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THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER

DEGREES WITH IDEAL CLASS GROUPS OF EXPONENT ≤ 2

JEOUNG-HWAN AHN AND SOUN-HI KWON

Abstract. In this paper, assuming the Generalized Riemann Hypothesis, we
determine all imaginary abelian number fields N of 2-power degrees with ideal
class groups of exponents ≤ 2 for which the 2-ranks of the Galois group of N
over Q are equal to 2.

1. Introduction

Chowla [Cho] proved that there are only finitely many imaginary quadratic fields
with class groups of exponents ≤ 2: there are at most 66 such fields. (See [BK],
[We], and [Lou90]. See also [HB] for the finiteness of the imaginary quadratic
fields with ideal class groups of exponents ≤ 6.) This finiteness has been extended
to imaginary abelian number fields of 2-power degrees with ideal class groups of
exponents ≤ 2 in [HH]. Recently it was shown that under the Generalized Riemann
Hypothesis (GRH) the exponents of the ideal class groups of the CM-number fields
go to infinity with the absolute values of their discriminants in [AD] and [LO]. All
nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class
groups of exponents ≤ 2 are unconditionally determined in [Lou95]. In this paper
we prove the following.

Theorem 1. Assume the Generalized Riemann Hypothesis. There are exactly
632(= 483 + 149) imaginary abelian number fields N of 2-power degrees with ideal
class groups of exponents ≤ 2 for which the 2-ranks of the Galois group of N over Q
are equal to 2. These fields are of degree ≤ 16, of conductor ≤ 233905(= 5·7·41·163),
and of class number ≤ 32. All of these fields are listed in Tables 5–10.

We will usually write (2n1 , . . . , 2nk) for (Z/2n1Z)⊕ · · · ⊕ (Z/2nkZ) for brevity.
In the proof of Theorem 1 we have assumed the truth of GRH in the cases

where the Galois group of N over Q is isomorphic to one of the three groups
(2, 2), (4, 2), and (8, 2). Except for those three cases we do not use GRH. We
now give a brief outline of our method. For a number field k we let Cl(k), hk,
and h+

k be the class group, the class number, and the narrow class number of k,
respectively. We denote by exp (Cl(k)) the exponent of Cl(k). For an extension
k1/k2 of number fields we denote by D(k1/k2) its different. Let N be an imaginary
abelian number field whose Galois groupG(N/Q) is isomorphic to (2m, 2l) withm ≥
l ≥ 1. Then N = KK ′, where K and K ′ are the two imaginary subfields of N with
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G(K/Q) � (2m, 2l−1) and G(K ′/Q) � (2m, 2l−1) or (2m−1, 2l). Our proof consists
of three parts: (i) We will show that if exp (Cl(N)) ≤ 2, then exp (Cl(K)) ≤ 2
or exp (Cl(K ′)) ≤ 2. (ii) We determine all fields N with exp (Cl(N)) ≤ 2 such
that G(N/Q) are isomorphic to (4, 2), (8, 2), or (4, 4). (Note that the fields N with
exp (Cl(N)) ≤ 2 and G(N/Q) � (2, 2) are already known in [AK]: there are 483
such fields.) (iii) We show that if G(N/Q) is not isomorphic to any of the four
groups above, then exp (Cl(N)) > 2. In Section 2 we survey some known results
for class groups of number fields. We study in Section 3 the group of characters
associated to the imaginary abelian number fields N with G(N/Q) � (2m, 2l), m ≥
l ≥ 1. In Section 4 we prove that if exp (Cl(N)) ≤ 2, then either exp (Cl(K)) ≤ 2
or exp (Cl(K ′)) ≤ 2. If D(N/K) �= (1), then exp (Cl(K)) divides exp (Cl(N))
by class field theory. Assume now that N/K is unramified. Then N/F is an
unramified cyclic extension for every imaginary cyclic subfield F of K of degree
2m. We will find estimates of the relative class number h−

F of an imaginary cyclic
subfield F of N from above and below. Using genus theory, we will show that if
exp (Cl(N)) ≤ 2, then any primitive Dirichlet character χF associated with F is
of the form χF = ϕpϕqχ

′, where ϕp is a primitive Dirichlet character of p-power
conductor for some prime p and of order 2m, ϕq is a primitive Dirichlet Character
of q-power conductor for some prime q( �= p) and of order 2l or 2l+1 with l+1 ≤ m,
and χ′ is the trivial character or a quadratic character of conductor prime to pq.
The ambiguous class number formula yields an upper bound U(m, l, ω) for h−

N

the relative class number of N in terms of m, l, and ω the number of ramified
primes. Moreover, h−

N can be factored as h−
N = 1

22l−1

∏
F h−

F , where the product

runs over the 2l imaginary cyclic subfields F of K of degree 2m. We deduce that
if exp (Cl(N)) ≤ 2, then N has at least one imaginary cyclic subfield F so that

h−
F ≤ (22

l−1U(m, l, ω))
1

2l . Combining this with the lower bound L(m, fF ) for h
−
F in

[Lou97], we get the inequality L(m, fF ) ≤ (22
l−1U(m, l, ω))

1

2l involving m, l, and
fF where fF is the conductor of F . See (3.4) and (3.5) below. This inequality gives
an upper bound for m (m ≥ l). For each fixed m under the upper bound we obtain
an upper bound for fF for each given pair of (m, l) using the inequality mentioned
above. Then we find all possible conductors fF and all possible fieldsN . Computing
h−
F we verify that if D(N/K) = D(N/K ′) = (1), then exp (Cl(N)) > 2. Assume

now that D(N/K ′) is not trivial. From class field theory, if exp(Cl(N)) ≤ 2, then
exp(Cl(K ′)) ≤ 2. To begin with we treat the fields N with l = 1, i.e., G(N/Q) �
(2m, 2). In Section 5, we will prove unconditionally that if G(N/Q) � (2m, 2)
with m ≥ 4, then exp(Cl(N)) > 2. Moreover, under the Generalized Riemann
Hypothesis we determine all fields N such that G(N/Q) � (2m, 2) with m ≤ 3
and exp (Cl(N)) ≤ 2. In Section 6, we will determine unconditionally all fields
N such that G(N/Q) � (4, 4) and exp (Cl(N)) ≤ 2. In Section 7, we will verify
unconditionally that if G(N/Q) � (8, 4), then exp (Cl(N)) > 2. From this we can
prove by induction on m that if m ≥ 3, then exp(Cl(N)) > 2 for every imaginary
abelian number field N with G(N/Q) � (2m, 4). This yields that if m ≥ l ≥ 3, then
exp(Cl(N)) > 2. So we conclude that if G(N/Q) � (2m, 2l) with m ≥ l ≥ 1 and if
2m ≥ 16 or 2l ≥ 8, then exp(Cl(N)) > 2. Finally, we compile our computational
results in Tables 5–10. We have computed Cl(N) by using KASH ([KT]) and GP
([P]).

We close this section by noticing that our method is not efficient for determining
all imaginary abelian number fields N of 2-power degrees with exp (Cl(N)) ≤ 2.



THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER DEGREES 535

Because by our method we cannot find r such that if the 2-rank of G(N/Q) is
greater than r, then exp (Cl(N)) > 2. It seems that if the 2-rank of G(N/Q) is
greater than 4, then exp (Cl(N)) > 2. (See [AK].)

2. Preliminary results and notations

In this section we will survey some known results for class numbers and class
groups of number fields that will be used in the sequel. We continue with the
notations of Section 1. For an extension of number fields k/k0 we let Nk/k0

: k → k0
be the field norm of extension k/k0, Nk/k0

: Cl(k) → Cl(k0) the ideal class group
norm, ik/k0

: Cl(k0) → Cl(k) the map induced by extension of ideals, and let tk/k0

be the number of prime ideals in k0 which are ramified in k/k0. When an extension
of number fields k/k0 is unramified at all of the finite and infinite primes we say
for brevity that k/k0 is unramified.

Proposition 2. Suppose that the extension k/k0 contains no unramified abelian
extension L with L �= k0. Then the norm map Nk/k0

is surjective. In particular,
hk0

divides hk and exp(Cl(k0)) divides exp(Cl(k)).

Proof. See Theorem 5 in Appendix of [Wa]. �

When k is a CM-number field, we let k+ denote its maximal totally real subfield.
According to Proposition 2, hk+ divides hk. The quotient denoted by h−

k (= hk/hk+)
is called the relative class number of k. For a number field k we let Ok be its ring
of integers, O∗

k the group of units of Ok. For a quadratic extension k/k0 of number
fields let Am(k/k0) = {c ∈ Cl(k)|c = cσ} be its group of ambiguous ideal classes,
where σ denotes the nontrivial k0-automorphism of k. For a finite abelian group A
we set r2(A) = dimF2

(A/A2) and call it the 2-rank of A.

Proposition 3. (1) Let k/k0 be a quadratic extension of the number fields.
Then

|Am(k/k0)| =
hk0

2t
′
k/k0

−1

[O∗
k0

: O∗
k0

∩ Nk/k0
(k∗)]

,

where t′k/k0
is the number of ramified primes including infinite primes in

k/k0. In particular, if k is a CM-field, then

|Am(k/k+)| = hk+2tk/k+−1[O∗
k+ ∩ Nk/k+(k∗) : O∗

k+
2].

(2) Let k/k0 be a quadratic extension of the number fields and let r2=r2(Cl(k)).
Assume that k/k0 is not unramified. Then the quotient hk/hk0

divides

hk

2r2
|Am(k/k0)|.

In particular, if k is a CM-field, then h−
k divides

hk

2r2
|Am(k/k+)|.

(3) If k is a CM-field with class group of exponent ≤ 2, then

h−
k =

|Am(k/k+)|
| ker(ik/k+)| =

hk+2tk/k+−1[O∗
k+ ∩ Nk/k+(k∗) : O∗

k+
2]

| ker(ik/k+)| ,

where ik/k+ is the natural map. Moreover, | ker ik/k+ | = 1 or 2, and if the

absolute norm of D(k/k+) has an odd prime divisor, then | ker ik/k+ | = 1.
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(4) Let k0 be a totally real number field with odd narrow class number h+
k0
.

(i) For any real quadratic extension k/k0, h
+
k is odd if and only if exactly

one prime ideal of k0 is ramified in k.
(ii) For any quadratic CM-extension k/k0, we have tk/k0

≥ 1 and

r2(Cl(k)) = tk/k0
− 1.

Proof. (1) See [Che] and [G].
(2) Let ker(Nk/k0

) be the kernel of the norm map Nk/k0
and let B = {c ∈

Cl(k) | c2 = 1}. The injection

ker(Nk/k0
)/(ker(Nk/k0

) ∩B) ↪→ Cl(k)/B

yields that
| ker(Nk/k0

)|
| ker(Nk/k0

) ∩B| divides
hk

2r2
.

Since (ker(Nk/k0
) ∩B) ⊂ Am(k/k0), |ker(Nk/k0

)| = hk/hk0
divides

hk

2r2
|Am(k/k0)|.

(3) The first statement follows from Sections 2 and 3 of [E]. The second state-
ment follows from Lemma 13.5 of [CH].

(4) For (i) see (12.5) Corollary in [CH]. For (ii) see Lemmas (13.6) and (13.7)
in [CH]. �

For a Galois extension k/k0, G(k/k0) denote its Galois group. For a number field
k we let Hil(k) be its Hilbert class field. If k is an abelian extension of Q we denote
by Gen(k), fk, and Xk its genus field, its conductor, and the group of Dirichlet
characters associated to k, respectively. For a primitive Dirichlet character χ we let
f(χ) and |χ| be its conductor and its order, respectively. Throughout this paper a
primitive Dirichlet character will be called a character for brevity. For a prime p,
ϕp denotes a primitive Dirichlet character for which f(ϕp) is a power of p.

Proposition 4. Let k/k0 be a cyclic unramified extension of number fields with
G(k/k0) � Z/2lZ and l ≥ 1. Assume that Cl(k) has exponent ≤ 2. Then we have
the following.

(1) Cl(k0) is isomorphic to

(Z/2uZ)⊕ (Z/2Z)v ,

where either u = l or u = l + 1, and v ≥ 0.
(2) Suppose that k/Q is an abelian extension and k0 is an imaginary cyclic

number field of degree 2m with m ≥ 2. Let χk0
be any one of the generators

of Xk0
. Let fk0

=
∏

pe(p) be the factorization of fk0
the conductor of χk0

and let

χk0
=

∏
ϕp,

where ϕp is a character of p power conductor. Then:
(i) fk0

has one prime divisor p with |ϕp| = 2m and one another prime
divisor q such that |ϕq| = 2l with l ≤ m, or |ϕq| = 2l+1 with l ≤ m−1.

(ii) If fk0
has more than two prime divisors p and q, then |ϕr| = 2 for

prime r with r|fk0
and r �= p, q.
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(iii) If p is odd, then e(p) = 1 and p ≡ 1 (mod 2m). If p = 2, then
e(2) = m+ 2. If q is odd, then e(q) = 1 and q ≡ 1 (mod 2l) or q ≡ 1
(mod 2l+1). If q = 2, then e(q) = l + 2 or l + 3.

Proof. (1) Since k0 ⊂ k ⊂ Hil(k0), G(k/k0) is isomorphic to the factor group

G(Hil(k0)/k0)/G(Hil(k0)/k)

which is isomorphic to Cl(k0)/Nk/k0
(Cl(k)) by the Takagi-Artin Theo-

rem. In fact, according to Theorem 5.1 in Ch.VII of [CF], G(k/k0) �
Ck0

/Nk/k0
(Ck), where Ck0

(Ck resp.) is the group of idèle classes of k0 (k
resp.), and Nk/k0

: Ck → Ck0
is the idèle class group norm. By using the

natural map from the idèle group of k0 to the group of fractional ideals of
k0 we get Cl(k0)/Nk/k0

(Cl(k)) � G(k/k0). For details, see Ch.IV, §8 in
[N]. The result follows immediately.

(2) From Q ⊂ k0 ⊂ k ⊂ Gen(k0) ⊂ Hil(k) it follows that

G(Gen(k0)/k0)/G(Gen(k0)/k) � G(k/k0) � Z/2lZ

and

G(Gen(k0)/k) � G(Hil(k)/k)/G(Hil(k)/Gen(k0)).

As Cl(k) � G(Hil(k)/k), G(Gen(k0)/k) has exponent ≤ 2 and

G(Gen(k0)/k0) � (Z/2cZ)⊕ (Z/2Z)d ,

where c = l or l+1 and d ≥ 0. Note that the group of characters associated
to the genus field Gen(k0) is generated by the ϕp’s. Hence the character
group Xk0

is generated by the product of one character ϕp of order 2m, one
ϕq with p �= q of order 2l or 2l+1, and the other one(s) ϕr of order 2 if fk0

has more than two prime divisors. This completes the proof. �

Proposition 5. Let F be an imaginary cyclic number field of degree 2n = 2m ≥ 4
and let dF be the absolute value of the discriminant of F . Then we have

h−
F ≥ 2 εF

πe log dF

f
n/2
F

(π log fF+)n−1

where εF = 2
5 exp

(
− 2πn

d
1/2n
F

)
or 1− 2πne1/n

d
1/2n
F

.

Proof. See Remark 6 in [Lou97] and [R]. �

3. The fields N with G(N/Q) � (2m, 2l)

We consider the imaginary abelian number fields N of which Galois group
G(N/Q) is isomorphic to (2m, 2l) with m ≥ l ≥ 1 and m ≥ 2. Let χ and ψ
be two generators of the character group XN with |χ| = 2m and |ψ| = 2l. We may
assume χ(−1) = −1 changing χ to χψ if necessary. The three subgroups of index 2
of XN are 〈χ, ψ2〉, 〈χ2, ψ〉, and 〈χψ, ψ2〉. We let K be the imaginary subfield asso-
ciated with the group 〈χ, ψ2〉 and let K ′ be the imaginary subfield associated with
the group 〈χψ, ψ2〉 or 〈χ2, ψ〉 according as ψ(−1) = 1 or −1. We have G(N+/Q)
� (2m−1, 2l) or (2m, 2l−1) according as ψ(−1) = 1 or −1.

Let F be the imaginary cyclic subfield of degree 2m over Q which is associated
with the character group 〈χ〉.
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Proposition 6. Let N , K, K ′, χ and ψ be as above.

(1) If ψ(−1) = −1, then D(N/K ′) �= (1).
(2) Assume that exp(Cl(N)) ≤ 2 and D(N/K) = (1).

(a) If D(N/K ′) = (1), then l ≤ m− 1 and χ can be written as

χ = ϕpϕqϕf and XN = 〈χ, ϕ2
q〉,

where |ϕp| = 2m, |ϕq| = 2l+1, and ϕf is a character of conductor f
with |ϕf | = 1 or 2 and (pq, f) = 1. Moreover, Q(

√
p,
√
q) ⊂ N+.

(b) If D(N/K ′) �= (1), then χ can be written as

χ = ϕpϕqϕf and XN = 〈χ, ϕqϕf ′〉,

where |ϕp| = 2m, |ϕq| = 2l, ϕf is a character of conductor f with
|ϕf | = 1 or 2 and (pq, f) = 1, f ′ is a divisor of f , and ϕf ′ is a
character of conductor f ′ with |ϕf ′ | = 1 or 2. If m ≥ l ≥ 2, then
Q(

√
p,
√
q) ⊂ N+.

Proof. Let f(χ) =
∏

pai
i . We write χ =

∏
ϕpi

with |ϕp1
| = 2m. For a normal

extension k/k0 of number fields and a prime ideal p of k0 we let ek/k0
(p) be the

ramification index of p in k.

(1) Let F ′ be the imaginary cyclic subfield associated with 〈ψ〉. If m > l, then
the prime ideal(s) lying above p1 must be ramified in N/F ′ and so in N/K ′

because K ′ ⊃ F ′, eN/Q(p1) ≥ 2m > 2l, and N/F ′ is a cyclic extension. We
now assume that m = l. Let SF = {pi | pi is totally ramified in F} and
SF ′ = {q | q is a prime that is totally ramified in F ′}. We have SF �= SF ′ .

Otherwise Q(
√
d) ⊂ F ∩ F ′ and so [N : Q] < 2m+l, where d =

∏
p∈SF

p.

For pj ∈ SF \SF ′ we have eN/Q(pj) ≥ eK/Q(pj) ≥ 2m, eF ′/Q(pj) ≤ 2m−1,
and thus the prime ideal(s) lying above pj must be ramified in N/K ′.

(2) By Proposition 4 point (2), we have χ =
∏

ϕpi
, where |ϕp1

| = 2m, |ϕp2
| =

2l+1 or 2l, and |ϕpi
| = 1 or 2 for i �= 1, 2. For a prime p we let Ip be the

inertia field of p in the extension N/Q.
(a) Suppose D(N/K ′) = (1). We claim that |ϕp2

| = 2l+1. Since Ip1
⊂

N+ ⊂ N , Ip1
�⊂ K, and Ip1

�⊂ K ′. So N/Ip1
is a cyclic exten-

sion of degree 2m and Ip1
/Q is a cyclic extension of degree 2l. Note

that every prime ideal lying above pi is ramified in N/N+ because
D(N/K) = D(N/K ′) = (1). Hence the only ramified prime in Ip1

/Q
is p2. Moreover, p2 is totally ramified in Ip1

/Q because Ip1
/Q is cyclic,

and the prime ideal(s) lying above p2 is(are) also ramified in N/N+.
Hence eN/Q(p2) = |ϕp2

| = 2l+1. As F ⊂ N ⊂ Gen(F ) and XGen(F ) is

generated by ϕpi
s, XIp1

is a cyclic group of order 2l generated by ϕ2
p2
.

Thus, XN = 〈χ, ϕ2
p2
〉.

(b) To begin with we will show that if |ϕp2
| = 2l+1, then D(N/K ′) = (1).

Let G2l+1 be the subfield of Gen(F ) associated with 〈χ, ϕp2
〉. Then

G(G2l+1/F ) is a cyclic group of order 2l+1. We claim that N ⊂ G2l+1 .
Because G2l+1N ⊂ Hil(N) and G(G2l+1N/N) � G(G2l+1/G2l+1 ∩N),
this group is an elementary 2-group and F ⊂ (G2l+1 ∩ N) ⊂ G2l+1 ,
so [G2l+1 : G2l+1 ∩ N ] = 2, [G2l+1 ∩ N : F ] = 2l = [N : F ], and
G2l+1 ∩N = N . Thus, N ⊂ G2l+1 . Moreover, G(G2l+1/K+) � (4, 2),
G(G2l+1/N+) � (2, 2), and G(G2l+1/K) � G(G2l+1/K ′) � (Z/4Z).



THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER DEGREES 539

As K ′ ⊂ N ⊂ G2l+1 and G2l+1/N is unramified, G2l+1/K ′ is un-
ramified and so is N/K ′ as required. Hence D(N/K ′) �= (1) implies
|ϕp2

| = 2l. In a similar way as in (a) we have that Ip1
/Q is cyclic and

XIp1
is generated by the character ϕp2

∏′
ϕpj

, where
∏′

runs through
a possible subset of pj ’s in χ =

∏
ϕpi

with |ϕpj
| ≤ 2. �

The next proposition gives an upper bound for h−
N .

Let ( ·
p ) denote the Kronecker symbol.

Proposition 7. Let N be an imaginary abelian number field with G(N/Q) �
(2m, 2l) and G(N+/Q) � (2m−1, 2l). Assume that XN = 〈χ, ψ〉, where χ =
ϕpϕqϕf , χ(−1) = −1, |ϕp| = 2m, |ϕq| = 2l+1 with m ≥ l + 1, ϕf is a charac-
ter of conductor f with |ϕf | = 1 or 2 and (pq, f) = 1, and ψ = ϕ2

q. Set 2a = 2m

and 2b = 2l. Suppose that exp(Cl(N+)) ≤ 2. Then we have the following.

(1) h−
N divides hN

2r |Am(N/N+)|, where r = r2(Cl(N)) is the 2-rank of Cl(N).

(2) hN+ divides 2(a−1)(2b−1). Moreover, if ( pq ) = ( qp ) = −1, then hN+ = h+
N+ =

1 and |Am(N/N+)| = 2tN/N+−1.
(3) [O∗

N+ ∩ NN/N+(N∗) : (O∗
N+)2] divides 2a(2b−1).

(4)

tN/N+ ≤ a+ 2b+ 2abω(f),

where ω(f) is the number of prime divisors of f . Moreover, if ( pq ) = ( qp ) =

−1, then tN/N+ ≤ 2 + 2abω(f).

(5) h−
N divides (hN

2r )2
2ab(ω(f)+2)−a.

Moreover, if ( pq ) = ( qp ) = −1, then h−
N divides (hN

2r )2
2abω(f)+1.

(6)

h−
N =

1

22b−1

∏
F

h−
F ,

where F runs over the imaginary cyclic subfields of degree 2m of N .
(7) There exist at least one imaginary cyclic subfield F of N of degree 2a = 2m

such that

(3.1) h−
F ≤ 2a(ω(f)+2−1/(2b))

(
22b−1 hN

2r

)1/(2b)

.

In addition, if exp(Cl(N)) ≤ 2, then (3.1) can be replaced by

(3.2) h−
F ≤ 2a(ω(f)+2−1/(2b)).

If ( pq ) = ( qp ) = −1, then (3.1) can be replaced by

h−
F ≤ 2aω(f)+1

(
hN

2r

)1/(2b)

.

Moreover, if exp(Cl(N)) ≤ 2 and ( pq ) = ( qp ) = −1, then (3.1) can be

replaced by

(3.3) h−
F ≤ 2aω(f)+1.

For such a field F we have

(3.4)
e

εF

(
log dF
log fF+

) (
22b−1 hN

2r

)1/(2b)

≥ 2

( √
fF

2ω(f)+2−1/(2b)π log fF+

)a

.
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In addition, if ( pq ) = ( qp ) = −1, then

(3.5)
e

εF

(
log dF
log fF+

) (
hN

2r

)1/(2b)

≥
( √

fF
2ω(f)π log fF+

)a

.

(8) hQ(
√
p) = hQ(

√
q) = 1, hQ(

√
p,
√
q) = 1 or 2, and hQ(

√
pq) = 2hQ(

√
p,
√
q).

Moreover, if ( pq ) = ( qp ) = −1, then hQ(
√
p,
√
q) = 1.

(9) Suppose that exp(Cl(N)) ≤ 2. Let K and K ′ be two imaginary subfields of
N associated with 〈χ, ψ2〉, respectively, 〈χψ, ψ2〉. If ( pq ) = ( qp ) = −1, then

h−
N = 2tN/N+−1, hK = hK′ = 2tK/K+ , and Hil(K) = Hil(K ′).

Proof. (1) It follows from Proposition 3 point (2).
(2) We have XN+ = 〈ϕ2

p, ϕ
2
q〉. Let T be the cyclic subfield of N+ associated

with 〈ϕ2
p〉. By Proposition 3 point (4), hT = h+

T = 1 because p is totally
ramified in T/Q and the prime ideal lying above p is the unique ramified
prime ideal. Consider the sequence of subfields Ti of N

+,

T0 = T ⊂ T1 ⊂ · · · ⊂ Tl = N+

with [Ti : Ti−1] = 2 for i = 1, . . . , l where 2l = 2b. The prime ideal(s) lying
above q is (are) the only ramified ideal(s) in Ti/Ti−1. Since exp(Cl(N+)) ≤
2, exp(Cl(Ti)) ≤ 2 for each i by Proposition 2. According to Proposition 3
points (1) and (2),

hTi

hTi−1

divides |Am(Ti/Ti−1)|

and |Am(Ti/Ti−1)| divides hTi−1
2tTi/Ti−1

−1. Hence,

hTi
divides h2

Ti−1
2tTi/Ti−1

−1

and so
hN+ divides 2α,

where

α = 2l−1(tT1/T0
− 1) + 2l−2(tT2/T1

− 1) + · · ·+ (tTl/Tl−1
− 1)

≤ (a− 1)(2l − 1) = (a− 1)(2b− 1)

since tTi/Ti−1
≤ a for each i. If ( pq ) = ( qp ) = −1, then hTi

= h+
Ti

= 1

for i = 1, . . . , l, by Proposition 3 point (4). In particular, hN+ = h+
N+ =

1 and so O∗
N+ ∩ NN/N+(N∗) = O∗

N+
2. (See Section 12 [CH].) Hence

|Am(N/N+)| = 2tN/N+−1 by Proposition 3 point (1).
(3) Let O∗

T
+ be the set of totally positive units of T . Set E = O∗

N+ ∩
NN/N+(N∗). Since every element in E ⊂ NN/N+(N∗) is totally positive

and hT = h+
T = 1, O∗

T
+ = O∗

T
2 = E ∩O∗

T . From the injection

O∗
T /O

∗
T
2 ↪→ O∗

N+/E

it follows that |O∗
T /O

∗
T
2| = 2a divides |O∗

N+/E|. Moreover,

O∗
N+/E � (O∗

N+/O∗
N+

2)/(E/O∗
N+

2)

and so

|O∗
N+/E| = 22ab

|E/O∗
N+

2|
.



THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER DEGREES 541

Thus
|E/O∗

N+
2| divides 2a(2b−1).

(4) It is clear.
(5) The first statement follows from (1), (2), (3), (4) and Proposition 3 point

(1). Suppose that (pq ) = ( qp ) = −1. Then, hN+ = h+
N+ = 1 from (2). So,

the second statement follows from (1)–(4).
(6) We have

h−
N = QNwN

∏
1≤i≤2a, i odd

1≤j≤2b

1

2
L(0, χiψj),

where QN is the Hasse unit index of N and wN is the number of roots of
unity in N . (See §§20 − 27 in [Ha], Ch. 4 in [Wa], and [Lou01].) Here,
QN = 1 because the prime ideals lying above p and q are ramified in
N/N+. There are precisely 2b imaginary cyclic subfields Fj with which the
character group associated are 〈χψj〉 for 1 ≤ j ≤ 2b. Furthermore,

h−
Fj

= QFj
wFj

∏
i odd

1≤i≤2a

1

2
L(0, χiψij).

Note that QFj
= 1, wFj

= 2, and wN = 2. Then the result follows.
(7) It follows from (5), (6), and Proposition 5.
(8) Since p and q are 2 or odd primes congruent to 1 mod 4, Q(

√
p) ⊂ N+,

and Q(
√
q) ⊂ N+, hQ(

√
p) = hQ(

√
q) = 1. Let B = Q(

√
p,
√
q). We claim

that exp (Cl(B)) ≤ 2. Note that XB = 〈ϕa
p, ϕ

2b
q 〉. Let A be the subfield of

N associated to the character group 〈ϕa
p, ϕ

2
q〉. Then the extension N+/A

(A/B resp.) is a cyclic extension in which any prime lying above p (q resp.)
is totally ramified. By Proposition 2, Cl(A) and Cl(B) both have exponent
≤ 2. From exp (Cl(B)) ≤ 2 it follows that Cl(B) = Am(B/Q(

√
p)). By

Proposition 3 point (1), hB = 1 or 2. Moreover, if ( pq ) = ( qp ) = −1,

then hB = 1. Hence hQ(
√
pq) = 2 if hB = 1, Hil(B) = Hil(Q(

√
pq)) and

hQ(
√
pq) = 4 if hB = 2.

(9) By (2), hN+ = h+
N+ = 1. From Proposition 3 point (4) it follows that

hN = 2tN/N+−1. Note that tN/N+ ≤ 2(tK/K+ − 2) + 2 and so hN ≤
22tK/K+−3. Since D(N+/K+) = (1), 2 |hK+ . Moreover, hK+ | 2hN+ by
[Mas, Corollaries 2.2 and 2.3]. So hK+ = 2. By Proposition 3 point (1),

hK ≥ |Am(K/K+)| ≥ 2tK/K+ .

Similarly, hK′ ≥ 2tK/K+ . As h−
N = 1

2h
−
Kh−

K′ and

hN = h−
NhN+ =

hKhK′hN+

2h2
K+

=
hKhK′

8
,

hK = |Am(K/K+)| = 2tK/K+ = |Am(K ′/K+)| = hK′ . Hence both
Hil(K)/K+ and Hil(K ′)/K+ are abelian, so Hil(K) = Hil(K ′). �

4. The fields N = KK ′
with D(N/K) = D(N/K ′) = (1)

The notation here is that introduced in the previous sections. In this section,
using the upper bounds for h−

N and h−
F in Proposition 7 we will show the following.

Proposition 8. If D(N/K) = D(N/K ′) = (1), then exp(Cl(N)) > 2.
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Proof. Contrary to the conclusion, we suppose that exp(Cl(N)) ≤ 2. By Proposi-
tion 6 point (2),

XN = 〈χ, ψ〉
with χ = ϕpϕqϕf , ψ = ϕ2

q, |ϕp| = 2a, |ϕq| = 4b, a ≥ 2b, χ(−1) = −1, and ϕf is a
character of conductor f with |ϕf | = 1 or 2 and (pq, f) = 1. Set f = r1r2 · · · rg or
1, where ri’s are 4, 8, or odd primes. According to Proposition 7 there is at least
one imaginary cyclic subfield F of N of degree 2a over Q for which the inequality
(3.2) or (3.3) holds. We will find all imaginary cyclic subfields F that satisfy the
inequalities (3.2) or (3.3) if ( pq ) = ( qp ) = −1. Our computations were divided into
six cases:

Case 1: ( pq ) = ( qp ) = 1, p = 2 and q is odd.

Case 2: ( pq ) = ( qp ) = 1, p is odd and q = 2.

Case 3: ( pq ) = ( qp ) = 1, both p and q are odd.

Case 4: ( pq ) = ( qp ) = −1, p = 2 and q is odd.

Case 5: ( pq ) = ( qp ) = −1, p is odd and q = 2.

Case 6: ( pq ) = ( qp ) = −1, both p and q are odd.

Following Louboutin’s approach in [Lou95] we proceed in each of the six cases as
follows.

(i) We get an upper bound for a by using (3.4) or (3.5).
(ii) For each of fixed a and b which are lower than the upper bound found in

(i) we get an upper bound for fF the conductor of F .
(iii) We find all possible conductors fF of F which satisfy (3.4) or (3.5) and

compute h−
F .

(iv) For each of those characters we verify whether for all the 2b fields F with
given conductor fF , h

−
F are powers of 2 as well as there is at least one field

F that satisfies (3.2) or (3.3). In Cases 1–3 there is no such conductor.
In Cases 4–6 there are in all two such conductors. But all of these two
conductors are ruled out by Proposition 7 point (9). From this we conclude
exp(Cl(N)) > 2.

To illustrate our method we give the details of our computations for Case 1.
For the remaining cases we summarize our computational results at the end of the
proof.

Case 1 (p = 2 and q is odd with ( 2q ) = 1). Since fF = 8aqf , fF+ = 4aq, and

dF = 24a−1a2aq2a−a/(2b)fa, (3.4) yields

CF (a, b, q, f) · a ·
(
log(24−1/aa2q2−1/(2b)f)

log(4aq)

)

≥ 2

( √
8aqf

2ω(f)+2−1/(2b)π log(4aq)

)a(4.6)

where CF (a, b, q, f) = e/εF . From (4.6) we will get upper bounds for a, q, and f .
Our computations consist of five parts: (1)–(5).

(1) We take

εF = 1− 2πae1/a

d
1/(2a)
F

.
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Since

CF (a, b, q, f) = e

(
1− π(

√
2e)1/a

2 q1−1/(4b)f1/2

)−1

is decreasing as a function of a, b, q and f , respectively, we have

CF (a, b, q, f) ≤ CF (2, 1, 17, 1) ≤ e

(
1− πe1/2

(34)3/4

)−1

≤ 4.31.(4.7)

(2) For a nonnegative integer j we let fj = p0p1 · · · pj , where p0 = 1 and (pi)i≥1

is the increasing sequence of odd primes. Note that the function

x �→ xa/2

CF (a, b, q, x) log(24−1/aa2q2−1/(2b)x)

is increasing on [1,∞) and f ≥ fω with ω = ω(f) ≥ 0. Hence, (4.6) yields

CF (a, b, q, fω) · a ·
(
log(24−1/aa2q2−1/(2b)fω)

log(4aq)

)
≥ 2

( √
8aqfω

2ω+2−1/(2b)π log(4aq)

)a

.

(4.8)

(3) We let

g(ω) =
f
a/2
ω

2aω log(24−1/aa2q2−1/(2b)fω)
.

Then g(0) > g(1) and g(ω) ≤ g(ω + 1) for ω ≥ 1. So,

g(ω) ≥ g(1)

for all ω ≥ 0 and hence (4.8) yields

(4.9) CF (a, b, q, 1) · a ·
(
log(24−1/aa2q2−1/(2b)3)

log(4aq)

)
≥2

( √
24aq

23−1/(2b)π log(4aq)

)a

.

(4) On the left-hand side of (4.9) the function

x �→ CF (a, b, x, 1)

(
log(24−1/aa2x2−1/(2b)3)

log(4ax)

)
is decreasing on [17,∞) because

log(21/b−1/a3a1/(2b)) ≥ log 3 > 0.

Moreover, on the right-hand side of (4.9) the function

x �→
√
x

log(4ax)

is increasing on [17,∞). Hence, it follows from (4.9) that

(4.10) CF (a, b, 17, 1) ·a ·
(
log(24−1/aa2172−1/(2b)3)

log(68b)

)
≥2

( √
408a

23−1/(2b)π log(68a)

)a

.

(5) By (4.7) and (4.10)

4.31 · a ·
(
log(24−1/aa2172−1/a3)

log(68a)

)
≥ 2

( √
408a

23−1/aπ log(68a)

)a

,

which yields 2 ≤ a ≤ 27. Let us fix a and b with b < a. We can get an
upper bound for q by using (4.9). Since Q(

√
q,
√
2q) ⊂ N+, q has to satisfy
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hQ(
√
q) = 1 and hQ(

√
2q) = 2 or 4. For each such q we get an upper bound

for ω. Indeed, (4.8) yields(
(log 4aq)a−1

2aa/2−1

) (
22−1/(2b)π√

8q

)a

≥ g(ω)

CF (a, b, q, fω)
.

Note that

ω �→ g(ω)

CF (a, b, q, fω)

tends to infinity as ω tends to infinity. Finally, for each q and ω we can
get an upper bound for f by using the inequality (4.6). Then we can make
a list of all possible conductors. There are 3668 possible conductors in all.
Our computational results are summarized in Table 1.

Table 1. p = 2 and q ≡ 1 mod 4b

a b q ≤ ω ≤ f ≤ �{(q, ω, f)}
2 1 3049 6 285285 2111

4 1 937 5 15015 391

2 1433 5 26565 702

8 1 281 4 1365 84

2 457 4 2415 152

4 433 4 3003 101

16 1 97 3 165 21

2 137 3 231 38

4 193 4 1155 30

8 193 2 21 6

32 1 17 2 21 5

2 41 3 105 10

4 17 3 105 9

8 ∼ 16 None None None 0

64 1 17 1 3 1

2 17 2 15 3

4 17 2 15 4

8 ∼ 32 None None None 0

128 1 ∼ 64 None None None 0

For each of those quintuples (a, b, q, ω, f) we compute h−
F for all the 2b imaginary

cyclic number fields F of conductor fF = 8aqf and degree 2a, and verify that h−
F

is not a power of 2 for at least one such F . We conclude that in this case there is
no field N with exp(Cl(N)) ≤ 2.

Case 2 (p is odd and q = 2 with ( p2 ) = 1). In this case we have 4 ≤ a ≤ 25 and
there are 1347 quintuples of (a, b, p, ω, f). For each of those quintuple (a, b, p, ω, f)
computing h−

F for all the 2b imaginary cyclic number fields F of conductor fF =

16bpf and degree 2a we verify that h−
F is not a power of 2 for at least one such F .

Hence in this case there is no field N with exp(Cl(N)) ≤ 2.

Case 3 (both p and q are odd with (pq ) = 1). In this case we have 2 ≤ a ≤ 27

and there are 23598 sextuples of (a, b, p, q, ω, f). For each of those 23598 sextuples



THE IMAGINARY ABELIAN NUMBER FIELDS OF 2-POWER DEGREES 545

(a, b, p, q, ω, f) computing h−
F for all the 2b imaginary cyclic number fields F of

conductor fF = pqf and degree 2a we verify that there are exactly two sextuples
such that h−

F ’s are powers of 2 for all 2b fields F of conductor pqf : those two

sextuples are given in Table 2. But for these two sextuples h−
F ’s do not satisfy the

inequality (3.2).

Table 2.

Nr. (a, b, p, q, ω, f) h−
F

′
s 2a(ω+2−1/(2b))

1 (2, 1, 41, 61, 1, 5) 28, 210 25

2 (2, 1, 5, 101, 1, 59) 29, 213 25

Hence, in this case there is no field N with exp(Cl(N)) ≤ 2.

Case 4. p = 2 and q is odd with ( 2q ) = −1] In this case we have 2 ≤ a ≤ 24 and there

are 628 quintuples of (a, b, q, ω, f). For each of those 628 quintuples (a, b, q, ω, f)
computing h−

F for all the 2b imaginary cyclic number fields of conductor fF = 8aqf
and degree 2a we verify that there is only one quintuple (a, b, q, ω, f) such that
h−
F ’s are powers of 2 for all the 2b fields F : (a, b, q, ω, f) = (2, 1, 5, 1, 3) with

(h−
F1
, h−

F2
) = (8, 16), where F1 and F2 are two cyclic fields of conductor 240 and

degree 4. However, N = F1F2 has exp(Cl(N)) > 2. Otherwise, F1 and F2 would
have hF1

= hF2
by Proposition 7 point (9). Hence, in this case there is no field N

with exp(Cl(N)) ≤ 2.

Case 5 (p is odd and q = 2 with ( p2 ) = −1). Exchanging p with q if a = 2b we
are in the case 4. So we may assume that a ≥ 4b ≥ 4. But, in this case we have
( p2 ) = 1 since 8 divides p− 1. Hence, we do not need to consider this case.

Case 6 (both p and q are odd with (pq ) = −1). In this case we have 2 ≤ a ≤ 24

and there are 3128 sextuples of (a, b, p, q, ω, f) in all. For all of those sextuples
(a, b, p, q, ω, f) we compute h−

F and verify that there are exactly four sextuples

such that h−
F

′
s are power of 2 for all the 2b fields F of conductor pqf and degree

2a. Among them there is only one sextuple (a, b, p, q, ω, f) for which there is a
field F satisfying (3.3): (a, b, p, q, ω, f) = (2, 1, 5, 13, 1, 4). For this sextuple we let
F1 and F2 be two imaginary cyclic fields of conductor 260 and degree 4 and let
N = F1F2. We have (h−

F1
, h−

F2
) = (8, 16). From the fact that hF1

�= hF2
, it follows

that exp(Cl(N)) > 2 by Proposition 7 point(9). Our computational results are
given in Table 3.

Table 3.

Nr. (a, b, p, q, ω, f) h−
F

′
s 2aω+1

1 (2, 1, 5, 13, 1, 4) 8, 16 8

2 (2, 1, 5, 17, 2, 21) 64, 64 32

3 (2, 1, 13, 37, 2, 20) 256, 256 32

4 (2, 1, 5, 53, 3, 276) 4096, 4096 128
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According to our computational result we conclude that there is no field N with
exp(Cl(N)) ≤ 2.

This completes the proof of Proposition 8. �

5. The fields N with G(N/Q) � (2m, 2)

In this section we assume that N is an imaginary abelian number field with
G(N/Q) � (2m, 2) and m ≥ 1. The aim of this section is to determine all fields N
with exp (Cl(N)) ≤ 2 and m ≥ 2. Note that all such fields with m = 1 are known
under the Generalized Riemann Hypothesis in [AK]. Let notation be the same as
Sections 3 and 4. The field N has two imaginary subfields K and K ′ such that N =
KK ′, [N : K] = [N : K ′] = 2 and G(K/Q) � Z/2mZ. According to Proposition
8 if exp (Cl(N)) ≤ 2, then D(N/K)) �= (1) or D(N/K ′) �= (1). Changing χ to
χψ if necessary we may assume that D(N/K ′) �= (1) and so exp (Cl(K ′)) ≤ 2 by
Proposition 2. First, we determine all fields N = KK ′ with exp (Cl(K)) > 2 and
exp (Cl(N)) ≤ 2. Second, we look for all fields N = KK ′ with exp (Cl(K)) ≤ 2
and exp (Cl(N)) ≤ 2.

Proposition 9. Let 2a = 2m with m ≥ 2. Assume that exp (Cl(N)) ≤ 2. Suppose
that N has an imaginary cyclic subfield K with exp (Cl(K)) > 2. Let χ be any one
of the odd character with XK = 〈χ〉. Then we have the following.

(1) The character χ is of the form

χ = ϕpϕf with χ(−1) = −1,

where |ϕp| = 2a, f(ϕp) =

{
p if p is odd,

8a if p = 2,

and ϕf is a character of conductor f with |ϕf | = 2 and p � f .

(2) h+
K+ = hK+ = 1, h−

K = 2tK/K+ , and Cl(K) � (Z/4Z)⊕ (Z/2Z)
tK/K+−2

.
(3)

e

εK
· a ·

(
log(d

1/a
K )

log(fK+)

)
≥

( √
fK

2ω(f)π log(fK+)

)a

,

where (fK , fK+ , dK) =

{
(8af, 4a, 24a−1a2afa) if p = 2,

(pf, p, p2a−1fa) if p > 2.

(4) 2 ≤ a ≤ 64 and f ≤ 3.3× 106.
(5) G(N/Q) � (4, 2), G(N+/Q) � (2, 2), and N is one of the four fields listed

in Table 5.

Proof. (1) It follows from Proposition 6 point (2).
(2) The first statement follows from Proposition 3 point (4). The second state-

ment follows from Proposition 4 point (1) and Proposition 3 point (4).
(3) It follows from point (2) and Proposition 5.
(4) and (5) Using similar arguments as in Section 4 we get the results. �

Corollary 10. Let N be an imaginary abelian number field with G(N/Q) � (2m, 2),
m ≥ 4. Then we have unconditionally exp (Cl(N)) > 2.

Proof. Suppose exp (Cl(N)) ≤ 2. By Proposition 9 point (5), if K is an imaginary
cyclic subfield of N with [N : K] = 2 then exp (Cl(K)) ≤ 2. According to [Lou95]
[K : Q] = 2m = 16 and XK = 〈χ17〉, where χ17 is an odd character of conductor
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17 and of order 16. Then XN is of the form XN = 〈χ17, ψ〉, where ψ is a quadratic
character. Furthermore, ψ must be odd. Otherwise, there are two imaginary cyclic
subfieldsK ofN with [N : K] = 2 and exp (Cl(K)) ≤ 2, which contradicts Theorem
11 in [Lou95]. We claim that ψ must be χ4 the quadratic character of conductor 4.
Let N16 and k8 be subfields of N associated with 〈χ2

17, ψ〉 and 〈χ2
17ψ〉, respectively.

As 17 divides the absolute norm of D(N/N16), exp (Cl(N16)) ≤ 2. By Proposition
9 point (5), exp (Cl(k8)) ≤ 2; for G(N16/Q) � (8, 2). Let N8 and k4 be the subfield
of N associated with 〈χ4

17, ψ〉 and 〈χ4
17ψ〉, respectively. By a similar argument as

above exp (Cl(N8)) ≤ 2 and exp (Cl(k4)) ≤ 2. According to Theorems 12 and 13
in [Lou95] the fact that exp (Cl(k8)) ≤ 2 and exp (Cl(k4)) ≤ 2 implies ψ = χ4.
However, we verify that the field N8 associated with 〈χ4

17, χ4〉 has Cl(N8) � Z/4Z.
This contradiction shows that exp (Cl(N)) > 2. �

Proposition 11. Let N be an imaginary abelian number fields with G(N/Q) �
(2m, 2) and m ≥ 2. Let K and K ′ be two imaginary subfields of N with [N :
K] = [N : K ′] = 2 and G(K/Q) � Z/2mZ. Suppose that exp (Cl(N)) ≤ 2,
exp (Cl(K)) ≤ 2, and exp (Cl(K ′)) ≤ 2. Then we have the following.

(1) m ≤ 3.
(2) If G(N/Q) � (4, 2) and G(N+/Q) � (2, 2), then there are 38 such fields.
(3) If the Generalized Riemann Hypothesis is true and if G(N/Q) � (4, 2) and

G(N+/Q) � Z/4Z, then there are 100 such fields.
(4) If G(N/Q) � (8, 2) and G(N+/Q) � (4, 2), then there is exactly one such

field N with XN = 〈χ2
17χ4, χ4χ3〉, where χ3 is the quadratic odd character

of conductor 3.
(5) If the Generalized Riemann Hypothesis is true and if G(N/Q) � (8, 2) and

G(N+/Q) � Z/8Z, then there are 3 such fields.

All of those 142 = (38 + 100 + 1 + 3) fields N are compiled in Tables 6–9.

Proof. (1) It follows from Corollary 10.
(2) and (4) By [Lou95] there are 94 pairs of two imaginary cyclic fields (K,K ′)

with exp (Cl(K)) ≤ 2, exp (Cl(K ′)) ≤ 2, and K+ = (K ′)+. For those pairs
we compute the ideal class groups of the composita N = KK ′ and obtain
the result. Similar arguments are used for (4).

(3) and (5) By [Lou95] and [AK] there are 169 pairs (K,K ′) of two imaginary
fields such that G(K/Q) � Z/4Z, G(K ′/Q) � (2, 2), exp (Cl(K)) ≤ 2,
exp (Cl(K ′)) ≤ 2, and K+ = (K ′)+. Note that in [AK] we determine all
such fields K ′ under the Generalized Riemann Hypothesis. For those pairs
we compute the ideal class groups of the composita N = KK ′ and obtain
the result. (5) can be shown similarly. �

6. The fields N with G(N/Q) � (4, 4)

The aim of this section is to prove

Proposition 12. There are three fields N with G(N/Q) � (4, 4) for which Cl(N)
have exponents ≤ 2. Those fields are listed in Table 10.

Proof. Let χ (ψ resp.) be an odd (even resp.) character of order 4 such that
XN = 〈χ, ψ〉. Let K (K ′ resp.) be the subfield associated with the group 〈χ, ψ2〉
(〈χψ, ψ2〉 resp.). By Proposition 8 we may assume that D(N/K ′) �= (1) and so
Cl(K ′) has exponent ≤ 2. We consider two cases separately.
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(1) Assume that exp (Cl(K)) ≤ 2. By using Propositions 9 and 11 there are
four pairs of (K,K ′) such that G(K/Q) � (4, 2) with G(K+/Q) � (2, 2),

G(K ′/Q) � (4, 2) with G(K ′+/Q) � (2, 2), G(N/Q) � (4, 4) with N =
KK ′, K+ = (K ′)+, exp(Cl(K)) ≤ 2, and exp(Cl(K ′)) ≤ 2. We verify
that among those four pairs there are three pairs for which N = KK ′ has
exp (Cl(N)) ≤ 2. Those fields are listed in Table 10.

(2) Assume that exp (Cl(K)) > 2. According to Propositions 9 and 11 there are

42 = (4+38) fields K ′ such that G(K ′/Q) � (4, 2) with G(K ′+/Q) � (2, 2)
and exp (Cl(K ′)) ≤ 2. Each of these fields K ′ contains the real subfield
Q(

√
p,
√
q), where (p, q) ∈ S = {(2, 5), (2, 13), (2, 17), (5, 13), (5, 17), (5, 41),

(5, 61), (13, 17), (13, 29)}. If exp (Cl(N)) ≤ 2 and exp (Cl(K)) > 2, then
we have the following.
(i) D(N/K) = (1) by Proposition 2, hence D(N/F ) = (1) for any imagi-

nary cyclic quartic subfields F of K.
(ii) Cl(K) � (Z/4Z) ⊕ (Z/2Z)

v
for some integer v ≥ 0 by Proposition 4

point (1).
(iii) Cl(F ) �

(
Z/22+εZ

)
⊕ (Z/2Z)v1 with ε = 0 or 1 and v1 ≤ v for any

imaginary cyclic quartic subfields F of K by Proposition 4 point (1).
(iv) χ is of the form

χ = ϕpϕqϕf ,

where |ϕp| = |ϕq| = 4 with (p, q) ∈ S, and ϕf is a character of con-
ductor f with |ϕf | ≤ 2 and (pq, f) = 1, by Proposition 6 point (2).

(v) By Proposition 7, h−
K ≤ 24ω(f)+7 and the number field K has at least

one imaginary cyclic quartic subfield F with h−
F ≤ 22ω(f)+4 and

e

εF

(
log(d

1/2
F )

log(fF+)

)
≥

( √
fF

2ω(f)+2π log(fF+)

)2

,

which yields fF ≤ 8.7× 106.
We verify that there are exactly three triplets (p, q, f) such that h−

F is a
power of 2 for both of two imaginary cyclic quartic subfields F of K :
(2, 5, 3), (5, 13, 4), and (5, 17, 21). But, each of those three triplets (p, q, f)
has at least one imaginary cyclic quartic subfield F such that Cl(F )2 is
not cyclic, which is contradictory to (iii). Our computational results are
given in Table 4; the character χ4 ( the same as in the proof of Corollary 10
above), χp for each odd prime p, and ψ2i for each integer i ≥ 3 are defined
at the beginning of Section 9.

Table 4.

Nr. (p, q, f) F1 Cl(F1) F2 Cl(F2)

1 (2, 5, 3) 〈ψ16χ4χ5χ3〉 (4, 2, 2) 〈ψ16χ4χ
3
5χ3〉 (4, 4, 2)

2 (5, 13, 4) 〈χ5χ
3
13χ4〉 (4, 2, 2) 〈χ5χ

9
13χ4〉 (4, 4, 2)

3 (5, 17, 21) 〈χ5χ
4
17χ

3
7χ3〉 (4, 4, 2, 2, 2) 〈χ5χ

12
17χ

3
7χ3〉 (4, 4, 2, 2, 2)

We conclude that there is no field N=KK ′ with exp (Cl(N))≤2, exp (Cl(K)) >
2, and exp (Cl(K ′)) ≤ 2. This completes the proof of Proposition 12. �
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7. The fields N with G(N/Q) � (8, 4)

Proposition 13. If N is an imaginary abelian number field with G(N/Q) � (8, 4),
then exp(Cl(N)) > 2.

Proof. Let χ and ψ be the two generators of XN with XN = 〈χ, ψ〉, |χ| = 8,
χ(−1) = −1, and |ψ| = 4. Let K be the subfield associated with 〈χ, ψ2〉 and let K ′

be the subfield associated with 〈χψ, ψ2〉 or 〈χ2, ψ〉 according as ψ(−1) = 1 or −1.
Suppose exp (Cl(N)) ≤ 2. We consider two cases separately.

(i) Assume ψ(−1) = 1. Then G(N+/Q) � (4, 4), G(K/Q) � G(K ′/Q) �
(8, 2), and G(K+/Q) � G(K ′+/Q) � (4, 2). By Proposition 8, D(N/K) �=
(1) or D(N/K ′) �= (1). Say D(N/K ′) �= (1). So, Cl(K ′) has exponent
≤ 2. Moreover, K ′ is associated with 〈χ2

17χ4, χ4χ3〉, exp (Cl(K)) > 2, and
D(N/K) = (1) by Proposition 11 point (4). By Proposition 6 point (2), χ
is of the form χ = ϕpϕqϕf and XN = 〈χ, ϕqϕf ′〉, where |ϕp| = 8, |ϕq| = 4,
ϕf is a character of conductor f with |ϕf | = 1 or 2 and (pq, f) = 1, f ′

is a divisor of f , and ϕf ′ is a character of conductor f ′ with |ϕ′
f | = 1

or 2. Hence, the unique biquadratic bicyclic subfield Q(
√
p,
√
q) of N+ is

Q(
√
17,

√
3). This is absurd; for p ≡ 1 (mod 8) and q ≡ 1 (mod 4).

(ii) Assume ψ(−1) = −1. Then G(N+/Q) � (8, 2), G(K/Q) � (8, 2) with

G(K+/Q) � (4, 2), and G(K ′/Q) � (4, 4) with G(K ′+/Q) � (4, 2). Then
D(N/K ′) �= (1) and exp (Cl(K ′)) ≤ 2. So, K ′ is one of three fields in
Table 10. Note that there is no pair of (K,K ′) such that G(K/Q) �
(8, 2) with G(K+/Q) � (4, 2), exp (Cl(K)) ≤ 2, and K+ = K ′+. Hence,
exp (Cl(K)) > 2 andD(N/K) = (1). By Proposition 6 point (2), χ is of the
form χ = ϕpϕqϕf and XN = 〈χ, ϕqϕf ′〉, where |ϕp| = 8, |ϕq| = 4, ϕf is a
character of conductor f with |ϕf | = 1 or 2 and (pq, f) = 1, f ′ is a divisor of
f , and ϕf ′ is a character of conductor f ′ with |ϕf ′ | = 1 or 2. Hence, XK′+

is of the form 〈ϕ2
pϕ

2
q, ϕ

2
q〉 = 〈ϕ2

p, ϕ
2
q〉. This is absurd. Because according to

Table 10, XK′+ = 〈χ5ψ16χ4, ψ8〉, 〈χ5χ
3
13, χ

6
13〉 or 〈χ5ψ16χ3, ψ8〉.

This completes the proof. �

8. The fields N with G(N/Q) � (2m, 2l)
with m ≥ l, and m ≥ 4 or l ≥ 3

Proposition 14. If N is an imaginary abelian number field with G(N/Q) �
(2m, 2l) with m ≥ l, and if m ≥ 4 or l ≥ 3, then exp (Cl(N)) > 2.

Proof. Let χ and ψ be two generators of XN such that |χ| = 2m, χ(−1) = −1,
|ψ| = 2l, and XN = 〈χ, ψ〉.

(i) By Corollary 10, if m ≥ 4 and l = 1, then exp (Cl(N)) > 2.
(ii) Assume ψ(−1) = 1. We may assume that m > l and hence m ≥ 4 by the

assumption. If m = l, then we change ψ to χψ and will consider this in (iii)
below. Assume l ≥ 2. (For l = 1 we have already considered in (i)). Let K
and K ′ be the subfields associated with 〈χ, ψ2〉 and 〈χψ, ψ2〉, respectively.
Suppose that Cl(N) has exponent ≤ 2. By Proposition 8, D(N/K) �= (1)
or D(N/K ′) �= (1). Say D(N/K ′) �= (1). So, Cl(K ′) has exponent ≤ 2.
In an iterative fashion we have that there is an imaginary subfield F of N
such that G(F/Q) � (2m, 2) with m ≥ 4 and exp (Cl(F )) ≤ 2. This would
contradict Corollary 10. Therefore, exp (Cl(N)) > 2.
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(iii) Assume ψ(−1) = −1. Note that N has two imaginary subfield K and K ′

such that XK = 〈χ, ψ2〉 and XK′ = 〈χ2, ψ〉. By Proposition 6 point(1), the
extension N/K ′ is not unramified. (a) Claim that if m ≥ 4 and l = 2, then
exp(Cl(N)) > 2. Suppose the contrary. By Proposition 2, exp(Cl(K ′))
≤ 2. In an iterative fashion we would have an imaginary subfield L with
G(L/Q) � (8, 4) and exp(Cl(L)) ≤ 2, which contradicts Proposition 13.
(b) Claim that if l ≥ 3, then exp(Cl(N)) > 2. Suppose that exp(Cl(N))
≤ 2. By Proposition 6 point (1), Cl(K ′) has exponent ≤ 2. In an iterative
fashion we have that there is an imaginary subfield M of N such that
G(M/Q) � (2l, 2l) with l ≥ 3 and exp (Cl(M)) ≤ 2. We denote by XM =
〈χ0, ψ0〉 with |χ0| = 2l, |ψ0| = 2l, χ0(−1) = −1, and ψ0(−1) = −1. Let
M0 be the subfield associated with 〈χ0, ψ

2
0〉. Then exp (Cl(M0)) ≤ 2 by

Proposition 6 point(1). By Proposition 13, l ≥ 4. However, in (i) above,
we already showed that if l ≥ 4, then exp (Cl(M0)) > 2. This contradiction
implies exp (Cl(N)) > 2.

This completes the proof. �
Theorem 1 follows from the proof of Theorem 1 in [AK], Propositions 9, 11, 12,

13, and 14.

9. Tables

For an odd prime p, χp denotes the odd character of conductor p and of order p−1

with χp(g) = e2πi/(p−1), where g is the smallest positive integer which generates the
multiplicative group (Z/pZ)∗. For prime 2, χ4 denotes the odd quadratic character
of conductor 4 and ψ8 denotes the even quadratic character of conductor 8.

When i ≥ 3 we let ψ2i be the even character of conductor 2i and of order 2i−2

with ψ2
2i = ψ2i−1 .

Table 5. G(N/Q) � (4, 2) with G(N+/Q) � (2, 2), exp (Cl(N)) ≤
2, exp (Cl(K)) > 2 and exp (Cl(K ′)) ≤ 2, K is associated with 〈χ〉
and K ′ is associated with 〈χψ〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′ Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈ψ16χ4χ
8
17, χ

8
17〉 4 8 1 3 〈χ5χ

30
61, χ

30
61〉 4 8 1

2 〈χ5χ
20
41, χ

20
41〉 4 8 1 4 〈χ3

13χ
14
29, χ

14
29〉 4 8 1

Table 6. G(N/Q) � (4, 2) with G(N+/Q) � (2, 2), exp (Cl(N)) ≤
2, exp (Cl(K)) ≤ 2, and exp (Cl(K ′)) ≤ 2, K is associated with
〈χ〉 and K ′ is associated with 〈χψ〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′ Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈χ5, ψ8〉 1 1 2 20 〈χ3
13, χ

8
17〉 2 1 4

2 〈ψ16χ4, χ3χ4〉 2 1 2 21 〈ψ16χ3, χ3χ4χ
2
5〉 4 2 2

3 〈χ5, χ3χ4〉 2 1 4 22 〈χ3
13, χ3χ

3
7〉 4 1 8

4 〈χ3
13, χ

2
5〉 1 1 2 23 〈χ5ψ8, ψ8χ4χ

3
7〉 4 2 4

5 〈χ5, χ
6
13〉 1 1 2 24 〈χ5, χ3χ

9
19〉 4 1 8

6 〈ψ16χ4, χ
2
5〉 1 1 2 25 〈χ3

13ψ8, ψ8χ3χ4〉 8 2 8
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7 〈χ5, χ
8
17〉 1 1 2 26 〈ψ16χ3, χ3χ

3
7〉 4 2 4

8 〈χ3
13, ψ8〉 1 1 2 27 〈χ5χ3χ4, χ4χ

3
7〉 8 4 4

9 〈χ5, χ3χ
3
7〉 2 1 4 28 〈χ5χ3χ

3
7, χ3χ4〉 8 4 4

10 〈ψ16χ4, χ4χ
3
7〉 4 1 4 29 〈χ5χ3χ4, χ3χ

3
7〉 8 4 4

11 〈χ5χ3χ4, ψ8〉 8 4 4 30 〈χ5ψ8, ψ8χ4χ
5
11〉 8 2 8

12 〈χ5, χ3χ4ψ8〉 2 1 4 31 〈χ4
17χ

3
7, χ4χ

3
7〉 4 2 4

13 〈χ5ψ8, χ3χ4〉 4 2 4 32 〈ψ16χ4χ
2
5, χ4χ

2
5χ

3
7〉 8 2 4

14 〈χ5ψ8, χ3χ4ψ8〉 4 2 4 33 〈χ5χ3χ
3
7, χ

3
7χ4ψ8〉 8 4 4

15 〈χ4
17χ4, ψ8〉 8 4 4 34 〈χ4

17χ
3
7, χ

3
7χ4ψ8〉 4 2 4

16 〈χ5, χ
3
7χ4〉 2 1 4 35 〈χ3

13χ
2
5, χ

2
5χ

8
17〉 8 2 4

17 〈χ3
13, χ3χ4〉 4 1 8 36 〈χ5χ3χ4, χ4χ

9
19〉 16 4 8

18 〈χ5, χ3χ
5
11〉 4 1 8 37 〈χ5χ3χ

3
7, χ

3
7χ

9
19〉 16 4 8

19 〈χ5, χ4χ
5
11〉 4 1 8 38 〈χ5χ3χ4ψ8, χ4ψ8χ

9
19〉 16 4 8

Table 7. G(N/Q) � (4, 2) with G(N+/Q) � Z/4Z,
exp (Cl(N)) ≤ 2, exp (Cl(K)) ≤ 2, and exp (Cl(K ′)) ≤ 2, K is
associated with 〈χ〉 and K ′ is associated with 〈χ2ψ, ψ〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′ Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈χ5, χ3〉 1 1 1 51 〈χ5ψ8, χ
3
7〉 4 2 1

2 〈ψ16χ4, χ4〉 1 1 1 52 〈χ5χ4χ
3
7, χ4ψ8〉 4 4 1

3 〈χ5, χ4〉 1 1 1 53 〈χ5χ3χ
9
19, χ3〉 4 8 1

4 〈χ5, χ
3
7〉 1 1 1 54 〈χ3

13, χ3ψ8〉 4 1 4

5 〈χ3
13, χ3〉 2 1 2 55 〈χ3

13ψ8, χ3ψ8〉 4 2 4

6 〈χ5, ψ8χ4〉 1 1 1 56 〈χ3
13χ3χ4, χ3ψ8〉 16 8 4

7 〈χ5ψ8, χ4〉 2 2 1 57 〈ψ16χ4, χ4χ3χ
3
7〉 8 1 8

8 〈χ5ψ8, ψ8χ4〉 2 2 1 58 〈ψ16χ3, χ4χ3χ
3
7〉 8 2 8

9 〈ψ16χ4, χ3〉 1 1 1 59 〈ψ16χ
3
7, χ3〉 4 4 1

10 〈ψ16χ3, χ4〉 2 2 1 60 〈ψ16χ
3
7, χ4χ3χ

3
7〉 16 4 8

11 〈ψ16χ3, χ3〉 1 2 1 61 〈χ4
17χ4, χ4χ

2
5〉 16 4 4

12 〈χ3
13, χ4〉 1 1 1 62 〈χ5χ

8
17, χ4〉 4 2 1

13 〈χ5, χ
5
11〉 2 1 2 63 〈χ4

17χ
3
7, χ3〉 2 2 1

14 〈χ5χ3χ4, χ3〉 2 4 1 64 〈χ4
17χ4, χ3ψ8〉 16 4 4

15 〈χ5χ3χ4, χ4〉 2 4 1 65 〈χ4
17χ4ψ8, χ3〉 4 4 1

16 〈ψ16χ4, χ4χ
2
5〉 2 1 2 66 〈χ4

17χ4ψ8, χ3ψ8〉 16 4 4

17 〈ψ16χ4χ
2
5, χ4〉 2 2 1 67 〈χ5χ3χ4, χ

3
7〉 8 4 1

18 〈ψ16χ4χ
2
5, χ4χ

2
5〉 2 2 2 68 〈χ5χ3χ

3
7, χ4〉 8 4 1

19 〈χ3
13, χ

3
7〉 1 1 1 69 〈χ5χ4χ

3
7, χ3〉 8 4 1

20 〈χ3
13ψ8, χ4〉 2 2 1 70 〈χ7

29χ
2
5, χ3χ

2
5〉 8 4 4

21 〈χ5χ3χ
3
7, χ3〉 2 4 1 71 〈χ5χ4χ

5
11, χ4ψ8〉 8 8 1

22 〈χ5χ3χ
3
7, χ

3
7〉 2 4 1 72 〈χ5χ

6
13, χ

3
7〉 4 2 1

23 〈ψ16χ4, χ
3
7〉 2 1 2 73 〈χ3

13χ
2
5, χ

3
7〉 4 2 1

24 〈ψ16χ
3
7, χ4〉 4 4 1 74 〈χ10

41χ4, χ3〉 4 4 1

25 〈χ5ψ8, χ3〉 4 2 1 75 〈χ5χ
6
13, χ4ψ8〉 4 2 1
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26 〈χ5χ3χ4, χ4ψ8〉 4 4 1 76 〈ψ16χ3, χ
5
11〉 2 2 1

27 〈χ5χ3χ4ψ8, χ3〉 2 4 1 77 〈χ9
37, χ3χ

2
5〉 4 1 4

28 〈χ5χ3χ4ψ8, χ4〉 4 4 1 78 〈ψ16χ4, χ
2
5χ

3
7〉 4 1 4

29 〈χ5χ3χ4ψ8, χ4ψ8〉 2 4 1 79 〈ψ16χ4χ
2
5, χ

2
5χ

3
7〉 4 2 4

30 〈χ5χ4χ
3
7, χ4〉 2 4 1 80 〈ψ16χ

3
7, χ4χ

2
5〉 8 4 2

31 〈χ5χ4χ
3
7, χ

3
7〉 2 4 1 81 〈χ5χ

14
29, χ4〉 8 4 1

32 〈χ9
37, χ4〉 1 1 1 82 〈χ5χ

8
17, χ

3
7〉 4 2 1

33 〈χ3
13χ3χ4, χ4〉 4 8 1 83 〈χ5χ

8
17, χ4ψ8〉 4 2 1

34 〈χ5χ3χ
5
11, χ3〉 4 8 1 84 〈χ4

17χ4, χ
5
11〉 4 4 1

35 〈ψ16χ4, χ
5
11〉 1 1 1 85 〈ψ16χ4, χ3χ

8
17〉 8 1 4

36 〈χ3
13, χ3χ

2
5〉 4 1 4 86 〈χ5χ3χ

3
7, χ4ψ8〉 8 4 1

37 〈χ5χ
6
13, χ3〉 4 2 1 87 〈χ5χ3χ4ψ8, χ

3
7〉 8 4 1

38 〈χ3
13χ

2
5, χ3χ

2
5〉 4 2 4 88 〈χ18

73χ3, χ4〉 32 4 2

39 〈χ7
29, χ

3
7〉 2 1 2 89 〈ψ16χ4χ

2
5, χ

5
11〉 4 2 1

40 〈χ4
17χ4, χ3〉 4 4 1 90 〈χ3

13χ
8
17, χ4〉 8 4 1

41 〈χ5χ4χ
5
11, χ4〉 4 8 1 91 〈χ5χ

14
29, χ

3
7〉 16 4 1

42 〈χ7
29, χ4ψ8〉 1 1 1 92 〈χ4

17χ3χ
2
5, χ4χ

2
5〉 16 4 4

43 〈ψ16χ3, χ4χ
2
5〉 4 2 2 93 〈χ5χ3χ

5
11, χ

3
7〉 16 8 1

44 〈ψ16χ4χ
2
5, χ3〉 4 2 1 94 〈ψ16χ

3
7, χ

5
11〉 4 4 1

45 〈χ5χ
8
17, χ3〉 4 2 1 95 〈χ4

17χ
3
7, χ

5
11〉 2 2 1

46 〈χ4
17χ3χ

2
5, χ3〉 4 4 1 96 〈χ5χ3χ

5
11, χ4ψ8〉 16 8 1

47 〈χ9
37, χ

3
7〉 2 1 2 97 〈χ4

17ψ8χ4, χ
5
11〉 4 4 1

48 〈χ5χ
6
13, χ4〉 4 2 1 98 〈χ5χ4χ

5
11, χ

3
7〉 16 8 1

49 〈χ3
13χ

2
5, χ4〉 4 2 1 99 〈χ5χ3χ

9
19, χ4ψ8〉 16 8 1

50 〈χ3
13χ3χ

3
7, χ

3
7〉 4 8 1 100 〈χ4

17χ3χ
2
5, χ

5
11〉 8 4 1

Table 8. G(N/Q) � (8, 2) with G(N+/Q) � (4, 2), exp (Cl(N)) ≤
2, exp (Cl(K)) ≤ 2, and exp (Cl(K ′)) ≤ 2, K is associated with
〈χ〉 and K ′ is associated with 〈χψ〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈χ2
17χ4, χ4χ3〉 4 4 2

Table 9. G(N/Q) � (8, 2) with G(N+/Q) � Z/8Z,
exp (Cl(N)) ≤ 2, exp (Cl(K)) ≤ 2, and exp (Cl(K ′)) ≤ 2, K is
associated with 〈χ〉 and K ′ is associated with 〈χ2ψ, ψ〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈ψ32χ4, χ4〉 1 1 1

2 〈ψ32χ4, χ3〉 1 1 1

3 〈ψ32χ4, χ
2
5χ4〉 2 1 2
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Table 10. G(N/Q) � (4, 4) with exp (Cl(N)) ≤ 2, exp (Cl(K)) ≤
2, and exp (Cl(K ′)) ≤ 2, K is associated with 〈χ2, ψ〉 and K ′ is
associated with 〈χ, ψ2〉.

Nr. XN = 〈χ, ψ〉 hN hK hK′

1 〈χ5, ψ16χ4〉 1 1 1

2 〈χ5, χ
3
13〉 1 1 1

3 〈χ5χ3χ4, ψ16χ4〉 8 1 8
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l, Ann. Inst. Fourier, Grenoble 23.3 (1973), 1-48. MR0360519 (50:12967)
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