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THE GENERALIZED POLARIZATION TENSORS

FOR RESOLVED IMAGING.

PART I: SHAPE RECONSTRUCTION

OF A CONDUCTIVITY INCLUSION

HABIB AMMARI, HYEONBAE KANG, MIKYOUNG LIM, AND HABIB ZRIBI

Abstract. With each C2-domain and material parameter, an infinite number
of tensors, called the Generalized Polarization Tensors (GPTs), is associated.
The GPTs contain significant information on the shape of the domain and
its material parameter. They generalize the concept of Polarization Tensor
(PT), which can be seen as the first-order GPT. It is known that given an

arbitrary shape, one can find an equivalent ellipse or ellipsoid with the same
PT. In this paper we consider the problem of recovering finer details of the
shape of a given domain using higher-order polarization tensors. We design
an optimization approach which solves the problem by minimizing a weighted
discrepancy functional. In order to compute the shape derivative of this func-
tional, we rigorously derive an asymptotic expansion of the perturbations of
the GPTs that are due to a small deformation of the boundary of the do-
main. Our derivations are based on the theory of layer potentials. We perform
some numerical experiments to demonstrate the validity and the limitations
of the proposed method. The results clearly show that our approach is very
promising in recovering fine shape details.

1. Introduction

With each shape of a domain, physical and geometric quantities, such as eigen-
values and capacity, are intrinsically associated. The notion of (generalized) polar-
ization tensors (GPTs) is one of them [6]. The GPTs generalize the concepts of
classic polarization tensors [25]. The GPTs associated with a domain and a mate-
rial parameter can be used to describe the perturbations of electric fields due to the
presence of a conductivity inclusion. An electrical field present in a background ho-
mogeneous conductor is perturbed by the presence of the inclusions. Then the field
perturbations can be represented by multipolar expansions which are expressed in
terms of the GPTs. Indeed, the GPTs of the conductivity inclusion can be re-
constructed from far-field measurements [6]. Consider the following conductivity
transmission problem:

(1.1)

{
∇ ·
(
χ(R2 \D) + kχ(D)

)
∇u = 0 in R

2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,
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where χ(D) denotes the characteristic function of the domain D and H is a given
harmonic function in R

2.
The coefficient χ(R2 \D)+ kχ(D) represents the conductivity distribution. The

inclusion D has conductivity k �= 1 while the background R
2 \D has conductivity

1. The function ∇H is the background electric field and ∇u is the electric field
in the presence of the inclusion D. Then the perturbation, u −H, is given by the
multipolar expansion [6]:

(1.2) (u−H)(x) =
+∞∑

|α|,|β|=1

(−1)|α|

α!β!
∂αΓ(x)Mαβ∂

βH(x0) as |x| → +∞,

where x0 is the center of mass of D and Γ is the fundamental solution to the
Laplacian, i.e.,

(1.3) Γ(x) =
1

2π
ln |x|.

Here α = (α1, α2) and β = (β1, β2) are multi-indices and |α| = α1 + α2.
The quantity Mαβ is called the generalized polarization tensor (GPT). Formula

(1.2) shows that through the GPTs we have complete information about the far-field
expansion of the perturbation u−H.

When |α| = |β| = 1, we denote Mαβ = mij and call the matrix M = (mij)
2
i,j=1

the polarization tensor (PT).
The concepts of PT and GPTs occur in several interesting contexts, in particular,

in asymptotic models of dilute composites (see [22] and [10]) and in potential theory
related to certain questions arising in hydrodynamics [25].

Another important use of these concepts is for imaging diametrically small in-
clusions from boundary measurements. In fact, the GPTs are the basic building
blocks for the asymptotic expansions of the boundary voltage perturbations due
to the presence of small conductivity inclusions inside a conductor [19, 3]. Based
on this expansion, efficient algorithms to determine the location and some geomet-
ric features of the inclusions were proposed. We refer to [5, 6] and the references
therein for recent developments of this theory.

According to [13] and [8], the PT associated with an unknown inclusion can be
detected from boundary measurements. The detected PT in turn yields the “equiv-
alent ellipse” of a single inclusion. In other words, in terms of the PT associated
with an inclusion and a conductivity parameter (or a cluster of inclusions and a set
of conductivity parameters) we are able to recover an equivalent ellipse with the
same PT. On the other hand, it is proved in [4] that the full set of GPTs uniquely
determines the inclusion (and its conductivity). In fact, from the set of all the
GPTs we can recover the “Dirichlet-to-Neumann map” of the inclusion, and hence
its shape and its conductivity, by making use of a uniqueness result due to Isakov
[21]. Therefore, it is natural to ask the question whether we can recover more shape
details than the equivalent ellipse using a finite number of GPTs. The aim of this
paper is to investigate this challenging question.

Recall that there is a canonical one-to-one correspondence between the class of
PTs and the class of ellipses [13]. That is why one can find easily the equivalent
ellipse if one knows the PT. However, there is no (and it is unlikely to have one)
known class of geometric shapes which has such a property for higher-order polar-
ization tensors. In this paper, we propose an optimization approach to recover finer
shape details using GPTs.
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Let B be an unknown domain. Let Mαβ(k,B) denote the GPT associated with
B and the conductivity k. It is worth emphasizing that the GPT also depends on
the conductivity contrast k. Suppose thatMαβ(k,B) are known for all |α|+|β| ≤ K
for some number K. Suppose also that the conductivity is known. Our recursive
optimization procedure would be to minimize over D,

(1.4) J (n)[D] :=
1

2

∑
|α|+|β|≤K

w
(n)
|α|+|β|

∣∣∣∣∣∣
∑
α,β

aαbβMαβ(k,D)−
∑
α,β

aαbβMαβ(k,B)

∣∣∣∣∣∣
2

.

Here the coefficients aα and bβ are such that H =
∑

aαx
α and F =

∑
bβx

β are

homogeneous harmonic polynomials and w
(n)
|α|+|β| are binary weights. We assign

either 0 or 1 to w
(n)
|α|+|β| depending which GPTs are used at step n.

In step n we use as an initial guess the result of step n− 1. In the first step we
get an equivalent ellipse with the same PT as well as the location of the inclusion.
If there are multiple inclusions, we choose in the second step,

w
(2)
|α|+|β| = 1 for 3 ≤ |α|+ |β| ≤ K,

in order to have a better initial guess than an ellipse. In general, since we don’t
know whether the target is connected or multiple connected, we use the second
choice of weights.

It is worth making a remark to motivate the use of linear combinations of the
GPTs where the coefficients come from harmonic polynomials. Note that if D is a
ball, then the GPTs are the coefficients of the “Dirichlet-to-Neumann map” of D
in the basis of spherical harmonics. The reason that only the linear combinations
corresponding to harmonic polynomials are useful is that they are the only ones
corresponding to functions solving the background problem.

Our method is in the same spirit as the continuation method in frequency [14,
15, 11] which was designed to solve inverse scattering problems for the Helmholtz
equation.

In order to minimize the weighted discrepancy functional given in (1.4), we
need a shape derivative for the GPTs. It turns out that the shape derivative of∑

α,β aαbβMαβ(k,D) has a simple form. This is the main reason of choosing as a
discrepancy functional the difference between calculated and given harmonic sums
of GPTs rather than the difference between individual GPTs. In order to calcu-
late the shape derivative of our discrepancy functional, we derive an asymptotic
expansion of the GPTs under small perturbations of the boundary of the inclusion
D.

The derivation is rigorous and based on layer potential techniques in the same
spirit as in [5, 6]. We mention that related asymptotic formulas for boundary
measurements, far-field data, and modal measurements have been obtained in a
series of recent papers [9, 1, 2, 24].

We implement the proposed optimization procedure to recover both convex or
non-convex shapes. The method of this paper is quite promising in the sense that
the numerical results clearly exhibit that the shape moves toward the actual shape.
They show not only the validity of the method but also that the equivalent ellipse
is a good initial guess.

This paper is organized as follows. In Section 2, we review some basic facts
on layer potentials which will be used to define the GPTs and to derive their
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shape derivatives. In Section 3 we review asymptotic formulas for perturbations in
boundary integral operators due to small changes of the boundary. Section 4 is to
derive a new asymptotic formula for the perturbations of the GPTs. In Section 5
we set up the optimization problem to recover shape details using a set of GPTs.
In Section 6 we present results of numerical experiments and discuss the validity
and the limitations of our method.

We emphasize that even though we only investigate the problem in two dimen-
sions, the method of this paper is expected to work equally well in three dimensions.

2. Layer potentials and GPTs

Throughout this paper we assume that the domains under consideration have
C2-smooth boundaries. For a given bounded domain D in R

2, the single and double
layer potentials of the density function φ ∈ L2(∂D) are defined by

SD[φ](x) :=

∫
∂D

Γ(x− y)φ(y)dσ(y), x ∈ R
2,

DD[φ](x) :=

∫
∂D

∂

∂νy
Γ(x− y)φ(y)dσ(y), x ∈ R

2 \ ∂D,

where νy is the outward unit normal to ∂D at y ∈ ∂D and Γ is given by (1.3).
For a function u defined on R

2 \ ∂D, we denote

∂u

∂ν

∣∣∣
±
(x) := lim

t→0+
〈∇u(x± tνx), νx〉, x ∈ ∂D,

if the limits exist. The notation u|± is understood likewise. The following are the
well-known properties of the single and double layer potentials:

• Trace formula [20]:

∂SD[φ]

∂ν

∣∣∣
±
(x) =

(
±1

2
I +K∗

D

)
[φ](x), x ∈ ∂D,(2.1)

DD[φ]|± =

(
∓1

2
I +KD

)
[φ](x), x ∈ ∂D,(2.2)

where

KD[φ](x) =
1

2π

∫
∂D

〈y − x, ν(y)〉
|x− y|2 φ(y) dσ(y),

and K∗
D is the L2-adjoint of KD, i.e.,

K∗
D[φ](x) =

1

2π

∫
∂D

〈x− y, ν(x)〉
|x− y|2 φ(y) dσ(y).

• For any real number λ with |λ| > 1/2 or λ = −1/2, (λI −K∗
D) is invertible

on L2(∂D). If |λ| ≥ 1/2, then (λI − K∗
D) is invertible on L2

0(∂D) := {f ∈
L2(∂D) :

∫
∂D

fdσ = 0}. See [20] and [26].

• If φ ∈ C1,α(∂D) for some α > 0, then DDφ is C1,α on D and R
2 \D, and

we have (see [16] for example)

∂(DDφ)

∂ν

∣∣∣
−
=

∂(DDφ)

∂ν

∣∣∣
+

on ∂D.
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Let D be a bounded domain in R
2 and suppose that the conductivity of D is k,

0 < k �= 1 < +∞. Let λ = (k+1)/(2(k− 1)). For a multi-index α = (α1, α2) ∈ N
2,

define φα by

(2.3) φα(y) := (λI −K∗
D)−1

[
νx · ∇xα

]
(y), y ∈ ∂D.

Here and throughout this paper, we use the conventional notation: xα = xα1
1 xα2

2 .
Then, the generalized polarization tensors Mαβ for α, β ∈ N

2 are defined, equiva-
lently to (1.2), by

(2.4) Mαβ(k,D) :=

∫
∂D

yβφα(y)dσ(y).

Key properties of positivity and symmetry of the GPTs are studied in [6, Chapter
4]. We shall emphasize that what is important is not the individual terms Mαβ but
their harmonic combinations. A harmonic combination of GPTs is

∑
α,β aαbβMαβ

where
∑

α aαx
α and

∑
β bβx

β are harmonic polynomials. We will call such (aα) and

(bβ) harmonic coefficients. For example, the following symmetry property holds:

(2.5)
∑
α,β

aαbβMαβ(k,D) =
∑
α,β

aαbβMβα(k,D)

for any pair (aα), (bβ) of harmonic coefficients.
Let us record the following uniqueness theorem.

Theorem 2.1. If all harmonic combinations of GPTs of two domains are the same,
i.e., ∑

α,β

aαbβMαβ(k1, D1) =
∑
α,β

aαbβMαβ(k2, D2)

for all pairs (aα), (bβ) of harmonic coefficients, then D1 = D2 and k1 = k2.

In [4], the uniqueness theorem was stated under the assumption thatMαβ(k1, D1)
= Mαβ(k2, D2) for all α and β; but a quick glance of the proof there reveals that
Theorem 2.1 is what was actually proved.

3. Asymptotic expansions of boundary integral operators

Let D be a bounded domain with C2-boundary and let, for ε small, Dε be an
ε-perturbation of D, i.e., there is a function h ∈ C1(∂D) such that

(3.1) ∂Dε := {x̃ = x+ εh(x)ν(x) | x ∈ ∂D},
where ν is the outward unit normal vector field on ∂D. Let Ψε be the diffeomor-
phism from ∂D to ∂Dε given by

(3.2) Ψε(x) = x+ εh(x)ν(x).

In view of (2.3) and (2.4), we need to get an asymptotic expansion of the operator
K∗

Dε
in order to get that of Mαβ(k,Dε). A complete asymptotic expansion of the

boundary integral operator K∗
Dε

on L2(∂Dε) is derived in terms of ε in [9, Theorem
2.1]. In particular, the first order approximation is as follows.

Lemma 3.1. For φ̃ ∈ L2(∂Dε) let φ := φ̃◦Ψε. There exists a constant C depending
only on the C2-norm of ∂D and ‖h‖C1 such that

(3.3)
∥∥∥(K∗

Dε
[φ̃]
)
◦Ψε −K∗

D[φ]− εK(1)
D [φ]

∥∥∥
L2(∂D)

≤ Cε2||φ||L2(∂D),
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with the operator K(1)
D defined for any φ ∈ L2(∂D) by

K(1)
D [φ](x) = p.v.

∫
∂D

k1(x, y)φ(y)dσ(y) x ∈ ∂D,

where

(3.4)

k1(x, y) = −2
〈x− y, ν(x)〉〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|4

+
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|2

−〈x− y, τ (x)h(x)ν(x) + h′(x)T (x)〉
|x− y|2

+
〈x− y, ν(x)〉

|x− y|2
(
h(x)τ (x)− h(y)τ (y)

)
.

Here, τ (x) denotes the curvature of ∂D at x, T the unit tangential vector field
on ∂D, p.v. the Cauchy principal value, and h′ the derivative of h on ∂D, i.e.,
h′ = ∂h

∂T .

We shall emphasize that K(1)
D is bounded on L2(∂D). In fact, the first, second,

and fourth kernels on the right-hand side of (3.4) are bounded since ∂D is of class
C2, while the third kernel defines a singular integral operator which is bounded on
L2(∂D) by the theorem of Coifman, McIntosh and Meyer [17].

Moreover, the following expansions of ν̃ and σ̃ hold:

(3.5) ν̃(x̃) = ν(x)− εh′(x)T (x) +O(ε2)

and

(3.6) dσ̃(x̃) = dσ(x)− ετ (x)h(x)dσ(x) +O(ε2).

Here, the remainder O(ε2) is bounded by Cε2 for some C which depends only on
the C2-norm of ∂D and ‖h‖C1(∂D).

The following lemma was also obtained in [9, Lemma 3.1].

Lemma 3.2. Let φ̃ε =
(
λI−K∗

Dε

)−1
[ν̃ ·∇H], φε = φ̃ε◦Ψε, and φ =

(
λI−K∗

D

)−1
[ν ·

∇H]. Then we have

‖φε − φ− εφ1‖L2(∂D) ≤ Cε2‖φ‖L2(∂D),

where C is a constant depending only on the C2-norm of ∂D and ‖h‖C1 and

(3.7) φ1 = (λI −K∗
D)−1

[
K(1)

D [φ] + h〈(∇2H)ν, ν〉 − h′ ∂H

∂T

]
.

We now rewrite the operator K(1)
D in terms of more familiar operators. For

x, y ∈ ∂D (x �= y), we have

∂

∂T (x)
Γ(x− y) =

1

2π

〈x− y, T (x)〉
|x− y|2 ,

∂2

∂T (x)2
Γ(x− y) =

1

2π

[
1

|x− y|2 +
〈x− y, ν(x)〉τ (x)

|x− y|2 − 2(〈x− y, T (x)〉)2
|x− y|4

]

=
1

2π

[
− 1

|x− y|2 +
〈x− y, ν(x)〉τ (x)

|x− y|2 +
2(〈x− y, ν(x)〉)2

|x− y|4

]
,
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and

∂2

∂ν(x)ν(y)
Γ(x− y) =

1

2π

[
−〈ν(x), ν(y)〉

|x− y|2 +
2〈x− y, ν(x)〉〈x− y, ν(y)〉

|x− y|4

]
.

It then follows that

− ∂

∂T (x)

(
h(x)

∂

∂T (x)

)
Γ(x− y) + h(y)

∂2

∂ν(x)ν(y)
Γ(x− y)

= −2
〈x− y, ν(x)〉〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|4 +
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|2

− 〈x− y, τ (x)h(x)ν(x) + h′(t)T (x)〉
|x− y|2

= k1(x, y)−
〈x− y, ν(x)〉

|x− y|2
(
h(x)τ (x)− h(y)τ (y)

)
.

Define Hs(∂D), s = 1, 2, to be the usual Sobolev spaces on ∂D. If φ ∈ H1(∂D),
then SD[φ] ∈ H2(∂D) and ∂

∂νDD[hφ] ∈ L2(∂D). Note that the left-hand side of
the first identity is the integral kernel of the operator

φ �→ − ∂

∂T
(h

∂

∂T
)SD[φ] +

∂

∂ν
DD[hφ].

Thus the second identity shows that

(3.8) K(1)
D [φ] = − ∂

∂T

(
h
∂SD[φ]

∂T

)
+

∂DD[hφ]

∂ν
+ hτK∗

D[φ]−K∗
D[hτφ]

for all φ ∈ H1(∂D). It is interesting to observe that the above identity tells us that
the operator

φ �→ − ∂

∂T
(h

∂

∂T
)SD[φ] +

∂

∂ν
DD[hφ]

may be extended as a bounded operator on L2(∂D).

4. Asymptotic expansions of the GPTs

We now derive asymptotic expansions of the GPTs.

Proposition 4.1. For multi-indices α and β, let F (x) = xβ and H(x) = xα. Let

φ = (λI −K∗
D)−1

[
∂H

∂ν

∣∣∣
∂D

]
,(4.1)

ψ = (λI −KD)−1[F |∂D].(4.2)

The following asymptotic expansion holds:

(4.3) Mαβ(k,Dε)−Mαβ(k,D) = ε
〈
h, pαβ(k,D)

〉
L2(∂D)

+O(ε2),

where

pαβ(k,D) =
∂ψ

∂T

∂(H + SD[φ])

∂T
+ φ

∂(F +DD[ψ])

∂ν

+ ψ
(
〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉

)
.

(4.4)
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Proof. Since

F (x+ εh(x)ν(x)) = F (x) + εh(x)
∂F

∂ν
(x) +O(ε2), x ∈ ∂D,

it follows from (3.6) and Lemma 3.2 that

Mαβ(k,Dε) =

∫
∂Dε

F (x̃)φ̃ε(x̃) dσε(x̃)

=

∫
∂D

(
F (x) + εh(x)

∂F

∂ν
(x)
)(

φ(x) + εφ1(x)
)(
1− ετ (x)h(x)

)
dσ(x) +O(ε2)

= Mαβ(k,D) + ε

∫
∂D

Fφ1 dσ + ε

∫
∂D

(∂F
∂ν

− τF
)
φh dσ +O(ε2).

Hence the definition (4.2) yields

Mαβ(k,Dε) = Mαβ(k,D) + ε

∫
∂D

(λI −KD)[ψ]φ1 dσ

+ ε

∫
∂D

(∂F
∂ν

− τF
)
φh dσ +O(ε2).

(4.5)

Let us now calculate the term
∫
∂D

(λI −KD)[ψ]φ1 dσ. From (3.7) we get∫
∂D

(λI −KD)[ψ]φ1 dσ =

∫
∂D

ψ(λI −K∗
D)[φ1] dσ

=

∫
∂D

ψ

[
K(1)

D [φ] + h〈(∇2H)ν, ν〉 − h′ ∂H

∂T

]
dσ.

Next, because of (3.8), we have∫
∂D

ψK(1)
D [φ] dσ=

∫
∂D

ψ

[
− ∂

∂T

(
h
∂SD[φ]

∂T

)
+

∂DD[hφ]

∂ν
+hτK∗

D[φ]−K∗
D[hτφ]

]
dσ.

We claim that

(4.6)

∫
∂D

ψ
∂DD[hφ]

∂ν
dσ =

∫
∂D

∂DD[ψ]

∂ν
hφ dσ.

In fact, let ΛD denote the Dirichlet-to-Neuman map on D, that is, ΛD[ψ] = ∂u/∂ν,
where Δu = 0 in D and u = ψ on ∂D. Then Green’s theorem yields∫

∂D

ψ
∂DD[hφ]

∂ν
dσ =

∫
∂D

ΛD[ψ]DD[hφ]
∣∣
− dσ

=

∫
∂D

ΛD[ψ](
1

2
I +KD)[hφ] dσ

=

∫
∂D

(
1

2
I +K∗

D)ΛD[ψ]hφ dσ.

In view of (2.2), the solution to the Dirichlet problem Δu = 0 in D and u = ψ on
∂D is given by

u(x) = DD

(1
2
I +KD

)−1
[ψ](x), x ∈ D.

Therefore, we have

ΛD[ψ] =
∂

∂ν
DD

(1
2
I +KD

)−1
[ψ] on ∂D.



THE GENERALIZED POLARIZATION TENSORS FOR RESOLVED IMAGING 375

It then follows from (2.1) that

(
1

2
I +K∗

D)ΛD[ψ] =
∂

∂ν
SD

[
∂

∂ν
DD

(1
2
I +KD

)−1
[ψ]

] ∣∣∣
+
.

One can easily see, using again Green’s theorem and (2.2), that for x ∈ R
2 \D,

SD

[
∂

∂ν
DD

(1
2
I +KD

)−1
[ψ]

]
(x) = DD

[
DD

(1
2
I +KD

)−1
[ψ]
∣∣∣
−

]
(x) = DD[ψ](x).

Thus we get

(
1

2
I +K∗

D)ΛD[ψ] =
∂DD[ψ]

∂ν
,

and hence (4.6) holds.
With this result in hand, we now obtain∫
∂D

ψK(1)
D [φ] dσ =

∫
∂D

h

[
∂ψ

∂T

∂SD[φ]

∂T
+

∂D[ψ]

∂ν
φ+ τψK∗

D[φ]− τKD[ψ]φ

]
dσ,

and hence∫
∂D

(λI −KD)[ψ]φ1 dσ =

∫
∂D

h

[
∂ψ

∂T

∂SD[φ]

∂T
+

∂D[ψ]

∂ν
φ+ τψK∗

D[φ]

− τKD[ψ]φ+ ψ〈(∇2H)ν, ν〉+ ∂

∂T

(
ψ
∂H

∂T

)]
dσ.

It then follows from (4.5) that

(4.7) Mαβ(k,Dε)−Mαβ(k,D) = ε

∫
∂D

h(x)pαβ(k,D)(x) dσ +O(ε2),

where

pαβ(k,D) =
∂ψ

∂T

∂SD[φ]

∂T
+

∂D[ψ]

∂ν
φ+ τψK∗

D[φ]− τKD[ψ]φ

+ ψ〈(∇2H)ν, ν〉+ ∂

∂T

(
ψ
∂H

∂T

)
+
(∂F
∂ν

− τF
)
φ;

but,

∂

∂T

(
ψ
∂H

∂T

)
=

∂ψ

∂T

∂H

∂T
+ ψ〈(∇2H)T, T 〉+ ψτ

∂H

∂ν
.

Note also that because of (4.1) and (4.2),

K∗
D[φ] +

∂H

∂ν
= λφ and KD[ψ] + F = λψ.

Thus we arrive at

pαβ(k,D) =
∂ψ

∂T

∂(H + SD[φ])

∂T
+ φ

∂(F +DD[ψ])

∂ν

+ ψ
(
〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉

)
,

as desired. This completes the proof. �
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Let us now suppose that aα and bβ are constants such that H =
∑

α aαx
α and

F =
∑

β bβx
β are harmonic polynomials. Then it can be easily seen that∑

α,β

aαbβMαβ(k,Dε)−
∑
α,β

aαbβMαβ(k,D)

= ε
〈
h,
∑
α,β

aαbβpαβ(k,D)
〉
L2(∂D)

+O(ε2),
(4.8)

and∑
α,β

aαbβpαβ(k,D)

=
∂ψ

∂T

∂(H + SD[φ])

∂T
+ φ

∂(F +DD[ψ])

∂ν
+ ψ

(
〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉

)
,

where φ and ψ satisfy (4.1) and (4.2) with new (harmonic functions) H and F .
Since H is harmonic,

〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉 = ΔH = 0,

and hence

(4.9)
∑

aαbβpαβ(k,D) =
∂ψ

∂T

∂(H + SD[φ])

∂T
+ φ

∂(F +DD[ψ])

∂ν
.

Let

(4.10) u(x) := H(x) + SD[φ](x) and v(x) := F (x) +DD[ψ](x), x ∈ R
2.

Then one can see using the jump relations (2.1) and (2.2) that u and v are, respec-
tively, solutions to the following transmission problems:

(4.11)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δu = 0, in D ∪ (R2\D),

u|+ − u|− = 0, on ∂D,

∂u

∂ν

∣∣∣
+
− k

∂u

∂ν

∣∣∣
−
= 0, on ∂D,

(u−H)(x) = O(|x|−1) as |x| → ∞
and

(4.12)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δv = 0, in D ∪ (R2\D),

kv|+ − v|− = 0, on ∂D,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−
= 0, on ∂D,

(v − F )(x) = O(|x|−1) as |x| → ∞.

From (4.10), (2.1) and (2.2) (see also [23]), we have

φ = (k − 1)
∂u

∂ν

∣∣∣
−

on ∂D

and

ψ =
k − 1

k
v|− on ∂D.

Hence it follows that
∂ψ

∂T
=

k − 1

k

∂v

∂T

∣∣∣
−
.
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In fact, from (4.2) we obtain that

v|− = F + (
1

2
I +KD)[ψ] = (λ+

1

2
)ψ =

k

k − 1
ψ.

So far we proved the following theorem which is the main theoretical result of
this paper.

Theorem 4.2. Suppose that aα and bβ are constants such that H =
∑

α aαx
α and

F =
∑

β bβx
β are harmonic polynomials. Then

(4.13)

∑
α,β

aαbβMαβ(k,Dε)−
∑
α,β

aαbβMαβ(k,D)

= ε(k − 1)

∫
∂D

h(x)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(ε2),

where u and v satisfy (4.11) and (4.12), respectively.

A few remarks are in order regarding the dependency of the remainder O(ε2)
term. It is bounded by Cε2 for some C depending only on the C2-norm of ∂D and
‖h‖C1(∂D). It also depends on the degrees of the harmonic polynomials H and F .
As the degree gets larger, the remainder gets larger. However, the remainder does
not depend on the conductivity contrast k. Then formula (4.13) holds also for the
extreme cases k = 0 and k = +∞. This important fact is because of the estimate∥∥∥∥( k + 1

2(k − 1)
I −K∗

D

)−1

[f ]

∥∥∥∥
L2(∂D)

≤ C‖f‖L2(∂D)

with a constant C independent of k, which was first proved in [6].
Note also that formula (4.13) gives the shape derivative of

∑
α,β aαbβMαβ(k,D).

Finally, it is quite interesting to observe the similarity between the asymptotic
formula (4.13) and the one for eigenvalue perturbations obtained in [1] (see [2] for
the elasticity case).

5. Reconstruction of shape details using GPTs

5.1. Equivalent ellipse. As it is explained in [5], the polarization tensor M can
be explicitly computed for ellipses as follows. If E ′ is an ellipse whose focal line
is on the x1-axis, its semi-major axis is of length a, and its semi-minor axis is of

length b, then the polarization tensor of E ′ is M ′ = (k−1)|E ′|(
a+b
a+kb 0

0 a+b
b+ka

). Now, let

E = RE ′ where R =
(
cos θ − sin θ
sin θ cos θ

)
and θ ∈ [0, π], then the polarization tensor M of E

is M = RM ′RT . Conversely, let M be a positive definite symmetric matrix given,
then the corresponding ellipse can be computed. Suppose that the eigenvalues of
M are λ1 and λ2 with λ1 > λ2, and the corresponding eigenvectors of unit length

are (e11, e12)
T and (e21, e22)

T . Then a =
√

p
πq , b =

√
pq
π , θ = arctan e21

e11
, where

1
p = k−1

k+1

(
1
λ1

+ 1
λ2

)
and q = λ2−kλ1

λ1−kλ2
.

Given the PT of the inclusion B, we can find an ellipse with the same PT but
not its location since the PT is invariant under translation.

We can (approximately) locate the inclusion provided that its GPTs with |α|+
|β| = 3 are known. Suppose that B = Br(x

∗) is a ball in R
d, d = 2, 3. Let il := el

and jl := 2el, j = 1, . . . , d. Then it is known (see [5]) that (Mi1j1 , . . . ,Midjd) =
2d(k−1)
k+d−1 |B|x∗. Now, to locate the initial guess for an arbitrary-shaped target B, we
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consider as a first approximation that it is a ball and get the center for its initial
guess from the measured Miljl , l = 1, . . . , d.

5.2. Recursive scheme. According to Theorem 2.1, we can (approximately) re-
construct the shape of B by recursively minimizing at each step n the functional
J (n)[D] given in (1.4) over D. For fixed n, we make only one iteration to minimize
J (n)[D]. We modify the initial shape Dinit to obtain Dmod by applying the gradient
descent method. For doing so, we use

(5.1) ∂Dmod = ∂Dinit −

⎛
⎝ J (n)[D(init)]∑

j

(
〈dSJ (n)[Dinit], ψj〉

)2 ∑
j

〈dSJ (n)[Dinit], ψj〉ψj

⎞
⎠ ν,

where ν is the outward unit normal to Dinit and {ψj} is a basis of L2(∂Dinit). For

doing so, we need to compute the shape derivative of J (n)[D].
Let H =

∑
aαx

α and F =
∑

bβx
β be homogeneous harmonic polynomials and

let

φHF (x) = (k − 1)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
,

where u and v satisfy (4.11) and (4.12), respectively.
Theorem 4.2 shows that the shape derivative of J (n)[D] is given by

(5.2) 〈dSJ (n)[D], h〉L2(∂D) =
∑

|α|+|β|≤K

w
(n)
|α|+|β|δHF 〈φHF , h〉L2(∂D),

where

δHF =
∑
α,β

aαbβMαβ(k,D)−
∑
α,β

aαbβMαβ(k,B).

We now apply (5.1) where we replace the shape derivative by its expression in
(5.2). Note that in δHF , the GPTs of B are from the measurements and those
associated to D are obtained from solving the boundary integral equation (2.3).
Since the only information about h is the inner product with φHF , components of
h orthogonal to φHF are not detectable; see Figures 1 and 2.

Therefore, we form the (truncated) basis set {ψj} as the collection of φHF with

nonzero w
(n)
|α|+|β|.

The equivalent ellipse obtained as in Section 5.1 can be used as an (initial) guess.
More shape details for B can be reconstructed by minimizing (1.4) by increasing
n. The result of step n− 1 is used as an initial guess for step n.

The weights w
(n)
|α|+|β| determine the GPTs we keep at each step. We choose in

step K − 2 ≥ n ≥ 3,

w
(n)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ n+ 2 and 0 elsewhere.

If there are multiple inclusions, we choose in the second step

w
(2)
|α|+|β| = 1 for 3 ≤ |α|+ |β| ≤ K

in order to have a better initial guess than an ellipse and, in step K ≥ n ≥ 3,

w
(n)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ n.

Our algorithm is in the same spirit as the continuation method in frequency for
solving inverse scattering problems [14, 15, 11]. Since the high-frequency oscillations
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of the boundary of an inclusion are only contained in its high-order GPTs, our
recursive optimization scheme yields a stable way to reconstruct such information.

5.3. Deformations undetectable from the GPTs. It follows from the expres-
sion of the shape derivative of J (n) that if a shape deformation is orthogonal to the
functions φHF , then it is undetectable to first order approximation.

As we can see from [9], if D is a disk, then using Mαβ , |α| + |β| ≤ K, we can
only detect the Fourier coefficients of the deformation up to K.

Figures 1 and 2 are the (orthogonalized) φHF for K = 3.
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Figure 1. The basis of functions φHF for the search space used
for the reconstructions from

∑
aαbβMαβ , where |α| + |β| ≤

3 and D is the dotted disk. The solid curves are ∂D +
a linear combination of φHF ν and represent all the detectable
shape variations.

6. Numerical results

In this section, we illustrate our algorithm for recovering the shape of a domain
from its GPTs. In all of the numerical examples presented in this section, we
apply the reconstruction scheme of multiple inclusions without making any a priori
assumption on the number of connected components of the target. Moreover, in
each step, we update the shape only one time using (5.1). More iterations do not
yield a significantly better result.

In order to acquire the GPTs, we solve the boundary integral equation (2.3)
numerically. After discretizing the boundary of a given simply connected domain
D, the kernel functions involved in K∗

D and νx · ∇xα are evaluated at each nodal
point on ∂D. If we call the obtained matrix and vector as Kd and Bd, respectively,
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Figure 2. The basis of functions φHF for the search space used
for the reconstructions from

∑
aαbβMαβ , where |α| + |β| ≤

3 and D is the dotted curve. The solid curves are ∂D +
a linear combination of φHF ν and represent all the detectable
shape variations.

then we obtain the discretized φα by solving the linear system (λI −Kd)φd
α = Bd.

Finally, the numerical integration of (2.4) yields the GPTs. For the case of multiple
inclusions, we use the system of integral equations derived in [8].

It is worth noticing that in the numerical examples, we only consider smooth
curves. If X(t) : [a, b] → R

2 is the arclength parametrization of ∂D and X is
C2-function, then

X(t0 + h) = x+ hT (x) +
h2

2
τ (x)ν(x) + o(h2), x = X(t0),

where T is the tangential vector, ν the normal vector, and τ the curvature. Here,
o(h2) depends on ‖X‖C2 . Therefore,

〈x− y, ν(x)〉
|x− y|2 = −1

2
τ (x) + o(1) for x = X(t0) and y = X(t0 + h),

and hence we use − 1
4π τ (x) at the nodal points for the diagonal of the matrix Kd.

In the following examples, we use the GPTs up to |α| + |β| ≤ 6, i.e., K = 6.
The coefficients aα and bβ are chosen to be such that

∑
α aαx

α and
∑

β bβx
β are

harmonic polynomials and hence coincide with cos and sin functions on the unit
circle. The conductivity k inside the inclusion is set to be 3. To reconstruct multiple

inclusions as well as a single inclusion, we use in the second step w
(2)
|α|+|β| = 1 for 3 ≤

|α| + |β| ≤ 6 and, in step 3 ≤ n ≤ 6, w
(n)
|α|+|β| = 1 for 2 ≤ |α| + |β| ≤ n. The gray

curve is the target domain (B) and the black curve (D) is the reconstructed one.
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In order to avoid inverse crime, we use different numbers of nodal points in the
direct and inverse solvers; 500 points are used in the forward solver and 200 points
are used in the inverse solver. Indeed, we do not share the same nodal points in the
direct and forward solvers. Moreover, in the recursive algorithm, we strongly rely
on the shape derivative obtained from the asymptotic analysis which is independent
of the numerical computations.

Example 1. The example in Figure 3 shows that the equivalent ellipse is gradually
modified toward the target domain. The first image is the equivalent ellipse and
the others are the reconstructed images for n = 2, . . . , 6.
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Figure 3. Gray curve is the target domain (B) and the black
curve (D) is the reconstructed shape. The first image is the
equivalent ellipse and the others are the reconstructed images for
n = 2, . . . , 6. Here, the conductivity k = 3.

Example 2. The example in Figure 4 shows the reconstruction of the kite-shaped

inclusion with various relative errors

(∑
|α|+|β|≤6(

∑
aαbβEαβ)

2
) 1

2(∑
|α|+|β|≤6(

∑
aαbβM

comp
αβ )2

) 1
2

= 0, 0.1, 0.2.

Here Eαβ := M comp
αβ − Mdata

αβ , where M comp
αβ is the computed GPT and Mdata

αβ is
the one used for the reconstruction. Figure 4 demonstrates the stability of the
reconstruction procedure.

Example 3. The example in Figure 5 reveals the limitation of the shape recon-
struction when we use the GPTs up to |α|+ |β| = K. When the target function is a
sinusoidal perturbation of a disk, we can reconstruct the shape perturbation when
the angular frequency is smaller than or equal to K. Higher-frequency information
is undetectable.
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Figure 4. Gray curve is the target domain (B) and the black
curve (D) is the reconstructed shape for n = 6 starting from the
equivalent ellipse. The first, second and third columns are from the
data with 0%, 10%, 20% error, respectively. Here, the conductivity
k = 3.
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Figure 5. Gray curve is the target domain (B) and the black
curve (D) is the reconstructed shape for n = 6 starting from the
equivalent ellipse. Here, the conductivity k = 3.

Example 4. Figure 6 shows that it is more difficult to reconstruct high contrast
inclusions. In order to obtain satisfactory reconstructions, one shall use more GPTs.

Example 5. Using higher-order GPTs we can better detect multiple inclusions;
see Figure 7. Note that here, in order to generate the GPTs we need to modify
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Figure 6. Reconstruction results for high contrast inclusions.
Left to right: (k = 0.3, n = 6), (k = 0.3, n = 9), (k = 10, n = 6),
and (k = 10, n = 9).
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Figure 7. Reconstruction results for multiple inclusions with the
same conductivity k = 3. The upper images show the equivalent
ellipse and the lower ones show the reconstructed image for n = 6.

(2.3). In fact, we have to solve the following system of integral equations [8]:

(λjI −K∗
Dj

)[φ(j)
α ](x) +

∑
i �=j

∂SDi
[φ

(i)
α ]

∂ν(j)
(x) = ν(j)x · ∇xα, x ∈ ∂Dj , j = 1, . . . ,m,

where m is the number of inclusions, ν(j) the outward normal to ∂Dj , and λj =
(kj − 1)/(2(kj + 1)) with kj being the conductivity of the inclusion Dj .

Example 6. Figure 8 shows a result for multiple inclusions with different conduc-
tivities. The conductivities are set to be 3, 3, 7, 10 in, respectively, D1, D2, D3, D4.
As expected, the reconstructed image is pushed towards the inclusions with the
highest conductivities.
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Figure 8. Reconstruction result for multiple inclusions with dif-
ferent conductivities. The conductivities are set to be 3, 3, 7, 10
in respectively D1, D2, D3, D4. The image on the left shows the
equivalent ellipse and the one on the right shows the reconstructed
image for n = 6.

7. Conclusion

In this paper we have proposed a new recursive optimization scheme to recover
fine shape details from the GPTs. We have presented results of some numerical
experiments to demonstrate the validity and the limitations of the proposed ap-
proach which is in the same spirit as the continuation method in frequency. Since
the high-frequency oscillations of the boundary of an inclusion are only contained
in its high-order GPTs, the recursive method yields a stable way to reconstruct
such information.

Other schemes can be designed by choosing different weights in the discrepancy
functional (1.4). For example, choosing

w
(1)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ l1 and 0 elsewhere,

w
(2)
|α|+|β| = 1 for l1 + 1 ≤ |α|+ |β| ≤ l2 and 0 elsewhere,

w
(3)
|α|+|β| = 1 for l2 + 1 ≤ |α|+ |β| ≤ l3 and 0 elsewhere,

and so on, where 2 < l1 < l2 < l3 < . . . , yields a scheme that is closely related to the
one developed in [12]. It could have better resolution than the one implemented in
this paper but clearly is less stable. It requires a very good initial guess. A detailed
resolution and stability analysis for both schemes will be reported elsewhere.

As will be shown in Part II [7], our approach in this paper can be very nicely
extended to the reconstruction problem of the electromagnetic parameters and the
shape of a target from multi-static response matrix measurements at a single fre-
quency when the target is of characteristic size less than the operating wavelength.
It would be very interesting to generalize our approach to elasticity imaging.
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