ2 �� Δpi
/αiΔpi

�� 0

where all vertical maps are isomorphisms and the rows are exact. For this it is
enough to construct the middle vertical isomorphism.

Compute β, η ∈ OW such that βωσi
i − ηρi = 1 (use [Coh00, Algorithm 1.3.2])

and consider the commutative diagram

0 �� Δ2

(
αi 0
0 1

)
��

Si

��

Δ2
(1 0) ��

Ti

��

Δpi
/αiΔpi

��

τi

��

0

0 �� Δ2 (
αi 0
0 1

) �� Δ2

(1 0)
�� Δpi

/αiΔpi
�� 0,

with matrices

Si :=

(
ωi α−1

i ρi
ηαi β

)
and Ti :=

(
ωσi
i ρi
η β

)
.

Note that Si ∈ M2(Δ) by our choice of ρi and that the middle vertical map is an
isomorphism because Ti ∈ GL2(OW ) by our choice of β and η. It follows that

ε ([Δpi
/αiΔpi

, τi]) =
[
Δ2, S−1

i Ti

]
.

Hence SK1(Δ) is generated by the classes [Δ2, S−1
i Ti] for i = 1, . . . , s, and so it is

now straightforward to compute a set respresentatives of SL2(Δ) −→ SK1(Δ).

7.4. The case k = 1. We have to compute a set of representatives of the natural

projection map π : Δ× −→ Δ
×
. If we can compute a set of generators of Δ×, it is

straightforward to compute a set of representatives of π (see §4.5). Otherwise, we
can and do assume that nr(Δ×) = O×+

F by (H2′)(c) and proceed as follows.
We can compute a set of representatives U of the natural map θ : SL2(Δ) −→

SK1(Δ) by the method of §7.3. Furthermore, by (H2′)(c), we can compute a set of
representatives V of the reduced norm map nr : Δ× −→ O×+

F . Let Δ×
1 denote the

kernel of this map. Let π : GL2(Δ) −→ GL2(Δ) and ι : Δ× −→ K1(Δ) denote the
natural maps.

Let w ∈ Δ×. Then there exists an element v ∈ V such that nr(v) = nr(w); hence
a := wv−1 ∈ Δ×

1 and so ι(a) ∈ ι(Δ×
1 ) ⊆ SK1(Δ). Now there exists u ∈ U such
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that θ(u) = ι(a) in SK1(Δ). Then we have

u ≡
(

a 0
0 1

)
(mod GL2(Δ) ∩ E(Δ)),

so π(u) ≡
(

ā 0
0 1

)
(mod E2(Δ)) by Lemma 7.1,

and hence

(
ā 0
0 1

)
∈ S := 〈π(U), E2(Δ))〉.

It is straightforward to compute the finite set S. Let V
′
denote the set of elements

in S which are of the form

(
ā 0
0 1

)
. Then π(Δ×) is generated by π(V ) and V

′
.

7.5. Step (7) of Algorithm 3.1. Input: d, n ∈ N; D a skew field that is central
and finite-dimensional over a number field F ; g a nonzero ideal of OF ; Δ a maximal
OF -order in D; Λ = Λa,n for some right Δ-ideal a, a nice maximal OF -order in
Mn(D).

(i) Set Δ := Δ/gΔ and Λ := Λ/gΛ.
(ii) Suppose nr(Δ×) �= O×+

F . Then nd = 1 by (H2′)(b), and by (H2′)(c) we can
compute generators for Δ×. It is then straightforward to compute a set of

representatives for π : Δ× −→ Δ
×
.

(iii) We are now reduced to the case nr(Δ×) = O×+
F . By (H2′)(c) we can

compute a set of representatives V of nr : Δ× −→ O×+
F . By §7.3 we can

also compute a set of representatives U of SL2(Δ) −→ SK1(Δ).
(iv) If nd = 1, then we proceed by the method of §7.4.
(v) It remains to consider the case nd > 1. By §7.1 we are reduced to computing

a set of representatives of π : GLnd(Δ) −→ GLnd(Δ).
(vi) End(Δ) is generated by the elementary matrices Eij(bijk) for i, j ∈

{1, . . . , nd}, i �= j, where for fixed i, j, {bijk} is a Z-spanning set for Δ.
(vii) By Proposition 7.3, we now have an explicit generating set for π(GLnd(Δ)),

and so it is now straightforward to compute the desired set of representa-
tives.

8. Implementation and computational results

Let L/K be a finite Galois extension of number fields with Galois group G. Let
E be a subfield of K and set d := [K : E]. As discussed in the introduction,
Algorithm 3.1 can be applied in the situation X = OL and A = A(E[G];OL). This
is implemented in Magma ([BCP97]) for certain groups G in the case K = E = Q.
The source code, instructions, and input files are available from

http://www.mathematik.uni-kassel.de/∼bley.
The cases in which G is abelian, dihedral, or G = A4, S4 were already imple-

mented based on the special case of Algorithm 3.1 presented in [BJ08]. In the case
of G = S4, the method of [BJ08, §7] was used to speed up the enumeration. The
more general version of Algorithm 3.1 is now also implemented for G = Q4n (the
generalised quaternion group of order 4n) and G = Q8 × C2. In all cases, the
running time is reasonable for |G| ≤ 16.

Assuming that OL is locally free over A, the class group methods described in
[BW09] allow us to compute the class of OL in the locally free class group cl(A);
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in particular, we are able to determine whether OL is stably free over A. In the
case that A has locally free cancellation (see §4.3) stably free is equivalent to free
and we are therefore able to use the class group methods to check the correctness
of our implementation of Algorithm 3.1: we must eventually find a generator for
OL over A if and only if the class of OL is trivial in cl(A). (Note that A having
locally free cancellation is in general different from (H2′)(a).) Once a generator has
been computed, it is easy to verify the correctness of the computation.

The class group methods of [BW09] are only implemented in the case A = Z[G].
If L/Q is at most tamely ramified then it is well known that A = Z[G] and OL

is locally free over Z[G]. The above check is therefore implemented in this setting
with G = Q8, Q12, Q16 or Q20, in which case Z[G] has locally free cancellation by
[Swa83, Theorem I] (also see [CR87, p.327, (1)]).

In [Cou94], Cougnard gives an example of a tamely ramified Q32-extension L/Q
for which OL is stably free but not free over Z[Q32]. In this case (H2′) is satisfied
(see Proposition 4.6(iv)), but unfortunately the extension is too large for our im-
plementation to verify in a reasonable amount of time that a generator does not
exist.

In [Cou98], examples are given of tamely ramified Q8 × C2-extensions L/Q for
which OL is stably free but not free over Z[Q8 × C2] (this is the smallest group
for which the cancellation property fails; see [CR87, p.327]). In the sample file we
applied our algorithm to Cougnard’s examples. This provides an excellent check
for the validity of our implementation (for details see the sample file).
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