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AN ASYMPTOTIC FORM FOR THE STIELTJES CONSTANTS

γk(a) AND FOR A SUM Sγ(n) APPEARING

UNDER THE LI CRITERION

CHARLES KNESSL AND MARK W. COFFEY

Abstract. We present several asymptotic analyses for quantities associated
with the Riemann and Hurwitz zeta functions. We first determine the leading
asymptotic behavior of the Stieltjes constants γk(a). These constants appear
in the regular part of the Laurent expansion of the Hurwitz zeta function. We
then use asymptotic results for the Laguerre polynomials Lα

n to investigate a
certain sum Sγ(n) involving the constants γk(1) that appears in application of
the Li criterion for the Riemann hypothesis. We confirm the sublinear growth
of Sγ(n) +n, which is consistent with the validity of the Riemann hypothesis.

1. Introduction

Let ζ(s) be the Riemann zeta function, and the function ξ, satisfying ξ(s) =
ξ(1 − s), be given by ξ(s) = (s/2)(s − 1)Γ(s/2)π−s/2ζ(s) [14, 18, 29, 33]. Within
the critical strip 0 < Re s < 1, the zeros of ζ and ξ coincide. The Li criterion [23]
states that the nonnegativity of the quantities

(1.1) λn =
1

(n− 1)!

dn

dsn
[sn−1 ln ξ(s)]s=1,

for each n ≥ 1 is equivalent to the Riemann hypothesis (RH) that all nontrivial
zeros of ζ have real part 1/2. The λn’s are connected to sums over the nontrivial
zeros ρ� of ζ(s) by way of [19, 23]

(1.2) λn =
∑
�

[
1−

(
1− 1

ρ�

)n]
,

and thus satisfy λn = λ−n. For n > 1, the series in (1.2) is absolutely convergent,
while for n = 1 the sum should be taken over complex conjugate pairs of zeros of
increasing imaginary part.

The Li/Keiper [19] constants may be written in the form [3, 4, 5, 6]

(1.3) λn = S1(n) + S2(n) + 1− n

2
[γ + ln(4π)],

where S1 and S2 are certain alternating binomial sums, and γ is the Euler constant.
The sum S1(n) is relatively easy to estimate. Its leading order is O(n logn), and this
appears to be that of λn itself. Although it is not necessarily required to verify the Li
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criterion, a precise estimation of the sum S2(n) is desirable and remains open. Any
subexponential bound for |S2(n)| would suffice to verify the Riemann hypothesis
under the Li criterion. Recently, Coffey has further given the decomposition [11, 10],

(1.4) S2(n) = [S2Λ(n)− n] + [Sγ(n) + n],

where, as the notation suggests, S2Λ is a certain summation over the von Mangoldt
function Λ. We shall review at the end of section 3 that the sum Sγ is a binomial
sum over the classical Stieltjes constants γk [31],

(1.5) Sγ(n) ≡
n∑

k=1

(−1)k

(k − 1)!

(
n

k

)
γk−1 =

∫ ∞

1

1

t
L1
n−1(ln t)dP1(t).

In this equation, Lα
n is the Laguerre polynomial of degree n and parameter α [32]

and P1(t) is the first periodized Bernoulli polynomial. A key determination of this
paper is to provide a detailed asymptotic analysis of Sγ(n) + n.

Previously Coffey estimated |Sγ(n) + n| as O(n1/4) [11, 10] by using a known
asymptotic form of the Stieltjes constants and the leading order form of the Laguerre
polynomial. Here we give a self-contained study that presents detailed asymptotic
expressions for |Sγ(n) + n|. These in turn can be estimated to verify the sublinear

growth in n. As we show, Sγ(n) + n = O(n3/4). It appears that a yet closer

estimation would yield a |Sγ(n) + n| = O(n1/4+ε) result with ε ≥ 0.
We shall also give asymptotic results for γn(a), the Stieltjes constants for the

Hurwitz zeta function ζ(s, a). Knowledge of γn(a) is useful for several areas, in-
cluding in analytic number theory in the study of ζ(s, a) and Dirichlet L-functions.
Our result for γn(a) now reduces to the γn(1) ≡ γn special case in [21].

The Laguerre polynomials are pervasive in formulating the Li criterion [7]. They
provide certain test functions for a Weil inner product whose nonnegativity is equiv-
alent to the Li criterion.

In addition, Laguerre polynomials are widespread in numerous application areas,
including random matrix theory, quantum mechanics, and many others. For ex-
ample, two important problems of quantum mechanics, that are indeed essentially
equivalent, the higher-dimensional harmonic oscillator and hydrogen atom, have
wavefunctions with Laguerre polynomial factors. Hence, detailed asymptotic forms
for these polynomials are of interest.

There have been previous asymptotic analyses of Laguerre polynomials, including
[13, 15, 27]. We shall use a 2-term asymptotic result from [12] for Lα

n(x) for x > 0,
and we also mention a corresponding result for Lα

n(−z) for z > 0 in [34].
The paper proceeds as follows. In section 2 we introduce the constants γk(a),

analyze them for k � 1, and illustrate the main result numerically. In section 3 we
perform an asymptotic analysis of Sγ(n) + n with the help of various asymptotic
results for Lα

n(x) for x > 0. Finally, in section 4 we numerically compare the
asymptotic expressions with known values of Sγ(n) + n.

2. An asymptotic form for the Stieltjes constants γk(a)

The Hurwitz zeta function ζ(s, a) may be analytically continued to the whole
complex s-plane. Its only singularity is a pole at s = 1 with residue 1. Correspond-
ingly, there is the Laurent series for s = 1,

(2.1) ζ(s, a) =
1

s− 1
+

∞∑
n=0

(−1)nγn(a)

n!
(s− 1)n.
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In this expansion, γn(a) are called the Stieltjes constants [2, 8, 17, 20, 22, 24, 25,
26, 31, 35, 36]1, and γ0(a) = −ψ(a), where ψ = Γ′/Γ is the digamma function.
For the coefficients corresponding to the Laurent expansion for the Riemann zeta
function, one denotes γn(1) = γn.

In this section, we present the leading asymptotic form of these constants for

n � 1. Throughout we write f(n) ∼ g(n) when the limit relation limn→∞
f(n)
g(n) = 1

holds. We put

(2.2) Cn(a) ≡ γn(a)−
1

a
logn a.

We have

Theorem 1. Let v = v(n) be the unique solution of the equation

(2.3) 2π exp[v tan v] = n
cos v

v
,

in the interval (0, π/2), with v → π/2 as n → ∞. Let u = v tan v with u(n) ∼ log n
as n → ∞. Then we have for n � 1,

Cn(a) ∼
B√
n
enA[cos(2πa) cos(αn+ β) + sin(2πa) sin(αn+ β)]

=
B√
n
enA cos(αn+ β − 2πa),(2.4)

where

A =
1

2
log(u2 + v2)− u

u2 + v2
,

B =
2
√
2π

√
u2 + v2

[(u+ 1)2 + v2]1/4
,

α = tan−1
( v

u

)
+

v

u2 + v2
,

and

(2.5) β = tan−1
( v

u

)
− 1

2
tan−1

(
v

u+ 1

)
.

Formula (2.4) holds as long as we stay bounded away from zeros of the cosine
factor. We note that, in view of (2.3), the functions A, B, α, β depend weakly on
n as log n and log log n. The leading order is, A ∼ log log n and B ∼ π

2 (log n)
−1.

The case of γn(1) has been recently investigated by us in [21]. The additional
oscillation of the asymptotic form of γn(a) in the parameter a has been anticipated
in Proposition 5 of [8]. Although Theorem 1 is predicated on n � 1, we find that
it provides a useful approximation for even small values of n. As was true for
the special case a = 1, the result (2.4) captures the rapid exponential growth in
magnitude with n. It additionally contains the oscillatory behavior with respect to
both n and a. The form (2.4) explicitly exhibits the 1/2-antiperiodicity of Cn(a)
for large n, i.e., for n � 1 we have Cn(a) ≈ −Cn(a+ 1/2).

1It appears that in (5) and several later equations in Sections 2-4 of [25] a factor of n! is
missing.
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Proof. Here we indicate the proof of Theorem 1, concentrating on the extensions to
the argument of [21]. We start with the integral representation ([36], pp. 153-154)
for n ≥ 1,

(2.6) Cn(a) =

∫ ∞

1

P1(x− a)
logn−1 x

x2
(n− log x)dx,

where P1(x) = B1(x− [x]) = x− [x]−1/2 is the first periodic Bernoulli polynomial.
With the change of variable t = log x, we have

(2.7) Cn(a) =

∫ ∞

0

P1(e
t − a)tne−t

(n

t
− 1

)
dt.

Since P1 has the Fourier representation [1] (pp. 805),

(2.8) P1(x) = −
∞∑

L=1

sin(2πLx)

πL
,

we may write

(2.9) Cn(a) = −Im

{ ∞∑
L=1

1

Lπ

∫ ∞

0

exp[2πiLet + n log t]e−2πiLae−t
(n

t
− 1

)
dt

}
.

We shall show below that the series over L is absolutely and uniformly conver-
gent, which justifies exchanging the order of summation and integration in going
from (2.7) to (2.9). We shall show that for n → ∞ the L = 1 term in (2.9)
dominates the others (see also [21]). As in [21] we put

(2.10) h(t) ≡ 2πiLet + n log t,

and the saddle points occur for h′(t) = 0. Therefore, they satisfy

(2.11) tet =
ni

2Lπ
,

and are asymptotically given by t ∼ log n − log log n + γ + δ. For integers M , we
have γ =

(
2M + 1

2

)
πi − log(2Lπ) and δ = log log n/ logn − γ/ log n = o(1). This

gives

tM = log n−log log n−log(2Lπ)

+

(
2M+

1

2

)
πi+

log log n

log n
[1 + o(1)], M = 0,±1,±2, . . . .(2.12)

We find that |eh(tM )| as a function of M is maximized at M = 0, and as a function
of L, at L = 1.

More precisely, we have the estimate

log |eh(tM )| = Re[h(tM )] = n log log n

− n

log n
[log log n+ 1 + log(2Lπ)]− 1

2

n

log2 n

(
2M +

1

2

)2

π2(2.13)

+
1

2

n

log2 n
[log log n+ log(2Lπ)]2 +OR

(
n

log3 n

)
,

where the OR “rough” error term may omit some factors of log log n. From the
right-hand side of (2.13) we see that the terms in (2.9) with L ≥ 2 are roughly
exponentially smaller than the first term. In terms of M , (2.13) is largest at M = 0,
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but we can also easily show that the original contour (t ∈ [0,∞)) can be deformed
to a steepest descent contour that passes only through the saddle t0. In Figure 1
we plot the curves Re[h′(t)] = 0 and Im[h′(t)] = 0 in the (x, y) plane, with L = 1
and t = x + iy. The intersection points of these curves are the saddle points, and
the figure captures 3 saddles in the range y = Im(t) ∈ [−2π, 3π] (here we used
n = 1, 000). The steepest descent (SD) curve through the saddle t0 = u0 + iv0 is
given by Im[h(t)] = Im[h(t0)] so that

(2.14) n tan−1
(y

x

)
+ 2πex cos y =

nv0
u2
0 + v20

+ n tan−1

(
v0
u0

)
.

The right side of (2.14), for n → ∞, is approximately nπ/(2 logn) so that the SD
contour starts at the origin roughly at the slope y/x = π/(2 logn), traverses the
saddle in a nearly horizontal direction (since h′′(t0) is to leading order real and
negative) and winds up at t = ∞ + iπ/2. In Figure 2 we sketch the SD contour
when n = 1, 000, along with the steepest ascent (SA) contour that is also a branch
of (2.14), and which orthogonally intersects the SD contour at the saddle t0 (here
t0 ≈ 3.706 + 1.246i).

0 2 4 6 8

−5

0

5

x

y

Figure 1. The real and imaginary parts of the saddle point
equation h′(t) = 0 are plotted in the (x, y) plane, with L = 1
and t = x + iy. Three saddle points are present in the range
y = Im(t) ∈ [−2π, 3π]. Here, n = 1, 000 in (2.11).

The saddle point calculation can also be used to estimate the Lth term in (2.9)
for n fixed and L → ∞, and this shows the rapid decay with L of the summand in
(2.9), and the absolute and uniform convergences of the series.
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−1

0

1

2

3

4

x

Contours

Figure 2. The steepest descent and ascent contours intersecting
at the saddle point t0 are shown. Here, n = 1, 000.

We have h′′(t) = 2Lπiet − n/t2, so that h′′(t0) = −n/t0 − n/t20. We put A(n) =
Re[log t0 − 1/t0] and α(n) = Im[log t0 − 1/t0] and find

(2.15) eh(t0) = exp

[
n

(
log t0 −

1

t0

)]
= en[A(n)+iα(n)].

We then have from (2.9),

Cn(a) ∼ −
√

2n

π
enA(n)Im

[
e−t0

√
t0 + 1

einα(n)e−2πia

]
,

= 2

√
2π

n
enA(n)Im

[
it0√
t0 + 1

einα(n)e−2πia

]
,(2.16)

where the saddle point relation (2.11) at L = 1 has been used. Therefore, we have

Cn(a) ∼ 2

√
2π

n
enA(n)

[
−Re

(
it0√
t0 + 1

einα(n)
)
sin(2πa)

+ Im

(
it0√
t0 + 1

einα(n)
)
cos(2πa)

]
.(2.17)
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We now use, with the definitions (2.5), the relations

Re

(
it0√
t0 + 1

einα(n)
)

= −Im

(
t0√
t0 + 1

einα(n)
)

= − 1

2
√
2π

B sin[nα(n) + β(n)],(2.18a)

and

Im

(
it0√
t0 + 1

einα(n)
)

= Re

(
t0√
t0 + 1

einα(n)
)

=
1

2
√
2π

B cos[nα(n) + β(n)].(2.18b)

Then (2.4) results from (2.17).
Putting t0 = u+ iv in the saddle point relation (2.10) at L = 1, and eliminating

u, results in the equation (2.3) solely for v. �

Remarks. The representation (2.6) may be readily verified by substitution in the
defining relation (1.1). Then we obtain

(2.19) ζ(s, a) =
a1−s

s− 1
+

a−s

2
− s

∫ ∞

0

P1(x)

(x+ a)s+1
dx, Re s > −1.

Some discussion on how to add higher order corrections to the saddle point
method employed above is provided in [21]. In particular, only the L = 1 term is
still required, but the Taylor expansion of h(t) should be extended, as well as a
more detailed treatment of the factors e−t(n/t− 1) in (2.7).

We have noted the near anti-periodicity of Cn(a) for large n. A simple explicit
example of this is the special case Cn(1/2) ∼ γn(1/2) ∼ −γn = −Cn(1) for n � 1.

Our asymptotic result also has relevance for determing the asymptotic form of
expansion coefficients of other important functions of analysis and analytic number
theory. We briefly describe applications to the Lerch zeta function Φ(z, s, a) and
to Dirichlet L functions.

For instance, we may consider the Lipshitz-Lerch transcendent

(2.20) L(x, s, a) =
∞∑

n=0

e2πinx

(n+ a)s
= Φ(e2πix, s, a),

for complex a different from a negative integer. If we take here x real and nonin-
tegral, the sum in (2.12) converges for Re s > 0. (For x an integer in (2.20), we
can reduce to the Hurwitz zeta function.) A case of interest is x = 1/2. Then we
obtain the alternating Hurwitz zeta function,

(2.21) L

(
1

2
, s, a

)
=

∞∑
n=0

(−1)n

(n+ a)s
= 2−s

[
ζ

(
s,

a

2

)
− ζ

(
s,

a+ 1

2

)]
.

Therefore, expansion at s = 1 can be made in terms of a combination of differences
of Stieltjes constants γk(a/2)− γk[(a+ 1)/2]. More specifically, we have, with the
superscript denoting differentiation with respect to the second argument of L,
(2.22)

L(j)

(
1

2
, s, a

)
= (−1)j2−s

j∑
�=0

(−1)�
(
j




)
log�−j(2)

[
ζ(�)

(
s,

a

2

)
− ζ(�)

(
s,

a+ 1

2

)]
,
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yielding

(2.23) L(j)

(
1

2
, 1, a

)
=

(−1)j

2

j∑
�=0

(
j




)
log�−j(2)

[
γ�

(a

2

)
− γ�

(
a+ 1

2

)]
.

Dirichlet L-functions L(χ, s) are known to be expressible as linear combinations
of Hurwitz zeta functions. We have for Dirichlet characters χ of modulus k,

(2.24) L(χ, s) =

∞∑
n=1

χ(n)

ns
=

1

ks

k∑
m=1

χ(m)ζ
(
s,

m

k

)
, Re s > 1.

This equation holds for at least Re s > 1. If χ is a nonprincipal character, then
(2.24) converges for Re s > 0. Again, derivatives at s = 1 may be obtained as
combinations of Stieltjes constants.

Numerical results. Formulas (2.2)-(2.5) are easily implemented for numerical
computations. In Figure 3 the exact values of C5(a) from Mathematica V7 are
plotted versus a for 0 < a ≤ 1. In Figure 4, values of C5(a) obtained from (2.4) are
plotted versus a in the same range. Already for the small value of n = 5, Theorem
1 gives a very good numerical approximation.

In Figure 5, the ratio Rn of the exact values of Cn(1/3) to the values obtained
from (2.4) is plotted for n = 10, 15, 20, . . . , 150. Over this range of n, Cn oscillates
and its magnitude varies from less than 1.2× 10−4 to greater than 2.1× 1036. This
range of values of |Cn(1/3)| illustrates the rapid growth of the Stieltjes constants
with n. The only points where Rn deviates significantly from 1 is near the zeros of
the expression in (2.4), as we would expect.

0.25 0.5 0.75 1
a

�0.0010

�0.0005

0.0005

0.0010

C5

Figure 3. Exact values of C5(a) are plotted versus 0 < a ≤ 1.
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0.25 0.5 0.75 1
a

�0.0010

�0.0005

0.0005

0.0010

C5

Figure 4. Values of C5(a) obtained from (2.4) are plotted versus
a in the same range.

25 50 75 100 125 150
n

0.98

1.00

1.02

1.04

Rn

Figure 5. The ratio of the exact values of Cn(1/3) to the values
obtained from (2.4) is plotted versus n = 10, 15, 25, . . . , 150.

3. Asymptotics of Sγ(n) + n

First, we present a result going beyond Theorem 8.22.5 of [32], which is given
in [12], and can be obtained using integral representations and the saddle point
method. We have
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Lemma 1. For x > 0 and α > −1 we have

Lα
n(x) =

1√
π

(n

x

)α/2 ex/2

(nx)1/4

{
sin

[
2
√
nx− α

π

2
+

π

4

]

+ cos
[
2
√
nx− α

π

2
+

π

4

] M√
nx

+O(n−1)

}
,(3.1)

where

(3.2) M = M(x;α) = (α+ 1)
x

2
− x2

12
+

α2

4
− 1

16
.

This applies for n → ∞ with a fixed x and 0 < x < ∞.

For n → ∞ the sum in (1.5) behaves as Sγ(n) ∼ −n and here we seek to estimate

Sγ(n)+n , which we will show to be at most of the order O(n3/4), with significant
oscillations. We first express (1.5) in terms of Laguerre functions, and obtain the
following.

Lemma 2. We have, with N = n− 1,

(3.3) Sγ(n) + n =

∞∑
m=1

F (m;N + 1),

where

(3.4) F (m;N + 1) ≡
∫ log(m+1)

logm

L1
N (y)dy − 1

m+ 1
L1
N [log(m+ 1)],

and also
(3.5)

F (m;N + 1) =
1

2πi

∮
z−n

(1− z)2

{
z − 1

z

[
(m+ 1)

z
z−1 −m

z
z−1

]
− (m+ 1)

1
z−1

}
dz,

where the contour is a small counterclockwise loop about z = 0.

Proof. By the definition of P1, from (1.5) we have

(3.6) Sγ(n) =

∫ ∞

1

1

t
L1
n−1(log t)dt−

∞∑
m=1

1

m
L1
n−1(logm).

Then using L1
n−1(0) = n we obtain

(3.7) Sγ(n) + n =
∞∑

m=1

[∫ m+1

m

1

t
L1
n−1(log t)dt−

1

m+ 1
L1
n−1[log(m+ 1)]

]
.

The change of variable y = log t then yields (3.3) with F as given in (3.4). To
obtain (3.5) we apply the contour integral representation

(3.8) e−xLα
n−1(x) =

1

2πi

∮
z−n

(1− z)α+1
exp

(
x

z − 1

)
dz,

and let x = log t in (3.7). Then integrating over t, using

(3.9)

∫ m+1

m

t
1

z−1 dt =
z − 1

z
t

z
z−1

∣∣t=m+1

t=m
,

we obtain (3.5).
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We proceed to evaluate the summand in (3.3) for N and/or m → ∞. This will
involve separately treating several ranges of m and N , and we first consider m → ∞
with N = O(1). �

Lemma 3. Let

(3.10) F (m;N + 1;α) ≡
∫ log(m+1)

logm

Lα
N (y)dy − 1

m+ 1
Lα
N [log(m+ 1)].

Then for N = O(1) as m → ∞ we have

(3.11) F (m;N + 1;α) =
1

2m2
Lα+1
N (logm)

[
1 +O

(
1

m

)]
.

Proof. We let y2 = log(m+ 1), y1 = logm and since (d/dx)Lα
N+1(x) = −Lα+1

N (x),
we have

F (m;N + 1;α) =

∫ y2

y1

Lα
N (x)dx− e−y2Lα

N (y2)

= Lα−1
N+1(y1)− Lα−1

N+1(y2)− e−y2Lα
N (y2)

= Lα−1
N+1(y2 +Δ)− Lα−1

N+1(y2)− e−y2Lα
N (y2),(3.12)

where Δ ≡ y1 − y2 = −1/m+1/(2m2) +O(1/m3). Then expanding Δ for m → ∞
we have

F (m;N + 1;α) = −(Δ + e−y2)Lα
N (y2) +

Δ2

2
Lα+1
N−1(y2) +O(Δ3)Lα+2

N−2(y2)

=

[
1

2m2
+O

(
1

m3

)]
Lα
N (y2) +

[
1

2m2
+O

(
1

m3

)]
Lα+1
N−1(y2) +O(Δ3)Lα+2

N−2(y2)

=

[
1

2m2
+ O

(
1

m3

)]
[Lα

N (y2) + Lα+1
N−1(y2)]

=

[
1

2m2
+O

(
1

m3

)]
Lα+1
N (y2)

=
1

2m2
Lα+1
N (logm)

[
1 +O

(
1

m

)]
.(3.13)

Here, we used the recursion Lα
N (x) + Lα+1

N−1(x) = Lα+1
N (x). �

Lemma 4. Let F (m;n) be as defined in (3.4) and let β = (logm)/n. Let Ai denote
the Airy function (e.g., [28]). Then we have the following β-dependent asymptotic
forms:

(i) For β > 4 we have

(3.14) F (m;n) ∼ (−1)n+1

2m

1

β

1√
n

1√
2π

1√
−z∗

1√
β − 2

√
β
√
−z∗

(−z∗)
−nm

1
z∗−1 ,

where

(3.15) z∗ =
1

2
[2− β +

√
β
√
β − 4] = −1

4
(
√
β − 4−

√
β)2.

(ii) For β ≈ 4, we let β = 4 + n−2/3α, with α = O(1). Then we have

(3.16) F (m;n) ∼ 1

16

(−1)n+1

m3/2

(
4

n

)1/3

Ai
( α

42/3

)
.



2208 CHARLES KNESSL AND MARK W. COFFEY

(iii) For 0 < β < 4, we have

(3.17) F (m;n) ∼ 1

m3/2

1√
2πn

β−5/4

(4− β)1/4
sin[nf(β) + g(β)],

where

z+ =
1

2
[2− β + i

√
β
√
4− β],(3.18)

f(β) =
1

2

√
β
√
4− β + arg[2− β + i

√
β(4− β)],(3.19)

g(β) = arg[(1− z+)
3]− π

2
+

1

2
arg

(
z+ + 1

z2+(1− z+)

)
.(3.20)

The values of arg are such that arg ∈
(
π
2 ,

5π
2

)
, with the left endpoint corresponding

to β → 4 and the right endpoint to β → 0. The value arg = π corresponds to
β = 2 +

√
2.

(iv) For m, n → ∞ with ξ fixed, where ξ = ξ(m,n) is defined by

(3.21) ξ =

√
n

(m+ 1)
√
log(m+ 1)

,

we have

F (m;n) ∼ 1√
π

[log(m+ 1)]−1/2

√
ξ

{
(cos ξ − 1) sin

[
2
√
n
√
log(m+ 1) +

π

4

]
+(ξ − sin ξ) cos

[
2
√
n
√
log(m+ 1) +

π

4

]}
.(3.22)

(v) For n → ∞ with m = O(1), we have

(3.23) F (m;n) ∼ n1/4

√
π
√
m+ 1[log(m+ 1)]3/4

cos
[
2
√
n
√
log(m+ 1) +

π

4

]
.

Proof. We merely sketch the main points. Note that some of these results also
follow from the uniform asymptotic results for the Laguerre function in [15]. But,
here we wish to give the expressions for F (m;n) in the simplest possible forms.

From Lemma 3 with α = 1 and the representation (3.8) we have

F (m;N) =
1

2m2
L2
N (logm)

[
1 +O

(
1

m

)]

∼ 1

2m

1

2πi

∮
1

(1− z)3
e−n log ze

log m
z−1 dz.(3.24)

The latter expression is suitable for a steepest-descents expansion, and the saddle
points occur for

(3.25) −n

z
− logm

(z − 1)2
= 0,

or z2+(β−2)z+1 = 0. This equation has real roots for β2−4β > 0, or β > 4. The

root inside the unit circle is given by (3.15), so that 1 − z∗ = (β −
√
β2 − 4β)/2.

The steepest descent method gives

(3.26) F ∼ 1

2m

(−1)n+1

(1− z∗)3
(−z∗)

−nm
1

z∗−1

[
n

z2∗
+

2βn

(z∗ − 1)3

]−1/2

,

leading to (3.14).
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From (3.15) we have that the saddle point z∗ → −1 as β → 4. So for β ≈ 4 we
expand the integrand of (3.24) about z = −1. We introduce the scaling z + 1 =
n−1/3w and β − 4 = n−2/3α and determine that

(3.27) F ∼ 1

16

(−1)n

m3/2

n−1/3

2πi

∫
L

exp

(
w3

12
− 1

4
αw

)
dw,

where the path L extends from w = ∞eiπ/3 to w = ∞e−iπ/3. By applying a
standard contour integral representation [28], (pp. 53) for the Airy function, we
obtain (3.16).

Next, we consider when 0 < β < 4. In this case we obtain the oscillations in F .
Now the two saddle points,

(3.28) z± =
1

2
[2− β ± i

√
β
√
4− β],

are complex conjugates lying on the unit circle. For 0 < β < 2 we have Re(z±) > 0
and for 2 < β < 4 we have Re(z±) < 0. The function h(z) = −n log z + βn/(z − 1)
has

(3.29)
d2

dz2
h(z) = n

[
1

z2
+

2β

(z − 1)3

]
,

so that at z = z+, using relation (3.25) we have

(3.30)
1

n
h′′(z+) = − 1

z2+

z+ + 1

(z+ − 1)
= ρeiφ+ .

The steepest-descent method gives

(3.31) F (m;n) ∼ 1

m

1√
2πn

1
√
ρ
Im

[
e−n log z+ exp

(
βn

z+ − 1

)
e−iφ+/2e−iπ/2

]
.

Here,

(3.32) ρ =

∣∣∣∣z+ + 1

z+ − 1

∣∣∣∣ =
√

4− β

β
,

and also from (3.29),

(3.33) φ+ = arg

(
z+ + 1

z2+(1− z+)

)
.

We obtain from (3.31)

(3.34) F (m;n) ∼ 1

m3/2

1

|1− z+|3
1√
2πn

β1/4

(4− β)1/4
sin[nf(β) + g(β)],

where |1− z+| =
√
β, and f and g are given in (3.19) and (3.20). Therefore, (3.17)

results.
We can easily verify that as β ↑ 4, (3.17) asymptotically matches to (3.16) as

α → −∞. Similarly, as β ↓ 4 in (3.14), the result matches to (3.16) as α → ∞, in
view of the asymptotic form

(3.35) Ai(z) ∼ 1

2
√
π
z−1/4e−

2
3 z

3/2

, z → ∞.
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To obtain (3.23) in Lemma 4 we simply use the leading term in (3.1) and note
that for m = O(1),

F (m;n) = Ln[logm]− Ln[log(m+ 1)]− 1

m+ 1
L1
n−1[log(m+ 1)]

∼ − 1

m+ 1
L1
n−1[log(m+ 1)]

∼ − 1

(m+ 1)

n1/4

[log(m+ 1)]3/4

√
m+ 1√
π

sin
[
2
√
n
√
log(m+ 1)− π

4

]
.(3.36)

Then using − sin(x− π/4) = cos(x+ π/4) yields the results.
Now observe that the expression in (3.23) is not summable over m, as the am-

plitude decays only as m−1/2 for m → ∞. Furthermore, as m → ∞, (3.23) does
not match to (3.17) as β → 0. Indeed, as β → 0, (3.16) behaves as

− 1

m3/22
√
πn

β−5/4 sin
[
2n

√
β +

π

4

]

= −n3/4

2
√
π

1

m3/2(logm]5/4
sin

[
2
√
n
√
logm+

π

4

]
.(3.37)

This means that another scale must be found between n → ∞ with m = O(1),
and n, m → ∞ with β = (logm)/n > 0. We analyze this new scale below, and this
will lead to the expression in (3.22).

To establish (3.22) we first use Lemma 1 to obtain a two-term asymptotic ap-
proximation to F (m;n). �

Lemma 5. We have the following refined asymptotic approximation for the sum-
mand of (3.3). We adopt the notation

(3.38) sinm = sin[2
√
n
√
logm+ π/4], cosm = cos[2

√
n
√
logm+ π/4].

Then F (m;n) ∼ F(m;n) where

F(m;n) =

√
m

n1/4
√
π

1

(logm)1/4

[
sinm +

1
√
n
√
logm

(
logm

2
− log2 m

12
− 1

16

)
cosm

]
(3.39)

−
√
m+ 1

n1/4
√
π

1

log(m+ 1)]1/4

[
sinm+1+

1
√
n
√

log(m+ 1)

(
log(m+ 1)

2
− log2(m+ 1)

12
− 1

16

)
cosm+1

]

+
n1/4

√
π
√
m+ 1

1

[log(m+ 1)]3/4

[
cosm+1 +

1
√
n
√

log(m+ 1)

(
log2(m+ 1)

12
− 3

16

)
sinm+1

]
.

This expression is O(m−3/2) as m → ∞. For m = 1 the first term in F (involving
sinm and cosm) must be replaced by 1.

Proof. We let Δ(m;n) denote the 2-term asymptotic form of Ln(logm) coming
from Lemma 1. Using Lemma 4 we arrive at
(3.40)

Δ(m;n)∼
√
m

n1/4
√
π

1

(logm)1/4

[
sinm+

1

n1/2(logm)1/2

(
logm

2
− log2 m

2
− 1

16

)
cosm

]
.
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From Lemma 1 we also have

−
L1
n−1[log(m+ 1)]

m+ 1
= − 1

√
π
√
m+ 1

(n− 1)1/4

[log(m+ 1)]3/4

[
sin

(
2
√
n− 1

√
log(m+ 1)− π

4

)
+M(log(m+ 1); 1) cos

(
2
√
n− 1

√
log(m+ 1)− π

4

)]

= −n1/4

√
π

[1 +O(n−1)]
1√

m+ 1

1

[log(m+ 1)]3/4

{
− cos

(
2
√
n− 1

√
log(m+ 1) +

π

4

)

+sin
(
2
√
n
√

log(m+ 1) +
π

4

) 1
√
n
√

log(m+ 1)

[
3

16
+ log(m+ 1)− log2(m+ 1)

12

]
+ . . .

}
.

Expanding the cosine factor, using
√
n− 1 =

√
n− 1/(2

√
n) + . . ., then gives

−
L1
n−1[log(m+ 1)]

m+ 1
=

n1/4

√
π
√
m+ 1

1

[log(m+ 1)]3/4

[
cos[2

√
n
√
log(m+ 1) + π/4]

+
1

√
n
√
log(m+ 1)

(
log2(m+ 1)

12
− 3

16

)
sin[2

√
n
√
log(m+ 1) + π/4]

]
.(3.41)

The use of (3.40) and (3.41) gives Lemma 5.
We observe that for m → ∞,

Δ(m;n)−Δ(m+ 1;n) = − 1√
π

n1/4

√
m(logm)3/4

cosm

− 1√
π

n−1/4

√
m(logm)5/4

[
log2 m

12
− 3

16

]
sinm+On(n

−3/4) +Om(m−3/2).(3.42)

Here the symbol On (Om) is used to denote the order of magnitude for n (m) → ∞;
but the above is the same as the negative of (3.41) withm+1 replaced by m therein.
Thus for m → ∞ (3.39) behaves as the second difference Δ(m;n)− 2Δ(m+1;n)+

Δ(m + 2;n) + O(m−3/2) which is of the same order as d2

dm2Δ(m;n), and this is,

apart from some logarithmic factors, O(m−3/2). Thus (3.39) is summable over m.
We next simplify (3.39) and obtain (3.22) in Lemma 4. We write

sinm = sin
[
2
√
n
√
log(m+ 1) +

π

4
+ δ

]
= sinm+1 cos δ + cosm+1 sin δ(3.43)

where, for m large,

δ ≡ 2
√
n
√
logm− 2

√
n
√
log(m+ 1)

∼ −
√
n

m
√
logm

∼ −
√
n

(m+ 1)
√
log(m+ 1)

≡ −ξ.(3.44)

Thus we replace sinm in (3.39) by sinm+1 cos ξ − cosm+1 sin ξ and note that, for m
large,

(3.45)

√
m

n1/4(logm)1/4
∼ 1√

log(m+ 1)

1√
ξ
.

Then retaining only the leading order terms in (3.39) leads to the approximation in
(3.22). This applies for n, m → ∞ with ξ = O(1). But in fact it remains valid for
n → ∞ with m = O(1), and reduces to (3.23) in Lemma 4 in this limit. Note that
for m = O(1) and n large, ξ → ∞ and ξ − sin ξ ∼ ξ, and this dominates cos ξ − 1,
which remains O(1). Thus (3.22) reduces to π−1/2[log(m+1)]−1/2

√
ξ cosm+1 which

is precisely (3.23). Also, for m � O(
√
n) (3.22) asymptotically matches (3.17),
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since it agrees with (3.37). Now we have ξ → 0 so that ξ − sin ξ = O(ξ3) while
cos ξ − 1 ∼ −ξ2/2 and thus (3.22) becomes

− 1√
π

ξ3/2

2
√
log(m+ 1)

sin
[
2
√
n
√
log(m+ 1) +

π

4

]

which agrees with (3.37) for ξ (hence δ) → 0. We have thus shown that (3.22)
provides an asymptotically correct approximation to F (m;n) for n → ∞, both
for m = O(1) and for m = O(

√
n). Also, for m → ∞, ξ → 0 and (3.22) is

O(ξ3/2) = O(m−3/2) so the expression is summable over m. �

Next, we return to our main goal, which is to approximate Sγ(n) + n in (3.3).
The approximations to the summand F are given in Lemmas 4 and 5. Expressions
(3.14), (3.16), and (3.17) apply for β > 0 so that m = eβn is exponentially large
in n. But in this range the order in m of F changes from O(m−3/2) (cf. (3.17)) to
(roughly) O(m−2) (cf. (3.11)) and thus the summand is uniformly exponentially
small in n when β > 0. Hence only the terms in m that have m = O(1) or
m = O(

√
n) contribute to the leading term of Sγ(n) + n and we have

Theorem 2. For n → ∞ and away from the zeros of Sγ(n) + n we have

Sγ(n) + n ∼
∞∑

m=1

1√
π

1

[log(m+ 1)]1/2
1√
ξ

{
(cos ξ − 1) sin

[
2
√
n
√
log(m+ 1) +

π

4

]

+(ξ − sin ξ) cos
[
2
√
n
√
log(m+ 1) +

π

4

]}
(3.46)

where ξ =
√
n/[(m+ 1)

√
log(m+ 1)]. An alternative asymptotic form is

(3.47) Sγ(n) + n ∼
∞∑

m=1

F(m;n),

where F is given by (3.39), and if m = 1, the term in (3.39) proportional to sinm
and cosm must be replaced by 1.

In section 4 we test the numerical accuracy of both (3.46) and (3.47). We can
also obtain the simple upper bound below.

Theorem 3. For n sufficiently large,

(3.48) |Sγ(n) + n| ≤ s0√
2π

n3/4,

where

(3.49) s0 ≡
∞∑

m=1

1

[log(m+ 1)]5/4
1

(m+ 1)3/2
� 1.0819964.
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Proof. To establish (3.48) we use the elementary inequality |A sinϕ + B cosϕ| ≤√
A2 + B2. Then denoting the summand in (3.46) as F∗(m;n) we have

(3.50)
√
π|F∗| ≤

1√
log(m+ 1)

1√
ξ

√
(cos ξ − 1)2 + (ξ − sin ξ)2.

But

(cos ξ − 1)2 + (ξ − sin ξ)2 = 2(1− cos ξ − ξ sin ξ) + ξ2

=

∫ ξ

0

2x(1− cosx)dx ≤
∫ ξ

0

2x

(
x2

2

)
dx =

ξ4

4
(3.51)

so that
√
π|F∗| ≤ 2−1/2[log(m+1)]−1/2ξ3/2 = n3/4(m+1)−3/2[log(m+1)]−5/4 and

Theorem 3 follows.
However, the numerical studies in section 4 suggest that the actual order of

magnitude of Sγ(n) + n is smaller than O(n3/4), as Theorem 3 does not take into
account the oscillations of the summands in Theorem 2. The numerical studies
suggest that (3.48) is valid also for moderate n, and we conjecture that (3.48) is
true for all n ≥ 5.

We conclude by establishing the first equality in (1.5). We have that for 0 <
Re s < 1,

(3.52) lim
N→∞

[
N∑

m=1

m−s − N1−s

1− s

]
= ζ(s).

Therefore, we find that

(3.53) lim
N→∞

[
N−1∑
m=1

z − 1

z

[
(m+ 1)

z
z−1 −m

z
z−1

]
− (m+ 1)

1
z−1

]
=

1

z
− ζ

(
1

1− z

)
.

Having interchanged summation and integration in (3.3) with (3.5), it follows that

Sγ(n) + n =
1

2πi

∮
z−n

(1− z)2

[
1

z
− ζ

(
1

1− z

)]
dz

=
1

2πi

∫
C

(
w

w − 1

)n [
w

w − 1
− ζ(w)

]
dw,(3.54)

where C is a vertical contour to the right of Re(w) = 1/2. By employing the
Laurent expansion of ζ(w), we recover the defining binomial expansion in (1.5) for
Sγ(n):

Sγ(n) + n =
1

2πi

∫
C

(
w

w − 1

)n
[
1−

∞∑
�=0

(−1)�


!
γ�(w − 1)�

]
dw

=
1

2πi

∫
C

(
w

w − 1

)n

dw −
n−1∑
�=0

(−1)�


!
γ�

(
n


+ 1

)
(3.55)

= n+

n∑
�=1

(−1)�

(
− 1)!
γ�−1

(
n




)
. �



2214 CHARLES KNESSL AND MARK W. COFFEY

4. Numerical studies. As we have discussed, Sγ(n) + n exhibits oscillations,
taking on both negative and positive values as n increases. This oscillation contains
some local substructure, such as the pairs of nearby maxima and minima near
n = 500, 1100 and 1550 in Figure 6. Also plotted there are the corresponding
results using the forms (3.46) and (3.47). At this level of graphical resolution, the
refined result (3.47) is virtually indistinguishable from the exact values.

Known and reliable values of Sγ(n) + n may be obtained based upon the high
precision values of γk due to R. Kreminski [22]. The first 2000 of these values of
γk are valid to 5000 decimal digits. Further values of γk are less accurate, with
γ5000 valid to 1419 decimal digits, and γ10000 valid to about 862 decimal digits.
These were computed using a variation of the published algorithm in [22]; but
instead of using Newton Cotes integration a slightly faster approach using numerical
differentiation ideas was used. Accordingly, R. Smith has now calculated Sγ(n)+n
for n up to 104 [30]. This result is shown in Figure 7, along with the corresponding
values from (3.46) and (3.47). The numerical results of Smith, obtained with the
aid of Mathematica� 7, were simply calculated to 10 significant figures.

The expression (3.46) is usually a lower bound for the exact values of Sγ(n)+n,
while the refined result (3.47) virtually coincides with the exact values, in particular,
well capturing the local substructure in both curvature and magnitude. Included
in Figure 8 are values of Sγ(n) + n and the results of (3.46) and (3.47), as well as

the upper bounding curve
√
2n1/4 + 1 and the lower bounding curve −

√
2n1/4. It

does appear that the values of |Sγ(n)+n| are very close to O(n1/4), in place of the
conservative upper bound of Theorem 3.

The inequality in (3.48) of Theorem 3 begins to hold as soon as n ≥ 5. As this
onset is dependent upon the value of s0, we briefly comment on it. From (3.49) we
have

s0 =
1

log5/4 2

1

23/2
+

∞∑
m=2

1

[log(m+ 1)]5/4
1

(m+ 1)3/2

<
1

log5/4 2

1

23/2
+

∞∑
m=2

1

(m+ 1)3/2

=
1

log5/4 2

1

23/2
+ ζ(3/2)− 1− 1

2
√
2
.(4.1)

Therefore, we have the simple lower and upper bounds

1

log5/4 2

1

23/2
+

1

log5/4 3

1

33/2
+

1

log5/4 4

1

43/2
< s0

<
1

log5/4 2

1

23/2
+ ζ(3/2)− 1− 1

2
√
2
,(4.2)

i.e., 0.813218 < s0 < 1.81784.
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Figure 6. Exact values of Sγ(n) + n, (4.44), and (4.45) for n up to 2500.
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Figure 7. Values of Sγ(n) + n, (4.44), and (4.45) for n up to 104.
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Figure 8. Values of Sγ(n)+n, (4.44), (4.45), and bounding curves

varying as ±
√
2n1/4 (in black, dashed) for n up to 5000.

Acknowledgements

We thank R. Smith for supplying the known values of Sγ(n)+n to n = 104. We
acknowledge partial support from NSA grant H 98230-08-1-0102.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Washington, Na-
tional Bureau of Standards (1964).

[2] W. E. Briggs, Some constants associated with the Riemann zeta-function, Mich. Math. J. 3,
117-121 (1955). MR0076858 (17:955c)

[3] E. Bombieri and J. C. Lagarias, Complements to Li’s criterion for the Riemann hypothesis,

J. Number Theory 77, 274-287 (1999). MR1702145 (2000h:11092)
[4] M. W. Coffey, Relations and positivity results for derivatives of the Riemann ξ function,

J. Comput. Appl. Math. 166, 525-534 (2004). MR2041196 (2004k:11139)
[5] M. W. Coffey, Toward verification of the Riemann hypothesis: Application of the Li criterion,

Math. Physics, Analysis and Geometry 8, 211-255 (2005). MR2177467 (2006g:11176)
[6] M. W. Coffey, Polygamma theory, the Li/Keiper constants, and the Li criterion for the

Riemann hypothesis, Rocky Mtn. J. Math. 40, 1841-1862, (2010).
[7] M. W. Coffey, The theta-Laguerre calculus formulation of the Li/Keiper constants, J. Approx.

Theory 146, 267-275 (2007). MR2328184 (2008k:33028)
[8] M. W. Coffey, New results on the Stieltjes constants: Asymptotic and exact evaluation,

J. Math. Anal. Appl. 317, 603-612 (2006). MR2209581 (2007g:11106)
[9] M. W. Coffey, Series representations for the Stieltjes constants, arXiv:0905.1111 (2009).

[10] M. W. Coffey, The Stieltjes constants, their relation to the ηj coefficients, and representation
of the Hurwitz zeta function, arXiv/math-ph/0706.0343v2 (2007); Analysis 99, 1001-1021
(2010).

http://www.ams.org/mathscinet-getitem?mr=0076858
http://www.ams.org/mathscinet-getitem?mr=0076858
http://www.ams.org/mathscinet-getitem?mr=1702145
http://www.ams.org/mathscinet-getitem?mr=1702145
http://www.ams.org/mathscinet-getitem?mr=2041196
http://www.ams.org/mathscinet-getitem?mr=2041196
http://www.ams.org/mathscinet-getitem?mr=2177467
http://www.ams.org/mathscinet-getitem?mr=2177467
http://www.ams.org/mathscinet-getitem?mr=2328184
http://www.ams.org/mathscinet-getitem?mr=2328184
http://www.ams.org/mathscinet-getitem?mr=2209581
http://www.ams.org/mathscinet-getitem?mr=2209581


AN ASYMPTOTIC FORM FOR A SUM Sγ(n) UNDER THE LI CRITERION 2217

[11] M. W. Coffey, Series of zeta values, the Stieltjes constants, and a sum Sγ(n),
arXiv/math.ph/0706.0345v2 (2007).

[12] http://dlmf.nist.gov/18.15
[13] T. M. Dunster, Uniform asymptotic expansions for Whittaker’s confluent hypergeometric

functions, SIAM J. Math. Anal. 20, 744-760 (1989). MR990876 (90e:33012)
[14] H. M. Edwards, Riemann’s Zeta Function, Academic Press, New York (1974). MR0466039

(57:5922)

[15] C. L. Frenzen and R. Wong, Uniform asymptotic expansions of Laguerre polynomials, SIAM
J. Math. Anal. 19, 1232-1248 (1988). MR957682 (89k:33012)

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,
New York (1980). MR0582453 (81g:33001)

[17] G. H. Hardy, Note on Dr. Vacca’s series for γ, Quart. J. Pure Appl. Math. 43, 215-216 (1912).
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