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ERGODIC SCALES IN FRACTAL MEASURES

PALLE E. T. JORGENSEN

Abstract. We will consider a family of fractal measures on the real line R
which are fixed, in the sense of Hutchinson, under a finite family of contractive
affine mappings. The maps are chosen such as to leave gaps on R. Hence
they have fractal dimension strictly less than 1. The middle-third Cantor
construction is one example. Depending on the gaps and the scaling factor,
it is known that the corresponding Hilbert space L2(μ) exhibits strikingly
different properties. In this paper we show that when μ is fixed in a certain
class, there are positive integers p such that multiplication by p modulo 1
induces an ergodic automorphism on the measure space (support(μ), μ).

1. Introduction

We consider a family of fractal measures on the real line R which are fixed, in
the sense of Hutchinson [14], under a finite family of contractive affine mappings,
called affine iterated function systems (IFSs). The maps are chosen such as to leave
gaps on R. Hence they have fractal dimension strictly less than 1. The middle-third
Cantor construction is one example.

Our main focus is on a family of harmonic measures considered first in a paper
by Jorgensen and Pedersen [17], and since then by many authors; see e.g., Dutkay
and Jorgensen [10]. Depending on the gaps and the scaling factor, we show that the
harmonic analysis of the Hilbert space L2(μ) exhibits strikingly different properties.
We will focus on the case when the scaling factor for μ is an even integer at least 4.
The principal result in this work (Theorem 5.1) is that when μ is fixed in a certain
class, there are positive integers p such that multiplication by p modulo 1 induces
an ergodic automorphism on the measure space (support(μ), μ).

Assuming that the scaling factor for μ is an even integer, a main tool in our
proofs is a novel interplay between, on the one hand, a family of orthonormal
bases in L2(μ), and on the other, certain isometric operators in L2(μ) induced by
multiplication by p modulo 1. See Corollaries 4.2 and 4.5.

The study of special affine iterated function system (IFS)-measures was moti-
vated by the paper [14] on the general class of IFS-measures, and by the result in
[17], as well as more recent papers by Dutkay and the present author [8, 9, 10] (see
also [16]), to the effect that a subclass of affine IFS-measures μ have an orthonormal
basis (ONB) of Fourier frequencies (complex exponentials) for their L2(μ) spaces.

Applications are many, see for example [19] and the papers cited there.
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Our focus is on harmonic analysis and symmetries of fractal measures possessing
self-similarity intrinsic to a fixed system of affine transformations. Other papers in
the general area include [1, 2, 3, 4, 6, 7, 12, 13, 14, 15, 18, 21, 22, 23, 24], and we
refer to these for additional background, and for fundamentals in the theory.

Past work has identified measures μ which have a “sufficient” supply of a particu-
lar kind of basis functions, a family of functions consisting of complex exponentials
eλ for a suitable collection of points λ; eλ (x) = ei2πλ·x, i.e., measures having a
Fourier basis.

The ideal possibility for some given measure μ is that the corresponding Hilbert
space L2(μ) possesses an orthonormal basis (ONB) of complex exponentials. For
this to make sense we must restrict consideration to measures μ with support in
one or several real dimensions, i.e., in Rd for some d. It is interesting enough to
study compact support, and to restrict further to the case d = 1. We make these
restrictions here. For reasons described below, we further restrict our consideration
to measures μ arising as infinite convolutions, so-called Bernoulli measures. Each
μ has its support contained in a compact interval which we choose to be centered
at x = 0. The measures are indexed by a single parameter s, and each value of
the parameter offers a distinct measure class μs. If s = 1/2, then μs is Lebesgue
measure restricted to a compact interval. If s > 1/2, then no Fourier basis is
possible. We identify values of s < 1/2 for which L2(μs) has a sufficient supply
of orthogonal Fourier basis functions. (For details, see equations (3.1) and (3.2)
below!)

All the measures μs for s < 1/2 are singular. For fixed s, the support Xs of μs

is a fractal, for example for s = 1/3, it is the middle-third Cantor set.
As a result, for fixed s, the set Xs is identified inside a compact interval J by

its probability law. While the ambient interval J carries its normalized Lebesgue
measure, the compact subset Xs carries a different measure, here the probability
measure μs. Since μs is singular, the Lebesgue measure of Xs is zero. Our repre-
sentation of the measure μs is consistent with a Monte Carlo limit consideration
(see e.g., [24]), or random sampling, but with a different probability law for the
set Xs to be determined inside J . This entails new difficulties as compared to the
more familiar cases where one may be determining the measure of a planar region A
inside say a square Q of area one. Monte Carlo applied to this case in the simplest
instance consists of a procedure for random generation of say n points in Q, and
then counting the number r of those falling in the set A. The fraction r/n is an
approximation to the area of A. But in this example for both the ambient set Q and
the subset A, we are applying the restriction of Lebesgue measure. In the present
fractal case there is a sequence of renormalizations involved in reaching the mea-
sure μ with its fractal support, and Hausdorff dimension equal to a corresponding
fraction.

2. L2
-spaces of fractal measures

The paper is organized as follows. In section 2 below, we introduce the funda-
mental concepts needed both in the statement of our results and their proofs. The
applications section (section 3) will also serve to motivate. Our aim is to combine
symmetry and harmonic analysis in the study of a family of selfsimilar measures μ
with compact support in Rd. While our results apply more generally than stated,
we feel that the main idea is more transparent in one dimension, i.e., d = 1, and



ERGODIC SCALES IN FRACTAL MEASURES 943

for the special classes of measures μ that result from infinite convolutions of the
Bernoulli type.

We find a family of unitary operators U in L2(μ) implementing certain spectral
dilations.

Theorem 2.1. Let μ be a Borel probability measure on R and let p ∈ R+ be given.
Suppose there is an orthonormal basis (ONB) of exponentials eλ(x) = ei2πλx, for
λ in some set Λ ⊂ Z such that pΛ = {pλ : λ ∈ Λ} is orthonormal in L2 (μ).

(a) If f ∈ L2 (μ), then there is a natural extension of f to f ∈ L2 (0, 1) obtained
using the embedding of L2 (μ) into L2 (0, 1). Setting σp (x):= pxmodZ this
extension has the property that

(2.1)

∫
f (σp (x)) dμ (x) =

∫
f (x) dμ =

∫
f (x) dμ (x) .

In particular, this holds for all f ∈ L1 (μ) because μ is a probability measure.
If, in addition, it happens that σp maps the support of μ to itself, then this
implies that σp leaves μ invariant, i.e., we have

(2.2) μ ◦ σ−1
p = μ.

(b) If we set

(2.3) (Vpf) (x) = f (σp (x)) for f ∈ L2 (μ) ,

then Vp is unitary on L2 (μ) if and only if

(2.4) E (pΛ) = {eξ : ξ ∈ pΛ}
is an ONB in L2 (μ).

Proof. The measure μ is fixed and we consider the Hilbert space L2 (μ). The
assumption placed on the set Λ is that

(2.5) E (Λ) = {eλ| λ ∈ Λ}
forms an ONB in L2 (μ). The inner product in L2 (μ) will be denoted

〈f1, f2〉 =
∫

f1 (x)f2 (x) dμ (x) .

Orthogonality of the set Λ means that

〈eλ, eλ′〉μ = μ̂ (λ′ − λ) = 0, λ �= λ′,

where μ̂ is the Fourier transform of the measure μ. For f ∈ L2 (μ), setting

c (λ) = cμ (λ) = 〈eλ, f〉μ

=

∫
eλ (x)f (x) dμ (x) ,(2.6)

we get the Parseval representation

(2.7) f (x) =
∑
λ∈Λ

c (λ) eλ (x)

and

(2.8) ‖f‖2μ =

∫
|f (x)|2 dμ (x) =

∑
λ∈Λ

|c (λ)|2 < ∞.
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Since Λ ⊂ Z, it follows from (2.7) that every f ∈ L2 (μ) is periodic with period 1;
i.e., that

�(2.9) f (x+ 1) = f (x) for μ a.e. x ∈ R.

The preceding allows us to define the extension f 
→ F by

(2.10) f =
∑
λ∈Λ

c (λ) eλ 
→
∑
λ∈Λ

c (λ) ei2πλx = F (x)

and see that this is an isometric embedding of L2 (μ) onto a closed subspace of
L2 (0, 1).

Lemma 2.2. Under the assumptions of the theorem in (a), the operator in Vp is
well defined in (3) and isometric in L2 (μ).

Proof. By assumption the function system E (pΛ) is orthonormal in L2 (μ), so using
the representation (2.7), we get

(2.11)
∑
λ∈Λ

|cf (pλ)|2 ≤ ‖f‖2μ .

Let f ∈ L2 (μ), and consider the representation (2.7), thus

‖Vpf‖2μ =

∫ ∣∣∣∣∣∑
λ∈Λ

c (λ) eλ (px)

∣∣∣∣∣
2

dμ (x)

=

∫ ∣∣∣∣∣∑
λ∈Λ

c (λ) epλ (x)

∣∣∣∣∣
2

dμ (x)

=
∑ ∑
λ,λ′∈Λ

c (λ)c (λ′) 〈epλ, epλ′〉μ dμ (x)

=(by orthogonality of pΛ)

∑
λ∈Λ

|c (λ)|2

=(by (2.8)) ‖f‖2μ . �

Proof of the theorem continued. Let p and Λ be as above, and let E (Λ) and E (pΛ)
be the corresponding families of exponentials; see (2.4) above. Then it follows from
the lemma that

(2.12) VpE (Λ) = E (pΛ) .

In part (2.6) of Theorem 2.1, we are assuming that both sets in (2.12) are ONBs.
It follows that Vp thus maps an ONB onto an ONB, subject to the condition

in (b). But this property characterizes when Vp is a unitary operator. Note Vp is
isometric by (a). Hence it is unitary if and only if

(2.13) VpL
2 (μ) = L2 (μ) .

We now turn to property (2.1), i.e., the invariance of μ under the transformation
σp in the measure space (R,B, μ) where B denotes the Borel sets ⊆ R. Note that
by (2.9) functions f in L2 (μ) pass to the quotient R�Z, and hence are determined
by a period-interval of length 1.

If p = 3, the transformation σp may thus be represented as in Figure 1.
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Figure 1

Let E ∈ B , and set f = χE . Substitution into

(2.14) ‖Vpf‖2μ = ‖f‖2μ
from Lemma 2.2 then yields

(2.15)

∫
χE (px) dμ (x) = μ (E) .

Since

(2.16) χE ◦ σp = χσ−1
p (E),

we get

(2.17) μ
(
σ−1
p (E)

)
= μ (E) ,

which is the desired conclusion (2.1). An application of standard measure theory
further shows that the converse holds; indeed (2.1) implies (2.14), i.e., the isometric
property of the operator Vp. �

Remark 2.3. Let μ = Hs be Hausdorff measure of dimension s where s ∈ (0, 1),
i.e., for Hs-measurable sets E, we have

(2.18) Hs (E) : = lim
δ→0

inf

{∑
i

|Ui|s ;
⋃
i

Ui ⊇ E, |Ui| < δ

}
,

where |Ui| = diameter of Ui.
Then

(2.19) Hs (cE) = csHs (E) .

For example, if s = ln 2
ln 3 = log3 2, then Hs extends the middle-third Cantor measure,

and

(2.20) Hs (3E) = 2Hs (E)
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or, equivalently,

(2.21) 2

∫
f (x) dHs (x) =

∫
f

(x

3

)
dHs (x)

for all Hs-measurable functions f .
We will show likewise that if μ is the Cantor measure of scale 3, then

(2.22)

∫
f (x) dμ (x) =

∫
f (3x) dμ (x)

which may appear surprising in view of (2.21).

3. Applications

Below we introduce the measures μ that result from infinite convolutions of the
Bernoulli type. While our results apply more generally, the Bernoulli case is of
independent interest. In section 5 below, the framework will be extended to the
context of the Hilbert spaces L2(μ) where μ is an affine selfsimilar measure with
compact support in Rd.

Let c ∈ R+ be given; set

(3.1) τ
(c)
± (x) : = c (x± 1) ;

i.e., two distinct transformations R → R.
If c < 1, there is a unique probability Borel measure μ = μ(c) such that

(3.2) μ̂(c) (t) =
∞∏
n=1

cos (2πcnt) .

Equivalently, μ(c) is the distribution of the random power series
∑∞

k=1 (±1) ck, i.e.,
random assignment of ± coefficients. See section 4 below. The case c = 1/3 is the
middle-Cantor measure.

It is known that if c = 1/2m, i.e., c−1 = an even integer, then L2
(
μ1/2m

)
has

an ONB of the form E (Λm) where

(3.3) Λm: =

{
finite∑
k=0

ak (2m)k | ak ∈
{
0,

m

2

}}
.

In particular, L2
(
μ1/8

)
has an ONB

(3.4) Λ4 = {0, 2, 16, 18, 128, 130, 144, . . .} .

Similarly,

(3.5) Λ2 = Λ

(
1

4

)
= {0, 1, 4, 5, 16, 17, 20, 21, . . .}

is an ONB in L2
(
μ1/4

)
. For the support of the measures μ1/4 and μ1/8, see Figures

2 and 3 below.
Details on this material can be found in [7], [8], and [17].

Definition 3.1. Suppose μ is a probability measure defined on the Borel sigma-
algebra B of R. Assume further that

(3.6) f (x+ 1) = f (x) holds μ-a.e. on R for all f ∈ L2 (μ) .
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Figure 2. The support of μ1/4 is a fractal contained in
[
− 1

3 ,
1
3

]
.

Figure 3. The support of μ1/8 is a fractal contained in
[
− 1

7 ,
1
7

]
.

Then for every p ∈ Z+, the transformation σp (x):= px modZ induces an endomor-
phism of X (μ):= supp (μ) = the support of the measure μ, and X (μ) naturally
embeds in R�Z � the circle group � the unit-interval. See Figures 2 and 3.

The resulting measure space will be denoted (X (μ) ,B, μ), and we will say that
σp is an endomorphism of (X (μ) ,B, μ), or of (X (μ) , μ) for short.

We will say that σp preserves μ if

(3.7) μ ◦ σ−1
p = μ

holds on B.
If σp: X (μ) → X (μ) has a measurable inverse ρp: X (μ) → X (μ) we then say

that σp is a measure preserving automorphism of the measure space (X (μ) , μ).
The geometry of these mappings is sketched in Figures 2 and 3.

Corollary 3.2. The mapping

(3.8) σ3 (x) := 3xmodZ

is a measure-preserving endomorphism of
(
X(μ1/4), μ1/4

)
, but it is not an auto-

morphism.
If m > 2, then σ3 is a measure-preserving automorphism of (X(μ1/2m), μ1/2m).
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Proof. The ideas in the proof draw on the theorem in Section 2 above, on the paper
[17], a recent preprint of [16], and the following a priori estimate. �

Consider μ := μ1/2m, i.e., scale s = 1/2m, m ∈ Z+, p ∈ Z+ fixed and odd, and

Λm :=

{
finite∑
k=0

bk (2m)
k | bk ∈

{
0,

m

2

}}
.

Then the set Γ := pΛm satisfies Γ = 2mΓ ∪ ( pm2 + 2mΓ). We now compute

σΓ (t) =
∑
γ∈Γ

|μ̂ (t− γ)|2

=
∑
λ∈Γ

|μ̂ (t− 2mλ)|2 +
∑
λ∈Γ

∣∣∣μ̂(
t− pm

2
− 2mλ

)∣∣∣2
= cos2

(
πt

m

) ∑
λ∈Γ

∣∣∣∣μ̂(
t

2m
− λ

)∣∣∣∣2
+sin2

(
πt

m

) ∑
λ∈Γ

∣∣∣∣μ̂(
t

2m
− p

4
− λ

)∣∣∣∣2
= cos2

(
πt

m

)
σΓ

(
t

2m

)
+ sin2

(
πt

m

)
σΓ

(
t

2m
− p

4

)
;

and contractivity constant c (m, p) =
1 + pπ

2

2m
.

The following results were proved in [16] and [17].

Lemma 3.3.

(a) The set Λ2 in (3.3) is an ONB in L2
(
μ1/4

)
, while 3Λ2 is orthogonal in

L2
(
μ1/4

)
but not total; in fact,

(3.9) 〈e−1, e3λ〉μ1/4
= 0 for all λ ∈ Λ2.

(b) For m ≥ 4, the set 3Λm is an ONB in L2
(
μ1/2m

)
.

Proof of Corollary 3.2 concluded. We see that the isometry V3 is a unitary operator
in L2

(
μ1/2m

)
if and only if σ3 is a measure-preserving automorphism in the measure

space
(
X

(
μ1/2m

)
, μ1/2m

)
. From (3.9) in Lemma 3.3, we see that σ3 is not an au-

tomorphism in
(
X

(
μ1/4

)
, μ1/4

)
, but it is an automorphism in

(
X

(
μ1/2m

)
, μ1/2m

)
when m ≥ 4. �

4. The Gelfand Space

Fix an affine selfsimilar measure with compact support in Rd. Assume that it
has a spectrum, i.e., that there is an ONB of complex exponentials in L2(μ) defined
from a discrete subset Λ in Rd. The pair (μ,Λ) is called a spectral pair. Acting on
the Hilbert space L2(μ), there is then an abelian algebra of multiplication operators.
From the spectral assumption placed on μ we may pick the multiplication operators
to be continuous and having a period lattice. With this restriction we compute the
corresponding Gelfand space, and show that it coincides with the (compact) support
of μ.
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Working with Λ (1/4) = {
∑finite

0 ai4
i| ai ∈ {0, 1}}, and Λ(1/8) we note that

the functions f ∈ L2(μ1/4) satisfy f(x + 1) = f(x), μ1/4-a.e., and the functions

f ∈ L2(μ1/8) satisfy f(x+ 1/2) = f(x), μ1/8-a.e. on R.
Indeed [11], there is a general periodicity result applying to all affine spectral

pairs (μ,Λ). If supp(μ) ⊆ Rd, and Λ ⊂ Rd (discrete) are such that E(Λ) is an ONB
in L2(μ), then we say that (μ,Λ) is a spectral pair. We restrict attention here to
the following additional constraints:

(i) supp(μ) is compact; and
(ii) the mappings which define μ in the sense of [14] are affine.

Theorem 4.1. Let (μ,Λ) be a spectral pair, and assume in addition that (i)–(ii)
hold. Set

A := operator-norm closure of {M(ϕ)| ϕ is continuous on Rd, and

ϕ (x+ ξ) = ϕ (x) , ∀x ∈ Rd, ∀ξ ∈ Λ◦}(4.1)

where

(4.2) Λ◦ =
{
ξ ∈ Rd| ξ · λ ∈ Z, ∀λ ∈ Λ

}
and

(4.3) M (ϕ) f = ϕf, ϕ as in (1) , and f ∈ L2 (μ) .

Then the Gelfand space of the abelian C∗-algebra A is supp (μ) = the support of
the measure μ.

Proof. In essence, the idea is that the quotient of Rd by the lattice Λ◦ is a compact
metric space, hence the algebra of continuous functions with supremum norm and
lattice invariance in the sense of (4.1) has Gelfand space precisely equal to this
metric space. If instead we take the norm to be the operator norm as a multiplier
on L2 (μ), then we get a larger algebra, so we get a smaller Gelfand space. The
problem is then to identify a subset of our metric space which corresponds uniquely
to this smaller Gelfand space. We stress the fact that distinct points of the support
of μ give distinct point evaluation functionals because Λ◦ is discrete. We now turn
to the details one by one.

First note that the C∗-algebra A in (1) depends on both items (μ,Λ) in the given
spectral pair since M (ϕ) is a multiplication operator in the Hilbert space L2 (μ).
We may assume WLG that 0 ∈ Λ so that the constant function e0 ∈ L2 (μ) is one of
the basis functions in E (Λ). Since μ is a Borel measure by [14], we conclude that the
subspace {M (ϕ) e0} ⊂ L2 (μ) is dense in L2 (μ) with respect to the L2 (μ)-norm.

The assertion of the theorem amounts to the fact that every multiplicative func-
tional on A has the form

(4.4) mx : M (ϕ) 
−→ ϕ (x)

for a unique point x ∈ supp (μ); i.e., the multiplicative functionals of A are point-
evaluation by points in the compact space X := X (μ) = supp (μ) ⊂ Rd. Equiva-

lently, the Gelfand transform ·̂ is M̂ (ϕ) (x) = mx (M (ϕ)) = ϕ (x) , x ∈ X (μ).
Note that every functional in (4.4) corresponding to points in X is multiplicative,

i.e., satisfies

(4.5) m (M (ϕ1)M (ϕ2)) = m (M (ϕ1))m (M (ϕ2))
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and

(4.6) m (M (11)) = 1

with 11 denoting the constant function “one” on Rd.
To prove the converse, we may use the specific representation (4.1)–(4.3) of the

operators in A.
Specifically, we must prove that z ∈ C \X and if x 
−→ ϕ (z)− ϕ (x) is non-zero

on X, then the difference-operator

(4.7) ϕ (z) IL2(μ) −M (ϕ)

has a bounded inverse L2 (μ) → L2 (μ). The latter fact follows from two observa-
tions:

(a) Multiplication by x → (ϕ (z)− ϕ (x))−1 serves as an inverse to the operator
in (4.7); and

(b) this operator is bounded in L2 (μ) since the function in (a) is bounded on
X. �

Corollary 4.2. Let (μ,Λ) be as in the theorem, and let P be a d× d matrix over
Z such that detP �= 0, and E (PΛ) is an ONB in L2 (μ) .

Then there are:

(a) a unitary operator U = UP : L2 (μ) → L2 (μ) determined by

(4.8) Ueλ = ePλ, ∀λ ∈ Λ

and
(b) a measurable transformation τ : X → X (where X := supp (μ)) satisfying

(4.9) Uf = f ◦ τ , ∀f ∈ L2 (μ) .

Proof. We saw in the proof of the theorem that L2 (μ) is the Hilbert space which
arises from an application of the Gelfand-Naimark-Segal (GNS) theorem, applied
to the state mμ defined by

(4.10) mμ (M (ϕ)) :=

∫
ϕ (x) dμ (x)

(with M (ϕ) referring to the C∗-algebra A in (4.1)). Since

(4.11) ePλ (x) = eλ
(
P trx

)
, ∀λ ∈ Λ,

we may consider the action

(4.12) ϕ 
−→ ϕ
(
P trx

)
on A. �

Lemma 4.3. We have

(4.13) mμ

(
M

(
ϕ ◦ P tr

))
= mμ (M (ϕ)) .

Proof. We claim that (4.12) leaves invariant mμ in (4.10). To see this, expand

(4.14) ϕ =
∑
λ∈Λ

c (λ) eλ

according to the ONB E (Λ), so

(4.15) c (λ) =

∫
eλϕ dμ, ∀λ ∈ Λ.
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Since 0 ∈ Λ, in particular,

(4.16) c (0) =

∫
ϕ dμ = mμ (ϕ) .

Substitution of (4.12) into (4.14) yields

(4.17) ϕ
(
P trx

)
=

∑
λ∈Λ

c (λ) ePλ (x)

and hence

mμ

(
ϕ

(
P tr·

))
=

∑
λ∈Λ

c (λ) 〈e0, ePλ〉L2(μ)

= c (0)

=(by (4.16)) mμ (ϕ) .(4.18)

Note we used that E (PΛ) is an ONB and that 0 ∈ Λ by assumption.
Using (4.18), we see that (4.12) transforms the Gelfand space X of A into itself.

Hence the unitary operator U = UP in (4.8) must be induced by a transformation
τ : X → X, but by the theorem X = supp (μ), and the desired conclusion holds;
see (4.9). �

Definition 4.4. Ameasure-preserving automorphism σ in a measure space (X,B, μ)
is said to be ergodic if the following implication holds:

(4.19) E ∈ B and σE = E ⇒ μ (E) ∈ {0, 1} .

In specific cases we can sometimes say more is possible in the setting of Corollary
4.2. The following corollary gives an example in which the transformation τ can be
seen to be ergodic.

Corollary 4.5. Let (μ,Λ) be the spectral pair in R given by

(4.20) μ̂ (t) =

∞∏
k=1

cos

(
2πt

8k

)
and

Λ =

{
finite∑
0

bi8
i| bi ∈ {0, 2}

}
.

Let U : L2 (μ) → L2 (μ) be determined by

(4.21) Ueλ = e3λ.

Let

(4.22) X =

{ ∞∑
k=1

(±1)

8k

}
be the Cantor fractal ⊂

[
− 1

7 ,
1
7

]
with Hausdorff dimension 1/3. Then there is a

measurable transformation τ : X → X such that

Uf = f ◦ τ, ∀f ∈ L2 (μ) ;

i.e., a measurable bijection.
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Proof. We now turn to the details. A helpful tool is a bijective correspondence
between operations in a symbol space Ω on the one side and iteration of the τ±
mappings on the other:

τ± (x) =
1

8
(x± 1) , and

τw (x) = (τw1
◦ τw2

◦ · · · ◦ τwk
) (x) where w = (w1w2 · · ·wk) and

wi ∈ {±}, 1 ≤ i ≤ k

The result follows from an application of Corollary 4.2 above to the results from
the previous section. �

Let (μ,Λ) be a spectral pair specified as in Corollary 4.2. Assume that supp (μ) =:
X (μ) satisfies

(4.23) τj (X (μ)) ∩ τk (X (μ)) = ∅ ∀j �= k

for an affine iterated function system (τj) in Rd given by a d× d matrix R over Z
with |λ| > 1 for all λ ∈ spec (R). Then there is a finite set A and a homeomorphism

(4.24) Ω :=

∞∏
1

A
π→ X (μ)

given by

(4.25) π(j1 j2 j3 · · ·︸ ︷︷ ︸
∈Ω

) =

∞⋂
n=1

τj1 ◦ · · · ◦ τjn (X (μ))

where the intersection in (4.25) is a singleton. If ω = (j1 j2 j3 · · · ), then

s (j1 j2 · · · ) := (j2 j3 j4 · · · )

defines the shift operation s = sΩ in (4.24), and R denotes matrix-multiplication
in Rd modulo Zd, and then

(4.26) R ◦ τ = τ ◦ s holds on Ω.

Since π in (4.24) is a homeomorphism, the mapping τ from (4.9) in Corollary 4.2(b)
corresponds to a shift-invariant transformation in Ω, i.e.,

(4.27) τ ◦ s = s ◦ τ on Ω.

The next corollary summarizes the dynamical systems-properties of the partic-
ular class of affine iteration fractals considered in detail above.

Corollary 4.6. Let μ,Λ, X (μ) , s, τ be as above and as introduced in Corollary 4.2.
Then there is a function t : Ω → A such that

(4.28) τ (ω) =
(
t (ω) , t (sω) , t

(
s2ω

)
, · · ·

)
, ∀ω ∈ Ω

or, equivalently,

τ (ω) = (τj (ω))
∞
j=1

where

(4.29) τj := τ ◦ sj−1, j ∈ Z+.
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When A and {τa}a∈A are fixed, then the measure ρΩ on Ω which corresponds to
μ on X (μ) in (4.24) is an infinite-product measure, i.e., we have

μ (E) = ρΩ
(
π−1 (E)

)
for all Borel sets E ⊂ X (μ) .

For additional details regarding infinite product measures and their connection to
Bernoulli convolutions, see e.g., [5], [20], and the references cited there.

5. Ergodicity

In case some spectral pair (μ,Λ) has a second dilated set also serving as spec-
trum. We have then shown that there is an associated unitary operator U in L2(μ)
implementing the dilation. We further show that U is induced by a measure pre-
serving transformation τ in supp(μ) and, in fact, we show that τ is ergodic. Now
we will show that, in fact, σ3 is also ergodic.

The result in this section applies to the measure-preserving automorphisms σp

from section 3 above, i.e.,

(5.1) σp (x) = pxmodZ,

viewed as an automorphism in the measure space
(
X

(
μ1/2m

)
, μ1/2m

)
. However, to

simplify the arguments we will restrict attention to the case p = 3 and m = 4, so σ3

is not an automorphism in this space. This is to recall the distinction between p = 3
and Λ (1/4) and Λ (1/8). Nonetheless, both X

(
μ1/4

)
and X

(
μ1/8

)
are Cantor sets,

the first with Hausdorff dimension 1/2 and the second 1/3.

Theorem 5.1. The automorphism σ3 in the measure space (X(μ1/8), μ1/8) is er-
godic.

Proof. In view of Definition 4.4 and Corollary 3.2 the conclusion follows if we check
that the unitary operator

(5.2) V3f := f ◦ σ3

in L2
(
μ1/8

)
has one-dimensional eigenspace

(5.3)
{
f ∈ L2

(
μ1/8

)
| V3f = f

}
= Ce0

where e0 is the constant function 1 in L2
(
μ1/8

)
.

As a result we must check that if f ∈ L2
(
μ1/8

)
� (e0) and V3f = f , then f = 0

in L2
(
μ1/8

)
.

Let

(5.4) Λ := Λ8 = Λ
(
μ1/8

)
=

{
finite∑
k=0

ak8
k | ak ∈ {0, 2}

}
, μ := μ1/8

and set

(5.5) Λ∗ := Λ� {0} ,
and

(5.6) L2
∗ (μ) := L2 (μ)� (e0) .

Then Λ∗ is an ONB in L2
∗ (μ) by Corollary 3.2 and [17]. �

We will need the following.
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Lemma 5.2. We have

(5.7) μ̂ (2λ) �= 1 for all λ ∈ Λ∗.

Proof. By the product formula (3.2) for μ̂ = μ̂1/8 we have

(5.8) μ̂ (t) =
∞∏

n=1

cos

(
2πt

8n

)
.

By (5.4), for λ ∈ Λ∗, we have the representation

(5.9) λ = 2 ·
(
8k + b1 · 8k+1 + · · ·+ bm · 8k+m

)
where k ∈ {0, 1, 2, · · · } and bi ∈ {0, 1} are fixed.

Using (5.7) for t = 2λ, we get

μ̂ (2λ) = cos

(
2π · 2λ

8

) ∞∏
n=2

cos

(
4πλ

8n

)
.

Substituting (5.9), we then get for the first factor cos( 4πλ8 ) = cos(π8k(1 + b18 +

· · ·+ bm8m)) = 1, while cos( 4πλ
8k+1 ) = −1.

For the remaining factors Π∞
n=k+2 cos(

4πλ
8n ), we use that cos (x) > 1− x2

2 .

(5.10)

∞∏
k+2

(· · · ) > 1− π

8k+1
,

and as a result

(5.11) μ̂ (2λ) > 1− π

8k+1
,

which is stronger than the desired conclusion (5.7) of the lemma. �

Proof of Theorem 5.1 continued. We show that

(5.12)
{
f ∈ L2

∗ (μ) | V3f = f
}
= {0} .

Since Λ∗ is an ONB in L2 (μ) a function f from (5.12) must have the representation

(5.13) f =
∑
λ∈Λ∗

c (λ) eλ.

Fix some λ ∈ Λ∗, then

〈eλ, V3eλ〉μ = 〈eλ, e3λ〉μ = μ̂ (2λ) < 1,

by the lemma.
Since V3e0 = V ∗

3 e0 = e0, we conclude that

(5.14) V3eλ = e3λ ∈ L2
∗ (μ) .

As a result there is some g ∈ closed span{eγ | γ ∈ Λ�{0, λ}} and

(5.15) V3eλ = μ̂ (2λ) eλ + g.

We get 0 = 〈eλ, f − V3f〉μ = c (λ) · (1 − μ̂(2λ)). Now invoke Lemma 5.2 and

conclude that c(λ) = 0. Using (5.13), we get the desired conclusion (5.12).
Now assume E ∈ B satisfies σ3E = E. Then χE ∈ L2 (μ) satisfies V3χE = χE ,

and we conclude that χE ∈ Ce0, i.e., is represented by the constant function in
L2 (μ). Hence μ (E) = ‖χE‖2μ can attain only the two values 0 or 1, proving that

σ3 is ergodic in (X(μ), μ) as claimed. �
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