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MAXIMUM PRINCIPLE AND CONVERGENCE

OF CENTRAL SCHEMES BASED ON SLOPE LIMITERS

ORHAN MEHMETOGLU AND BOJAN POPOV

Abstract. A maximum principle and convergence of second order central
schemes is proven for scalar conservation laws in dimension one. It is well
known that to establish a maximum principle a nonlinear piecewise linear
reconstruction is needed and a typical choice is the minmod limiter. Unfor-
tunately, this implies that the scheme uses a first order reconstruction at local
extrema. The novelty here is that we allow local nonlinear reconstructions
which do not reduce to first order at local extrema and still prove maximum
principle and convergence.

1. Introduction

This paper is concerned with scalar hyperbolic conservation laws

(1.1)

{
ut + f(u)x = 0, (x, t) ∈ R× (0,∞),
u(x, 0) = u0(x), x ∈ R,

where f is a given flux function. In recent years there has been a lot of development
in mathematical theory and construction of numerical algorithms for (1.1). Even
though the existence-uniqueness theory is complete, there are many numerically
efficient methods for which the questions of convergence and error estimates are still
open. For example, there are many second or higher order nonoscillatory schemes
based on minmod or other limiters which are numerically robust but theoretical
results about convergence or error estimates are still missing [3, 4, 5, 6, 7, 8]. A
fundamental step in the design of such a numerical algorithm is a piecewise linear
slope reconstruction; see for example [4, 8]. Nonlinear limiters such as minmod,
generalized minmod, UNO, and superbee are widely used. A common shortcoming
of all proofs is that the linear reconstruction used must reduce to first order (zero
slope) at local extrema in order to prove a maximum principle for the scheme
(see for example [8]), and when that limitation is not imposed there are typically
no theoretical results for the methods even though they perform well in practice
[3, 4, 8, 2].

In this paper we consider a class of nonlinear reconstructions which include
and are motivated by the so-called minimum angle plane reconstruction (MAPR)
introduced in [2]. The key idea (see section 2 here or [2]), is that at local extrema the
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slope of the reconstruction is not set to zero but it is limited by the smallest local
slope. As a consequence, the maximum principle proofs for generalized minmod
limiters in [8, 6] are no longer valid and a new approach is needed.

The paper is organized as follows. In section 2, we give a short overview of the
Nessyahu-Tadmor (NT) staggered central scheme and prove a maximum principle
when MAPR-like limiters are used. The result holds for a conservation law with
a Lipschitz flux (see Theorem 2.2), and also for any smooth convex flux (see The-
orem 2.5). In section 3, we prove that in the case of strictly convex flux the NT
scheme satisfies a one-sided Lipschitz stability estimate and converges to the entropy
solution when the MAPR-like limiter is properly selected. This is a generalization
of the result in [10] for the minmod slope reconstruction.

2. Nonoscillatory central schemes

In this section we are going to consider second order nonoscillatory staggered
central difference approximations to the scalar conservation law,

(2.1) ut + f(u)x = 0.

We restrict our attention to the one-dimensional staggered NT scheme [8], which
was the motivation for the construction of many other central staggered schemes;
see for example [6, 7, 2, 1]. Even though it may be possible to prove more general
results, we will only consider the standard NT scheme setup. Let v(x, t) be an
approximate solution to (2.1), and assume that the space mesh Δx and the time
mesh Δt are uniform. Let xj := jΔx, j ∈ Z, Ij := {s : |s − xj | < Δx

2 }, tn = nΔt,
n ∈ N, and

(2.2) vnj :=
1

Δx

∫
Ij

v(x, tn) dx

be the average of v(x, tn) over Ij . Next, assume that v(·, tn) is a piecewise linear
function of the form

(2.3) v(x, tn) =
∑

Lj(x, t
n) :=

∑(
vnj + (x− xj)

1

Δx
v′j

)
χj(x),

where χj is the characteristic function over Ij and
1

Δxv
′
j is the numerical derivative

of v(x = xj , t
n), which is yet to be specified. We proceed by integrating (2.1) over

Ij+ 1
2
× (tn, tn+1) which yields

vj+ 1
2
(tn+1) =

1

Δx

⎛
⎝∫ x

j+1
2

xj

Lj(x, t
n)dx+

∫ xj+1

x
j+1

2

Lj+1(x, t
n)dx

⎞
⎠

− 1

Δx

(∫ tn+1

tn
f(v(xj+1, τ ))dτ −

∫ tn+1

tn
f(v(xj , τ ))dτ

)
.

(2.4)

The first two linear integrands on the right of (2.4), Lj(x, t
n) and Lj+1(x, t

n), can

be integrated exactly and if the CFL condition (with mesh ratio λ := Δt
Δx )

(2.5) λ max
xj≤x≤xj+1

|f ′(v(x, t))| ≤ 1

2
, j ∈ Z,

is satisfied, then the last two integrands on the right of (2.4), f(v(xj , τ )) and
f(v(xj+1, τ )), can be integrated approximately by the midpoint rule at the expense
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of the O(Δt)3 local truncation error. Thus we arrive at

(2.6) vn+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)− λ

(
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

)
.

The approximate value for the midpoint rule in time, v
n+ 1

2

j , satisfying second order
accuracy requirement can be chosen as

(2.7) v
n+ 1

2
j = vnj − 1

2
λf ′

j ,

owing to Taylor expansion and (2.1). Here, 1
Δxf

′
j stands for an approximate numer-

ical derivative of the flux f(v(x = xj , t
n)), which is yet to be determined. Although

there are many different recipes to construct v′j and f ′
j , in this paper the following

are considered to be the approximations of the numerical derivatives

v′j = m(vnj+1 − vnj , v
n
j − vnj−1),(2.8)

f ′
j = f ′(vnj )v

′
j ,(2.9)

where m(·, ·) is the modified minmod limiter

(2.10) m(a, b) :=

{
sg(a) min(|a|, |b|), ab ≥ 0,

σmin(|a|, |b|), ab < 0,

with σ ∈ R, |σ| ≤ 1.

Remark 2.1. Note that the choice

(2.11) σ = sg(s), where s =

{
a, |a| ≤ |b|,
b, |b| ≤ |a|,

recovers the MAPR limiter introduced in [2].

Using the approximate slopes (2.8) and the approximate flux derivatives (2.9),
we end up with a family of central differencing schemes in the predictor-corrector
form

v
n+ 1

2

j = vnj − 1

2
λf ′

j ,(2.12)

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)− λ

(
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2

j )
)
.(2.13)

Note that (2.10) allows the predicted values {vn+
1
2

j }j (see (2.12)) to violate

maximum principle. That is, the minimum/maximum of the sequence {vn+
1
2

j }j
could be smaller/larger than that of {vnj }j . This is going to be the main difficulty
in proving maximum principle. We begin with a result in a simpler setting when
the flux is globally Lipschitz continuous.

Theorem 2.2. Let v′j be chosen by (2.8) and f ′
j = f ′(vnj )v

′
j. If f is globally

Lipschitz continuous, then the scheme described by (2.12)–(2.13) under the CFL
condition

(2.14) λ||f ′||L∞(R) ≤ β ≤
√
2− 1

2

satisfies the maximum principle

(2.15) min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1).
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Proof. First, we rewrite the term f(v
n+ 1

2

j+1 )− f(v
n+ 1

2

j ) in (2.13) as

(2.16) f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j ) = f ′(ξ
n+ 1

2

j+ 1
2

)(v
n+ 1

2
j+1 − v

n+ 1
2

j ),

where min(v
n+ 1

2
j , v

n+ 1
2

j+1 ) ≤ ξ
n+ 1

2

j+ 1
2

≤ max(v
n+ 1

2
j , v

n+ 1
2

j+1 ). Observe that,

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2

j

∣∣∣ = ∣∣∣∣vnj+1 − vnj − λ

2
(f ′(vnj+1)v

′
j+1 − f ′(vnj )v

′
j)

∣∣∣∣
≤

(
1 +

λ

2

(
|f ′(vnj+1)|+ |f ′(vnj )|

))
|vnj+1 − vnj |

≤ (1 + β)|vnj+1 − vnj |.

(2.17)

Using (2.14), (2.16) and (2.17) we find an upper bound for (2.13),

vn+1
j+ 1

2

≤ 1

2
(vnj + vnj+1) +

1

8
|v′j − v′j+1|+ λ

∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2
j )

∣∣∣
≤ 1

2
(vnj + vnj+1) +

(
1

2
+ β

)2

|vj+1 − vj |

≤ 1

2
(vnj + vnj+1) +

1

2
|vj+1 − vj | = max(vnj , v

n
j+1),

(2.18)

and similarly a lower bound,

vn+1
j+ 1

2

≥ 1

2
(vnj + vnj+1)−

1

8
|v′j − v′j+1| − λ

∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2
j )

∣∣∣
≥ 1

2
(vnj + vnj+1)−

(
1

2
+ β

)2

|vj+1 − vj |

≥ 1

2
(vnj + vnj+1)−

1

2
|vj+1 − vj | = min(vnj , v

n
j+1).

(2.19)

The above two bounds prove the theorem. �

Remark 2.3. This maximum principle proof implies the TVD bound for the NT
scheme proven in Theorem 3.2 from [8]. The proof of the TVD bound in [8] is
not valid for the Jacobian form which we use here (see (2.8)–(2.9) in this paper
or (3.16a)–(3.16b) in [8]), even for the standard minmod limiter (σ = 0 in (2.10)).
Hence, the present result extends Theorem 3.2 from [8] for the special choice of
numerical derivative and numerical flux (2.8)–(2.9) considered here.

Definition 2.4. The range of a function g : R → R is defined to be the interval

R(g) := [essinfx∈R g(x), esssupx∈R
g(x)].

Theorem 2.5. Let v′j be chosen as in (2.8) and f ′
j = f ′(vnj )v

′
j. If f is strictly

convex, that is, there exists constants γ1 ≤ γ2 such that

(2.20) 0 < γ1 ≤ f ′′ ≤ γ2,

then the scheme described by (2.12), (2.13) satisfies the maximum principle (2.15)
under the CFL condition

(2.21) λ max
w∈R(u0)

|f ′(w)| ≤ β,

where β is a fixed constant which depends only on γ1 and γ2; see (2.31).
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Proof. First, we observe

|f(b)− f(a)| =
∣∣∣∣∣
∫ b

a

f ′(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(∫ t

a+b
2

f ′′(s)ds+ f ′
(
a+ b

2

))
dt

∣∣∣∣∣
≤

(
γ2
4
|b− a|+

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣
)
|b− a|.

(2.22)

Let a = v
n+ 1

2
j and b = v

n+ 1
2

j+1 in the above inequality, then∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2
j )

∣∣∣
≤

⎛
⎝γ2

4

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣+
∣∣∣∣∣∣f ′

⎛
⎝v

n+ 1
2

j + v
n+ 1

2

j+1

2

⎞
⎠
∣∣∣∣∣∣
⎞
⎠ ∣∣∣vn+ 1

2
j+1 − v

n+ 1
2

j

∣∣∣ .(2.23)

Next, we bound the terms appearing on the right-hand side. We start with∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣ = ∣∣∣∣vnj+1 − vnj − λ

2
(f ′(vnj+1)v

′
j+1 − f ′(vnj )v

′
j)

∣∣∣∣
≤

(
1 +

λ

2

(
|f ′(vnj+1)|+ |f ′(vnj )|

))
|vnj+1 − vnj |

≤ (1 + β)|vnj+1 − vnj | ≤
1 + β

γ1
|f ′(vnj+1)− f ′(vnj )|

≤ 2(1 + β)

γ1
max

j

∣∣f ′(vnj )
∣∣ .

(2.24)

Note that the inequality

(2.25)

∣∣∣∣λ4 (
f ′(vnj )v

′
j + f ′(vnj+1)v

′
j+1

)∣∣∣∣ ≤ β

2
|vnj+1 − vnj |

implies

(2.26) min(vnj , v
n
j+1) ≤

v
n+ 1

2

j + v
n+ 1

2

j+1

2
≤ max(vnj , v

n
j+1)

for all β ≤ 1. From (2.20) and (2.26) it follows that

(2.27)

∣∣∣∣∣∣f ′

⎛
⎝v

n+ 1
2

j+1 + v
n+ 1

2
j

2

⎞
⎠
∣∣∣∣∣∣ ≤ max

j

∣∣f ′(vnj )
∣∣ .

We use (2.23), (2.24) and (2.27) and derive∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2

j )
∣∣∣ ≤ (

γ2(1 + β)

2γ1
+ 1

)
max

j
|f ′(vnj )|

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2

j

∣∣∣
≤

(
γ2(1 + β)

2γ1
+ 1

)
(1 + β)max

j
|f ′(vnj )||vnj+1 − vnj |.

(2.28)

Using (2.28) in (2.13) gives the estimates

vn+1
j+ 1

2

≤ 1

2
(vnj + vnj+1) +

1

8
|v′j − v′j+1|+ λ

∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2
j )

∣∣∣
≤ 1

2
(vnj + vnj+1) +

(
1

4
+ β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
|δnj+ 1

2
|

(2.29)
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and

vn+1
j+ 1

2

≥ 1

2
(vnj + vnj+1)−

1

8
|v′j − v′j+1| − λ

∣∣∣f(vn+ 1
2

j+1 )− f(v
n+ 1

2

j )
∣∣∣

≥ 1

2
(vnj + vnj+1)−

(
1

4
+ β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
|δnj+ 1

2
|,

(2.30)

where δn
j+ 1

2

= vnj+1 − vnj . Hence, under the CFL condition

(2.31) β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

)
≤ 1

4
,

we have

�(2.32) min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1).

Remark 2.6. In the case of Burgers’ equation (2.31) holds when β ≤ 0.1397 which
implies that the CFL condition (2.21) is satisfied with β = 0.1397.

Remark 2.7. It is possible to prove a result similar to Theorem 2.5 for nonconvex
fluxes which satisfy

(2.33) 0 < γ1 ≤ f (k)(x) ≤ γ2.

Such functions are called k-monotone functions and any fixed polynomial is a k-
monotone function for some k. The proof of this result will be given elsewhere.

3. One-sided l2 stability and convergence

Recall that {vnj }j∈Z and {vn+1
j+ 1

2

}j∈Z are the sequences of cell averages of the

numerical solution of NT scheme at time tn and tn+1, respectively. Let us introduce
the following notation for the jump sequences of the NT solution

(3.1) δj+ 1
2
:= vnj+1 − vnj and δj := vn+1

j+ 1
2

− vn+1
j− 1

2

, j ∈ Z,

at times tn and tn+1, respectively. With this notation we have the following theorem
which is the main result of this section.

Theorem 3.1. Let u0 ∈ L∞(R), let f be strictly convex in R(u0) and let f ′′ be
bounded on R. That is, there exist constants γ1 and γ2 such that

0 < γ1 ≤ f ′′(w), ∀w ∈ R(uo),(3.2)

f ′′(x) ≤ γ2, ∀x ∈ R.(3.3)

Then there exists a constant β which depends only on the ratio γ1/γ2 such that
under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ β,

the NT scheme with the limiter (2.10) and 0 ≤ σ ≤ 1 satisfies the following one-
sided Lipschitz condition

(3.4) ||{(δj)+}j∈Z||l2 ≤ ||{(δj+ 1
2
)+}j∈Z||l2 ,

where we use the standard “+” notation: x+ = max(x, 0). In other words, the l2
norm of the positive jumps does not increase in time.



MAXIMUM PRINCIPLE AND CONVERGENCE OF CENTRAL SCHEMES 225

Remark 3.2. Taking σ = 0 in (2.10), we obtain the original minmod limiter. It is
easy to see that among all σ, |σ| ≤ 1, the choice σ = 1 in (2.10) minimizes the
size of the positive jumps in the piecewise linear numerical solution. These are the
so-called entropy violating jumps for convex flux (see [9] and Remark 1 on page 422
in [8]), and one needs to have control of their size in order to prove convergence to
the entropy solution.

Proof. It is an easy exercise in real analysis to show that every bounded sequence
can be decomposed into a union of monotone subsequences. That is, given the
sequence {vnj }j∈Z there exists a nonempty collection of index sets Λk:={j| jkmin ≤
j ≤ jkmax} such that jkmax = jk+1

min for all k ∈ Z, and {vnj }j∈Λk
is nondecreasing if k is

even, and nonincreasing if k is odd. This decomposition is not necessarily unique.
To fix one, we choose {Λk}k such that Λk has maximum number of terms for each
even k. That is, for all even k such that Λk is nonempty, we have

vjkmin−1 > vjkmin
,(3.5)

vjkmax+1 > vjkmax
.(3.6)

Note that we have a single set Λk if the data is monotone and that (3.5) and (3.6)
only make sense if jkmin > −∞ and jkmax < ∞, respectively. With this notation,
there are only two possibilities to generate nonnegative jumps δj in the new sequence

{vn+1
j+1/2}j∈Z starting from the old sequence {vnj }j∈Z:

(i) If vnj−1 ≤ vnj ≤ vnj+1, i.e. j−1, j, j+1 ∈ Λk for some even k, then we have an
internal jump, i.e., generated from the interior of a nondecreasing monotone
subsequence Λk.

(ii) If (vnj − vnj−1)(v
n
j+1 − vnj ) ≤ 0 and at least one of these jumps (δj− 1

2
or δj+ 1

2
)

is not zero. That is, j − 1, j ∈ Λk and j, j + 1 ∈ Λk+1 for some k, then we
have a boundary jump, i.e., generated on the boundary of Λk and Λk+1.

The jumps generated in case 1 are always nonnegative, whereas the jumps generated
in case 2 may have different signs.

Next, without loss of generality, we assume that there is at least one nondecreas-
ing subsequence of {vnj }j∈Z, say with index set Λ0 = {0, . . . ,m}. Otherwise, there
is nothing to prove. We define the modified cell averages {v̄nj }j∈Z, as

(3.7) v̄nj :=

⎧⎪⎨
⎪⎩
vn0 , j ≤ 0,

vnj , 0 < j < m,

vnm, m ≤ j,

which is the so-called constant extension of {vnj }mj=0; see [10]. The jumps of the
modified cell averages are given by

(3.8) δ̄j+ 1
2
:= v̄nj+1 − v̄nj and δ̄j := v̄n+1

j+ 1
2

− v̄n+1
j− 1

2

, j ∈ Z.

The following facts follow from the definition of {v̄nj }j∈Z:

v̄n+1
j+ 1

2

= vn0 , j ≤ −1,

v̄n+1
j+ 1

2

= vnm, j ≥ m,

v̄j+ 1
2
= vj+ 1

2
, 1 ≤ j ≤ m− 2.

(3.9)
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Using the above we get

δ̄j = (. . . , 0, δ̄0, δ̄1, δ2, . . . , δm−2, δ̄m−1, δ̄m, 0, . . . ),

δ̄j+ 1
2
= (. . . , 0, δ 1

2
, δ 3

2
, . . . , δm− 1

2
, 0, . . . ),

(3.10)

with the convention that we drop any terms that do not make sense when m ≤ 3. In
view of (i) and (ii) the nonnegative jumps of the new sequence can be decomposed
into (interior and boundary) jumps generated by each Λk, for even k. Therefore,
to prove the theorem it is enough to show that

(3.11) ||{(δj)+}mj=0||l2 ≤ ||{(δj+ 1
2
)+}m−1

j=0 ||l2 ,

because the left-hand side includes all nonnegative jumps that may be generated
by Λ0. For the sequence (3.7) the limiter (2.10) coincides with the minmod limiter.
Hence, we can apply the one-sided stability result from [10] for a single nondecreas-
ing sequence

(3.12)
m∑
j=0

(δ̄j)
2 ≤

m−1∑
j=0

(δj+ 1
2
)2.

Having (3.12) it suffices to show that

(3.13)
m∑
j=0

(δj)
2
+ ≤

m∑
j=0

(δ̄j)
2.

We split the proof of (3.13) into four cases.

Case 1. m ≥ 4.

We need the following lemma.

Lemma 3.3. The following inequality holds when σ ≥ 0 in (2.10):

(3.14) (δ1)
2
+ + (δ0)

2
+ ≤ (δ̄1)

2 + (δ̄0)
2.

Proof. We are going to prove the argument in two steps.

Step 1. First, we will show that (δ1)
2 − (δ̄1)

2 ≤ 0.

Observe that

(δ1)
2 − (δ̄1)

2 = (δ1 + δ̄1)(δ1 − δ̄1) = kn+1
1

(
(vn+1

3
2

− vn+1
1
2

)− (v̄n+1
3
2

− v̄n+1
1
2

)
)

= kn+1
1 (v̄n+1

1
2

− vn+1
1
2

),

(3.15)

where kn+1
1 := δ1 + δ̄1 > 0 as δ1 and δ̄1 are both positive. Next, we need to check

the sign of v̄n+1
1
2

− vn+1
1
2

, where

v̄n+1
1
2

=
1

2
(v̄n0 + v̄n1 ) +

1

8
(v̄′0 − v̄′1)− λ

(
f(v̄

n+ 1
2

1 )− f(v̄
n+ 1

2
0 )

)
,(3.16)

vn+1
1
2

=
1

2
(vn0 + vn1 ) +

1

8
(v′0 − v′1)− λ

(
f(v

n+ 1
2

1 )− f(v
n+ 1

2
0 )

)
.(3.17)

Note that v′1 = m(vn1 − vn0 , v
n
2 − vn1 ) = v̄′1 , and v

n+ 1
2

1 = vn1 − λ
2 f

′(vn1 )v
′
1 = v̄

n+ 1
2

1 ,
which follows from (3.9). Also observe that v̄′0 = m(0, vn1 − vn0 ) = 0 and v′0 ≥ 0
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since σ ≥ 0 in (2.10). Subtract (3.17) from (3.16) to get

v̄n+1
1
2

− vn+1
1
2

=
1

8
(v̄′0 − v′0) + λ

(
f(v̄

n+ 1
2

0 )− f(v
n+ 1

2
0 )

)
= −1

8
v′0 + λ

(
f(vn0 )− f(v

n+ 1
2

0 )
)

≤ −1

8
v′0 +

λ2

2
|f ′(vn0 )|v′0 max

(
|f ′(vn0 )|,

∣∣∣∣f ′(vn0 − λ

2
f ′(vn0 )v

′
0)

∣∣∣∣
)
.

(3.18)

There are two possibilities:

(I) Suppose max
(
|f ′(vn0 )|,

∣∣f ′(vn0 − λ
2 f

′(vno )v
′
0)
∣∣) = |f ′(vn0 )|. Then we rewrite

(3.18) as

v̄n+1
1
2

− vn+1
1
2

≤ −1

8
v′0 +

1

2
|λf ′(vn0 )|2v′0

≤
(
−1

8
+

β2

2

)
v′0 ≤ 0.

(3.19)

(II) Suppose max
(
|f ′(vn0 )|,

∣∣f ′(vn0 − λ
2 f

′(vn0 )v
′
0)
∣∣) =

∣∣f ′(vn0 − λ
2 f

′(vn0 )v
′
0)
∣∣. Then

by the mean value theorem and (3.2) we have

(3.20) |vn1 − vn0 | ≤
2

γ1
max(|f ′(vn1 )|, |f ′(vn0 )|).

Now, by the above inequality, Taylor expansion, and (3.3) we have∣∣∣∣f ′(vn0 − λ

2
f ′(vn0 )v

′
0)

∣∣∣∣ ≤ |f ′(vn0 )|
(
1 +

λ

2
γ2v

′
0

)

≤ |f ′(vn0 )|
(
1 + λ

γ2
γ1

max(|f ′(vn1 )|, |f ′(vn0 )|
)

≤ |f ′(vn0 )|
(
1 + β

γ2
γ1

)
.

(3.21)

We use this result in (3.18) to get

v̄n+1
1
2

− vn+1
1
2

≤ −1

8
v′0 +

λ2

2

∣∣∣∣f ′
(
vn0 − λ

2
f ′(vn0 )v

′
0

)∣∣∣∣ |f ′(vn0 )|v′0

≤ −1

8
v′0 +

λ2

2

(
1 + β

γ2
γ1

)
|f ′(vn0 )|2v′0

≤
(
−1

8
+

β2

2

(
1 + β

γ2
γ1

))
v′0 ≤ 0.

(3.22)

Therefore, in both cases (I) and (II), we conclude that

(3.23) v̄n+1
1
2

− vn+1
1
2

≤ 0.

We finish the proof of Step 1 by observing that (3.15) and (3.23) imply

(δ1)
2 − (δ̄1)

2 ≤ 0.

Step 2. We now prove that (δ0)
2
+ − (δ̄0)

2 ≤ 0.
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If δ0 < 0, then (δ0)+ = 0 and there is nothing to prove. If δ0 > 0, we proceed as
in the proof of Step 1 as follows,

(δ0)
2 − (δ̄0)

2 = (δ0 + δ̄0)(δ0 − δ̄0) = kn+1
0

(
(vn+1

1
2

− vn+1
− 1

2

)− (v̄n+1
1
2

− v̄n+1
− 1

2

)
)

= kn+1
0

(
(vn+1

1
2

− v̄n+1
1
2

) + (vn0 − vn+1
− 1

2

)
)
,

(3.24)

where kn+1
0 := δ0 + δ̄0 > 0. We still need to check the sign of δ0 − δ̄0 so we rewrite

(2.30) for vn+1
− 1

2

and subtract it from vn0 to get

vn0 − vn+1
− 1

2

≤ 1

2
(vn0 − vn−1) +

(
1

4
+ β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
|vn0 − vn−1|

≤
(
1

4
− β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
(vn0 − vn−1).

(3.25)

By similar arguments used in (3.19) and (3.22), we have

(3.26) vn+1
1
2

− v̄n+1
1
2

≤
(
1

8
+

β2

2
c

)
v′0,

where c = 1 if the assumption of Case 1 holds, or c = (1+βγ2/γ1) if the assumption
of Case 2 holds. Now we apply these bounds to δ0 − δ̄0:

δ0 − δ̄0 =
(
(vn+1

1
2

− v̄n+1
1
2

) + (vn0 − vn+1
− 1

2

)
)

≤
(
1

8
+

β2

2
c

)
v′0 +

(
1

4
− β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
(vn0 − vn−1)

≤
(
1

8
− β2

2
c− β(1 + β)

(
γ2(1 + β)

2γ1
+ 1

))
(vn0 − vn−1) ≤ 0.

(3.27)

Finally, (3.24) and (3.27) imply

(δ0)
2
+ − (δ̄0)

2 ≤ 0.

This proves Step 2 and Lemma 3.3. �
By symmetric arguments it can also be shown that (δm−1)

2
+ − (δ̄m−1)

2 ≤ 0 and

(δm)2+ − (δ̄m)2 ≤ 0. Gathering all the results we have established so far, we end
up with

(3.28) (δ0)
2
+ + (δ1)

2
+ + (δm−1)

2
+ + (δm)2+ ≤ (δ̄0)

2
+ + (δ̄1)

2
+ + (δ̄m−1)

2
+ + (δ̄m)2+,

which leads us to
m∑
j=0

(δj)
2
+ = (δ0)

2
+ + (δ1)

2
+ + (δm−1)

2
+ + (δm)2+ +

m−2∑
j=2

(δj)
2
+

≤ (δ̄0)
2
+ + (δ̄1)

2
+ + (δ̄m−1)

2
+ + (δ̄m)2+ +

m−2∑
j=2

(δ̄j)
2
+

=
m∑
j=0

(δ̄j)
2.

(3.29)

This completes the proof for m ≥ 4. Next, we consider the remaining cases.

Case 2. m = 3.
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It is the same as Case 1 except that there are no middle jumps (δ2, . . . , δm−2) in
(3.10). Hence, we have

(3.30) (δ0)
2
+ + (δ1)

2
+ + (δ2)

2
+ + (δ3)

2
+ ≤ (δ̄0)

2 + (δ̄1)
2 + (δ̄2)

2 + (δ̄3)
2.

Case 3. m = 2.

We have already proved that

(δ0)
2
+ − (δ̄0)

2 ≤ 0.

By symmetric arguments it is also true that

(δ2)
2
+ − (δ̄2)

2 ≤ 0.

Next, we need to show that δ1 ≤ δ̄1 since both are positive. From (3.18) we have
v̄n+1

1
2

≤ vn+1
1
2

and by analogous arguments v̄n+1
3
2

≥ vn+1
3
2

. Together they imply

δ1 = vn+1
3
2

− vn+1
1
2

≤ v̄n+1
3
2

− v̄n+1
1
2

= δ̄1.

Therefore, we conclude that

(3.31) (δ0)
2
+ + (δ1)

2
+ + (δ2)

2
+ ≤ (δ̄0)

2 + (δ̄1)
2 + (δ̄2)

2.

Case 4. m = 1.

We already have (δ0)
2
+ ≤ (δ̄0)

2. We still need to show that (δ1)
2
+ ≤ (δ̄1)

2. If
δ1 ≤ 0, then we are done. So suppose δ1 > 0 and observe that

δ1 = vn+1
3
2

− vn+1
1
2

≤ vn+1
1 − vn+1

1
2

= v̄n+1
3
2

− vn+1
1
2

≤ v̄n+1
3
2

− v̄n+1
1
2

= δ̄1,

and hence,

(3.32) (δ0)
2
+ + (δ1)

2
+ ≤ (δ̄0)

2 + (δ̄1)
2.

Therefore, in all four cases (m = 1, 2, 3, 4), we have

�(3.33)
m∑
j=0

(δj)
2
+ ≤

m∑
j=0

(δ̄j)
2.

Now, we restrict the choice of σ in the modified minmod limiter (see (2.10)), to
be like the one in MAPR (see (2.11)). Namely, we define m(a, b) in (2.10) with σ
such that

(3.34) sg(σ) = sg(s), where s =

{
a, |a| ≤ |b|,
b, |b| ≤ |a|.

Under this assumption on the limiter, we have the following result.

Theorem 3.4. Let u0 ∈ L∞(R), f be strictly convex in R(u0) and f ′′ be bounded
on R. Then there exists constant β which depends only on the ratio γ1/γ2 and an
absolute constant c, c ≥ 1

9000 , such that under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ β,

the NT scheme with the minmod limiter m(a, b) defined as in (2.10)–(3.34) satisfies
the one-sided Lipschitz condition (3.4) provided that

(3.35) −min

(
1,

c

2

max(a+, b+)

min(|a|, |b|)

)
≤ σ ≤ 1.
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Proof. The case σ ≥ 0 follows from Theorem 3.1. Hence, we only consider the case
σ ≤ 0. This implies that we take a negative slope reconstruction at local minima
and local maxima. Following the same steps as in the proof of Theorem 3.1, in the
general case (m ≥ 4) we get

(3.36) δ1 − δ̄1 ≤ −1

4
v′0, and δ0 − δ̄0 ≤ 0,

where we recall that δ− 1
2
< 0 ≤ δ 1

2
and σ < 0 implies that |δ− 1

2
| ≤ δ 1

2
. Thus,

(3.37) (δ0)
2
+ + (δ1)

2
+ ≤ (δ̄0)

2 +

(
δ̄1 +

1

4
|σ|d

)2

,

where d = min
(
|δ− 1

2
|, |δ 1

2
|
)
. Notice that by (3.35), we obtain

(3.38)
1

2
δ̄1|σ|d+

1

16
|σ|2d2 ≤ c

(
5

16
(δ 1

2
)2 +

1

4
δ 1

2
δ 3

2

)
≤ c

(
(δ 1

2
)2 + (δ 3

2
− 2δ 1

2
)2
)
,

which implies

(3.39) (δ0)
2
+ + (δ1)

2
+ ≤ (δ̄0)

2 + (δ̄1)
2 + c

(
(Δ2δ̄− 1

2
)2 + (Δ2δ̄ 1

2
)2
)
.

By symmetric arguments, it can also be shown that

(3.40) (δm−1)
2
+ + (δm)2+ ≤ (δ̄m−1)

2 + (δ̄m)2 + c
(
(Δ2δ̄m− 1

2
)2 + (Δ2δ̄m+ 1

2
)2
)
.

The remaining cases, 1 ≤ m ≤ 3, can be handled in a similar way and we skip their
proofs. We conclude that

(3.41)

m∑
j=0

(δj)
2
+ ≤

m∑
j=0

(δ̄j)
2 + c

∑
j

(Δ2δ̄j+ 1
2
)2 ≤

m−1∑
j=0

(δj+ 1
2
)2,

where the last inequality follows from the one-sided stability result proven in [10]
for any nonnegative jump sequence; see (56) on page 553 in [10]. �
Remark 3.5. If the local jumps a, b in the minmod limiter (2.10)–(3.34) are such
that

(3.42)
c

2

max(a+, b+)

min(|a|, |b|) ≥ 1,

we can recover the MAPR limiter taking σ as in (2.11). Note that (3.42) is always
true if c ≥ 2. However, even though the bound c ≥ 1

9000 can be improved, the
current approach does not allow us to prove the one-sided Lipschitz condition (3.4)
with c ≥ 2. Therefore, the minmod limiter (2.10)–(3.34) is more restrictive than
MAPR in some cases.

Analogous to [10], a maximum principle and a one-sided stability result implies
a convergence result. To state the convergence theorem we briefly introduce the
space of functions of bounded variation and one-sided Lipschitz classes which are
used in the context of conservation laws.

Definition 3.6. The space Lip(1,L1(R)) consists of all functions g ∈ L1(R) such
that the seminorm

(3.43) |g|Lip(1,L1(R)) := lim sup
y>0

1

y

∫
R

|g(x+ y)− g(x)| dx

is finite.
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For functions g ∈ Lip(1,L1(R)) we consider the classes Lip(s,Lp(R))+ defined
by

(3.44) ‖ (g(· − y)− g(·))+ ‖Lp(R) ≤ Mys, y > 0.

The smallest M ≥ 0 for which (3.44) holds is denoted by |g|Lip(s,Lp(R))+. When we
set p = ∞ and s = 1, we obtain the class Lip(1, L∞(R))+, which is the usual one-
sided Lipschitz class used in conservation laws denoted by Lip+; see for example
[8]. With this notation, by repeating exactly the same steps as in section 4 in [10],
we obtain the following convergence result.

Theorem 3.7. Let u0 ∈ Lip(1,L1(R)) ∩ Lip(1,L2(R))+. Then, there exists β > 0
such that under the CFL condition λ||f ′||L∞(R) ≤ β the NT scheme based on the
limiter (2.10), (3.34)–(3.35) converges to the unique entropy solution of (1.1).
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