
MATHEMATICS OF COMPUTATION
Volume 81, Number 277, January 2012, Pages 481–492
S 0025-5718(2011)02500-7
Article electronically published on May 12, 2011

RATIONAL POINTS ON DIAGONAL QUARTIC SURFACES

ANDREAS-STEPHAN ELSENHANS

Abstract. We searched up to height 107 for rational points on diagonal quar-
tic surfaces. The computations fill several gaps in earlier lists computed by
Pinch, Swinnerton-Dyer, and Bright.

1. Introduction

The set of rational points on a variety is one of the central objects in arithmetic
geometry. For some classes of varieties, one has precise conjectures what it should
look like.

In the case of Fano varieties, many rational points are expected. This expectation
is described by the famous conjecture of Manin [FMT]. The case of a variety
of general type is described by the Lang conjecture. It claims that the Zariski
closure of the set of rational points has strictly smaller dimension than the variety
considered. Both conjectures are proven only in a few special cases. However, in
the intermediate case (i.e., varieties with are neither Fano nor of general type) it is
not even clear what a general conjecture should look like.

In this note, we inspect diagonal quartic surfaces. These are special K3 surfaces
and they form one of the most famous examples of varieties of intermediate type.
More precisely, we focus on surfaces of the form

ax4 + by4 = cz4 + dw4

with coefficients a, b, c, d ∈ Z and 1 ≤ a, b, c, d ≤ 15. We describe our methods to
test local solvability and our search for rational points.

Remark 1.1. The only known technique to prove that there are no rational points
on a K3 surface which has local points everywere is given by the Brauer-Manin
obstruction. The algebraic part of the obstruction was intensively studied by Martin
Bright in his PhD thesis [Br1]. As explained in [Br2], for many diagonal quartic
surfaces the algebraic and the transcendental Brauer-Manin obstruction would not
be able to explain the absence of rational points. See [ISZ] for details on the
transcendental part.
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2. Point search algorithms

The main idea of our approach to searching for points of absolute height at most
B on varieties of the form f(x, y) = g(z, w) is as follows.

Compute the two sets {f(x, y) | |x|, |y| ≤ B} and {g(z, w) | |z|, |w| ≤ B}. Each
solution of the equation leads to an element in the intersection. On the other hand,
one can find the solutions when one knows the intersection. If one can handle sets
fast enough, an O(B2) algorithm results.

Since these sets tend to be very large, a more sophisticated approach has to be
used. One way is given in [Be] for functions f and g being sums of two univariate
functions. Then, one can enumerate the two sets above in sorted form. From this,
the intersection can be formed easily.

A second approach is given in [EJ1] and [EJ2]. There, the sets are implemented
using hash tables. To reduce the size of the sets, a page prime pp is introduced.
Then, one computes the intersection of

La :=
{
f(x, y)

∣
∣ |x|, |y| ≤ B and f(x, y) ≡ a (mod pp)

}
and

Ra :=
{
g(z, w)

∣
∣ |z|, |w| ≤ B and g(z, w) ≡ a (mod pp)

}

for each a ∈ [0, pp − 1]. Assuming equidistribution, this reduces the size of the sets
approximately by a factor of pp.

As we focus on diagonal quartic surfaces, some additional optimizations can be
done. First, one can restrict to non-negative values of x, y, z, w. In about one half of
the cases, one can find at least one variable which must be divisible by 5. Further,
in many cases, the parity of some or all variables in a primitive solution can be
determined.

Usually, many other moduli lead to congruences which could be used for a speed-
up if one knew how to handle them quickly on a computer. See [EJ3] for an analysis
in a particular case.

Details of the program written. The point search was done using the hash-
ing approach. In an initialization step, congruences modulo 5 and powers of 2
were checked to get congruence conditions for primitive solutions. The page prime
500083 was chosen and the hash table had 134217728 entries. To speed up the mod-
ular arithmetic, a table containing fourth roots and multiplicative inverse elements
modulo the page prime was built up in the initialization part. Note that the page
prime is congruent to 3 modulo 4 and, thus, the fourth root is unique up to sign.

To avoid multiprecision computations, the computations were done modulo 264.
We found fewer than 100000 simultaneous coincidences modulo the page prime and
modulo 264. Only these were checked by multiprecision computations.

The running time depends highly on the congruences found. Searching on one
surface for points up to height 107 took between 12 and 86 days of CPU time on a
2.27GHz Xeon processor. In total, 13 years of CPU time were used.

3. Results

In total, there are 7194 quadruples (a, b, c, d) with a, b, c, d ∈ {1, . . . , 15}, a ≤ b,
a ≤ c, and c ≤ d and gcd(a, b, c, d) = 1. Testing for local solvability excludes 3904
of the corresponding equations ax4 + by4 = cz4 + dw4.

A point search with height-bound 10 solves 3009 cases. Increasing the bound to
100 leads to solutions for 52 of the 281 remaining equations. Further, 31 equations
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have a first solution of height at most 1000. The remaining 198 equations (and all
solutions found for them) are the entries of the list [E2].

In 21 cases, a solution of height between 103 and 104 was found by Martin Bright.
In 18 cases a first solution of height between 104 and 105 was found. Further, in 14
cases, there is a first solution of height between 105 and 106. Finally, in 15 cases
a first solution of height between 106 and 107 was detected. In 130 cases, still, no
solution is known.

Table 1. Surfaces with smallest solutions of height above 106 found.

a b c d x y z w ρ
1 15 7 11 2903019 391311 1780640 549424 1
2 10 7 11 5742991 2277664 4262801 1865875 1
4 11 7 13 873483 1115876 1281143 448499 1
4 12 11 14 3902789 1356045 1015370 2875318 1
4 5 11 14 394427 1355547 1112545 308333 1
5 11 6 7 1545359 3316097 187414 3732530 1
7 9 11 13 3094925 7817089 6049224 6224852 1
2 9 12 15 3625719 1832215 1639331 2213957 1
2 11 7 9 2957980 1748992 468557 2308737 1
5 14 7 9 1943732 493862 984595 1643257 1
4 4 11 13 1668661 1272265 324881 1335627 1
2 3 8 11 1216988 924293 384555 873425 1
2 8 5 11 1315404 988742 1272177 470035 1
1 8 4 13 3730667 1735542 2189289 1913815 1
3 7 12 14 1116485 269121 345539 754095 2

As several equations have a first solution of height above 106, one cannot expect
the unsolved examples to be unsolvable. However, x4 + y4 = 6z4 + 12w4 is known
to be unsolvable. See [Br1] for details. Note that this surface is isomorphic over Q
to 3x4 + 6y4 = 8z4 + 8w4. This is the only pair of isomorphic surfaces in the list.

Remark 3.1. As all diagonal quartic surfaces are isomorphic over C this is not
entirely obvious. First note that an isomorphism of surfaces with arithmetic Picard
rank 1 is always given by a projective linear map P3 → P3. In this situation
one can try to map the 48 lines of one surface to the lines of another one with a
projective linear map defined over Q. In the case of higher arithmetic Picard rank
one can distinguish surfaces by counting points modulo primes of good reduction.
These arguments suffice in all cases.

It would be nice if one could make a complete list of solvable and unsolvable
cases as done in [CKS] for diagonal cubic surfaces. A naive extrapolation suggests
that this requires a search for points up to height 1015. Further, one has to compute
the transcendental Brauer-Manin obstruction in the case when [ISZ, Corollary 3.3]
is not applicable.

Remark 3.2. Some people tend to believe that the arithmetic Picard rank ρ of a K3
surface has a strong influence on the set of rational points. We have no unsolved
case with Picard rank greater than 2. The unsolved cases with rank equal to 2
are [1, 1, 6, 12], [2, 4, 9, 9], [2, 4, 11, 11], [2, 9, 6, 12], [3, 6, 8, 8], [3, 6, 11, 11], [4, 9, 8, 8],
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and [6, 12, 11, 11]. On the other hand, the table above contains one equation with
Picard rank 2 and a smallest solution of height 1116485.

Comparing the rank 1 and the rank 2 cases in the sample, one does not find a
great difference for the proportion of unknown cases.

Appendix A. The list

List of the diagonal quartic surfaces V : ax4+by4 = cz4+dw4 and rational points
found on them. Missing entries in the right columns mark unsolved equations. The
surfaces are orderd by the Galois group that acts on the 48 lines of the surface.
See [Br1] for details.

Galois group 1 (A222), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 13 6 11 2569 1570 2111 745
1 14 6 11
1 15 10 11 33027 50285 55430 22246
1 15 11 13
1 15 11 14
1 15 7 11 2903019 391311 1780640 549424
1 7 5 12
1 7 6 11 50699 7640 32419 4145
11 14 12 15
2 10 7 11 5742991 2277664 4262801 1865875
2 11 12 15
2 11 3 15 18201 7308 7171 11281
2 11 6 10
2 12 7 11
2 13 5 11
2 13 6 10
2 14 10 15
2 14 12 15 1899 465 268 1154
2 14 5 12
2 14 6 13
2 15 7 11 814137 381238 641189 183115
2 3 7 11 479727 314300 210007 324245
2 6 5 11
2 6 5 13
2 6 7 11 887643 344188 643897 324877
2 6 7 15
2 7 10 15 3615 18355 3253 15167
2 7 11 12
3 13 10 15
3 13 7 8
3 13 8 11 2233 544 1355 1451
3 13 8 14
3 15 8 11 2567 3892 339 4245
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(Table continued)

a b c d x y z w
3 4 5 14 3405 3838 3839 1907

56825 15064 19469 38503
683435 763534 276881 613601

3 7 4 15
3 7 8 11
3 8 13 14
4 11 7 13 873483 1115876 1281143 448499
4 12 11 13
4 12 11 14 3902789 1356045 1015370 2875318
4 12 5 14 142891 880825 176618 847432
4 12 7 10
4 15 6 14
4 5 11 14 394427 1355547 1112545 308333
4 5 12 13
4 5 6 14 112525 220510 202663 113721
4 6 11 15
4 7 6 10 33692 38898 9673 38125
5 11 6 7 1545359 3316097 187414 3732530
5 11 6 8
5 11 7 13
5 11 8 12 569 1995 2156 632
6 10 7 11 54113 64965 64930 55604
6 8 11 13 3596 7663 2899 6801
7 10 11 12 248911 22210 221045 84493
7 13 8 15
7 8 11 13
7 9 10 15 429335 116865 391868 125402

490300 115345 444017 184637
7 9 11 13 3094925 7817089 6049224 6224852
7 9 12 13
7 9 12 15
8 11 13 14 48 1635 1103 1435
8 12 11 13
8 15 11 13
9 10 11 14
9 10 12 13
9 11 12 15
9 11 13 14
9 13 10 15
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Galois group 6 (A223), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
4 9 11 14

Galois group 7 (A224), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
4 13 7 9
4 13 9 11
4 15 7 9

Galois group 14 (A225), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 2 5 12
1 2 6 11 5215 1874 2853 2403
1 2 7 10
1 8 10 15
1 8 11 14
1 8 6 11
2 14 3 6
2 5 6 12
2 7 6 12 41943 16890 31205 17281

527799 362670 377845 336583
2 9 12 15 3625719 1832215 1639331 2213957
2 9 13 14 16747 10235 11847 253
3 6 11 14
3 6 8 14
4 8 11 13 23746 5375 17711 11083

118358 4535 1109 88151
4 8 13 15
4 8 7 13
5 11 6 12 441 5637 4408 5210
6 12 7 15
7 14 11 12 13467 10834 8039 13315
8 9 10 14
8 9 11 13
8 9 11 14
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Galois group 15 (A226), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 14 7 10
1 15 2 11 16747 242669 12700 262234

591731 113243 404020 284218
136427 38287 44200 76208

1 15 8 11 109243 12833 3800 60028
818273 174547 356770 417008

1 7 3 14 439019 332152 108087 305495
2 10 7 9
2 11 4 12
2 11 7 9 2957980 1748992 468557 2308737
2 14 3 7
2 14 5 7
2 14 6 7
2 14 7 10
2 14 7 12
2 14 7 13
2 14 9 10 959575 602221 165566 770822
2 14 9 13
2 5 4 12 1304 4126 4075 2327
2 7 11 14
3 13 4 6
3 4 8 11
4 12 6 7 93671 28107 84754 30230
4 14 7 13
4 7 6 14
5 14 7 9 1943732 493862 984595 1643257
6 10 12 13 27215 22985 26664 5998

240525 27011 12314 198262
6 14 7 15
6 7 10 12 1595 814 113 1367

935 2858 1165 2479
6 7 8 14
7 11 13 14
7 13 14 15
7 8 10 14
7 9 10 14
7 9 13 14
7 9 8 11
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Galois group 17 (A227), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
2 2 7 11
4 11 10 10 148879 53538 119731 14529

148879 53538 14529 119731
4 4 11 13 224865 2639719 2049201 376219

1668661 1272265 324881 1335627
4 4 7 13 24881 25128 18145 20661

25128 24881 18145 20661
4 6 11 11
7 7 11 12
8 8 10 15
8 8 11 13 6529 8580 155 8169
8 8 11 14

Galois group 18 (A228), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 12 3 14
1 14 4 13
2 11 8 10 1767 862 1337 165

2107 3126 11 3231
11313 4822 4073 7773

2 14 8 13 3387 2291 164 2658
2 3 7 12 2718 3089 2715 635
2 3 8 11 1216988 924293 384555 873425
3 13 12 14
3 14 4 12
3 4 11 12
3 7 11 12

Galois group 25 (A229), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/4Z:

a b c d x y z w
1 4 3 14
1 4 6 11
2 8 11 13
2 8 11 15 759389 135099 358775 424157
2 8 3 15
2 8 5 11 4428912 3335126 1099539 3552505

1315404 988742 1272177 470035
1311878 1614416 1415335 1382675

2 8 5 13
2 8 7 11 32445 20922 13597 23767

Galois group 37 (A234), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
2 14 4 9
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Galois group 38 (A235), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 14 8 9
2 9 4 14
4 8 7 9
4 8 9 11
4 8 9 15

Galois group 41 (A242), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
1 9 4 13 3955 3086 687 3005

Galois group 42 (A238), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z× Z/2Z:

a b c d x y z w
4 4 7 9
4 4 9 11

Galois group 56 (A251), Picard rank 1, Br1(V )/Br0(V ) = Z/4Z:

a b c d x y z w
1 2 8 11 3213 587 1857 1015

24167 2763 14231 5875
64307 28629 38887 10825

1 8 4 13 3730667 1735542 2189289 1913815
2 14 8 9
2 3 6 12 735 4342 2397 2917

160887 451082 377235 135455

Galois group 57 (A248), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
2 2 7 9
2 2 9 11
7 12 14 14
7 9 14 14 89855 66941 82130 7552

89855 66941 7552 82130
8 8 9 11
8 8 9 13

Galois group 61 (A240), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/4Z:

a b c d x y z w
1 4 8 13 7957 41635 9527 30969
2 8 7 9
3 12 6 10
3 12 6 13

Galois group 64 (A241), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
4 12 9 10 99071 356615 88962 373160
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Galois group 72 (A249), Picard rank 1, Br1(V )/Br0(V ) = Z/4Z:

a b c d x y z w
4 6 9 13

Galois group 135 (A123), Picard rank 2, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
2 4 9 9

Galois group 142 (A118), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z× Z/4Z:

a b c d x y z w
1 4 8 9

Galois group 172 (A112), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
4 14 7 9
4 7 9 14

Galois group 228 (A18), Picard rank 2, Br1(V )/Br0(V ) = Z/2Z× Z/2Z× Z/2Z:

a b c d x y z w
4 9 8 8

Galois group 241 (A8), Picard rank 2, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
7 8 9 14 5145 18832 11843 15623

Galois group 260 (A121), Picard rank 2, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
1 1 6 12
2 4 11 11
3 6 11 11
3 6 8 8
6 12 11 11

Galois group 263 (A127), Picard rank 2, Br1(V )/Br0(V ) = 0:

a b c d x y z w
2 14 7 8 3367 1275 954 2450

9137 3555 5058 6170
27607 53755 2962 61980

3 14 7 12 14333 132 10041 8245
51001 13458 18333 35915
150715 37776 99567 92761

3 7 12 14 695827 2215287 1896995 998025
1116485 269121 345539 754095
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Galois group 330 (A257), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
4 9 10 15

Galois group 336 (A109), Picard rank 1, Br1(V )/Br0(V ) = Z/2Z:

a b c d x y z w
4 12 10 15

Galois group 373 (A51), Picard rank 3, Br1(V )/Br0(V ) = Z/2Z× Z/2Z:

a b c d x y z w
2 8 13 13 995 1227 1115 71

277575 326921 117017 296755
336725 198409 232205 70143

Galois group 646 (A76), Picard rank 2, Br1(V )/Br0(V ) = Z/8Z:

a b c d x y z w
2 9 6 12
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