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THE INFRASTRUCTURE OF A GLOBAL FIELD

OF ARBITRARY UNIT RANK

FELIX FONTEIN

Abstract. In this paper, we show a general way to interpret the infrastruc-
ture of a global field of arbitrary unit rank. This interpretation generalizes the
prior concepts of the giant-step operation and f -representations, and makes it
possible to relate the infrastructure to the (Arakelov) divisor class group of the
global field. In the case of global function fields, we present results that estab-
lish that effective implementation of the presented methods is indeed possible,
and we show how Shanks’ baby-step giant-step method can be generalized to
this situation.

1. Introduction

The infrastructure of a global field, i.e., of a number field or a function field over
a finite field, is a group-like algebraic structure. It is a crucial ingredient in the
computation of the regulator, a system of fundamental units, and the order and
structure of the ideal class group. In the case of a one-dimensional infrastructure,
which occurs in fields of unit rank one, this group-like structure was first used by
D. Shanks to compute the regulator of a real quadratic number field via a baby-step
giant-step algorithm.

In this paper, we present a framework of infrastructure that unifies number
fields and function fields. The crucial tool to accomplish this is f -representations;
these represent a group well suited for computations into which the infrastructure
embeds. Using f -representations, we obtain giant steps, which are an important
tool in algorithms of baby-step giant-step type. We establish that f -representations
require little storage and lend themselves very well to computation. They can be
efficiently used for determining a system of fundamental units of a global function
field. We provide evidence for this by presenting preliminary implementation results
as well as non-trivial numerical examples.

The idea behind f -representations was described in [Fon08] in the one-dimen-
sional case, i.e., for infrastructures obtained from global fields of unit rank one. The
concept of f -representations goes back to (f, p)-representations, which were intro-
duced in the context of cryptography in real quadratic number fields by D. Hühnlein
and S. Paulus [HP01] and M. J. Jacobson, Jr., R. Scheidler and H. C. Williams
[JSW01].
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Infrastructures of number fields and, more recently, of function fields have been
studied for some time. Their investigation has its roots in C. F. Gauß’ study of
the composition of binary quadratic forms, as well as J.-L. Lagrange’s continued
fraction algorithm. The infrastructure first appeared explicitly in the context of
generalizing continued fraction expansion. In his PhD dissertation, G. Voronŏı
found a generalization of continued fraction expansion by minima of lattices and
formulated an algorithm to find a system of fundamental units of a cubic number
field [DF64].

The set of minima of a global field was studied, for example, in [Ber63, HP87],
and was used for computing fundamental units in number fields, for example, in
[PZ77, Ste77, AO82, PZ82, PWZ82]. J. A. Buchmann generalized Voronŏı’s algo-
rithm to number fields of unit rank one and two [Buc85]. Subsequently, he presented
a generalization of Lagrange’s algorithm for computing fundamental units in arbi-
trary number fields in O(R · |Δ|ε) binary operations; here ε > 0 is arbitrary, R
is the regulator and Δ the discriminant of the number field [Buc87a]. Note that

R = O(|Δ|1/2+ε
) for any ε > 0.

In 1972, D. Shanks [Sha72] discovered that the principal infrastructure of a real
quadratic number field supports a group-like structure. With every element of
the principal infrastructure is associated a distance which imposes an ordering on
this set. The infrastructure supports two operations: a baby step, which proceeds
cyclically from one element to the next in this ordering, and a giant step, which is
akin to multiplication in a cyclic group and under which distances behave almost
additively. As a result, the principal infrastructure is almost an abelian group un-
der giant steps that only slightly fails associativity. Using this group-like behavior,
Shanks was able to compute the regulator and therefore the absolute value of a fun-
damental unit of a real quadratic number field in O(

√
R) steps instead of the O(R)

steps required by the classical algorithm of Lagrange. Note that writing down a
system of fundamental units requires O(R) binary operations, whence no algorithm
can compute a system of fundamental units in time faster than O(R). However,
the logarithm of an absolute value of a fundamental unit can be computed faster.
Shanks’ method was further analyzed and refined by H. W. Lenstra, R. Schoof,
H. C. Williams and M. C. Wunderlich in [Len82, Sch82, Wil85, WW87], and fi-
nally generalized to all number fields of unit rank one by Buchmann and Williams
[BW88].

Shanks’ method was first extended to function fields in works of A. Stein and
H. G. Zimmer [Ste92, SZ91], Stein and Williams [SW98, SW99] and Scheidler and
Stein [SS98, Sch01]. The relationship between the infrastructure in real elliptic
and hyperelliptic function fields and the divisor class group in their imaginary
counterparts was investigated by Stein in [Ste97], and by S. Paulus and H.-G. Rück
in [PR99].

Shanks’ discovery of the infrastructure also led to a number of cryptographic
applications. The first of these was a Diffie-Hellman-like key exchange protocol
described by Buchmann and Williams, and later by Scheidler, Buchmann and
Williams in [BW90, SBW94]. This was extended in several ways, and additional
encryption and signature schemes were proposed; some of these are described in
[BBT94, SSW96, JSW06, JSS07]. The security of these systems is argued to be
based on the hardness of computing distances or computing the regulator; the hard-
ness of these problems is analyzed, for example, in [MST99, Jac99, Mau00, Vol03].
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All efficient algorithms and cryptosystems based on the infrastructure crucially
require the giant-step operation. This raises the question of whether a giant step
can be defined and used efficiently in all global fields, not just of unit rank one.
In the number field case, Buchmann showed in his habilitation thesis [Buc87b]
that there is in fact such a giant step, and that this giant step can be used to
compute the absolute values of fundamental units inO(

√
R·|Δ|ε) binary operations.

Unfortunately, this algorithm was only published in Buchmann’s thesis, which was
written in German and is not easily accessible. Later, Schoof presented a modern
treatment of the general number field case using Arakelov divisor theory [Sch08].
This is so far the most general treatment of infrastructure. It includes the concept of
a giant step, even though Schoof does not give a baby-step giant-step algorithm like
Buchmann’s. Both Buchmann’s and Schoof’s giant steps rely on a simple reduction
strategy: the infrastructure is in both cases a subset of the set of fractional ideals,
whose elements are called “reduced ideals”, and the giant step roughly corresponds
to multiplying two such ideals. The result is in general not inside this set, but after
finding a “short” element in the product and dividing by it, the resulting ideal will
lie in this set. This process of chosing the short element is called reduction.

In this paper, we present for the first time a unified treatment of number fields
and function fields and define infrastructure for any unit rank. Moreover, we provide
a connection between the infrastructure and the (Arakelov) divisor class group and
relate the arithmetic in these two objects. The key point is a more sophisticated
reduction strategy, mimicking the reduction described by F. Heß for arithmetic in
the divisor class groups of global function fields [Heß02]. For that, we have to use
a slightly different embedding of the reduced ideals into the Arakelov divisor class
group than the one used by Schoof. We also do not use the oriented Arakelov divisor
class group, but instead an equivalence relation on reduced ideals in case when
there is no real embedding of the number field. This allows us to unify arithmetic
in the (Arakelov) divisor class group of both number fields and function fields.
Moreover, in contrast to Schoof’s work, we “parameterize” the Arakelov divisor
class group using equivalence classes of reduced divisors together with a finite set
of real numbers, and can describe explicit arithmetic using this representation.
This parameterization generalizes the aforementioned result by Paulus and Rück
[PR99] on hyperelliptic function fields, and, since it extends Heß’ approach, it also
generalizes known arithmetic in imaginary hyperelliptic and superelliptic function
fields [CFA+06, GPS02].

To increase readability of the paper, we moved most proofs to the appendix. All
proofs relevant for understanding or constructive proofs which result in algorithms
for arithmetic are left in the main body of the paper.

2. Arithmetic in function fields and number fields

LetK be a global field, i.e., either a function field over a finite field of constants k,
or an algebraic number field. In the latter case, denote by k∗ the roots of unity of
K and set k := k∗ ∪ {0}.

If K is an algebraic function field, we assume that k is the exact field of constants
of K. Let x ∈ K be transcendental over k.1 Let OK denote the integral closure of
k[x] in K and S the set of places of K/k which do not correspond to prime ideals
of OK , i.e., the places of K lying over the infinite place of k(x). Note that for any

1Note that we do not assume that K/k(x) is separable.
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non-empty finite choice of S, one can find such an x so that S is the set of places
lying over the infinite place of k(x). We assume that x and S are fixed throughout
this paper. In the number field case, let OK denote the integral closure of Z in K
and S the set of all archimedean places of K. In both cases, we denote by PK the
set of all places of K. If p ∈ PK is a non-archimedean place, let νp be its normalized
discrete valuation, Op its valuation ring and mp its valuation ideal. All places in S
are called infinite, and all others finite. All finite places are non-archimedean.

In the function field case, the group of divisors Div(K) is the free abelian group
generated by PK . For a divisor D =

∑
p∈PK

npp, the degree is defined as degD :=∑
p∈PK

np deg p. The divisors of degree zero form a subgroup of Div(K), denoted

by Div0(K). For an element f ∈ K∗, the principal divisor of f is defined by (f) :=∑
p∈PK

νp(f)p ∈ Div0(K); the set of all such divisors forms the group Princ(K), and

the quotient group Pic0(K) := Div0(K)/Princ(K) is called the (degree zero) divisor
class group of K. Moreover, we have the quotient Pic(K) := Div(K)/Princ(K)

together with the exact sequence 0 �� Pic0(K) �� Pic(K)
deg

�� Z . Note

that the last map (after restricting the codomain to the image) splits across this
exact sequence, whence we have Pic(K) ∼= Pic0(K)× Z.

In the number field case, the group of divisors Div(K) is the direct product of
the free abelian group generated by all places outside S and the abelian group RS

of all tuples (np)p∈S of real numbers with pointwise addition. We write elements
(np)p∈S ∈ RS additively as

∑
p∈S npp. For p ∈ S, let σ : K → C be a corresponding

embedding; define deg p := 1 if σ(K) ⊆ R and deg p := 2 elsewhere. Also define
νp(f) := − log |σ(f)| for any f ∈ K∗. If p is a finite place, i.e., p �∈ S, define
deg p := log |Op/mp|. Here, log denotes the natural logarithm. The definition of
the degree of a divisor and of a principal divisor is analogous to the function field
case, as is the definition of Pic0(K) and Pic(K), and we get Pic(K) ∼= Pic0(K)×R

in the same way as above.
If D =

∑
p∈PK

npp is a divisor, the places p ∈ PK with np �= 0 form the support

of D. If K is a global function field, let q = |k| < ∞. For non-global function fields,
let q > 1 be arbitrary. For number fields, let q = e = exp(1). Then define the
absolute value with respect to a place p ∈ PK by |f |

p
:= q−νp(f) deg p for f ∈ K∗

and |0|
p
:= 0. The fact that principal divisors have degree zero translates to the

product formula
∏

p∈PK
|f |

p
= 1 for f ∈ K∗.

In both number fields and function fields, a finitely generated OK-submodule of
K is called a fractional ideal. Throughout this paper, we will often say “ideal” when
we mean “non-zero fractional ideal”. The set of non-zero fractional ideals Id(OK)
forms a free abelian group under multiplication, with the set of non-zero prime
ideals of OK as a basis. These prime ideals correspond to the places of K outside
S: if p is such a place, mp ∩ OK is the corresponding prime ideal of OK . More-
over, we have a natural homomorphism Div(K) → Id(OK) defined by

∑
npp �→∏

p�∈S(mp ∩ OK)−np . This homomorphism extends to a map Pic0(K) → Pic(OK),

where Pic(OK) := Id(OK)/Princ(OK) is the ideal class group of OK , i.e., the
quotient of Id(OK) with the subgroup Princ(OK) = { 1

fOK | f ∈ K∗} of non-zero

principal fractional ideals.
Note that forming principal divisors or principal ideals give homomorphisms

K∗ → Princ(K) ⊆ Div0(K), f �→ (f) and K∗ → Princ(OK) ⊆ Id(OK), f �→ 1
fOK .
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Finally, denote by Div0∞(K) the set of divisors in Div0(K) that are only supported
at places in S. All the aforementioned maps give rise to the following commuting
diagram with exact rows and columns:

0

��

0

��

0

��

0 �� O∗
K/k∗ ��

��

Div0∞(K) ��

��

T ��

��

0

0 �� K∗/k∗ ��

��

Div0(K) ��

��

Pic0(K) ��

��

0

0 �� K∗/O∗
K

��

��

Id(OK) ��

��

Pic(OK) ��

��

0

0 H
∼= ��

��

H ′

��

0 0

Here, T , H and H ′ are suitable groups that are discussed in more detail below.
If K is a number field, Div0∞(K) ∼= R|S|−1, the image of O∗

K/k∗ is a lattice of full

rank in R|S|−1 and hence T is an (|S|−1)-dimensional torus. Moreover, H = 0 and
H ′ = 0. If K is a function field, then Div0∞(K) ∼= Z|S|−1. If k is finite, then T is
finite by an analogue of Dirichlet’s Unit Theorem [Ros02, p. 243, Proposition 14.2].
In case k is infinite, T can be finite or infinite, and both possibilities occur; see
[HP87, Section 4] for examples with k = Q. We have H = 0 = H ′ if and only if
(deg p | p ∈ S) = (deg p | p ∈ PK), as H ∼= (deg p | p ∈ PK)/(deg p | p ∈ S). Here,
(deg p | p ∈ S) is the ideal in Z generated by {deg p | p ∈ S}; (deg p | p ∈ S) is
defined analogously.

For both number fields and function fields, the rank of O∗
K/k∗ is called the unit

rank of K. In case K is a number field or T is finite, the rank equals |S| − 1. Note
that we assumed x to be fixed in the function field case. If the unit rank equals
n = |S| − 1, let p1, . . . , pn ∈ S be n distinct places, and ε1, . . . , εn a system of
fundamental units of OK , i.e., a set of units whose residue classes in O∗

K/k∗ are a
basis of O∗

K/k∗. Define

R :=

∣∣∣∣det(νpi
(εj) deg pi

)
1≤i,j≤n

∣∣∣∣ ∈ R≥0;

this number is the regulator of K (after fixing x in the function field case) and is
independent of the choice of the pi and of the choice of the εj .

3. One-dimensional infrastructures

A one-dimensional infrastructure can be interpreted as a circle with a finite set
of points on it. This interpretation goes back to Lenstra’s work in [Len82]. See also
[Fon08] for an earlier treatment of (abstract) one-dimensional infrastructures.

Definition 3.1. A one-dimensional infrastructure (X, d) of circumference R > 0
is a finite set X �= ∅ together with an injective map d : X → R/RZ.

This can be visualized as follows; see also Figure 1(a). One can interpret R/RZ

as a circle of circumference R, with a fixed point 0 ∈ R/RZ. Then d(X) is a finite
set of points on this circle, and for every x ∈ X, the residue class d(x) can be
interpreted as the distance of the point d(x) on the circle to 0.
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The infrastructure essentially offers two operations:

• baby steps : given x ∈ X, the baby step bs(x) denotes the preimage of the
element in d(X) on the circle “following” d(x);

• giant steps : given x, y ∈ X, the giant step gs(x, y) denotes the preimage of
the element in d(X) on the circle “before” d(x) + d(y).

We want to make this more precise. If |X| = 1, there is only one way to define
bs : X → X and gs : X×X → X by bs(x) = x, gs(x, x) = x if X = {x}. If |X| > 1,
then we can define these two maps as follows.

For s = a + RZ and t = b + RZ with a ≤ b < a + R, we denote by [s, t] the
set {x + RZ | a ≤ x ≤ b}. If we interpret R/RZ as a circle, [s, t] will be the circle
segment starting at s and ending at t in positive direction. See also Figure 1(b).

Then for x ∈ X, we can define bs(x) as the unique element of X \ {x} satisfying

{d(x), d(bs(x))} = d(X) ∩ [d(x), d(bs(x))],

i.e., the only two points in d(X) lying on the circle segment [d(x), d(bs(x))] are d(x)
and d(bs(x)); see Figure 1(c). For x, y ∈ X, we can define gs(x, y) as the unique
element of X satisfying

{d(gs(x, y))} = d(X) ∩ [d(gs(x, y)), d(x) + d(y)],

i.e., the only point in d(X) lying on the circle segment [d(gs(x, y)), d(x) + d(y)] is
d(gs(x, y)); see Figure 1(d).

The simplest example of one-dimensional infrastructures, which is nevertheless
important, is given by finite cyclic groups:

Example 3.2. Let G = 〈g〉 be a finite cyclic group of order R. Then we have a
canonical isomorphism ϕ : Z/RZ → G, n �→ gn. Concatenating its inverse with
the inclusion Z/RZ ⊂ R/RZ, we obtain an injective map d : G → R/RZ, making
(G, d) a one-dimensional infrastructure. This map is the discrete logarithm map
with base g, i.e., it satisfies gd(h) = h for every h ∈ G.

Let h ∈ G and d(h) = n + RZ. Then for h′ = gn
′
with n ≤ n′ < n + R, we

have [d(h), d(h′)] ∩ d(X) = {d(gn), d(gn+1), . . . , d(gn
′−1), d(gn

′
)}. This shows that

if this set contains exactly two elements, then n′ = n + 1. But this translates to
bs(h) = gh, so baby steps on G are simply multiplication by the generator g of G.

Similarly, if h = gn and h′ = gn
′
, we see that d(X) ∩ [d(gm), d(h) + d(h′)] =

{d(gm), d(gm+1), . . . , d(gn+n′−1), d(gn+n′
)} if m ≤ n + n′ < m + R. This shows

that gs(h, h′) = gn+n′
= hh′, so giant steps on G amount to group multiplication.

In this paper, we will concentrate on giant steps as they are needed to obtain
algorithms of square root type, which compute the absolute values of a system of

0

s

t

[s, t]

0
x

bs(x)
[x, bs(x)]

0
x

y

0

d(x)+d(y)

gs(x, y)

(a) (b) (c) (d)

Figure 1. Illustrating a one-dimensional infrastructure using a circle
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Figure 2. Illustrating f -representations in a one-dimensional infrastructure

fundamental units in O(
√
R) infrastructure operations, where R is the regulator of

the field.
The giant step is a binary operation on the finite set X which is not necessarily

associative. For certain applications, such as using the infrastructure in cryptog-
raphy, one is interested in having associative operations: the Diffie-Hellman key
exchange protocol depends on the fact that (xa)b = (xb)a for all a, b ∈ N. More
precisely, it is not obvious how to define xa without having an associative operation.

In the infrastructure case, one could define xa as an element y ∈ X such that
a · d(x) ≈ d(y); but then it is not necessarily true that (xa)b is equal to (xb)a. One
only knows that d((xa)b) ≈ a · b · d(x) ≈ d((xb)a), but the error here can be up to
a or b times larger than in a · d(x) ≈ d(y). In Example 3.2 above, where we start
with a finite cyclic group G, this error is always 0 since G is of course associative,
and we recover the original Diffie-Hellman key exchange protocol, whose security
is based on the fact that computing the map d : G → R/RZ is hard for random
elements of G.

Note that while the giant-step operation is in general not associative, it is almost
associative: it is so up to a “small error”, which can be bounded by dmax :=
max{d(bs(x))− d(x) | x ∈ X}, where we identify d(bs(x))− d(x) with the smallest
non-negative real number lying in the residue class modulo R. Namely, we have

d(gs(x, y)) = d(x) + d(y)− εx,y with 0 ≤ εx,y < dmax.

In terms of Figure 1, dmax is the maximal distance between two adjacent points on
the circle. In Example 3.2 above, we have dmax = 1, even though the error εx,y will
always be zero.

One can ask whether this gap towards an associative operation can be closed.
One solution is to embed infrastructures into groups. Obviously, R/RZ is a group
under addition. Unfortunately, as seen in Example 3.2, the embedding d is in
general not very helpful, since it is often hard to evaluate; in the example, evaluating
it is equivalent to compute a discrete logarithm, which, depending on the group G,
can be a hard problem; see for example [CFA+06]. We want a group suitable for
effective computations, into which X embeds by an easily computable embedding.
In order to achieve that, we require f -representations:

Definition 3.3. An element (x, t) ∈ X×R is called an f -representation if 0 ≤ t < R
and

{d(x)} = [d(x), d(x) + t] ∩ d(X).

Denote the set of all f -representations by Repf (X, d).

The f -representation (x, t) represents the element s := d(x) + t ∈ R/RZ. The
condition on t implies that t is minimal for such a representation: it is the smallest
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distance from the point s = d(x) + t on the circle backwards to a point in d(X)
(namely d(x)). In other words, t is small enough that no image under d of any
element in X \ {x} lies in the circle segment [d(x), d(x) + t]. The simplest f -
representations are the ones of the form (x, 0), where x ∈ X; this shows that we
can embed X into Repf (X, d) by x �→ (x, 0).

In Example 3.2, we have Repf (G, d) = G×[0, 1). Moreover, the f -representations
of various elements of the example in Figure 1 are shown in Figure 2.

We obtain the following result which shows that the set of f -representations can
be identified with the group (R/RZ,+).

Proposition 3.4. The map

d̂ : Repf (X, d) → R/RZ, (x, t) �→ d(x) + t

is a bijection. �

This allows us to pull the group operation of R/RZ back to the set Repf (X, d),

giving an operation + on Repf (X, d) by (x, t) + (x′, t′) := d̂−1(d̂(x, t) + d̂(x′, t′)).
The following remark describes an algorithm which computes the group operation
on Repf (X, d) using baby and giant steps.

Remark 3.5. For (x, t), (x′, t′) ∈ Repf (X, d), consider

(x′′, t′′) := (gs(x, x′), t+ t′ + (d(x) + d(x′)− d(gs(x, x′)))) ∈ X × R;

this ensures that d(x′′) + t′′ = d̂(x, t) + d̂(x′, t′). In general, (x′′, t′′) �∈ Repf (X, d),
but t′′ ≥ 0 is not too big; more precisely, t′′ < 3dmax. The idea of the algorithm for
realizing the group operation on Repf (X, d) is to decrease t′′ using baby steps, while

preserving the invariant d(x′′) + t′′ = d̂(x, t) + d̂(x′, t′), until (x′′, t′′) ∈ Repf (X, d).
For that, note that for t′′ ≥ 0, we have (x′′, t′′) ∈ Repf (X, d) if and only if

t′′ < d(bs(x′′)) − d(x′′), i.e., if t′′ is smaller than the distance from x to bs(x).
Hence, we iteratively replace (x′′, t′′) by (bs(x′′), t′′ − (d(bs(x′′)) − d(x′′))) as long
as t′′ ≥ 0 is satisfied.

The smallest non-negative t′′ yields (x′′, t′′) ∈ Repf (X, d) with d̂(x′′, t′′) =

d̂(x, t)+ d̂(x′, t′), and therefore (x′′, t′′) is the sum of (x, t) and (x′, t′) in Repf (X, d).
Finally, if we define dmin := min{d(bs(x)) − d(x) | x ∈ X}, we see that this

process requires at most 3dmax

dmin
baby-step computations and one giant-step compu-

tation.

The algorithm first uses giant steps to compute a pair (x′′, t′′) ∈ X × R with

d(x′′) + t′′ = d̂(x, t) + d̂(x′, t′), where t′′ is “small”, and then “reduces” (x′′, t′′)
to an element of Repf (X, d). To make this more precise, we need to introduce a
reduction map red(X,d) : R/RZ → X. For a point s on the circle R/RZ, we want
red(X,d)(s) to be the preimage of the element in d(X) “before” s. More precisely,
we want red(X,d)(s) to be the unique element in X such that

{d(red(X,d)(s))} = d(X) ∩ [d(red(X,d)(s)), s],

i.e., d(red(X,d)(s)) is the only point in d(X) lying on the circle segment
[d(red(X,d)(s)), s]. Hence, red(X,d) assigns to each s ∈ R/RZ some x ∈ X such
that d(x) ≈ s, and satisfies red(X,d)(d(x)) = x. The algorithm in Remark 3.5 com-
putes red(d(x′′) + t′′) for t′′ ≥ 0; one can easily adjust it to work for t′′ < 0 as
well.
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If one compares the definition of red(X,d) to Figure 2, one quickly sees that if

(x, t) ∈ Repf (X, d) represents s, i.e., if d(x) + t = s, then red(X,d)(s) = x. Hence,
if π : X × R → X denotes the projection onto the first component, we see that

red(X,d)(s) = π1(d̂
−1(s)).

In the context of Example 3.2, where we obtained a one-dimensional infrastruc-
ture (G, d) from a finite cyclic group G = 〈g〉, we see that red(s + RZ) = g
s� for
s ∈ R. This directly follows from the fact that Repf (G, d) = G× [0, 1).

Moreover, one can see that the reduction map red(X,d) can be used to define

Repf (X, d) and giant steps, as

Repf (X, d) = {(x, t) ∈ X × R | red(X,d)(d(x) + t) = x}
and gs(x, y) = red(X,d)(d(x) + d(y)) for all x, y ∈ X.

It is obvious that our choice of red(X,d) is not the only one possible. One could
choose red(X,d) such that d(red(X,d)(s)) is closest to s, with a rule to break ties;
such a reduction map is, for example, used in [GHM08] in the case of infrastructures
obtained from real quadratic function fields. The advantage of such a reduction map
is that it reduces the number of baby steps in Remark 3.5 to at most 3dmax

2dmin
. Using

a different reduction map would result in different f -representations and possibly
also different giant steps. We will investigate this relationship between reduction
maps and f -representations in more detail in the next section.

An interesting question is where and how infrastructures occur in practice. The
first known non-associative instance was the infrastructure of a real quadratic num-
ber field, which was discovered in 1972 by Shanks. It was originally described in
terms of binary quadratic forms, but an alternative and more accessible description
uses ideals; see, for example, [Wil85]. We will use the language of ideals since it
is available in all number fields and function fields. See Section 5 on how the in-
frastructure can be realized in detail; for the moment, we want to give a simpler
example: the infrastructure of a real quadratic number field.

Example 3.6 (compare [Wil85]). Let K = Q(
√
D) be a real quadratic number

field, where D > 1 is a squarefree integer. Note that there are two embeddings
K → R, one is the identity, and the other one maps

√
D to −

√
D. Denote the

first embedding by σ1 and the second one by σ2; then we have S = {p1, p2} with
|h|

pi
= |σi(h)| for h ∈ K.

We say that a fractional ideal a ∈ Id(OK) is reduced if 1 ∈ a, and for every
μ ∈ a satisfying |μ|1 ≤ 1 and |μ|2 ≤ 1 we have μ ∈ {−1, 0, 1}. Using the Minkowski
embedding Φ : K → K ⊗Q R ∼= R2, given by h �→ (σ1(h), σ2(h)), we can visualize
a as a lattice Φ(a) of rank two in R2. The condition that a is reduced is equivalent
to the property that the square [−1, 1]2 contains exactly the three points (−1,−1),
(0, 0) and (1, 1) of Φ(a). The unit ideal OK is always reduced. See Figure 3 for an
example.

Let ε ∈ OK be the fundamental unit with ε > 1. We have O∗
K = {±εn | n ∈ Z}.

Set R := log ε; then R is the regulator of K. If a = 1
μOK is a reduced fractional

ideal, the elements in μO∗
K are exactly the elements μ′ such that a = 1

μ′OK , whence

{− log |μ′| | a = 1
μ′OK} = − log |μ|+RZ. Define d( 1μOK) := − log |μ|+RZ; then d

is a map from the set X of reduced principal ideals to R/RZ. One can show that
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Figure 3. The Minkowski embedding (σ1, σ2) of OK in the real

quadratic number field K = Q(
√
2). The grey square is [−1, 1]2.

X is finite and that d is injective.2 Then (X, d) is a one-dimensional infrastructure:
in fact, this is the infrastructure used by Shanks in [Sha72], translated into the
language of ideals.

Computation of baby steps and giant steps is done by continued fraction expan-
sion. Let a be a principal fractional ideal with a∩Q = Z; any reduced ideal satisfies
this. We can then write a = Z⊕φZ with φ = (P+

√
D)/Q, and compute the contin-

ued fraction expansion of φ = φ0. If φi is the i-th complete quotient, we can write
φi = (Pi+

√
D)/Qi with Pi, Qi ∈ Z, and it turns out that ai := Z⊕φiZ is a principal

fractional ideal. There exists some i0 ∈ N, depending on a, such that for all i ≥ i0,
ai is reduced. In fact, {ai | i ≥ i0} is the set of all reduced principal ideals X. If ai
is reduced, bs(ai) = ai+1. Moreover, if one defines red(a) = an if n ≥ 0 is chosen
minimal under the condition that an is reduced, then gs(ai, aj) = red(aiaj) is the
giant-step operation used by Shanks in [Sha72].

One can use this to define a reduction map on a dense subset of R/RZ. For
that, note that the map Ψ : PId(K) → R/RZ, 1

μOK �→ − log |μ| + RZ is injective

as argued in footnote 2. The set Ψ(PId(K)) is a dense subgroup of R/RZ, and if
s ∈ R/RZ lies in the image of Ψ, one can define red(s) := red(Ψ−1(s)). This was
in fact done by Lenstra in [Len82], and Lenstra called the image of Ψ a “circular
group” since it is a dense subset of the circle R/RZ. (Note that Lenstra uses a
distance map that is different from the one introduced by Shanks.)

4. n-Dimensional infrastructures

In this section, we want to define an abstract n-dimensional infrastructure. We
want this definition to share most properties of one-dimensional infrastructures.
Unfortunately, it is not as clear as in the one-dimensional case how baby steps,
giant steps and f -representations can be defined. We will see that as outlined in
the discussion of the one-dimensional case in the previous section, f -representations
and reduction maps are equivalent, and both yield giant steps. As a consequence of
the additional freedom gained in the n-dimensional case, we are forced to include
more information on the infrastructure in the definition, namely a reduction map.

2This is a special case of Proposition 5.5 with X = Red(OK) and d = dOK , when we identify
an equivalence class [a]∼ with a, since by Corollary 5.3 every class contains exactly one ideal.
In this special case, at least the injectivity of d is rather obvious, since h �→ log |h| is a group
homomorphism (K∗, ·) → (R,+) with kernel {−1, 1} = k∗ ⊆ O∗

K .
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Note that we will ignore baby steps for the rest of this paper. For n-dimensional
infrastructures obtained from global fields one can define n+1 baby-step functions;
see, for example, [Buc85], [LSY03] or [Fon09, Section 3.5]. These definitions come
from the relation of the infrastructure to the set of minima of an ideal, but there
is no reason an abstract n-dimensional infrastructure arises from such a structure.
Moreover, such baby steps do not always behave as expected, as it might happen
that certain minima cannot be reached by baby steps. So far, it is unknown whether
there is a usable definition of baby steps for abstract n-dimensional infrastructures
when n > 1.

We want to make the definition on an n-dimensional infrastructure slightly more
general by allowing to restrict to a suitable subgroup G of R. For example, for
infrastructures obtained from function fields, the natural subgroup to restrict to is
Z, since all valuations of a function field are discrete. In the case of Example 3.6,
one could restrict to the subgroup {log |μ| | μ ∈ K∗}; then the function red from the
example will no longer be partially defined, and one essentially obtains the group
(though not the distance function) of Lenstra [Len82].

Throughout this section, fix a suitable non-zero subgroup G of R. The similarity
to Section 3 is clearer if one assumes G = R. In the following sections, we will
restrict to G = Z in the function field case and G = R in the number field case.

The natural analogue to a circle R/RZ in n dimensions is an n-dimensional
torus Rn/Λ, where Λ is a lattice of full rank. Since we want to restrict to G, we
assume that Λ ⊆ Gn. Moreover, we abuse terminology by calling Gn/Λ a torus,
even though we can in general only embed it canonically into the torus Rn/Λ. Note
that both the circle R/RZ and the torus Gn/Λ have a fixed point 0.

A natural generalization of a one-dimensional infrastructure would be a finite
set X �= ∅ together with an injective map d : X → Gn/Λ. Unfortunately, the
situation is not as simple as in the one-dimensional case. The problem lies in the
definition of f -representations and the giant-step function, not to mention the baby-
step function(s). In the one-dimensional case, one has essentially two directions on
the circle: one can go clockwise and counterclockwise. In fact, our circle R/RZ

has a distinguished direction corresponding to the positive direction on the real
line. This allows us to define baby steps as going “forward”, and we can define
giant steps, f -representations and the reduction map by taking an element of d(X)
“before” a point on the circle.

As soon as n > 1, the torus Gn/Λ has infinitely many directions, none of them
more distinguished than others. This gives many more choices for giant steps,
f -representations and reduction maps, not to mention baby steps. We will be
forced to include a particular choice in the definition of an n-dimensional infras-
tructure. Before we do that, let us formalize the notions of reduction maps and
f -representations and discuss their relationship.

Let X be a non-empty finite set and let d : X → Gn/Λ be a injective map.

Definition 4.1.

(a) a reduction map (for (X, d)) is a map red : Gn/Λ → X satisfying red(d(x))
= x for every x ∈ X;

(b) f -representations (for (X, d)) are a subset Repf ⊆ X ×Gn satisfying X ×
{0} ⊆ Repf such that the following map is a bijection:

Φ : Repf → Gn/Λ, (x, t) �→ d(x) + t.
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If (X, d) is a one-dimensional infrastructure, then the definition of red(X,d) as
in Section 3 yields a reduction map in the sense of (a), and Definition 3.3 and
Proposition 3.4 yield f -representations in the sense of (b).

Note that the condition red(d(x)) = x for reduction maps ensures that the only
fixed points under the map d ◦ red : Gn/Λ → Gn/Λ are the elements in d(X); i.e.,
these elements can be interpreted as reduced elements: other elements of Gn/Λ will
be mapped to a reduced element when applying red, while reduced elements are
left unchanged under this map.

We begin by outlining the relationship between reduction maps and f -represen-
tations in the sense of Definition 4.1. This is analogous to the relationship in the
one-dimensional case in Section 3.

If red is a reduction map, then we obtain a set of f -representations by

Repf := {(x, t) ∈ X ×Gn | red(d(x) + t) = x}.

Here, we choose pairs (x, t) such that d(x) + t ∈ Gn/Λ will reduce to x. If red
satisfies d(red(s)) ≈ s for all s ∈ Gn/Λ, then the permissible t values in the f -
representations will be “small”. Moreover, the condition red(d(x) + t) = x ensures
that there is a unique f -representation (x, t) for every s ∈ Gn/Λ.

Conversely, if Repf is a set of f -representations with induced bijection Φ :
Repf → Gn/Λ, then we get a reduction map by

red : Gn/Λ → X, s �→ π1(Φ
−1(s)),

where π1 : X × Gn → X is the projection onto the first component. This is the
direct generalization of the map red(X,d) in the one-dimensional case: given a point

s on the torus Gn/Λ, we consider the f -representation (x, t) = Φ−1(s) representing
that point, and return x = π1(x, t).

Therefore, as in the one-dimensional case, the concepts of reduction maps and of
f -representations are equivalent. We can continue as in the one-dimensional case
and define giant steps using these two notions. If red : Gn/Λ → X is a reduction
map, we define

gs(x, y) := red(d(x) + d(y))

for all x, y ∈ X; if Repf are f -representations with induced bijection Φ : Repf →
Gn/Λ, we define

gs(x, y) := π1(Φ
−1(Φ(x, 0) + Φ(y, 0)))

for all x, y ∈ X. Both definitions yield the same giant-step operation on X.
This discussion gives rise to the following definition of an abstract n-dimensional

infrastructure:

Definition 4.2. Let Λ ⊆ Gn be a lattice of full rank.

(a) An n-dimensional infrastructure is a triple (X, d, red), where X �= ∅ is a
non-empty finite set, d : X → Gn/Λ an injective map and red : Gn/Λ → X
a reduction map for (X, d).

(b) If (X, d, red) is an n-dimensional infrastructure, then set

Repf (X, d, red) := {(x, t) ∈ X ×Gn | red(d(x) + t) = x}
and gs(x, x′) := red(d(x) + d(y)) for x, x′ ∈ X.
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Since RZ is a lattice in R1 of full rank, we see that a one-dimensional in-
frastructure (X, d) in the sense of Definition 3.1 is a 1-dimensional infrastruc-
ture (X, d, red(X,d)) in the sense of Definition 4.2, whose giant steps and f -repre-
sentations coincide. This shows that our new definition is indeed a generalization
of the notion of a one-dimensional infrastructure as in Section 3 or [Fon08].

We conclude this section with an example, which shows that n-dimensional in-
frastructures can be seen as a generalization of finite abelian groups. Recall that Ex-
ample 3.2 showed how a finite cyclic group can be interpreted as a one-dimensional
infrastructure, where the distance map was essentially the discrete logarithm map.

Example 4.3. Assume that Z ⊆ G. Let G = 〈g1, . . . , gn〉 be a finite abelian group,
and let

Λ :=

{
(e1, . . . , en) ∈ Zn

∣∣∣∣ n∏
i=1

geii = 1

}
be the relation lattice of g1, . . . , gn; this is the kernel of the epimorphism Zn → G,
(e1, . . . , en) �→

∏n
i=1 g

ei
i , whence G ∼= Zn/Λ.

Concatenating the inverse of this isomorphism with the inclusion Zn/Λ ⊆ Gn/Λ,
we obtain an injective map d : G → Gn/Λ. This map is the generalized discrete
logarithm map with base g := (g1, . . . , gn), i.e., it satisfies3 gd(h) = h for every
h ∈ G.

It is easy to see that Repf := G × (G ∩ [0, 1))n is a set of f -representations for

(G, d); the corresponding reduction map maps s ∈ Gn/Λ to red(s) :=
∏n

i=1 g

ei�
i ,

if s = (ei)i + Λ. Therefore, (G, d, red) is an n-dimensional infrastructure. The
induced giant-step map is given by

gs(h, h′) = red(d(h) + d(h′)) = hh′

for h, h′ ∈ G, since d(h)+d(h′) = (e1, . . . , en)+Λ with ei ∈ Z and ge11 · · · genn = hh′.
This shows that giant steps generalize the group operation in this case as well.

In particular, in this case, the giant-step operation is associative, as opposed to
general n-dimensional infrastructures.

5. Reduced ideals

Now that we have obtained a definition of an abstract n-dimensional infrastruc-
ture, we want to construct such an infrastructure from a global field K. The aim
of this section is to construct the lattice Λ ⊂ Gn, the finite set X as well as the
injective map d : X → Gn/Λ. In the next section, we will add a reduction map red
for (X, d) such that (X, d, red) is an n-dimensional infrastructure.

For the rest of the paper, let G denote Z if K is a function field and R if K is a
number field.

In order to construct the underlying set X, we require the notion of a reduced
(fractional) ideal4 in analogy to Example 3.6. In case K is a function field, reduced
ideals correspond to certain reduced divisors in the sense of [Heß02].

The notion of a reduced ideal is rather geometric. To describe it, we define the
notion of a box, which is the set of elements of an ideal (interpreted as a lattice) in
a bounded area. An ideal will be reduced if a certain box contains elements only

3For g = (g1, . . . , gn) ∈ Gn and v = (v1, . . . , vn) ∈ Zn, define gv :=
∏n

i=1 g
vi
i .

4Recall that we always mean “non-zero fractional ideal” when we write “ideal”, if not explicitly
said otherwise.
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at very specific positions. Write S = {p1, . . . , pn+1}, where n = |S| − 1; then recall
that the absolute value of an element h ∈ K with respect to a place p is defined as
|h|

p
= q−νp(h) deg p, where q > 1 is a constant.

For t1, . . . , tn+1 ∈ G and an ideal a ∈ Id(OK), we define

B(a, (t1, . . . , tn+1)) := {h ∈ a | ∀i ∈ {1, . . . , n+ 1} : |h|
pi

≤ qti deg pi}.

The motivation of this definition comes from the number field case; in that scenario,
a is a lattice of full rank under the Minkowski embedding K ↪→ K ⊗Q R ∼= Rd,
where d = [K : Q]. The box B(a, (t1, . . . , tn+1)) is the set of lattice points lying
in the symmetric compact convex set described by (t1, . . . , tn+1). If K is totally
real, this convex set is a hyperrectangle (box) with side lengths 2et1 , . . . , 2etn+1 ,
and if K is totally imaginary, this convex set is the direct product of n+ 1 closed
discs of radii et1 , . . . , etn+1 . If K is neither totally real nor totally complex, the
convex set features both properties; for example, if K has one real embedding
corresponding to p1 and two complex conjugate embeddings corresponding to p2,
the convex set is a cylinder of length 2et1 and radius et2 . Figure 3 displays the box
with parameters t1 = t2 = 0 in the real quadratic number field K = Q(

√
2) as the

grey square in the center.
If μ ∈ K∗, we define the abbreviation

B(a, μ) := B(a, (−νp1
(μ), . . . ,−νpn+1

(μ))).

This is the smallest box which would contain μ if μ ∈ a. With this, we are able to
define reduced ideals:

Definition 5.1.

(a) An element μ ∈ a\{0} is said to be a minimum of a if for every h ∈ B(a, μ)
we either have h = 0 or |h|

p
= |μ|

p
for all p ∈ S. Denote the set of all

minima of a by E(a).
(b) An ideal a is said to be reduced if 1 ∈ a is a minimum of a.

The notation of E(a) for the set of minima goes back to Y. Hellegouarch and
R. Paysant-Le Roux [HP85].

The property that μ is a minimum of a means simply that the box B(a, μ) is
empty, up to a few elements which always need to belong to B(a, μ): 0 is always
contained in B(a, μ), as well as μ and εμ for all ε ∈ k∗, since all absolute values of
elements in k∗ are 1. Hence, we ask that all elements in B(a, μ) are either 0 or have

the same infinite absolute values as μ. For example, in Figure 3, 1 and 1 +
√
2 are

minima of OK , while
√
2 is not, since 1 ∈ B(OK ,

√
2) \ {0} has different absolute

values than
√
2.

Under certain circumstances, there can be elements in a with the same infinite
absolute values as μ other than εμ, ε ∈ k∗, and these elements thus belong to
B(a, μ) as well. These elements are the reason why the aforementioned equivalence
relation is needed: if μ ∈ a is such an element, then 1

μa is a reduced ideal different

from a which will be mapped to the same element by our distance map. For that
reason, we have to identify any two such ideals if such elements can exist.

The following proposition shows that in many important situations, such ele-
ments cannot occur. This includes, in particular, the case when an infinite place of
degree one exists. For number fields K, this is always the case unless K is totally
imaginary, and for function fields one can always move to a constant field extension
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by a splitting field for one of the infinite places. Many treatments of the infras-
tructure and of arithmetic in function fields require such a place of degree one,
sometimes explicitly as for Heß’ arithmetic [Heß02] and sometimes implicitly by
restricting to certain classes of fields; for example, every real quadratic field has
exactly two infinite places of degree one, and a cubic number field always has a real
embedding.

Proposition 5.2. Assume that deg p = 1 for some p ∈ S. Let b be a reduced ideal.
Then B(b, (0, . . . , 0)) = k.

Before we proceed with the proof, we need to introduce a right inverse div :
Id(OK) → Div(K) to the natural map Div(K) → Id(OK) described in Section 2.
For a fractional ideal b =

∏
p�∈S(mp ∩ OK)np , define div(b) := −

∑
p�∈S npp. This

allows us to relate boxes to Riemann-Roch spaces : we have

B(a, (t1, . . . , tn+1)) = L

(
div(a) +

n+1∑
i=1

tipi

)
;

here, L(D) := {f ∈ K∗ | (f) ≥ −D} ∪ {0} for D ∈ Div(K) is the Riemann-Roch
space of D.

Proof of Proposition 5.2. If K is a number field, then deg p = 1 means that p

corresponds to a real embedding; hence, |h|
p
= |h′|

p
for h, h′ ∈ K if and only if

h = ±h′. Thus, if b is reduced, B(b, (0, . . . , 0)) = k = {−1, 0, 1}.
IfK is a function field, then B(b, (0, . . . , 0)) = L(div(b)) ⊇ k, and L(div(b)−p) =

0; but by [Sti93, Lemma I.4.8],

0 = dimk L(div(b)− p) ≤ dimk L(div(b))

≤ dimk L(div(b)− p) + deg p = 1,

whence B(b, (0, . . . , 0)) = k. �

For the rest of the section, we fix an ideal a ∈ Id(OK). There is a close relation-
ship between the set of minima of an ideal and the set of reduced ideals in the ideal
class of that ideal. First note that the unit group O∗

K of OK operates on E(a) by
multiplication: if μ ∈ E(a) and ε ∈ O∗

K , then εμ ∈ E(a). This shows that the map

E(a)/O∗
K → Id(OK), μO∗

K �→ 1
μa

is well defined and injective. The image of this map is exactly the set of reduced
ideals in the ideal class of a. Denote this set by Red(a). This set, modulo the
aforementioned equivalence relation, will be our set X.

Note that in case K is a function field with deg pi = 1 for some i, the reduced
ideals b ∈ Red(K), where

Red(K) :=
⋃

a∈Id(O)

Red(a),

correspond exactly to the divisors D ∈ Div(K) that are reduced with respect to pi

in the sense of Heß [Heß02] and satisfy νpj
(D) = 0 for j ∈ {1, . . . , n + 1}. This is

due to the relationship between boxes and Riemann-Roch spaces sketched above,
and the correspondence is given by b �→ div(b).
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Next, we want to construct the distance map d. In the process of constructing
d, we obtain the lattice Λ and derive the equivalence relation needed to define X.
We begin with the map

Ψ : K∗ → Gn, h �→ (−νp1
(h), . . . ,−νpn

(h)),

which maps (K∗, ·) homomorphically into (Gn,+). This map plays a crucial role in
constructing the distance map. The image of O∗

K under Ψ is a lattice in Gn ⊆ Rn; it
is called the unit lattice of OK and is denoted by Λ. For number fields K, Λ always
has full rank; this is a consequence of Dirichlet’s Unit Theorem. For function fields,
Λ has full rank if and only if T is finite. In case Λ has full rank, we have

detΛ =
R∏n

i=1 deg pi
.

In case O∗
K has full rank, Gn/Λ ⊆ Rn/Λ is an n-dimensional torus that will be the

codomain of our distance map d.
Note that 1

ha = 1
h′ a if and only if h′h−1 ∈ O∗

K , and this implies Ψ(h)−Ψ(h′) ∈ Λ.

Therefore, the map 1
ha �→ Ψ(h) +Λ is well defined. Ideally, this map will represent

our distance map. Unfortunately, it is in general not injective on Red(a), whence
we need to identify elements in Red(a) which are mapped onto the same element
of Gn/Λ under the map 1

ha �→ Ψ(h) + Λ. We will define an equivalence relation ∼,
study it in more detail, and then show in Proposition 5.5 that it indeed makes this
map injective.

If b, b′ are ideals in the ideal class of a such that b = hb′ with |h|
p
= 1 for all

p ∈ S, then b and b′ are mapped to the same element of Gn/Λ. Hence, we can
define the equivalence relation ∼ on Id(OK) by

b ∼ b′ :⇐⇒ ∃h ∈ K∗ : b = hb′ ∧ ∀p ∈ S : |h|
p
= 1.

We thus see that the map Red(a)/∼ → Gn/Λ via [ 1μa]∼ �→ Ψ(h) + Λ is well de-

fined, but we are left to show that it is injective. Note that the above equivalence
relation ∼ is not the equivalence relation on ideals used to define the ideal class
group Pic(OK): we impose the additional condition that |h|

p
= 1 for all p ∈ S.

We can deduce from Proposition 5.2 that this equivalence relation ∼ is trivial in
case an infinite place of degree one exists:

Corollary 5.3. Assume that deg p = 1 for some p ∈ S. Let b and b′ be two reduced
ideals. Then b ∼ b′ if and only if b = b′.

Proof. If b = hb′ with |h|
p
= 1 for all p ∈ S, we get h ∈ B(b, (0, . . . , 0)) and thus,

by Proposition 5.2, h ∈ k∗ ⊆ O∗
K . �

In the general case, testing ∼ is more complicated. The following proposition
shows how this can be done:

Proposition 5.4. Let b and b′ be two reduced ideals. Then b ∼ b′ if and only if
B(b(b′)−1, (0, . . . , 0)) �= {0} and deg div(b) = deg div(b′).

Note that in caseK is a number field, deg div(b) = − log NormK/Q(b), and in case
K is a function field, deg div(b) = − degNormK/k(x)(b). A proof of Proposition 5.4
can be found in Appendix A.

We have now obtained a well-defined map [ 1ha]∼ �→ Ψ(h)+Λ, and we are able to
test whether b ∼ b′ for ideals b, b′ ∈ Red(K). The next statement shows that this
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map is injective when restricted to the non-empty set Red(a)/∼, and that Red(a)/∼
is finite for all global fields and some non-global function fields.

Proposition 5.5. The map

da : Red(a)/∼ → Gn/Λ, [ 1μa]∼ → Ψ(μ) + Λ

is injective. In case K is a number field, or K is a function field and T is finite,
the set Red(a)/∼ is finite. In any case, it is non-empty. In case K is a global field,
Red(a) itself is finite as well.

Recall that when K is a function field with finite constant field, then T is always
finite. A proof of Proposition 5.5 can be found in Appendix A. Note that the injec-
tivity of da for number fields is also shown by Schoof in [Sch08, Lemma 9.2 (ii)]. The
finiteness result for global fields is well known; see for example [HP85, Theorems 3
and 4].

Assume that K is a global field. If we define Xa := Red(a)/∼, we obtain the first
ingredients of an n-dimensional infrastructure: a finite set Xa, a lattice Λ ⊆ Gn of
full rank, and an injective map da : Xa → Gn/Λ.

The map da takes the equivalence class of a reduced ideal b in the ideal class
of a, say b = 1

μa, and maps it to its “distance” Ψ(μ), which is well defined up

to elements of Λ. Choosing the logarithmic absolute value vector of the relative
generator μ as the distance generalizes Shanks’ original definition of distance in
infrastructures [Sha72], and is used in most treatments of the infrastructure, for
example in the works of Buchmann and Williams. A notable difference is Lenstra’s
distance function [Len82]. In the case of function fields, this is also the common
measure used to define distances, at least in the case of unit rank one [PR99, Sch01,
Lan09].

In this section, we obtained for every a ∈ Id(O) a finite set Xa, a lattice of full
rank Λ ⊆ Gn, as well as an injective map da : Xa → Gn/Λ. Here, we needed to
assume that K is a global field to ensure that Xa is finite and Λ is of full rank,
though this can also be true for certain function fields with infinite constant fields.
In fact, for arbitrary function fields, Xa is finite if, and only if, Λ is of full rank. The
ingredient this is still missing in order to obtain an n-dimensional infrastructure in
the sense of Definition 4.2, namely, a reduction map, will be defined in the next
section.

6. f-Representations in global fields

In this section we introduce f -representations Repf (a) for (Red(a)/∼, d
a). Using

the equivalence of f -representations and reduction maps discussed in Section 4, this
yields a reduction map reda : Gn/Λ → Xa = Red(a)/∼, so that (Xa, da, reda) is an
n-dimensional infrastructure in the sense of Definition 4.2.

Before we define f -representations for arbitrary number fields and function fields,
we want to consider a special case, namely deg pn+1 = 1. In this case, the defini-
tion of an f -representation can be drastically simplified and stated with a lot less
technical involvement. We distinguish the simpler scenario from the general case
by appending an asterisk to the f in f -representations. By Corollary 5.3, we can
replace Red(a)/∼ by Red(a) itself, as every equivalence class [b]∼ contains exactly
one reduced ideal. Recall that in this case, an ideal b ∈ Id(OK) is reduced if
B(b, (0, . . . , 0)) = k by Proposition 5.2. An f -representation should be a reduced
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ideal b together with numbers t1, . . . , tn ≥ 0 which determine how far the box
B(b, (0, . . . , 0)) can be enlarged in the directions of p1, . . . , pn without containing
anything but k. More precisely:

Definition 6.1. An f∗-representation is a tuple (b, (t1, . . . , tn)) ∈ Red(a) × Gn

such that B(b, (t1, . . . , tn, 0)) = k. Denote the set of all f∗-representations in
Red(a)×Gn by Repf ∗(a).

We say that (b, t) ∈ Repf ∗(a) represents da([b]∼) + t ∈ Gn/Λ.

Remark 6.2.

(a) If b ∈ Red(a), then always (b, (0, . . . , 0)) ∈ Repf ∗(a).
(b) If b = 1

μa for some μ ∈ K∗, and if t1, . . . , tn ∈ G are elements such that

B(b, (t1, . . . , tn, 0)) = k, then (b, (t1, . . . , tn)) ∈ Repf ∗(a). In particular,
b ∈ Red(a). This shows that the assumption that b ∈ Red(a) in the
definition is not actually needed.

Now we drop the assumption that deg pn+1 = 1. We have to introduce certain
technicalities to ensure that f -representations are well defined. First, as in the case
of reduced ideals, we will only have k ⊆ B(b, (t1, . . . , tn, 0)). To ensure that this set
does not contain too many elements, we need to introduce a technical tool, namely
a total preorder5 on K∗. For h, h′ ∈ K∗, define

h ≤ h′ :⇐⇒ (|h|
pn+1

, |h|
p1
, . . . , |h|

pn
) ≤�ex (|h′|

pn+1
, |h′|

p1
, . . . , |h′|

pn
),

where ≤�ex is the usual lexicographical order on Rn+1. Using this notion, we define
f -representations as follows:

Definition 6.3. An f -representation is a tuple ([b]∼, (t1, . . . , tn)) ∈ Red(a)/∼×Gn

such that 1 ∈ B(b, (t1, . . . , tn, 0)) \ {0} is a smallest element with respect to ≤.
Denote the set of all f -representations in Red(a)/∼ ×Gn by Repf (a).

As above, we say that ([b]∼, t) ∈ Repf (a) represents da([b]∼) + t ∈ Gn/Λ.
The condition that 1 is a smallest element with respect to ≤ ensures that all

elements h ∈ B(b, (t1, . . . , tn, 0))\{0} satisfy |h|
pn+1

= 1. Moreover, it ensures that

b is reduced, since any element in B(b, (0, . . . , 0)) \ {0} whose absolute values are
not equal to 1 would be strictly less than 1 with respect to this order.

In fact, the choice of ≤ is somewhat arbitrary. One could replace ≤ with any
other preorder on K∗ such that:

(a) if h, h′ ∈ K∗ satisfy |h|
pn+1

< |h′|
pn+1

, then h < h′;

(b) if h, h′, h′′ ∈ K∗ satisfy h′ ≤ h′′, then hh′ ≤ hh′′;
(c) for every ideal b and any t1, . . . , tn+1 ∈ G, the set B(b, (t1, . . . , tn+1)) \ {0}

has a smallest element with respect to ≤ if it is non-empty, and this element
happens to be a minimum of b in the sense of Definition 5.1;

(d) if h ≤ h′ and h′ ≤ h for h, h′ ∈ K∗, we have |h|
p
= |h′|

p
for every p ∈ S.

The choice of ≤ as the lexicographical order on vectors of absolute values is a
convenient choice satisfying these conditions, in particular, since it is well suited
for computations.

5A total preorder ≤ on a set X is a binary relation which is reflexive and transitive such that
for every x, y ∈ X, we have x ≤ y or y ≤ x.
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In the case deg pn+1 = 1, f -representations and the simpler f∗-representations
coincide; this is shown in Proposition 6.5. Before we establish this, we state a few
more remarks.

Remark 6.4.

(a) The definition of an f -representation depends only on the equivalence class
[b]∼ of b: if b, b′ are two reduced ideals with b ∼ b′, an element with given
absolute values in B(b, (t1, . . . , tn, 0)) exists if and only if an element with
the same absolute values exists in B(b′, (t1, . . . , tn, 0)). Therefore, Rep

f (a)
is well defined.

(b) If (b, (t1, . . . , tn)) ∈ Repf ∗(a), then ([b]∼, (t1, . . . , tn)) ∈ Repf (a).
(c) If b ∈ Red(a), then always ([b]∼, (0, . . . , 0)) ∈ Repf (a). That is, the reduced

ideals in the ideal class of a, modulo the equivalence relation ∼, can be
embedded into Repf (a).

(d) If b = 1
μa for some μ ∈ K∗, and if t1, . . . , tn ∈ G are elements such

that 1 ∈ B(b, (t1, . . . , tn, 0)) \ {0} is a smallest element with respect to
≤, then ([b]∼, (t1, . . . , tn)) ∈ Repf (a). In particular, b ∈ Red(a). This
shows that the assumption that [b]∼ ∈ Red(a)/∼ in the definition is not
actually needed.

As mentioned before, in the case of deg pn+1 = 1, f -representations are equiva-
lent to the simpler f∗-representations introduced first:

Proposition 6.5. The map

Repf ∗(a) → Repf (a), (b, (t1, . . . , tn)) �→ ([b]∼, (t1, . . . , tn))

is always an injection. Furthermore, if deg pn+1 = 1, it is a bijection.

The proof can be found in Appendix A. The injectivity part is rather straight-
forward. The proof for the surjectivity is similar to the proof of Proposition 5.2.

Before we show that Repf (a) is indeed a set of f -representations for (Red(a)/∼,
da) in the sense of Definition 4.1, we show the following two lemmas, which illustrate
how f -representations can be obtained (“reduction”) and in which way they are
unique. These lemmas are crucial to prove that the induced map Repf (a) → Gn/Λ,
(x, t) �→ da(x) + t is a bijection: the Reduction Lemma shows that the map is
surjective, and the Uniqueness Lemma shows that the map is injective.

The first result, the Reduction Lemma, shows that any tuple (b, (t1, . . . , tn)) ∈
Id(OK)×Gn can be reduced to an f -representation. Similar to reducing an ideal,
this procedure divides by a minimum μ of the ideal. The ti have to be adjusted
by the valuations of μ. In particular, this result shows that for every ideal a, the
set Red(a) is not empty, hence giving another proof of the non-emptiness result in
Proposition 5.5. In fact, the proof is very similar to the proof of that proposition,
except that here, we divide by a very specific minimum of b.

Lemma 6.6 (Existence and Reduction). Let b be any ideal equivalent to a, and let
t1, . . . , tn ∈ G. Then there exists a smallest 	∈G such that B� := B(b, (t1, . . . , tn, 	))
\{0} is non-empty. If μ ∈ B� is a smallest element with respect to ≤, then

([ 1μb]∼, (t1 + νp1
(μ), . . . , tn + νpn

(μ))) ∈ Repf (a).

The proof of Lemma 6.6 shows why 	 and μ exist, as claimed in the statement
of the lemma. Since this lemma yields a reduction procedure, we include the proof
here, rather than in the appendix.
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Before we prove this result, we want to discuss it in the function field case. Let
D = div(b) +

∑n
i=1 tipi; then B� = L(D + 	pn+1) \ {0}. In the case of function

fields with deg pn+1 = 1, Heß’ reduction method as described in [Heß02] works
by minimizing 	 with L(D + 	pn+1) �= {0}, then choosing an element μ ∈ L(D +
	pn+1) \ {0} and replacing D by

D + 	pn+1 + (μ) = div
(
1
μb

)
+

n∑
i=1

(ti + νpi
(μ))pi.

Since deg pn+1 = 1, dimk L(D + 	pn+1) = 1, so the choice of ≤ does not matter:
any other element μ′ of B� will yield the same reduced divisor D + (μ′).

If deg pn+1 > 1, the condition that μ is a smallest element in B� with respect to
≤ ensures that μ is indeed a minimum of b, i.e., that 1

μb is reduced in the sense of

Definition 5.1. This shows that the procedure described in the lemma generalizes
Heß’ reduction.

Note that if we consider the set X =
⋃

�∈G B�, then X has a smallest element
with respect to ≤, and every such smallest element μ will satisfy that 	 = −νpn+1

(μ)
is minimal with B� �= ∅: this is ensured by the choice of ≤, which “prefers” ele-
ments with smaller absolute value |•|

pn+1
. Hence, we could relax the lemma by not

requiring that 	 be minimal, but just that B� �= ∅.

Proof of Lemma 6.6. If 	 � 0, we have B� = ∅ by the Product Formula.6 For
	 � 0, we get that B� �= ∅ by Riemann’s Inequality, respectively, Minkowski’s
Lattice Point Theorem. Choose 	 ∈ G minimal such that B� �= ∅; in the number
field case, this is possible since B� is a finite set: hence, if 	′ is chosen such that B�′

is non-empty, we can choose 	 = −max{νpn+1
(x) | x ∈ B�′}.

If K is a number field, then B� is a finite set, whence a minimal element with
respect to ≤ clearly exists as well. If K is a function field, then the infinite val-
uations νp for p ∈ S take on only finitely many values on B� since B� ∪ {0} is a
finite-dimensional vector space, whence the existence of μ is also clear.

If 	 is minimal, we have −νpn+1
(μ) = 	 by choice of μ. Moreover,

B( 1μb, (t1 + νp1
(μ), . . . , tn + νpn

(μ), 0)) = 1
μB(b, (t1, . . . , tn, 	))

and, by choice of μ, we have that 1 = μ
μ lies in this set and is minimal among

the non-zero elements with respect to ≤. Hence, by Remark 6.4 (c), the claim
follows. �

The second result, uniqueness, shows that reducing an f -representation will al-
ways yield the same f -representation. This will be utilized in showing that the map
Repf (a) → Gn/Λ is injective: in the proof of Theorem 6.8, we will show that if
two f -representations are mapped onto the same element of Gn/Λ, then one is a
reduction in the sense of the Reduction Lemma 6.6 of the other.

Lemma 6.7 (Uniqueness). Let A := ([b]∼, (t1, . . . , tn)) ∈ Repf (a) and let μ ∈ K∗

such that B := ([ 1μb]∼, (t1 + νp1
(μ), . . . , tn + νpn

(μ))) ∈ Repf (a). Then |μ|
p
= 1 for

all p ∈ S, and hence A = B.

6Here, a statement being true for x � 0 (respectively, x � 0) means that there exists some N
such that the statement holds for all x ≤ N (respectively, x ≥ N).
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The proof can be found in Appendix A. The main part is to show that since
A,B ∈ Repf (K), we have 1 ≤ μ and μ ≤ 1, which, by the definition of ≤, shows
that |μ|

p
= 1 for all p ∈ S.

Now we will state our main result in this section, which asserts that the set
Repf (a) as given in Definition 6.3 indeed defines a set of f -representations for
(Xa, da) in the sense of Definition 4.1. This can be seen as generalizing Propo-
sition 3.4 for the one-dimensional infrastructure case. Note that the set Xa =
Red(a)/∼ is possibly infinite if K is a function field and k is not finite.

Theorem 6.8 (Infrastructure, Part I: Correspondence between f -representations
and Gn/Λ). The map

Φa : Repf (a) → Gn/Λ, ([b]∼, t) �→ da(b) + t

is a bijection, and ([b]∼, (0, . . . , 0)) ∈ Repf (a) for every [b]∼ ∈ Red(a)/∼.

A proof can be found in Appendix A. Note that this result generalizes the
injectivity of da in Proposition 5.5: for that result, it suffices to note that the map
Red(a)/∼ → Repf (a), [b]∼ �→ ([b]∼, (0, . . . , 0)) is an injection.

So far, we have obtained a set Xa = Red(a)/∼ of classes of reduced ideals
equivalent to a, together with a distance map da : Xa → Gn/Λ and a set of f -
representations Repf (a) ⊂ Xa ×Gn/Λ for (Xa, da). This means that the map

Φa : Repf (a) → Gn/Λ, (x, t) �→ da(x) + t

is a bijection, and we know that (x, 0) ∈ Repf (a) for all x ∈ Xa. This allows us to
define a reduction map

reda : Gn/Λ → Xa

for (Xa, da) as in the previous section, by taking reda(v) to be the first component
of (Φa)−1(v) ∈ Repf (a). Therefore, assuming K is a global field, (Xa, da, reda) is
an n-dimensional infrastructure, and we obtain a giant step

gsa(x, x′) := reda(da(x) + da(x′)), x, x′ ∈ Xa.

Moreover, as in the one-dimensional case, we can use Φa to turn Repf (a) into an
abelian group by pulling back the group operation from Gn/Λ: for A,B ∈ Repf (a),
define

A⊕a B := (Φa)−1(Φa(A) + Φa(B)).

Then (Repf (a),⊕a) is an abelian group isomorphic to Gn/Λ via Φa. We de-
note this group operation by ⊕a and not by + since in the next section, we will
equip

⋃
a∈Id(OK) Rep

f (a) with a group operation named + which is related to the

(Arakelov) divisor class group of K. Now (Repf (OK),⊕OK
) will be a subgroup of⋃

a∈Id(OK) Rep
f (a), but no other (Repf (a),⊕a) will be a subgroup. Therefore, we

reserve the symbol + for the operation defined in the next section.
If a = OK , then the results in the next section allow us to explicitly describe the

group operation on Repf (OK). It is essentially ideal multiplication, followed by a
reduction: if A = ([b]∼, (t1, . . . , tn)), B = ([b′]∼, (t

′
1, . . . , t

′
n)) ∈ Repf (OK), we can

apply the Reduction Lemma 6.6 to (bb′, (t1+ t′1, . . . , tn+ t′n)). In case a �= OK , one
can still describe the group operation ⊕a on Repf (a), but one cannot use simple
ideal multiplication since bb′ will not be in the ideal class of a as soon as a is not a
principal ideal; and even if a is principal, distances will be added incorrectly. The
correct formula is given as follows:
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Proposition 6.9. Let A = ([b]∼, (t1, . . . , tn)), B = ([b′]∼, (t
′
1, . . . , t

′
n)) ∈ Repf (a).

Apply the Reduction Lemma 6.6 to (bb′a−1, (t1 + t′1, . . . , tn + t′n)), and denote the
result by C. Then C ∈ Repf (a) and A⊕a B = C.

This result is similar to Remark 3.5 and Example 3.6 in the one-dimensional
case: the reduced ideals are multiplied and the product is then reduced. In case
a �= OK , a correction factor needs to be multiplied to the product of the ideals. A
proof of this result can be found in Appendix A.

In this section, we saw how to construct a set of f -representations Repf (a) and,
therefore, a reduction map reda for (Xa, da) = (Red(a)/∼, d

a), thereby turning
this pair into an n-dimensional infrastructure (Xa, da, reda). We also saw how to
explicitly compute the group operation induced by the bijection Repf (a) → Gn/Λ
in terms of ideal multiplication followed by reduction. This also shows how the
giant-step operation gs([b]∼, [b

′]∼) can be computed, by ignoring the t-part of the
resulting f -representation ([b]∼, 0)⊕a ([b

′]∼, 0). This operation generalizes Shanks’
original approach as sketched in Example 3.6.

7. Relation to the divisor class group

In this section, we want to relate the set of all f -representations,

Repf (K) :=
⋃

a∈Id(OK)

Repf (a),

to the (Arakelov) divisor class group Pic0(K). In case K is a number field, or in
case K is a function field and deg pn+1 = 1, we obtain an isomorphism Repf (K) →
Pic0(K). In case K is a function field and deg pn+1 > 1, we can identify a subset
of Repf (K) with Pic0(K). We show that we can then extend Pic0(K) to obtain a
group which is isomorphic to Repf (K). Finally, we show how to perform effective
arithmetic in Repf (K).

To motivate the fact that there is a relationship between our infrastructures
(Xa, da, reda) together with Repf (a) and the (Arakelov) divisor class group Pic0(K),
we first consider the aforementioned special case. Assume for a moment that
deg pn+1 = 1, or that K is a number field. In this case, we have the short ex-
act sequence

0 �� T �� Pic0(K) �� Pic(OK) �� 0,

and we have T ∼= Gn/Λ. Moreover, we have a representation of Gn/Λ by Repf (a)
for every a ∈ Id(OK), which consists of all f -representations whose reduced ideals
range over all reduced ideals in the ideal class of a. By the short exact sequence,
clearly the (Arakelov) divisor class group Pic0(K) is covered by |Pic(OK)| copies of
Gn/Λ, whence one might hope that Pic0(K) can be described in a nice way using
Repf (K) =

⋃
a∈Id(OK) Rep

f (a). This turns out to be the case. In fact, Paulus and

Rück already showed this for the special case of the infrastructure obtained from a
real hyperelliptic curve in [PR99].

In the general case, i.e., if deg pn+1 is not necessarily 1, T can be embedded into
Gn/Λ, but might not cover the entire set, and the map Pic0(K) → Pic(OK) might
not be surjective. This can only happen in the function field case. It would be
desirable to have a short exact sequence

(∗) 0 �� Gn/Λ �� ? �� Pic(OK) �� 0
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for all function fields, into which the exact sequence

(∗∗) 0 �� T �� Pic0(K) �� Pic(OK)

embeds in a natural way. If D is a divisor with degD �= 0, one obtains an exact
sequence

0 �� Pic0(K) �� Pic(K)/〈[D]〉 �� (deg p | p ∈ PK)Z/(degD)Z �� 0.

For the right choice of D, we obtain that Pic(K)/〈[D]〉 is the right replacement
for the “?” in equation (∗). The exact relationship between the exact sequences in
equations (∗) and (∗∗) will be described later in Proposition 7.2.

We now state the main result for this section, which identifies the set of f -
representations with the Arakelov divisor class group, or with an extension of
Pic0(K).

Theorem 7.1 (Infrastructure, Part II: Relating f -representations to the divisor
class group).

(a) Let K be a number field. Then the following map is a bijection:

Φ : Repf (K) → Pic0(K),

([b]∼, (t1, . . . , tn)) �→
[
div(b) +

n∑
i=1

tipi − deg div(b)+
∑n

i=1 ti deg pi

deg pn+1
pn+1

]
.

(b) Let K be a function field. Then the following map is a bijection:

Φ : Repf (K) → Pic(K)/〈[pn+1]〉,

([b]∼, (t1, . . . , tn)) �→
[
div(b) +

n∑
i=1

tipi

]
+ 〈[pn+1]〉.

The proof can be found in Appendix A.
Note that this gives, in particular, an embedding of Red(K)/∼ into Pic0(K),

respectively, Pic(K)/〈[pn+1]〉, where Red(K) =
⋃

a∈Id(OK) Red(a). In the case

of number fields, Schoof gave a similar embedding in [Sch08]; more precisely, he

embedded Red(K) in the oriented Arakelov divisor class group P̃ic0(K), which is
a cover of Pic0(K). Moreover, his embedding assigns different valuations for the
infinite places. Our embedding has the advantage that it works in a very similar
way for both number fields and function fields. In the case of real hyperelliptic
function fields, our embedding is the same as the one by Paulus and Rück [PR99,
Theorem 4.2]. Moreover, in part (b) of the theorem, the divisor whose class is
taken is reduced along pn+1 in the sense of Heß [Heß02]. In case deg pn+1 = 1, this
shows that f -representations directly correspond to arbitrary reduced divisors in
the sense of Heß which are reduced along pn+1.

Finally, note that if we denote by G[pn+1] the 1-parameter subgroup {[gpn+1] |
g ∈ G} of Pic(K) in case K is a number field, then we can identify Pic0(K) with
Pic(K)/G[pn+1]. Hence, we can write Φ as

Φ : Repf (K) → Pic(K)/G[pn+1],

([b]∼, (t1, . . . , tn)) �→
[
div(b) +

n∑
i=1

tipi

]
+G[pn+1]
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for both number fields and function fields. Thus, Theorem 7.1 completely unifies
the number field and function field scenarios.

Before describing how the group operation on Repf (K) induced by the one on
Pic(K)/G[pn+1] can be computed, we want to state a result on the interrelations
between all aforementioned groups. For that, we first make clear how the map
T → Gn/Λ is defined. Assume that T = Div0∞(K)/(O∗

K/k∗), where O∗
K/k∗ is

embedded into Div0∞(K) by forming principal divisors. Then we obtain a map
T ↪→ Gn/Λ by mapping the class of

∑
p∈S tpp to (tp1

, . . . , tpn
) + Λ. This map is

clearly injective. In case K is a number field or if deg pn+1 = 1, it is surjective as
well.

Proposition 7.2. The diagram

0 �� T ��� �

��

Pic0(K) ��
� �

��

Pic(OK)

Gn/Λ

∼= (Φa)−1

��

Pic(K)/G[pn+1]

Φ−1∼=
��

0 �� Repf (OK) �� Repf (K) �� Pic(OK) �� 0

commutes. In case K is a function field, the image of T in Gn/Λ is the set{
(ti)i + Λ ∈ Gn/Λ

∣∣∣∣ deg pn+1 divides

n∑
i=1

ti deg pi

}
,

and the image of Pic0(K) in Repf (K) is the set{
([a]∼, (t1, . . . , tn)) ∈ Repf (K)

∣∣∣∣ deg pn+1 divides deg div(a) +
n∑

i=1

ti deg pi

}
.

The proof consists of diagram chasing using the definitions of the relevant objects.
It does not give any new insight, and can be found in Appendix A for reference.

Proposition 7.2 shows, in particular, that the group operation ⊕OK
on Repf (OK)

defined in the last section is identical to the group operation + obtained from the
group operation on Pic(K)/G[pn+1] restricted to the subset Repf (OK). Hence, we
are able to relate two group operations which were defined quite differently: ⊕OK

is defined by pulling back the addition from Gn/Λ, and + is defined by pulling back
the addition from Pic(K)/G[pn+1].

It turns out that the group operations in Pic0(K), respectively, Pic(K)/〈[pn+1]〉,
can be described in a nice way using f -representations. This directly generalizes
the arithmetic in (Repf (OK),⊕OK

) as described in Proposition 6.9. Note that this
is not related to the arithmetic in (Repf (a),⊕a) for a �= OK .

The following theorem describes how the group operations on Repf (K) can be
effectively computed.

Theorem 7.3 (Infrastructure, Part III: Computing the group operation). Let A =
([b]∼, (t1, . . . , tn)), A

′ = ([b′]∼, (t
′
1, . . . , t

′
n)) ∈ Repf (K).

(a) There exists a minimal 	 ∈ G such that B� := B(bb′, (t1 + t′1, . . . , tn +
t′n, 	)) \ {0} is non-empty; if μ is a smallest element with respect to ≤ in
B�, we get B := ([ 1μbb

′]∼, (t1+t′1+νp1
(μ), . . . , tn+t′n+νpn

(μ))) ∈ Repf (K)

and Φ(A) + Φ(A′) = Φ(B).
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(b) There exists a minimal 	 ∈ G such that B� := B(b−1, (−t1, . . . ,−tn, 	))\{0}
is non-empty; if μ is a smallest element with respect to ≤ in B�, we get
C := ([ 1μb

−1]∼, (−t1+νp1
(μ), . . . ,−tn+νpn

(μ))) ∈ Repf (K) and −Φ(A) =

Φ(C).

The main parts of this lemma were already shown in Lemma 6.6, namely that
B and C are indeed f -representations. The claims Φ(A) + Φ(A′) = Φ(B) and
−Φ(A) = Φ(C) follow from the fact that div : Id(OK) → Div(K) is a group
homomorphism as well as from the definitions of Φ and of the group operation on
Pic0(K), respectively, Pic(K)/〈[pn+1]〉.

Note that this “reduction” step, namely minimizing 	, and then minimizing μ
with respect to ≤ if necessary, is essentially the same that is used for arithmetic
on hyperelliptic and superelliptic curves [GPS02], and for Heß’ arithmetic in func-
tion fields with deg pn+1 = 1 [Heß02]; compare the discussion following the Re-
duction Lemma 6.6. This is not very surprising, since as we already mentioned,
f -representations are another representation of divisors reduced along pn+1.

We have seen that all infrastructures (Red(a)/∼, d
a) in K, and their correspond-

ing f -representations Repf (a), can be combined to the set of all f -representations
Repf (K), which parameterizes the (Arakelov) divisor class group Pic(K)/G[pn+1] ⊇
Pic0(K) using the bijection Φ. Moreover, we have seen how the group structure on
Repf (K) induced by the one on the (Arakelov) divisor class group can be computed
in terms of f -representations only; this is essentially ideal multiplication followed by
reduction, hence generalizing Shanks’ giant steps. Using Corollary 5.3 and Propo-
sition 5.4 we are able to compare f -representations. Therefore, we can represent
the (Arakelov) divisor class group using f -representations and use them to perform
effective arithmetic.

8. Computations using f-representations

Infrastructures not only represent an interesting algebraic concept, but f -repre-
sentations lend themselves very well to computation and lead to efficient algorithms
for computing fundamental units in global function fields. They require only lim-
ited storage and allow for efficient giant-step computation, as documented in this
section. Further evidence supporting the suitability of f -representations for com-
putation is provided with three non-trivial numerical examples. Proofs of these
results and a more detailed discussion of implementation go beyond the scope of
this work and are the subject of a forthcoming paper.

We begin with a result on the size of f -representations, which in the function field
case is identical to a result by Heß in [Heß02, Section 8]. In the number field case,
it generalizes a result by Schoof [Sch08, Proposition 7.2 (i)] to f -representations;
his result is slightly stronger than the well-known inequality 1 ≤ NormK/Q(a

−1) ≤√
|Δ| for a ∈ Red(K), where Δ is the discriminant of K.
Remember that deg div(a) = − log NormK/Q(a) if K is a number field, and

deg div(a) = − degNormK/k(x)(a) if K is a function field.

Proposition 8.1. Let ([a]∼, (ti)i) ∈ Repf (K). Then div(a) ≥ 0 and ti ≥ 0 for
1 ≤ i ≤ n. If K is a function field, let g be its genus, and if K is a number field,
let Δ be its discriminant and 2s its number of complex embeddings. Then
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0 ≤ deg div(a) +

n∑
i=1

ti deg pi ≤
{
g + (deg pn+1 − 1) if K is a function field,
1
2 log |Δ| − s log π

2 if K is a number field.

We included a proof of this result in Appendix A.
This shows that not only the norm of the integral ideal a−1 as well as the positive

integers ti are bounded, but a linear combination of these values with positive
coefficients is bounded. As shown by Paulus and Rück [PR99], this bound is sharp
in the case of real quadratic function fields.

To represent a reduced ideal, one can use a Hermite normal form representation
with respect to a fixed integral basis as described in [Coh96]. This allows us to
represent a fractional ideal with a unique binary representation. In the number field
case, C. Thiel showed in [Thi95, Corollary 3.7] that one can represent a reduced ideal

in a number field of degree d and discriminant Δ with at most (d2+1) log2
√
|Δ| bits.

For function fields, we obtain:

Proposition 8.2. Let K be a function field. Assume that elements of k can be
represented by O(log q) bits. Then f -representations can be represented by O

(
d2(g+

deg pn+1 − 1) log q
)
bits. �

We will provide a more precise statement as well as a proof in a subsequent
paper.

Using a technique similar to Heß’ algorithm for computing Riemann-Roch spaces
[Heß02], we implemented f -representations for function fields. We made the as-
sumption that deg pn+1=1 to ensure that we can quickly compare f -representations
by their binary representation. We added to our implementation an algorithm by
Buchmann and A. Schmidt [BS05] to compute the relation lattice Λ of the elements
(g1, . . . , gn) in Repf (OK), where gi = (ΦOK )−1(ei) if ei ∈ Zn is the i-th standard
unit vector; note that this is a system of generators of Repf (OK). This lattice equals
the unit lattice as defined in Section 5. Since the Buchmann-Schmidt algorithm
is of baby-step giant-step type and requires O(n

√
|Repf (OK)|) group operations

and O(
√
|Repf (OK)|) storage of group elements, we therefore implemented an al-

gorithm which computes the unit lattice of a global function field with at least
one infinite place of degree one in O(

√
R) infrastructure operations using O(

√
R)

storage (assuming [K : k(x)] = O(1)). This can be seen as a generalization of
Shanks’ baby-step giant-step algorithm for computing the unit lattice for a real
quadratic number field [Sha72], or of Buchmann’s baby-step giant-step algorithm
for computing the unit lattice of an arbitrary number field [Buc87b].

Our algorithm was implemented in C++ using NTL. It currently relies on
MAGMA for computation of integral bases and information on the infinite places.
We present three numerical examples that were obtained using our algorithm. We
compared the output of our program to MAGMA’s built-in function Regulator();
this function apparently uses Heß’ subexponential algorithm for computation of the
divisor class group [Heß99]. We applied both our algorithm and MAGMA to the
function fields of many curves. As an example, we want to present three curves:

(1) y3 = (x+1)y2 − (123x3 − 423x2 +948x− 1)y+(13x2 +3123x+11)x2 over
F1009; the function field has genus 3, two infinite places of degree 1 (so unit
rank 1), and regulator 496 804 315;

(2) y8 = 81(x+ 2)2(x− 3)3(x+ 1)3 over F1009; the function field has genus 3,
eight infinite places of degree 1 (so unit rank 7), and regulator 62 322 365;
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(3) (2 + α)(y4 − y2) + 1−α
x (y3 + y2) + 1

1−(1+α2)xy = 12α−x
x over F312 = F31[α]

with α2 + 29α + 3 = 0; the function field has genus 3, two infinite places
of degree 1, one infinite place of degree 2 (so unit rank 2), and regula-
tor 896 118 755.

These fields show that our implementation is not restricted to curves of special
form, small unit rank, or prime fields. We also do not require all infinite places to
have degree one.

For the first field, MAGMA ran 1.4 to 2.0 hours (in ten different runs) and
required between 99 MB and 104 MB of memory to compute the regulator. For
the second field, MAGMA’s running time varied dramatically between 3.4 hours
and 8.9 days in seven runs, with an average of 4.8 days; the memory consumption
ranged between 119 MB and 127 MB, where usually the memory usage was around
120 MB, and only spiked up to 127 MB for the two runs which needed only a
few hours. For the last field, MAGMA worked 2.4 minutes and required 110 MB
of memory (with minimal variations in twelve runs). On the same machine, our
implementation was able to compute the regulator in 13.6 minutes for the first field
using 46 MB of memory, in 9.2 hours for the second field using 97 MB of memory,
and in 11.6 hours for the last field using 313 MB of memory.

Note that our implementation is not very optimized and in a very general form.
Nonetheless, this demonstrates that the techniques developed in this paper can be
used for computation, and even outperform the built-in functions of MAGMA in
certain cases. The latter is not surprising, since the algorithm MAGMA apparently
uses is designed for small constant fields and characteristics, and for such function
fields is in general much faster than our implementation.

9. Conclusion

We presented a concise interpretation of the infrastructure in a global field, by
considering a finite set Xa, consisting of equivalence classes of reduced ideals in the
ideal class of a, and a distance map da : Xa → Gn/Λ, where Λ is essentially O∗

K/k∗.
We have shown how one can find a reduction map reda : Gn/Λ → Xa by providing
a set of f -representations. This generalizes one-dimensional infrastructures, and in
particular Shanks’ original approach and its interpretation by Lenstra [Len82].

Considering all infrastructures (Xa, da, reda), a ∈ Id(OK) in K at the same time,
we saw that the set of all f -representations, Repf (K), can be identified with the
(Arakelov) divisor class group Pic(K)/G[pn+1] of K. This generalizes the result by
Paulus and Rück [PR99] for hyperelliptic function fields, and is compatible with
the arithmetic in Pic0(K) described by Heß [Heß02]. Moreover, our embedding of
Repf (K) into Pic0(K) in the number field case is similar to Schoof’s embedding of
Red(K) into the Arakelov divisor class group Pic0(K).

An important open question is how baby steps can be interpreted in our ap-
proach. One can interpret them as Buchmann in [Buc87b] as a tool which com-
putes all reduced elements whose distance lies in a given parallelepiped, as this
allows baby-step giant-step algorithms for arbitrary infrastructures. Unfortunately,
no efficient method for computing these “baby steps” is known for number fields.
Another open question is whether one can find an efficient unique representation
of elements in Pic0(K) in case no infinite place of degree one is available. Having
a unique representation of an element in Red(K)/∼ is required to do fast look-ups
as in algorithms of baby-step giant-step type.
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Appendix A. Missing Proofs

This appendix contains the proofs we omitted in order to make the paper more
readable. Most of the proofs are straightforward for experts. All proofs presented
here should be accessible to interested readers.

Proof of Proposition 5.4. If b ∼ b′, there exists h ∈ K∗ with hb′ = b such that
|h|

p
= 1 for all p ∈ S. Hence, b(b′)−1 = hOK and h ∈ B(b(b′)−1, (0, . . . , 0)). More-

over, div(b(b′)−1) = (h−1) is principal, i.e., of degree zero, whence deg div(b) =
deg div(b′).

Conversely, we see that div(b(b′)−1) must be principal as deg div(b(b′)−1) = 0.
Hence, there exists h ∈ K∗ with div(b(b′)−1) = (h−1); but then b(b′)−1 = hOK

and νp(h) = 0 for all p ∈ S, i.e., b ∼ b′. �

Proof of Proposition 5.5. For injectivity, assume that da( 1μa) = da( 1
μ′ a); this means

that Ψ(μ)−Ψ(μ′) ∈ Λ. If we choose ε ∈ O∗
K with Ψ(ε) = Ψ(μ)−Ψ(μ′), we obtain

|μ|
p
= |εμ′|

p
for every p ∈ S. Therefore, h := μ

εμ′ satisfies |h|
p
= 1 for all p ∈ S,

and h · 1
μa = 1

μ′ ε
−1a = 1

μ′ a, whence
1
μa ∼ 1

μ′ a.

To see that Red(a) is non-empty, it suffices to show that a has at least one
minimum. This can be done directly using Riemann’s Inequality or Minkowski’s
Lattice Point Theorem, or one can use tools as the Reduction Lemma 6.6, applied
to (a, (0, . . . , 0)). It returns a tuple whose first component is the equivalence class
of an element in Red(a).

In case K is a function field and T is finite, the finiteness of Red(a)/∼ follows
from the fact that Gn/Λ is finite, since T is isomorphic to a subgroup of Gn/Λ of
finite index. If, moreover, k is finite, note that the equivalence class [b]∼ of b is finite
for every b since b = fb′ with |f |

p
= 1 for all p ∈ S implies f ∈ B(b, (0, . . . , 0)),

which is a finite k-vector space and thus also a finite set. Therefore, Red(b) is the
union of finitely many finite sets.

Finally, in case K is a number field, Remark 6.4 (b) and Proposition 8.1 show
that if b is a reduced ideal, then b−1 is an integral ideal with bounded norm. As
there are only finitely many of these, Red(a) itself is finite. �

Proof of Proposition 6.5. The map is well defined by Remark 6.4 (b). To see that it
is injective, note that k ⊆ B(b, (0, . . . , 0)) ⊆ B(b, (t1, . . . , tn, 0)) = k for (b, (t1, . . . ,
tn)) ∈ Repf ∗(a), whence b ∼ b′ for b′ ∈ Red(a) implies b = b′. Therefore, [b]∼
contains exactly one element, whence ([b]∼, (t1, . . . , tn)) has exactly one preimage.

To see that the map is surjective in the case deg pn+1 = 1, let ([b]∼, (t1, . . . , tn)) ∈
Repf (a). Note that |h|

pn+1
= 1 for all h ∈ B(b, (t1, . . . , tn, 0))\{0}. We can proceed
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in a very similar manner as in the proof of Proposition 5.2. In case K is a number
field, this shows that B(b, (t1, . . . , tn, 0)) = {−1, 0, 1} = k.

In case K is a function field, B(b, (t1, . . . , tn, 0)) = L(D) with D := div(b) +∑n
i=1 tipi, and we know that L(D−pn+1) = {0}. As in the proof of Proposition 5.2,

we must have dimk L(D) = 1, whence 1 ∈ L(D) implies L(D) = k.
So in both cases, B(b, (t1, . . . , tn, 0)) = k, whence (b, (t1, . . . , tn)) ∈ Repf ∗(a) is

a preimage of ([b]∼, (t1, . . . , tn)) ∈ Repf (a). �

Proof of Lemma 6.7. As 1 ∈ B( 1μb, (t1 + νp1
(μ), . . . , tn + νpn

(μ), 0)), we get μ =

μ ·1 ∈ μB( 1μb, (t1+νp1
(μ), . . . , tn+νpn

(μ), 0))\{0} = B(b, (t1, . . . , tn,−νpn+1
(μ)))\

{0}. Hence, μ is minimal in B(b, (t1, . . . , tn,−νpn+1
(μ))) \ {0} with respect to ≤.

By the choice of ≤, it is also minimal in B(b, (t1, . . . , tn,max{0,−νpn+1
(μ)}))\{0};

but then, by the same argument, 1 is minimal with respect to ≤ in the same set.
Thus, we get μ ≤ 1 ≤ μ, which shows that |μ|

p
= 1 for every p ∈ S. �

Proof of Theorem 6.8. The second part is Remark 6.4 (b). For the injectivity of
Φa, let A = ([b]∼, (t1, . . . , tn)), A

′ = ([b′]∼, (t
′
1, . . . , t

′
n)) ∈ Repf (a) with Φa(A) =

Φa(A′). Write b = 1
μa and b′ = 1

μ′ a. Then there exists ε ∈ O∗
K with Ψ(μ) +

(t1, . . . , tn) = Ψ(μ′)+(t′1, . . . , t
′
n)+Ψ(ε). Define μ′′ := μ−1μ′ε; then ti+νpi

(μ′′) = t′i
and 1

μ′′ b = b′, whence by the Uniqueness Lemma 6.7, we get A = A′.

For the surjectivity of Φa, let (t1, . . . , tn) + Λ ∈ Gn/Λ. Then by the Reduc-
tion Lemma 6.6, there exists μ ∈ a such that A′′ = ([ 1μa]∼, (t1 + νp1

(μ), . . . , tn +

νpn
(μ))) ∈ Repf (a). Now Φa(A′′) = Ψ(μ) + (t1 + νp1

(μ), . . . , tn + νpn
(μ)) + Λ =

(t1, . . . , tn) + Λ, as we wanted to show. �

Proof of Proposition 6.9. Write b = 1
μa and b′ = 1

μ′ a. Then bb′a−1 = 1
μμ′ a lies in

the ideal class of a. We can now conclude with

Φa(C) = da(bb′a−1) + (t1 + t′1, . . . , tn + t′n)

= da(b) + (t1, . . . , tn) + da(b′) + (t′1, . . . , t
′
n) = Φa(A) + Φa(B). �

Proof of Theorem 7.1. Clearly, the divisors in the definition of Φ in the number
field case are all of degree zero. Hence, one can treat both cases at the same time
by ignoring the valuations of the divisors at pn+1. First, note that the maps are
well defined, since if b is replaced by hb for some h ∈ K∗ with |h|

p
= 1 for all p ∈ S,

then div(b) is replaced by div(b)− (h) = div(hb).
To show injectivity, let A = ([b]∼, (t1, . . . , tn)) and A′ = ([b′]∼, (t

′
1, . . . , t

′
n)) ∈

Repf (K) with Φ(A) = Φ(A′), i.e., let h ∈ K∗ and 	 ∈ G with

div(b) +

n∑
i=1

tipi = div(b′) +
n∑

i=1

t′ipi + (h) + 	pn+1.

This gives 1
hb

′ = b and ti = t′i + νpi
(h). But then, A = ([ 1hb

′], (t′1 + νp1
(h), . . . , t′n +

νpn
(h))), whence by the Uniqueness Lemma 6.7 we get |h|

p
= 1 for every p ∈ S;

but this implies A = A′. Therefore, Φ is injective.
For surjectivity, let [D] ∈ Pic0(K), respectively, [D] ∈ Pic(K)/〈[pn+1]〉. Write

D = div(a) +
∑n

i=1 tipi + 	pn+1 for a ∈ Id(OK), t1, . . . , tn, 	 ∈ G. By Reduction
Lemma 6.6, there exists a μ ∈ b such that B = ([ 1μa]∼, (t1 + νp1

(μ), . . . , tn +
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νpn
(μ))) ∈ Repf (K), and, up to pn+1, the divisor in Φ(B) equals

div
(
1
μa

)
+

n∑
i=1

(ti + νpi
(μ))pi = div(a) +

n∑
i=1

tipi + (μ)− νpn+1
(μ)pn+1,

i.e., Φ(B) = [D]. �

Proof of Proposition 7.2. We first show that the left square commutes. For that, we
compare the maps T → Gn/Λ → Repf (OK) → Repf (K) → Pic(K)/G[pn+1] with

T → Pic0(K) → Pic(K)/G[pn+1]. Let the class of D =
∑n+1

i=1 tipi be an element
of T . Then it is mapped to (t1, . . . , tn) + Λ in Gn/Λ and to an f -representation
A = ([ 1μOK ]∼, (t

′
1, . . . , t

′
n)) ∈ Repf (OK) such that

(∗) ΦOK (A) = Ψ(μ) + (t′1, . . . , t
′
n) + Λ = (t1, . . . , tn) + Λ.

This in turn is mapped to the class of div( 1μOK) +
∑n

i=1 t
′
ipi in Pic(K)/G[pn+1].

Hence, we evaluated the class of D along the first composition of maps.
Now D is rationally equivalent to

∑n+1
i=1 tipi+(μ). The finite part of this divisor

is div( 1μOK). The valuation of this divisor at pi is ti + νpi
(μ) for 1 ≤ i ≤ n,

and (ti + νpi
(μ))i + Λ = (t′i)i + Λ by (∗). But this means that [D] = [D − μ] =

[div(a) +
∑n

i=1 t
′
ipi + 	pn+1] in Pic0(K) for suitable 	 ∈ G, whence the first square

commutes.
To see that the second square commutes, note that if [D] ∈ Pic0(K) with D =

div(a) +
∑n+1

i=1 tipi, then [D] maps to the ideal class of a in Pic(OK). Now the f -
representation representing [D]+G[pn+1] can be found by reducing (a, (t1, . . . , tn)),
yielding the ideal part [ 1μa]∼ for some μ ∈ E(a). But the resulting f -representation

is mapped to the ideal class of 1
μa in Pic(OK), which is the same as the ideal class

of a. Therefore, the second square also commutes.
Finally, in case K is a function field, the equalities for the images of T in Gn/Λ

and Pic0(K) in Repf (K) follow from the fact that divisors representing elements
of T and Pic0(K) must have degree zero. �

Proof of Proposition 8.1. Let D = div(a) +
∑n

i=1 tipi. Then B(a, (t1, . . . , tn, 0)) =
L(D) contains k and L(D − pn+1) = B(a, (t1, . . . , tn,−ε)) = 0 for every ε > 0,
ε ∈ G. The inclusion shows D ≥ 0 as 1 ∈ k, whence div(a) ≥ 0 and ti ≥ 0,
1 ≤ i ≤ n.

If K is a function field of genus g, by Riemann’s Inequality,

0 = dimk L(D − pn+1) ≥ 1− g + deg div(a) +

n∑
i=1

ti deg pi − deg pn+1;

therefore, deg div(a) +
∑n

i=1 ti deg pi ≤ g − 1 + deg pn+1.
If K is a number field with 2s complex embeddings and discriminant Δ, we have

B(a, (t1, . . . , tn,−ε)) �= {0} for ε > 0 if

e−ε deg pn+1

n∏
i=1

eti deg pi >
(
2
π

)s√|Δ|NormK/Q(a)

by Minkowski’s Lattice Point Theorem [Neu99, Theorem 5.3]. Hence, we must have

exp

( n∑
i=1

ti deg pi − εdeg pn+1

)
≤

(
2
π

)s√|Δ|e− deg div(a).
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Solving for deg div(a)+
∑n

i=1 ti deg pi and considering that this is true for all ε > 0
yields the claim. �
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