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MATRICIAL FILTERS AND CRYSTALLOGRAPHIC

COMPOSITE DILATION WAVELETS

JEFFREY D. BLANCHARD AND ILYA A. KRISHTAL

Abstract. In 2006 Guo, Labate, Lim, Weiss, and Wilson introduced the the-
ory of MRA composite dilation wavelets. We continue their work by studying
the filter properties of such wavelets and present several important examples.

1. Introduction

Composite dilation wavelets (CDW) represent a relatively recent [9, 10] and
rapidly developing direction in the study of reproducing systems of the Hilbert space
L2(Rn). CDW differ from the standard wavelets because they generate bases (or
frames) using two groups of dilations. One group is associated with an expanding
matrix a ∈ GLn(R), | det(a)| = L + 1, (just like the standard wavelets), and the

other with a group B ⊂ S̃Ln(R) of matrices b ∈ B with | det(b)| = 1. Both types
of wavelets use translation operators associated with a lattice Γ = cZn for some
c ∈ GLn(R). In a composite wavelet, the dilations from B and the translations
from Γ act together as “shifts” while a continues to perform expanding dilations.

The most widely used example of the group B is the shear group,

B =

{
b =

(
1 j
0 1

)
; j ∈ Z

}
,

that gives rise to shearlets [6]. While shearlets have found good success in certain
applications (e.g. [5, 7, 8]), R. Houska showed in his thesis [12] that it is impossible
to find orthogonal, MRA shearlets with compact support in the time domain. Re-
cently Kutyniok, Lemvig, and Lim have developed non-MRA compactly supported
shearlet frames [14, 15]. However, it is possible to find orthogonal, compactly sup-
ported, MRA CDW in the case of a finite group B (e.g. [3, 13]). The goal of this
paper is to develop a theoretical, matricial filter base for such examples and present
some new compactly supported CDW.

Throughout the entire article we assume that the group B is finite and that it is
normalized by the dilation a, that is, a−1Ba = B. Another important assumption
is the crystallographic condition (or restriction) which requires the group B to fix
the full rank lattice Γ, i.e. B(Γ) = Γ. When the group B and lattice Γ satisfy the
crystallographic condition, we say that B (or more formally the semi-direct product
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B � Γ) is a crystallographic group. The normalization and crystallographic condi-
tions play a fundamental role in our analysis because they allow us to treat CDW
as a special case of ordinary multiwavelets with some additional composite symme-
try. Because of this, we choose to first present the matrix filter theory for general
multiwavelets and then concentrate on the study of the composite symmetry.

The paper is organized as follows. The next section introduces the necessary
notation, the definitions of composite MRA and CDW, and presents a few technical
“toolbox” results that are more or less standard for an MRA theory. In Section
3 we develop basic matrix filter theory for multiwavelet MRA and study in that
language the composite symmetry that turns ordinary multiwavelets into CDW.
Finally, in Section 4 we present three different examples of CDW illustrating the
theory of Section 3.

2. Basic definitions and toolbox results

We begin with the definitions of multigenerated wavelets and CDW. As usual,
n ∈ Z, Γ = cZn for c ∈ GLn(R), and a ∈ GLn(R) is an expanding matrix with
| det(a)| = L + 1. Again, as usual, dilations and translations are unitary operators
on L2(Rn) defined by

(Daf)(x) = | det(a)|−1/2f(a−1x), (Tkf)(x) = f(x − k), k ∈ Γ, f ∈ L2(Rn).

Definition 1 (Multiwavelet). Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn) is an (orthonormal)
multiwavelet if there exists an expanding matrix a and a full rank lattice Γ such
that the affine system AaΓ(Ψ) = {Dj

aTkψ
� : j ∈ Z, k ∈ Γ, 1 ≤ � ≤ L} is an

orthonormal basis of L2(Rn).

To define a CDW we use an (m+1)-element subgroup B = {b0 = In, b1, . . . , bm}
of GLn(R) and unitary dilations

(2.1) fs(x) = Dbsf(x) = f(b−1
s x), s = 0, 1, . . . , m, f ∈ L2(Rn).

Definition 2 (Composite Dilation Wavelet). Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn) is an
(orthonormal) composite dilation wavelet if there exists an expanding matrix a, a
group of invertible matrices B, and a full rank lattice Γ such that the composite
dilation wavelet system AaBΓ(Ψ) = {Dj

aDbTkψ
� : j ∈ Z, b ∈ B, k ∈ Γ, 1 ≤ � ≤ L}

is an orthonormal basis of L2(Rn).

The crystallographic condition B(Γ) = Γ, and the commutation relationship
DbTk = TbkDb ensure that the system AaBΓ(Ψ) is, indeed, a special case of the

system AaΓ(Ψ). More precisely, AaBΓ(Ψ) = AaΓ(Ψ̃), where Ψ̃ = (Dbψ
�), b ∈ B,

1 ≤ � ≤ L.

Definition 3 (Multigenerated MRA). A nested sequence, {Vj}j∈Z, of closed sub-
spaces of L2(Rn) is a multigenerated (a,Γ)-multiresolution analysis (MRA) if all of
the following conditions are satisfied:

(M1) Vj ⊂ Vj+1 where Vj = D−j
a V0;

(M2)
⋃

j∈Z
Vj = L2(Rn);

(M3)
⋂

j∈Z
Vj = {0};

(M4) there exist scaling functions ϕ0, ϕ1, . . . , ϕm ∈ V0 such that {Tkϕs : 0 ≤ s ≤
m, k ∈ Γ} is an orthonormal basis for V0.
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As in the classical case condition (M3) is not independent; it follows from the
rest of the conditions in the MRA [11].

In this paper we are most interested in the case when the scaling functions
ϕ0, ϕ1, . . . , ϕm satisfy the additional symmetry constraint defined by (2.1). Let
ϕ ∈ L2(Rn) and define

(2.2) ϕs(x) = Dbsϕ(x) = ϕ(b−1
s x), s = 0, 1, . . . , m.

When ϕ = ϕ0, . . . , ϕm satisfy (M4), we call ϕ ∈ L2(Rn) a composite scaling func-
tion. Using the crystallographic restriction B(Γ) = Γ we see that a special case of
a multigenerated MRA is the composite MRA defined as follows.

Definition 4 (Composite MRA). A nested sequence, {Vj}j∈Z, of closed subspaces
of L2(Rn) is an (a, B,Γ)-multiresolution analysis if all of the following conditions
are satisfied:

(M1) Vj ⊂ Vj+1 where Vj = D−j
a V0;

(M2)
⋃

j∈Z
Vj = L2(Rn);

(M3)
⋂

j∈Z
Vj = {0};

(M4) there exists ϕ ∈ V0 such that {DbTkϕ : b ∈ B, k ∈ Γ} is an orthonormal basis
for V0.

As usual, we say that a multiwavelet is associated with a multigenerated MRA
{Vj}j∈Z if all of its components belong to the space W0 = V1 � V0. It is easily
shown (see, e.g., [10] for a similar argument) that in this case the multiwavelet has
exactly L(m + 1) components: Ψ = (ψ�

s), 1 ≤ � ≤ L = | det(a)| − 1, 0 ≤ s ≤ m.
It is convenient to use vector function notation to express multiscaling functions

and multiwavelets. We let F : Rn → R
m+1 be the column vector-valued function

(2.3) F (x) =

⎡⎢⎣ f0(x)
...

fm(x)

⎤⎥⎦ ∈ (L2(Rn))m+1.

In particular, a multiscaling function of a multigenerated MRA is the vector func-
tion Φ = (ϕ0, . . . , ϕm)t. If the symmetry property (2.2) is satisfied, then Φ is called
a multiscaling function of the composite MRA. Similarly, we let Ψ� = (ψ�

0, . . . , ψ
�
m)t,

1 ≤ � ≤ L. For the sake of brevity, we define Ψ0 = Φ and interchange the notation
if we want to emphasize the scaling function.

We also make use of the following shift-invariant subspaces of L2(Rn):

〈F 〉Γ = 〈fs〉Γ := span{Tkfs : k ∈ Γ, 0 ≤ s ≤ m}
and

〈〈f〉〉BΓ := span{DbTkf : b ∈ B, k ∈ Γ}.
By the crystallographic condition, 〈〈f〉〉BΓ = 〈fs〉Γ if the functions fs satisfy (2.1).

We use the Fourier transform in the form

(2.4) f̂(ξ) =

∫
Rn

f(x)e−2πiξxdx.

It is well defined by the standard extension to L2 and because we adopt the con-
vention that elements of the Fourier (frequency) domain are row vectors while the
elements of the spatial (time) domain are column vectors. The Fourier transform
of a vector-valued function defined by (2.3) is taken componentwise.
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In the following analysis, we employ the bracket product notation generalized to
the full rank lattice Γ = cZn for some c ∈ GLn(R). The dual lattice to Γ is the full

rank lattice Γ∗ = Ẑ
nc−1, where Ẑ

n denotes the set of integer row vectors and not
the Pontryagin dual of the group Z

n. Of course, if k ∈ Γ and γ ∈ Γ∗, then γk ∈ Z.
By TΓ we shall denote the quotient group R

n/Γ.

Definition 5 (Bracket Product). Given a lattice Γ = cZn for some c ∈ GLn(R),
the Γ-bracket product of f, g ∈ L2(Rn) is defined by

(2.5) [f, g]Γ(x) = | det(c)|
∑
k∈Γ

f(x + k)g(x + k).

It follows from (2.5) that [f̂ , ĝ]Γ∗(ξ) = | det(c)|−1
∑

γ∈Γ∗ f̂(ξ + γ)ĝ(ξ + γ). We
also use the bracket product notation for vector functions.

Definition 6 (Vector Bracket Product). Given a lattice Γ = cZn for some c ∈
GLn(R), the Γ-bracket product of F, G ∈ (L2(Rn))m+1 is an (m + 1) × (m + 1)
matrix defined by

(2.6) [F, G]Γ(x) = | det(c)|
∑
k∈Γ

F (x + k)G∗(x + k) =
[
[fs, gs′ ]Γ(x)

]m+1

s,s′=0
.

The Γ-bracket product is, clearly, a sesquilinear form. Its other important
properties are collected in the following lemma, different versions of which appear
throughout the literature for Zn-shift-invariant spaces. We cite [1, Proposition 2.10]
as an example.

Lemma 1. Let f, g ∈ L2(Rn), F, G ∈ (L2(Rn))m+1 be non-zero vector functions,
Γ = cZn for c ∈ GLn(R), and TΓ = R

n/Γ. Then

(i) The series (2.5) converges absolutely a.e. to a function in L1(TΓ).

(ii) For k ∈ Γ, 〈Tkf, g〉 is the k-th Fourier coefficient of the function [f̂ , ĝ]Γ∗ .

(iii) 〈F 〉Γ ⊥ 〈G〉Γ if and only if [F̂ , Ĝ]Γ∗ = 0 a.e.

(iv) F generates an o.n.b. for 〈F 〉Γ if and only if [F̂ , F̂ ]Γ∗ = Im+1 a.e.
(v) [MF, NG]Γ(x) = M(x)[F, G]Γ(x)N

∗(x) if M, N are Γ-periodic (m + 1) ×
(m + 1) matrices.

Proof. We omit (i), while (iii) and (iv) easily follow from (ii), which, in turn, is
implied by the following chain of equalities:

〈Tkf, g〉 =
∫
R̂n

f̂(ξ)ĝ(ξ)e−2πiξkdξ

=
∑
γ∈Γ∗

∫
TΓ∗

f̂(ξ + γ)ĝ(ξ + γ)e2πi(ξ+γ)kdξ

(since γk ∈ Z) =
∑
γ∈Γ∗

∫
TΓ∗

f̂(ξ + γ)ĝ(ξ + γ)e2πiξkdξ

=

∫
TΓ∗

⎛⎝∑
γ∈Γ∗

f̂(ξ + γ)ĝ(ξ + γ)

⎞⎠ e2πiξkdξ

= | det(c)|
∫
TΓ∗

[f̂ , ĝ]Γ∗(ξ)e2πiξkdξ.
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To prove (v) we use the Γ-periodicity of M and N that ensures

[MF, NG]Γ(x) = | det(c)|
∑
k∈Γ

M(x + k)F (x + k)G∗(x + k)N∗(x + k)

= | det(c)|
∑
k∈Γ

M(x)F (x + k)G∗(x + k)N∗(x)

= M(x)[F, G]Γ(x)N
∗(x). �

Corollary 2. Suppose Ψ is a multiwavelet associated with a multigenerated MRA
{Vj}j∈Z for L2(Rn) and Φ = Ψ0 is its multiscaling function. Then, for all 0 ≤
�, �′ ≤ L,

(2.7) [Ψ̂�, Ψ̂�′ ]Γ∗(ξ) = | det(c)|−1
∑
γ∈Γ∗

Ψ̂�(ξ+γ)Ψ̂�′∗(ξ+γ) = δ�,�′Im+1 for a.e. ξ,

where δ�,�′ is the usual Kronecker delta.

3. Matricial filters

3.1. Filter conditions. In this section we develop the theory of matricial filters
for multigenerated MRA wavelets. Many of the results below are part of the wavelet
community folklore; however, we were not able to find a reference where they would
be stated at this level of generality. A special case of the theory below can be
found, for example, in [1]. The general case can be deduced, with some effort and
additional (unnecessary) assumptions, from [18]. The exposition below contains
reasonably transparent new proofs and emphasizes the results that are illustrated
in the examples in Section 4.

We begin with the following lemma that characterizes functions in 〈F 〉Γ.

Lemma 3. Consider fs, gs ∈ L2(Rn), 0 ≤ s ≤ m, and let F and G be defined
according to (2.3). Assume that {Tkfs : k ∈ Γ, 0 ≤ s ≤ m} is an orthonormal basis
for its closed linear span 〈F 〉Γ. Then 〈G〉Γ ⊆ 〈F 〉Γ if and only if there exists a

unique Γ∗-periodic matrix M ∈ (L2(R̂n))(m+1)×(m+1) such that

(3.1) Ĝ(ξ) = M(ξ)F̂ (ξ) for a.e. ξ.

Proof. First, we observe that if M ∈ (L2(R̂n))(m+1)×(m+1) is Γ∗-periodic and

Ĝ(ξ) = M(ξ)F̂ (ξ) a.e., then gs ∈ L2(Rn), 0 ≤ s ≤ m, clearly belong to 〈F 〉Γ.
Next, we show that if 〈G〉Γ ⊆ 〈F 〉Γ, then

(3.2) Ĝ(ξ) = [Ĝ, F̂ ]Γ∗(ξ)F̂ (ξ) for a.e. ξ.

Indeed, by Lemma 1(iv,v),

[Ĝ − [Ĝ, F̂ ]Γ∗ F̂ , F̂ ]Γ∗ = [Ĝ, F̂ ]Γ∗ − [Ĝ, F̂ ]Γ∗ [F̂ , F̂ ]Γ∗ = 0.

Now (3.2) follows from Lemma 1(iii),(iv). Uniqueness of the matrix M with the
desired property follows similarly. �

Remark 1. Let F, G be as in the above lemma without assuming 〈G〉Γ ⊆ 〈F 〉Γ.
Define H via

Ĥ(ξ) = [Ĝ, F̂ ]Γ∗(ξ)F̂ (ξ) for a.e. ξ.

Then 〈H〉Γ is the orthogonal projection of 〈G〉Γ onto 〈F 〉Γ.
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Corollary 4. Suppose {Vj}∞j=−∞ is a multigenerated MRA for L2(Rn) and Φ =

(ϕ0, . . . , ϕm)T is its scaling function. Then F ∈ V m+1
1 if and only if there exists a

unique Γ∗-periodic matrix MF ∈ (L2(R̂n))(m+1)×(m+1) such that

(3.3) F̂ (ξa) = MF (ξ)Φ̂(ξ).

The above corollary ensures that the following definition is meaningful.

Definition 7 (Matrix Filters). Let {Vj}∞j=−∞ be a multigenerated MRA for L2(Rn)

and Φ = (ϕ0, . . . , ϕm)T its scaling function. We define the low pass filter matrix
M0 via

(3.4) Φ̂(ξa) = M0(ξ)Φ̂(ξ).

For Ψ� = (ψ�
0, . . . , ψ

�
m)T ∈ V m+1

1 we define the high pass filters M�, 1 ≤ � ≤ L, via

(3.5) Ψ̂�(ξa) = M�(ξ)Φ̂(ξ).

We require the following lemma to prove an analog of the Smith-Barnwell equa-
tion for matricial filters.

Lemma 5. Let {β0, . . . , βL} be a full set of coset representatives of Γ∗a−1/Γ∗ and
Φ be a multiscaling function of a multigenerated MRA for L2(Rn). For j = 1, 2,

consider Fj ∈ V m+1
1 such that F̂j(ξa) = Mj(ξ)Φ̂(ξ). Then

(3.6) [F̂1, F̂2]Γ∗(ξa) =

L∑
i=0

M1(ξ + βi)M
∗
2 (ξ + βi) for a.e. ξ.

Proof. To prove (3.6) we use the periodicity of M1, M2 and the equalities

[F̂1, F̂2]Γ∗(ξa) = | det(c)|−1
∑
γ∈Γ∗

F̂1(ξa + γ)F̂ ∗
2 (ξa + γ)

= | det(c)|−1
∑
γ∈Γ∗

M1(ξ + γa−1)Φ(ξ + γa−1)Φ∗(ξ + γa−1)M∗
2 (ξ + γa−1)

= | det(c)|−1
L∑

i=0

∑
γ∈Γ∗

M1(ξ + βi)Φ(ξ + βi + γ)Φ∗(ξ + βi + γ)M∗
2 (ξ + βi)

=

L∑
i=0

M1(ξ + βi)M
∗
2 (ξ + βi).

The last of the above equalities follows from (2.7). �

Lemma 6. Let {β0, . . . , βL} be a full set of coset representatives of Γ∗a−1/Γ∗. Let
Φ = Ψ0 be the multiscaling function of an MRA for L2(Rn) with the associated
low pass filter matrix M0(ξ). Suppose Ψ� ∈ V m+1

1 and M�, 1 ≤ � ≤ L, are the
associated high pass filters. Then {Tkψ

�
s : k ∈ Γ, 0 ≤ � ≤ L, 0 ≤ s ≤ m} is an

orthonormal sequence if and only if

(3.7)

L∑
i=0

M�(ξ + βi)M
∗
�′(ξ + βi) = δ�,�′Im+1 for 0 ≤ �, �′ ≤ L.

Proof. Follows from Lemma 5 and Corollary 2. �
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Definition 8 (Matricial Filter). Let {Vj}∞j=−∞ be an MRA for L2(Rn) with
the associated multiscaling function Φ and the low pass filter M0(ξ). Also, let
{β0, . . . , βL} be a full set of coset representatives of Γ∗a−1/Γ∗, Ψ� ∈ V m+1

1 , and let
M�, 1 ≤ � ≤ L, be the associated high pass filters. The matricial filter M = (m�i),
0 ≤ �, i ≤ L, is the block matrix defined by

m�i(ξ) = M�(ξ + βi).

Theorem 7 (Multivariate Unitary Extension Principle). Let {Vj}∞j=−∞ be an MRA

for L2(Rn) with the associated multiscaling function Φ and the low pass filter M0(ξ).
Also, let {β0, . . . , βL} be a full set of coset representatives of Γ∗a−1/Γ∗, Ψ� ∈ V m+1

1 ,
and let M�, 1 ≤ � ≤ L, be the associated high pass filters. Then Ψ = (ψ�

s) ⊂ L2(Rn),
0 ≤ s ≤ m, 1 ≤ � ≤ L, is a multiwavelet for the multigenerated MRA {Vj}∞j=−∞ if
and only if the matricial filter M is a unitary matrix.

Proof. We need to prove that Ψ is an orthonormal multiwavelet if and only if (3.7)
holds. Without loss of generality, assume β0 = 0. By Lemma 6, it remains to show
only that

V1 = 〈Ψ〉Γ = 〈ψ�
s, 0 ≤ � ≤ L, 0 ≤ s ≤ m〉Γ

when M is unitary. We will use the fact that in this case we have

(3.8)

L∑
�=0

M∗
� (ξ)M�(ξ + βi) = δi,0Im+1 for a.e. ξ.

Let F ∈ V m+1
1 . Since 〈Ψ〉Γ ⊆ V1 we only need to show that F ∈ 〈Ψ〉m+1

Γ . By Corol-

lary 4, there exists a Γ∗-periodic matrix filter MF such that F̂ (ξa) = MF (ξ)Φ̂(ξ).
Using (3.8) and (3.5), we get

F̂ ∗(ξa) = Φ̂∗(ξ)M∗
F (ξ)

=
L∑

i=0

L∑
�=0

Φ̂∗(ξ)M∗
� (ξ)M�(ξ + βi)M

∗
F (ξ + βi)

=
L∑

�=0

Ψ̂∗
� (ξa)

L∑
i=0

M�(ξ + βi)M
∗
F (ξ + βi) =

L∑
�=0

Ψ̂∗
� (ξa)N

∗
F (ξa),

where N∗
F (ξ) =

∑L
i=0 M�(ξa

−1 + βi)M
∗
F (ξa

−1 + βi) is clearly Γ∗-periodic. Hence,

F ∈ 〈Ψ〉m+1
Γ by Lemma 3. �

3.2. Composite symmetry. In this subsection we study the symmetry conditions
for the filters that would ensure that a multigenerated MRA is, in fact, a composite
one.

Definition 9 (Composite Symmetry). A vector function F ∈ (L2(Rn))m+1 has
composite symmetry with respect to an (m+1)-element group B if (2.1) is satisfied
for some ordering of the group B.

Clearly, F has composite symmetry if and only if F̂ does. Moreover, the normal-
ization condition a−1Ba = B ensures that F has composite symmetry if and only if
DaF does. Unfortunately, functions with composite symmetry do not form a vector
space. Because of this, we fix an ordering of the group B = {b0 = In, b1, . . . , bm}
and, if necessary, reorder composite scaling functions so that they have composite
symmetry and (2.1) is satisfied for this particular ordering of the group.
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Assume now that Φ is a composite multiscaling function and M0 is its low pass
filter. Since Φ satisfies (2.1), for each s = 0, 1, . . . , m we have

m∑
j=0

msj(ξ)ϕ̂j(ξ) = ϕ̂s(ξa) = ϕ̂(ξabs) = ϕ̂(ξbs̃a)

=

m∑
j=0

m0j(ξbs̃)ϕ̂j(ξbs̃) =

m∑
j=0

m0σs(j)(ξbs̃)ϕ̂j(ξ),

where bs̃ = absa
−1 ∈ B by the normalization condition, and σs ∈ Sm+1 is the

unique permutation such that bσs(j) = b−1
s̃ bj , 0 ≤ j ≤ m. This observation moti-

vates the following definition and proves the subsequent lemma.

Definition 10 (Composite Symmetry of a Matrix). We say that a matrix M =
(msj) ∈ (L2(TΓ))

(m+1)×(m+1) has composite symmetry (with respect to the group
B and the dilation matrix a) if

(3.9) msj(ξ) = m0σs(j)(ξbs̃), 0 ≤ s, j ≤ m, for a.e. ξ,

where bs̃ = absa
−1 and σs ∈ Sm+1 is the unique permutation such that bσs(j) =

b−1
s̃ bj , 0 ≤ j ≤ m.

Lemma 8. Let {Vj}j∈Z be an MRA for L2(Rn), Φ = Ψ0—the associated scaling
function, Ψ—the associated multiwavelet, and M�, 0 ≤ � ≤ L—the correspond-
ing matrix filters. Then Ψ� has composite symmetry if and only if there exists a
permutation matrix P such that PM� has composite symmetry, 0 ≤ � ≤ L.

Remark 2. Equation (3.9) was originally obtained by C. Cabrelli in private com-
munication with U. Molter and the second author.

The following lemmas cover some interesting special cases.

Lemma 9. Assume that the dilation matrix satisfies | det(a)| = 2 and {0, β} is
a full set of coset representatives of Γ∗a−1/Γ∗. Then a filter matrix M(ξ) has
composite symmetry if and only if M(ξ + β) does.

Proof. Follows from the Γ∗-periodicity of M and the condition aBa−1 = B. �

Lemma 10. Assume that the group B commutes with the dilation matrix a, i.e.,
ab = ba for all b ∈ B. Then the set of matrices with composite symmetry is an
algebra.

Proof. The set of matrices with composite symmetry is always a vector space. To
see that it is an algebra when B commutes with a, it is enough to notice that in
this case F and DaF have composite symmetry with respect to the same ordering
of B. �

3.3. High pass filter constructions. Theorem 7 leaves open two very important
questions in constructing multiwavelets from filter matrices. The first asks when it
is possible to construct a scaling function given a low pass filter matrix satisfying
the Smith-Barnwell equation (3.7) with � = �′ = 0. The second question asks when
it is possible to build the matricial filter M given its first (block) row. In this paper
we limit ourselves to a few special cases when those questions can be answered. We
will address the more general situation elsewhere.
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For traditional wavelets with a single scaling function and low pass filter M0(ξ),
defined either on R or by taking Cartesian products of one-dimensional scaling
functions for R

n, the wavelets are constructed from the high pass filters obtained
by translation of the low pass filter by the coset representatives of Γ∗a−1/Γ∗ and
possibly the application of a wavelet multiplier: M�(ξ) = ν(ξ)M0(ξ+β�). In general,
this construction does not extend to composite dilation wavelets since the wavelet
ψ� may be defined by multiple scaling functions ϕs with the same translation k ∈ Γ.
In this case Ψ(x), defined by Ψ̂�(ξ) = M�(ξa

−1)Φ̂(ξa−1), may not be orthogonal to

Φ̂(x).
We conclude this section with three particular methods for completing the ma-

tricial filter when | det(a)| = 2. Let the coset representatives of Γ∗a−1/Γ∗ be {0, β}.
The following methods apply to three special cases involving M0(ξ)M

∗
0 (ξ + β).

3.3.1. Filter completion when M0(ξ)M
∗
0 (ξ + β) = 0. Suppose ϕ(x) is a Haar-type

composite dilation scaling function with | det(a)| = 2. Then M0(ξ) satisfies (3.7)
and M0(ξ)M0(ξ + β) = 0 for a.e. ξ. In this case, the simplest high pass filter
construction will succeed. Define M1(ξ) = M0(ξ + β). Then

M1(ξ)M
∗
1 (ξ) + M1(ξ + β)M∗

1 (ξ + β) = M0(ξ + β)M∗
0 (ξ + β) + M0(ξ)M

∗
0 (ξ) = I,

M0(ξ)M
∗
1 (ξ) + M0(ξ + β)M∗

1 (ξ + β) = M0(ξ)M
∗
0 (ξ + β) + M0(ξ + β)M∗

0 (ξ) = 0.

Clearly, M0 and M1 satisfy (3.7) and the matricial filter M is unitary. Therefore,

Ψ̂(ξ) = M1(ξa
−1)Φ̂(ξa−1) defines an MRA composite dilation wavelet by Theo-

rem 7 and Lemma 9.

3.3.2. Filter completion when M0(ξ)M
∗
0 (ξ+β) is self-adjoint. Here we assume that

the dilation matrix a satisfies | det(a)| = 2 and we have a scaling function ϕ with an
associated low pass filter M0 such that the matrix M0(ξ)M

∗
0 (ξ + β) is self-adjoint

for a.e. ξ. In this case we essentially use the standard [11] construction of the high
pass filter modified for the multivariate case [1]. Let j(a) be an index such that
βj(a) is not an element of the integer lattice and, hence, e2πiβj(a) = −1. Define

ν(ξ) = e2πiξj(a) and let M1(ξ) = ν(ξ)M0(ξ + β). Then

M1(ξ)M
∗
1 (ξ) + M1(ξ + β)M∗

1 (ξ + β) = M0(ξ + β)M∗
0 (ξ + β) + M0(ξ)M

∗
0 (ξ) = I

and

M0(ξ)M
∗
1 (ξ) + M0(ξ + β)M∗

1 (ξ + β)

= e−2πiξj(a)(M0(ξ)M
∗
0 (ξ + β)− M0(ξ + β)M∗

0 (ξ)) = 0,

since M0(ξ)M
∗
0 (ξ + β) is self-adjoint for a.e. ξ. Hence, the matricial filter M is, in-

deed, unitary, and Ψ̂(ξa) = M1(ξ)Φ̂(ξ) defines an MRA multiwavelet by Theorem 7.
This wavelet, however, is likely not to be composite because of the unimodular fac-
tor ν(ξ). Note that all classical wavelets arise from this construction.

3.3.3. Filter completion when (M0(ξ)M
∗
0 (ξ + β) + M0(ξ + β)M∗

0 (ξ))
2 < I. Again,

we assume that the dilation matrix a satisfies | det(a)| = 2 and we have a scaling
function ϕ with an associated low pass filter M0. Define

(3.10) D(ξ) = M0(ξ)M
∗
0 (ξ + β) + M0(ξ + β)M∗

0 (ξ),
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and assume (I − D2(ξ)) > 0 for a.e. ξ. In this case, we attempt to find (Γ∗a−1)-
periodic, self-adjoint matrices A and B so that

(3.11) M1(ξ) = A(ξ)M0(ξ) + B(ξ)M0(ξ + β)

will complete a matrix M that satisfies the conditions of Theorem 7. Equivalently,
we seek to satisfy (3.7). From the condition M0(ξ)M

∗
1 (ξ)+M0(ξ+β)M∗

1 (ξ+β) = 0,
we get

(3.12) A(ξ) = −D(ξ)B(ξ).

It remains only to find a suitable matrix B(ξ). The remaining necessary condition
M1(ξ)M

∗
1 (ξ) +M1(ξ + β)M∗

1 (ξ + β) = I, provides B(ξ)(I −D2(ξ))B(ξ) = I. Since
(I − D2(ξ)) > 0, define

(3.13) B(ξ) = (I − D2(ξ))−1/2.

By the construction of A(ξ) and B(ξ), the high pass filter matrix M1(ξ) defined

by (3.11)-(3.13) satisfies (3.7). Thus, M is unitary and Ψ̂(ξa) = M1(ξ)Φ̂(ξ) defines
an MRA multiwavelet by Theorem 7. Furthermore, if B commutes with a, this
multiwavelet will be composite by Lemma 10.

We observe that the restriction (I − D2(ξ)) > 0 is very often satisfied since this
operator is always positive semidefinite. Indeed, we have

I ± D(ξ) = (M0(ξ)± M0(ξ + β))(M0(ξ)± M0(ξ + β))∗.

Clearly, an equivalent restriction is the invertibility of the matrices (M0(ξ) ±
M0(ξ + β)).

4. Examples

4.1. A singly generated Haar-type wavelet in R
3. We begin by presenting

a singly generated composite Haar-type wavelet in R
3. This is the simplest type

of example for generating the wavelets as the high pass filter can be constructed
from the low pass filter via translation of the low pass filter by a non-zero coset
representative of Γ∗a−1/Γ∗. We present an example in R

3, however, this particular
wavelet has a straightforward extension to R

n.
For this example, let Γ = Z

3. The composite dilation group, B, is the group of
reflections through the hyperplanes perpendicular to the standard axes in R

3,

b0 =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ , b1 =

⎛
⎝

1 0 0
0 −1 0
0 0 1

⎞
⎠ , b2 =

⎛
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎠ , b3 =

⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠ ,

b4 = −b2, b5 = −b3, b6 = −b0, and b7 = −b1.
The support of the scaling function ϕ is the cube of volume 1/8 in the positive

octant, R = {x : xi ∈ [0, 1
2 ]}. With ϕ0 = ϕ = 1√

8
χR0

and R0 = R, we see that

the support sets of the functions ϕs = Dbsϕ are the sets Rs = bsR. The union
of the support sets of the eight scaling functions is the unit cube in R

3 centered
at the origin;

⋃7
s=0 Rs = {x : |xi| ∈ [0, 1

2 ]}. These support sets are depicted in
Figure 1(a).

For the expanding matrix, we take the matrix which doubles the magnitude of
the first entry of x and then permutes the entries xi according to x2 → x1, x3 →
x2, x1 → x3:

a =

⎛⎝ 0 1 0
0 0 1
2 0 0

⎞⎠ .
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One interpretation of the action of a on the unit cube
⋃7

s=0 Rs is a rotation by π
2

about the x1-axis followed by a rotation of π
2 about the x2-axis and an expansion

by 2 in the x3 direction.
Clearly, aR0 = {x : x1, x2 ∈ [0, 1

2 ], x3 ∈ [0, 1]} and therefore aR0 = R0 ∪ {x :

x1, x2 ∈ [0, 1
2 ], x3 ∈ [ 12 , 1]}. From the definition of R3 = b3R0 = {x : x1, x2 ∈

[0, 1
2 ], x3 ∈ [− 1

2 , 0]}, translating R3 by the standard basis vector k3 = (0, 0, 1)t will
provide the remaining portion of aR0. Therefore, aR0 = R0∪ (R3+k3) as shown in
Figure 1(b). As a result, our first scaling equation is ϕ0(a

−1x) = ϕ0(x)+ϕ3(x−k3).
The remaining scaling equations are found geometrically following the same basic
outline. The scaling equations are:

ϕ0(a
−1x) = ϕ0(x) + ϕ3(x − k3), ϕ4(a

−1x) = ϕ3(x) + ϕ0(x + k3),

ϕ1(a
−1x) = ϕ4(x) + ϕ7(x − k3), ϕ5(a

−1x) = ϕ7(x) + ϕ4(x + k3),

ϕ2(a
−1x) = ϕ5(x) + ϕ6(x − k3), ϕ6(a

−1x) = ϕ6(x) + ϕ5(x + k3),

ϕ3(a
−1x) = ϕ1(x) + ϕ2(x − k3), ϕ7(a

−1x) = ϕ2(x) + ϕ1(x + k3).

(4.1)

After taking the Fourier transform of the scaling equations (4.1), we have:

ϕ̂0(ξa) =
1

2

(
ϕ̂0(ξ) + e−2πiξk3 ϕ̂3(ξ)

)
, ϕ̂4(ξa) =

1

2

(
ϕ̂3(ξ) + e2πiξk3 ϕ̂0(ξ)

)
,

ϕ̂1(ξa) =
1

2

(
ϕ̂4(ξ) + e−2πiξk3 ϕ̂7(ξ)

)
, ϕ̂5(ξa) =

1

2

(
ϕ̂7(ξ) + e2πiξk3 ϕ̂4(ξ)

)
,

ϕ̂2(ξa) =
1

2

(
ϕ̂5(ξ) + e−2πiξk3 ϕ̂6(ξ)

)
, ϕ̂6(ξa) =

1

2

(
ϕ̂6(ξ) + e2πiξk3 ϕ̂5(ξ)

)
,

ϕ̂3(ξa) =
1

2

(
ϕ̂1(ξ) + e−2πiξk3 ϕ̂2(ξ)

)
, ϕ̂7(ξa) =

1

2

(
ϕ̂2(ξ) + e2πiξk3 ϕ̂1(ξ)

)
.

(4.2)

The low pass filter matrix M0(ξ) is easily extracted from (4.2). Define
(4.3)

M0(ξ) =
1

2

⎛⎜⎜⎜⎝
1 0 0 e(ξk3) 0 0 0 0
0 0 0 0 1 0 0 e(ξk3)
0 0 0 0 0 1 e(ξk3) 0
0 1 e(ξk3) 0 0 0 0 0

e(−ξk3) 0 0 1 0 0 0 0
0 0 0 0 e(−ξk3) 0 0 1
0 0 0 0 0 e(−ξk3) 1 0
0 e(−ξk3) 1 0 0 0 0 0

⎞⎟⎟⎟⎠,

where e(α) := e−2πiα.
Thus, we have the desired Fourier transform version of the scaling equation,

(4.4) Φ̂(ξa) = M0(ξ)Φ̂(ξ).

Since | det(a)| = 2, there are two cosets of the quotient Γ∗a−1/Γ∗, namely {0, β}
with β = (0, 0, 1/2). From (4.3), we have M0(ξ)M

∗
0 (ξ + β) = 0. Hence, we define

M1(ξ) = M0(ξ + β) as in Section 3.3.1 to see that the vector-valued function
satisfying

(4.5) Ψ̂(ξa) = M1(ξ)Ψ̂(ξ)

defines a Haar-type, MRA, composite dilation wavelet. Expanding (4.5), taking
the inverse Fourier transform, and extracting the first row provides

(4.6) ψ(x) = ϕ0(ax)− ϕ3(ax − k3).

Therefore, ψ is a singly generated, Haar-type composite dilation wavelet for R3.
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R2

 + k3

(a) (b)

Figure 1. (a) The support sets Rs, s = 0, . . . , 7 for the scaling
functions ϕs defined in (4.1). (b) The support sets of the dilated
composite scaling function ϕ(a−1x) and composite dilation wavelet
ψ(a−1x) defined in (4.1) and (4.6).

4.2. A Haar-type composite dilation wavelet for R2. In this section, we apply
the theory of Section 3 to a known Haar-type wavelet for R

2. Krishtal et al. [13]
provided the existence of Haar-type composite dilation wavelets in R

2 by presenting
three examples. In their discussion, they presented filter equations when B was
the group of full symmetries of the square. The other two examples involve the
hexagonal lattice and subsets of the hexagon as support sets for the scaling function.
Here we present the matricial filter equations for the group of full symmetries of the
hexagon and show that these filters satisfy the necessary and sufficient condition
(3.7). Blanchard and Steffen [3] have cataloged the Haar-type composite dilation
wavelets when the semi-direct product B �Γ forms a crystallographic group on R

2

(also called a plane symmetry group). Independently, MacArthur and Taylor have
utilized the representation theoretic framework to produce Haar-type wavelets from
the plane crystallographic groups [17] and MacArthur also cataloged these wavelets
in R

2 [16].
Let B be the group of full symmetries of the hexagon and Γ = cZ2 where

c = 1
4

(
3
√

3 0
3 6

)
. (In the plane symmetry (crystallographic) group notation from

[3], B � Γ = p6m.) Choose the ordering of B to map the set R0 counterclockwise
around the octagon (see Figure 2(a)). The columns of the matrix c provide two
generating vectors for the full rank lattice Γ. The dual lattice Γ∗ is generated by

( 4
√
3

9 , 0) and (−2
√
3

9 , 2
3 ). Finally, the composite dilation system is completed by the

dilation matrix a = 1
2

(
3 −

√
3√

3 3

)
.

Let k0 =
(

3
√
3

4 , 3
4

)t
and k1 =

(
0, 3

2

)t
, namely the columns of the matrix c which

form a basis for the lattice Γ. For brevity, let k01 = k0 − k1. Then we define the
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Figure 2. (a) The support sets Rs, s = 0, . . . , 11 for the scaling
functions ϕs defined in (4.8). (b) The support sets of the dilated
composite scaling function ϕ(a−1x) and composite dilation wavelet
ψ(a−1x) defined in (4.8) and (4.9).

low pass filter

(4.7)

M0(ξ) =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 e(ξk0) e(ξk0)
0 0 1 0 0 0 0
0 0 0 1 0 0 0

e(−ξk01) 0 0 0 1 0 0
0 0 0 0 0 1 0
0 e(−ξk0) e(−ξk0) 0 0 0 1

e(−ξk0) 0 0 0 0 0 0
0 0 0 e(−ξk1) e(−ξk1) 0 0
0 e(−ξk1) e(−ξk1) 0 0 0 0
0 0 0 0 0 e(ξk01) e(ξk01)
0 0 0 e(ξk01) e(ξk01) 0 0
1 0 0 0 0 0 0

· · ·

0 0 0 0 0
0 0 e(ξk1) e(ξk1) 0

e(ξk1) e(ξk1) 0 0 0
0 0 0 0 e(−ξk01)
0 0 e(−ξk01) e(−ξk01) 0

. . . 0 0 0 0 0
1 0 0 0 e(−ξk0)
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

e(ξk0) e(ξk0) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then Φ̂(ξa) = M0(ξ)Φ̂(ξ) and the inverse Fourier transform of the first row of
this vector equation yields the obvious scaling equation for the scaling function

ϕ(x) = 4
√

2
√
3

3 χR where R = R0 is the fundamental triangle for the Hexagon as
shown in Figure 2. This scaling equation, with ϕ := ϕ0 is

(4.8) ϕ0(a
−1x) = ϕ1(x) + ϕ5(x − k0) + ϕ6(x − k0).

From (4.8), the dilated scaling function ϕ := ϕ0 is, as expected, the sum of
three translated scaling functions. However, two of these scaling functions require
an identical translation, namely a translation by k0. Note that det(a) = 3 so the
constructions from Section 3.3 do not apply. Instead, Krishtal et al. [13] determined
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the orthogonal wavelets geometrically. Following [13], two wavelet generators for
the composite dilation system are defined by

ψ1(a−1x) =
1√
6
(ϕ1(x)− ϕ6(x − k0)) ,

ψ2(a−1x) =
1

3
√
2
(ϕ1(x)− 2ϕ5(x − k0) + ϕ6(x − k0)) .

(4.9)

By taking the Fourier transforms of (4.9) and each of the dilations by elements of
the group B, we determine the two highpass filters:

M1(ξ) =
1

√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −e(−ξk0) 0 0 0 0

−e(−ξk0) 0 0 0 0 0
0 0 0 −e(−ξk1) 0 0
0 0 −e(−ξk1) 0 0 0
0 0 0 0 0 −e(ξk01)
0 0 0 0 −e(ξk01) 0
1 0 0 0 0 0

· · ·(4.10)

−e(ξk0) 0 0 0 0 0
0 0 0 −e(ξk1) 0 0
0 0 −e(ξk1) 0 0 0
0 0 0 0 0 −e(−ξk01)
0 0 0 0 −e(−ξk01) 0

. . . 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −e(ξk0) 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M2(ξ) =
1

3
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 −2e(ξk0)
0 0 1 0 0 0
0 0 0 1 0 0

−2e(ξk01) 0 0 0 1 0
0 0 0 0 0 1
0 e(−ξk0) −2e(−ξk0) 0 0 0

e(−ξk0) 0 0 0 0 0
0 0 0 e(−ξk1) −2e(−ξk1) 0
0 −2e(−ξk1) e(−ξk1) 0 0 0
0 0 0 0 0 e(ξk01)
0 0 0 −2e(ξk01) e(ξk01) 0
1 0 0 0 0 0

· · ·(4.11)

e(ξk0) 0 0 0 0 0
0 0 0 e(ξk1) −2e(ξk1) 0
0 −2e(ξk1) e(ξk1) 0 0 0
0 0 0 0 0 e(−ξk01)
0 0 0 −2e(−ξk01) e(−ξk01) 0

. . . 1 0 0 0 0 0
0 1 0 0 0 −2e(−ξk0)
0 0 1 0 0 0
0 0 0 1 0 0

−2e(ξk01) 0 0 0 1 0
0 0 0 0 0 1
0 e(ξk0) −2e(ξk0) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To check the filter conditions (3.7) for these 12× 12 matrices is clearly tedious.
However, the symbolic toolbox in MatLab allows us to do so easily (with software
available on the first author’s web page). The matrix filters M0(ξ), M1(ξ), M2(ξ)
do indeed produce a unitary matricial filter M, and, by Theorem 7 and Lemma 8,
define a Haar-type, MRA, composite dilation wavelet system for L2(R2).

4.3. A composite dilation wavelet for L2(R) with accuracy 2. In previ-
ous work appearing in [2], the current authors found the first known compactly
supported composite dilation wavelet with accuracy greater than the Haar-type
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wavelets. Recall that a function f(x) has accuracy p if, for every q < p, q, p ∈ N,
the restriction of each monomial xq to a compact set is a linear combination of
the Γ-translations of f ; i.e., xqχK(x) =

∑
k∈Γ αkf(x − k)χK(x), where K ⊂ R is

compact and {αk} is a sequence of complex coefficients. In this section, we describe
this composite dilation wavelet with accuracy 2 which generates an orthonormal
basis for L2(R). This compactly supported, piecewise-linear CDW was developed
in [2] by first finding a scaling function with accuracy 2 via the accuracy equations
for refinable functions determined by Cabrelli, Heil, and Molter [4].

The composite structure provides relations between the coefficients in the refine-
ment equations from [4] which lead to a system of equations whose solution will
determine a scaling function for R. In R, the only finite group B is the reflection
through the origin, namely B = {1,−1}. The integer lattice and the dyadic dilation
(a = 2) define the remainder of the composite dilation system.

By solving the (rather large) system of quadratic equations produced by the
accuracy equations for accuracy 2, a scaling function for a composite dilation MRA
on R was found to be

(4.12) ϕ(x) =

{
1√
2

[
2
√
3x + (1−

√
3)
]

for x ∈ [0, 1],

0 for x /∈ [0, 1]

almost everywhere.

2
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Figure 3. (a) The composite dilation scaling function ϕ defined
in (4.12). (b) The composite dilation wavelet ψ defined in (4.21).

From (4.12), we apply the dilations by the composite dilation group B and
define the functions ϕ0(x) = D1ϕ(x) = ϕ(x) and ϕ1(x) = D−1ϕ(x) = ϕ(−x). The
solution of the refinement equations determined the following scaling (refinement)
equations:

ϕ0

(
1

2
x

)
= αϕ0(x) + βϕ0(x − 1) + γϕ1(x − 1) + δϕ1(x − 2),

ϕ1

(
1

2
x

)
= αϕ1(x) + βϕ1(x + 1) + γϕ0(x + 1) + δϕ0(x + 2),

(4.13)



920 JEFFREY D. BLANCHARD AND ILYA A. KRISHTAL

where α = 3−
√
3

4 , β = 3+
√
3

4 , γ = 1−
√
3

4 , and δ = 1+
√
3

4 . Taking the Fourier trans-
form of (4.13), we construct the low pass filter matrix

(4.14) M0(ξ) =
1

2

(
α + βe−2πiξ γe−2πiξ + δe−4πiξ

γe2πiξ + δe4πiξ α + βe2πiξ

)
.

Then we have the vector-valued scaling equation Φ̂(ξa) = M0(ξ)Φ̂(ξ) as desired. A
simple calculation shows that α2+β2+γ2+δ2 = 2 and αδ+βγ = 0, and therefore,

M0(ξ)M
∗
0 (ξ) + M0

(
ξ +

1

2

)
M∗

0

(
ξ +

1

2

)
=

1

2

(
α2 + β2 + γ2 + δ2 2(αδ + βγ)e−4πiξ

2(αδ + βγ)e4πiξ α2 + β2 + γ2 + δ2

)
=

(
1 0
0 1

)
.(4.15)

If we let N(ξ) = M0(ξ+1/2), the translation of the low pass filter by the non-zero
coset representative, (4.15) shows that N(ξ) satisfies (3.7) with � = �′ = 1. However,

the function defined by F̂ (x) = N(ξ)Φ̂(ξ) is not orthogonal to the scaling function
Φ(x). Therefore, we must use an alternative method to determine the wavelet, and
in this case, we employ the high pass filter construction from Section 3.3.3. Let

D(ξ) = M0(ξ)M
∗
0

(
ξ +

1

2

)
+ M0

(
ξ +

1

2

)
M∗

0 (ξ)

=
1

2

(
α2 − β2 − γ2 + δ2 2(αδ − βγ)e−4πiξ

2(αδ − βγ)e−4πiξ α2 − β2 − γ2 + δ2

)
=

√
3

4

(
−1 e−4πiξ

e4πiξ −1

)
.(4.16)

Then (I−D2(ξ)) > 0 and this method for completing the matricial filter M applies.
Following Section 3.3.3, let B(ξ) = (I − D2(ξ))−1/2. Then, one choice for the

square root is

(4.17) B(ξ) =
1

2

(
−3 e−4πiξ

e4πiξ −3

)
.

Now we define A(ξ) = −B(ξ)D(ξ) so that

(4.18) A(ξ) =

√
3

2

(
−1 e−4πiξ

e4πiξ −1

)
.

From (4.17) and (4.18), we define the high pass filter matrix as M1(ξ)=A(ξ)M0(ξ)+
B(ξ)M0(ξ + 1/2). A series of straightforward computations leads to

(4.19) M1(ξ) =
1

2

(
−γ + δe−2πiξ αe−2πiξ − βe−4πiξ

αe2πiξ − βe4πiξ −γ + δe2πiξ

)
.

From Section 3.3.3, we know that M1(ξ) is a high pass filter. It is interesting to
note that

M1(ξ)M
∗
1 (ξ) + M1

(
ξ +

1

2

)
M∗

1

(
ξ +

1

2

)
=

1

2

(
α2 + β2 + γ2 + δ2 2(αδ + βγ)e−4πiξ

2(αδ + βγ)e4πiξ α2 + β2 + γ2 + δ2

)
,
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which is the identity by (4.15). As shown in Section 3.3.3, Ψ̂(ξ) = M1(ξ/2)Φ̂(ξ/2)
defines an MRA, composite dilation wavelet.

Taking the inverse Fourier transform of Ψ̂(ξ) = M1(ξ/2)Φ̂(ξ/2) and extracting
the first row, the wavelet is defined by

(4.20) ψ (x) = −γϕ0(2x) + δϕ0(2x − 1) + αϕ1(2x − 1)− βϕ1(2x − 2).

Another straightforward calculation shows that the composite dilation wavelet, dis-
played in Figure 3(b), is, almost everywhere, the piecewise linear function

(4.21) ψ(x) =

⎧⎪⎨⎪⎩
1√
2

[
(6− 4

√
3)x − (1−

√
3)
]

for x ∈
[
0, 1

2

)
,

1√
2

[
(6 + 4

√
3)x − (5 + 3

√
3)
]

for x ∈
[
1
2 , 1
]
,

0 for x /∈ [0, 1] .

In [2], the composite dilation wavelet ψ was determined via brute force. The
filter equations and constructions from Section 3 are a considerable improvement
that we hope will lead to the discovery of smoother compactly supported composite
dilation wavelets.
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