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DESIGN OF RATIONAL ROTATION–MINIMIZING

RIGID BODY MOTIONS BY HERMITE INTERPOLATION

RIDA T. FAROUKI, CARLOTTA GIANNELLI, CARLA MANNI,
AND ALESSANDRA SESTINI

Abstract. The construction of space curves with rational rotation-
minimizing frames (RRMF curves) by the interpolation of G1 Hermite data,
i.e., initial/final points pi and pf and frames (ti,ui,vi) and (tf ,uf ,vf ), is
addressed. Noting that the RRMF quintics form a proper subset of the spatial
Pythagorean–hodograph (PH) quintics, characterized by a vector constraint
on their quaternion coefficients, and that C1 spatial PH quintic Hermite in-
terpolants possess two free scalar parameters, sufficient degrees of freedom for
satisfying the RRMF condition and interpolating the end points and frames
can be obtained by relaxing the Hermite data from C1 to G1. It is shown that,
after satisfaction of the RRMF condition, interpolation of the end frames can
always be achieved by solving a quadratic equation with a positive discrim-
inant. Three scalar freedoms then remain for interpolation of the end–point
displacement pf −pi, and this can be reduced to computing the real roots of a
degree 6 univariate polynomial. The nonlinear dependence of the polynomial
coefficients on the prescribed data precludes simple a priori guarantees for the
existence of solutions in all cases, although existence is demonstrated for the
asymptotic case of densely–sampled data from a smooth curve. Modulation of
the hodograph by a scalar polynomial is proposed as a means of introducing
additional degrees of freedom, in cases where solutions to the end–point inter-
polation problem are not found. The methods proposed herein are expected
to find important applications in exactly specifying rigid–body motions along

curved paths, with minimized rotation, for animation, robotics, spatial path
planning, and geometric sweeping operations.

1. Introduction

The distinctive feature of a polynomial Pythagorean–hodograph (PH) curve r(ξ)
is that the parametric speed σ(ξ) = |r′(ξ)| is a polynomial (rather than the square
root of a polynomial) in the curve parameter ξ. Many significant computational
advantages stem from this fact [5]. However, the nonlinear nature of the algebraic
models used to characterize PH curves precludes easy construction by the stan-
dard “control polygon” paradigm of computer–aided geometric design [4]. Instead,
the geometrical construction of PH curves is typically achieved by the solution of
Hermite interpolation problems.

Algorithms for Hermite and spline interpolation by planar PH curves are gen-
erally based upon the complex representation [1, 13, 14, 18]. Interpolation of C1
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Hermite data (i.e., given initial/final points and derivatives r(0) = pi, r(1) = pf
and r′(0) = di, r

′(1) = df ) using the quaternion form of spatial PH quintics r(ξ)
was first studied in [8]. It was observed that the solutions of this problem incur three
free angular parameters φ0, φ1, φ2; but the interpolants depend only upon their dif-
ferences, so one may choose φ1 = 0 (say), without loss of generality. Strategies for
the “optimal” selection of the remaining two parameters φ0, φ2 were subsequently
considered in [9]; see also [24].

The rational rotation–minimizing frame (RRMF) curves are a subset of the spa-
tial PH curves, with the additional property that they admit rational orthonormal
frames (t,u,v) such that the normal–plane vectors u, v exhibit no instantaneous ro-
tation about the curve tangent t = r′/|r′|, i.e., rotation–minimizing frames (RMFs).
Such frames are extremely useful for animation, motion planning, robotics, swept
surface constructions, and related problems [19, 21, 25]. The ability to compute
exact RMFs with a rational dependence on the curve parameter eliminates the
need for data–intensive and potentially error–prone approximation schemes; see
[12, 20, 25, 26].

The variation of a frame (t,u,v) defined on a curve r(ξ) is specified by its vector
angular velocity ω(ξ), through the relations

d t

d s
= ω × t ,

du

d s
= ω × u ,

dv

d s
= ω × v ,

where s is the arc length along r(ξ). The magnitude and direction of ω specify the
frame angular speed and rotation axis at each point. The characteristic property
of an RMF is that its angular velocity has no component along t, i.e., ω · t ≡ 0
(equivalently, the derivatives u′ and v′ are always parallel to t). The familar Frenet
frame (t,p,b), where the principal normal p points to the center of curvature and
b = t × p is the binormal, is not rotation–minimizing since its angular velocity is
defined [22] by the Darboux vector ω = κb+ τ t, where κ and τ are the curvature
and torsion of r(ξ). A rotation–minimizing frame, on the other hand, has angular
velocity ω = κb.

The intent of this paper is to develop algorithms for interpolation of G1 Her-
mite “motion data” by RRMF curves,1 that will facilitate their practical use in
diverse applications. Such data comprises initial/final points pi and pf and frames
(ti,ui,vi) and (tf ,uf ,vf ) that specify the initial/final positions and orientations
for the smooth motion of a rigid body. The output is an RRMF curve r(ξ) and
associated frame (t(ξ),u(ξ),v(ξ)) defined on ξ ∈ [ 0, 1 ] where t(ξ) = r′(ξ)/|r′(ξ)|
is the unit tangent to r(ξ), and

(1) r(0) = pi , (t(0),u(0),v(0)) = (ti,ui,vi) ,

(2) r(1) = pf , (t(1),u(1),v(1)) = (tf ,uf ,vf ) .

Furthermore, the orthonormal frame vectors (t(ξ),u(ξ),v(ξ)) have a rational de-
pendence on the curve parameter ξ, and the frame angular velocity ω(ξ) maintains
a vanishing component along t(ξ), i.e., u(ξ) and v(ξ) exhibit no instantaneous ro-
tation about t(ξ). This defines the “most natural” variation for the orientation of
a rigid body traversing the path r(ξ) in such a manner that one principal axis is
always aligned with the tangent vector t(ξ).

1Preliminary results on interpolation of “ordinary” Hermite data (i.e., just end points pi,pf
and tangents ti, tf ) using the Hopf map form of RRMF curves may be found in [11].
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It must be emphasized that the shape quality of solutions to this problem can
be rather sensitive to the initial data. For example, in cases where the vectors ti,
pf − pi, tf are nearly aligned, one might naturally expect the curve r(ξ) to be
nearly linear. However, if (uf ,vf ) differ markedly from (ui,vi) in such cases, the
accommodation of these disparate normal–plane vectors as initial/final instances
of a rotation–minimizing frame will force r(ξ) to deviate markedly from linearity,
since the angular speed of an RMF is equal to the curvature κ(ξ). The possibility
of constructing smooth motion interpolants is thus contingent on specifying end
frames for which the difference between (uf ,vf ) and (ui,vi) is commensurate with
that between tf and ti.

Since the constraint that identifies the RRMF curves among all spatial PH quin-
tics is a vector condition [6, 10] in R

3, the two scalar freedoms φ0, φ2 of C1 PH
quintic Hermite interpolants do not suffice to achieve its satisfaction. To construct
RRMF quintics geometrically, we need to introduce further free parameters. A
natural approach is to relax the Hermite data from C1 to G1, i.e., to impose end
tangents ti, tf instead of derivatives di, df by setting r′(0) = �20 ti, r

′(1) = �22 tf for
indeterminate (nonzero) scalars �0, �2.

The free parameters φ0, φ2, �0, �2 are then available to ensure satisfaction of
the vector RRMF constraint, and the relative normal–plane orientation of the ini-
tial and final frames (ti,ui,vi) and (tf ,uf ,vf ). Since computation of RMFs is
an initial–value problem, an additional free parameter is available to make the
absolute RMF orientation coincide with (ti,ui,vi) initially, and it is shown that
φ1 can be reintroduced for this purpose. Although there are nominally sufficient
freedoms to match the interpolation conditions, the highly nonlinear nature of the
problem makes it difficult to formulate simple a priori guarantees for existence of
interpolants to arbitrary initial data.

It is shown that the problem is decomposable into four consecutive phases;
namely, (1) interpolation of the tangents ti and tf ; (2) satisfaction of the RRMF
constraint; (3) interpolation of the normal–plane vectors (ui,vi) and (uf ,vf ); and
(4) interpolation of the end–point displacement pf − pi. Phases (1)–(3) possess
closed–form algebraic solutions, and the difficulty of existence arises in phase (4).
Since the solutions to phases (1)–(3) are independent of phase (4), it is possible to
introduce new freedoms (e.g., through multiplying the hodograph by a scalar poly-
nomial) in the latter phase that facilitate the existence of solutions. It is also shown
that, for G1 position and RMF data sampled asymptotically from a smooth analytic
curve, RRMF quintic motion interpolants exist without the need for additional free
parameters.

The remainder of the paper is organized as follows. After briefly reviewing
the definition and basic properties of quintic RRMF curves in Section 2, the four
phases of the G1 RRMF quintic motion interpolation algorithm are developed in
Section 3. A number of computed examples are then presented in Section 4, noting
that the nominal interpolation process may not admit solutions for certain G1 end–
point Hermite data. Section 5 then verifies the existence of solutions in the case
of Hermite data sampled asymptotically from a smooth curve. Finally, Section 6
summarizes key results of the paper, and identifies open problems that deserve
further investigation.
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2. Characterization of RRMF quintics

A polynomial Pythagorean–hodograph (PH) curve r(ξ) = (x(ξ), y(ξ), z(ξ)) is
characterized by a derivative r′(ξ) = (x′(ξ), y′(ξ), z′(ξ)) satisfying

(3) x′2(ξ) + y′2(ξ) + z′2(ξ) = σ2(ξ)

for some polynomial σ(ξ). The quaternion and Hopf map forms [3, 7] are two
alternative (equivalent) models for the construction of PH curves. The former
generates a Pythagorean hodograph r′(ξ) from a quaternion polynomial2

A(ξ) = u(ξ) + v(ξ) i+ p(ξ) j+ q(ξ)k ,

and its conjugate A∗(ξ) = u(ξ)− v(ξ) i− p(ξ) j− q(ξ)k through the product

r′(ξ) = A(ξ) iA∗(ξ) = [u2(ξ) + v2(ξ)− p2(ξ)− q2(ξ) ] i

+ 2 [u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ]k .(4)

The latter generates a Pythagorean hodograph from complex polynomials

α(ξ) = u(ξ) + i v(ξ) , β(ξ) = q(ξ) + i p(ξ)

through the expression

(5) r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) .

The equivalence of (4) and (5) can be verified by setting A(ξ) = α(ξ) + kβ(ξ),
the imaginary unit i being identified with the quaternion element i. We find it
convenient to simultaneously employ both the representations (4) and (5) of spatial
PH curves (see [5] for a more thorough treatment of them).

A spatial PH quintic may be defined in terms of a quadratic quaternion polyno-
mial, given in Bernstein form as,

(6) A(ξ) = A0(1− ξ)2 +A12(1− ξ)ξ +A2ξ
2 ,

by substituting into (4) and integrating. This yields the Bézier form

r(ξ) =

5∑
i=0

pi

(
5

i

)
(1− ξ)5−iξi

of the PH quintic, with control points pi = xi i+ yi j+ zi k given by

p1 = p0 + 1
5 A0 iA∗

0 ,

p2 = p1 + 1
10 (A0 iA∗

1 +A1 iA∗
0) ,

p3 = p2 + 1
30 (A0 iA∗

2 + 4A1 iA∗
1 +A2 iA∗

0) ,

p4 = p3 + 1
10 (A1 iA∗

2 +A2 iA∗
1) ,

p5 = p4 + 1
5 A2 iA∗

2 ,(7)

where p0 is freely chosen. Alternatively, r(ξ) may be defined in terms of two
complex quadratic polynomials, written in Bernstein form as

α(ξ) = α0 (1− ξ)2 +α1 2(1− ξ)ξ +α2 ξ
2 ,

β(ξ) = β0 (1− ξ)2 + β1 2(1− ξ)ξ + β2 ξ
2 ,(8)

2Calligraphic characters such as A are used to denote quaternions, the scalar and vector parts
being indicated by scal(A) and vect(A). Bold symbols denote complex numbers or vectors in R

3;
the meaning should be clear from the context.
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by substituting in (5) and integrating. Note that the quaternion and complex
coefficients in (6) and (8) are related by Ai = αi + kβi for i = 0, 1, 2.

Now the RRMF quintics form a proper subset of the spatial PH quintics. They
may be characterized by constraints on the coefficients of the quaternion polynomial
(6) or complex polynomials (8), defining the quaternion and Hopf map forms of
spatial PH quintics, as follows3; see [6] for complete details.

Proposition 1. A PH quintic defined by the quadratic quaternion polynomial (6)
has a rational RMF if and only if the coefficients satisfy

(9) A1 iA∗
1 = vect(A2 iA∗

0) .

Proposition 2. A PH quintic defined by the quadratic complex polynomials (8)
has a rational RMF if and only if the coefficients satisfy

(10) Re(α0α2 − β0β2) = |α1|2 − |β1|2 , α0β2 +α2β0 = 2α1β1 .

For applications such as swept surface construction and rigid body motion speci-
fication, an explicit rational representation of the RMF associated with any RRMF
curve is desired. In terms of the quaternion representation, this can be conveniently
expressed by invoking the Euler–Rodrigues frame (ERF) introduced by Choi and
Han [2]. For any spatial PH curve, the ERF (t, f ,g) is a rational adapted frame
defined by

(11) t(ξ) =
A(ξ) iA∗(ξ)

|A(ξ)|2 , f(ξ) =
A(ξ) jA∗(ξ)

|A(ξ)|2 , g(ξ) =
A(ξ)kA∗(ξ)

|A(ξ)|2 .

Although the ERF is not ordinarily rotation–minimizing (see Figure 1), it is a useful
“reference” frame for the computation of RMFs.
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2
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3

Figure 1. Left: trajectory for the spatial motion of a rigid body,
specified by a quintic RRMF curve. The orientations of the body
along the path, defined by the ERF (center) and the RMF (right)
— coincident at the lower right — are also shown. One axis of the
body remains aligned with the path tangent.

Han [17] showed that the PH curve defined through (4) by the quaternion poly-
nomial A(ξ) = u(ξ) + v(ξ) i+ p(ξ) j+ q(ξ)k admits a rational RMF if and only if
polynomials a(ξ), b(ξ) exist, with gcd(a(ξ), b(ξ)) = constant, such that the compo-
nents of A(ξ) satisfy

(12)
uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
.

3See also [16] for another characterization, in terms of a polynomial divisibility criterion.
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In terms of the Hopf map representation, this condition can be interpreted as requir-
ing the existence of a complex polynomial w(ξ) = a(ξ)+ i b(ξ), with gcd(a(ξ), b(ξ))
= constant, such that

(13)
Im(αα′ + ββ′)

|α|2 + |β|2 =
Im(ww′)

|w|2 .

For PH cubics, the condition (12) is satisfied [17] only in the degenerate case of
planar curves, while for PH quintics Proposition 1 specifies a sufficient and necessary
condition for its satisfaction. If (12) is satisfied, the RMF is obtained [17] from the
ERF by a rational rotation of the normal–plane vectors f , g at each curve point,
specified in terms of the polynomials a(ξ), b(ξ) by

u(ξ) =
a2(ξ)− b2(ξ)

a2(ξ) + b2(ξ)
f(ξ) − 2 a(ξ)b(ξ)

a2(ξ) + b2(ξ)
g(ξ) ,

v(ξ) =
2 a(ξ)b(ξ)

a2(ξ) + b2(ξ)
f(ξ) +

a2(ξ)− b2(ξ)

a2(ξ) + b2(ξ)
g(ξ) .(14)

This is equivalent to writing

(15)

[
u(ξ)
v(ξ)

]
=

[
cos θ(ξ) − sin θ(ξ)
sin θ(ξ) cos θ(ξ)

] [
f(ξ)
g(ξ)

]
,

for a rotation angle θ(ξ) in the curve normal plane at each point specified by

(16) θ(ξ) = 2 arctan
b(ξ)

a(ξ)
.

Note, however, that (15) and (16) do not uniquely define the RMF, since for a given
curve the polynomials a(ξ), b(ξ) satisfying (12) are not unique.

To clarify this, we note that the RMF can be more compactly expressed in
quaternion form by setting

(17) W(ξ) = a(ξ) + b(ξ) i ,

for which we have

W∗(ξ) iW(ξ) = [ (a2(ξ) + b2(ξ) ] i ,

W∗(ξ) jW(ξ) = [ (a2(ξ)− b2(ξ) ] j − 2 a(ξ) b(ξ)k ,

W∗(ξ)kW(ξ) = 2 a(ξ) b(ξ) j + [ a2(ξ)− b2(ξ) ]k .

Hence, by writing

(18) B(ξ) = A(ξ)W∗(ξ) ,

the RMF can be expressed as

(19) t(ξ) =
B(ξ) iB∗(ξ)

|B(ξ)|2 , u(ξ) =
B(ξ) jB∗(ξ)

|B(ξ)|2 , v(ξ) =
B(ξ)kB∗(ξ)

|B(ξ)|2 .

In terms of the quaternion polynomials A(ξ) and W(ξ), the RRMF condition (12)
can be written as

(20)
scal (A(ξ) iA′∗(ξ))

|A(ξ)|2
=

scal (W(ξ) iW ′∗(ξ))

|W(ξ)|2
.
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Remark 1. If a spatial PH curve r(ξ) defined by the hodograph (4) satisfies the
RRMF condition (20), then the spatial PH curve r̃(ξ) defined by replacing the
quaternion polynomial A(ξ) with

(21) Ã(ξ) = A(ξ) exp( 12ψ i)

also satisfies (20) for the same W(ξ). The curve r̃(ξ) is identical to r(ξ), but has a
different Euler–Rodrigues frame, specified by t̃(ξ) = t(ξ) and[

f̃(ξ)
g̃(ξ)

]
=

[
cosψ sinψ

− sinψ cosψ

] [
f(ξ)
g(ξ)

]
,

i.e., the normal–plane ERF vectors f̃(ξ), g̃(ξ) of r̃(ξ) exhibit a fixed angular dis-
placement ψ relative to the corresponding vectors f(ξ), g(ξ) of r(ξ). From (15),
we see that the normal–plane RMF vectors ũ(ξ), ṽ(ξ) of r̃(ξ) have the same fixed
angle ψ relative to the corresponding vectors u(ξ), v(ξ) of r(ξ).

The free parameter ψ in (21) can be invoked to achieve any desired initial ori-
entation of the RMF on a given curve r(ξ). This freedom reflects the fact that
computing RMFs on a curve corresponds to an initial–value problem.

3. RRMF quintic motion interpolants

A rational rigid–body motion along a prescribed path r(ξ) in R
3 is specified by

a rational orthonormal frame (t(ξ),u(ξ),v(ξ)) that defines the orientation of the
body as it executes the prescribed path. The frame is said to be adapted to r(ξ)
if the first frame vector coincides with the curve tangent, i.e., t = r′/|r′|, and
it is rotation–minimizing when its angular velocity ω has no component in the
direction of t, i.e., ω · t ≡ 0 so that u and v exhibit no instantaneous rotation
about t (equivalently, the derivatives u′ and v′ are parallel to t).

We wish to construct RRMF quintics r(ξ) for ξ ∈ [ 0, 1 ] that interpolate given ini-
tial/final points pi and pf , and instances (ti,ui,vi) and (tf ,uf ,vf ) of the rotation–
minimizing frame. Interpolation of the end points and tangents implies that

r(0) = pi ,
r′(0)

|r′(0)| = ti and r(1) = pf ,
r′(1)

|r′(1)| = tf .

The components of the tangents are denoted by

ti = (λi, μi, νi) and tf = (λf , μf , νf ) .

Interpolation of the prescribed normal–plane vectors ui, vi and uf , vf at the curve
end points will be addressed in Section 3.3. To simplify the analysis we may assume,
without loss of generality, that the displacement Δp = pf − pi is in the positive
x–direction, and set Δp = L i. We also restrict our attention to nonplanar data,
characterized by the fact that i · (ti × tf ) �= 0.

Recall [9] that, for a given vector d, the quaternion equation

(22) A iA∗ = d

has the one–parameter family of solutions defined4 by

(23) A =
√
d n exp(φ i) ,

4Note that, in expressions juxtaposing scalars, vectors, and quaternions, such as (23), the
quaternion product is always imputed.
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where d = |d|, φ is a free parameter, exp(φ i) = cosφ+ sinφ i, and

n =
d i+ d

| d i+ d |
is the unit bisector of i and a unit vector in the direction of d. In the singular case
d = − d i, the solution to (22) becomes

A =
√
d (e1 cosφ+ e2 sinφ) ,

where e1, e2 are two unit vectors orthogonal to i and each other. For brevity, we
do not explicitly reiterate this special case in subsequent applications of the general
solution (23) to equation (22).

3.1. Interpolation of end tangents. From (4) and (6), interpolation of the end
tangents yields the equations

A0 iA∗
0

|A0|2
= ti and

A2 iA∗
2

|A2|2
= tf ,

which are essentially of the form (22). Hence, the solutions can be expressed in
terms of free parameters �0, �2 and φ0, φ2 as

(24) A0 = �0 n0 exp(φ0 i) and A2 = �2 n2 exp(φ2 i) ,

where n0 and n2 are the unit bisectors of i with ti and tf , defined by

(25) n0 =
i+ ti
| i+ ti |

and n2 =
i+ tf
| i+ tf |

.

Note that i, n0, n2 are linearly independent if and only if i, ti, tf are linearly
independent, since i · (n0 × n2) = i · (ti × tf )/(| i+ ti | | i+ tf |).

3.2. Satisfaction of RRMF constraint. Substituting from (24) and using [23]
the scalar–vector form

(26) AB = (ab− a · b, ab+ ba+ a× b)

for the product of two quaternions A = (a, a) and B = (b,b), the quantity
vect(A2 iA∗

0) = 1
2 (A2 iA∗

0 + A0 iA∗
2), required in subsequent steps of the inter-

polation scheme, can be expressed in terms of �0, �2 and φ0, φ2 as

(27) 1
2 (A2 iA∗

0 +A0 iA∗
2) = �0�2 [x cos(φ2 − φ0) + y sin(φ2 − φ0) ] ,

where we define

x = (i · n2)n0 + (i · n0)n2 − (n0 · n2) i , y = n2 × n0 .

Now the RRMF condition (9) is equivalent to

(28) A1 iA∗
1 = 1

2 (A0 iA∗
2 +A2 iA∗

0) ,

and using (27), it can be expressed as

(29) A1 iA∗
1 = �0�2z ,

where

(30) z = x cos(φ2 − φ0) + y sin(φ2 − φ0) .

As in [9], it is convenient to write

(31) α = 1
2 (φ0 + φ2) and β = φ2 − φ0 .
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The vector (30) traces an ellipse in the plane spanned by x, y as β = φ2−φ0 varies.
Its magnitude is given by

(32) z = |z| =
√
|x|2 cos2 β + 2x · y cosβ sinβ + |y|2 sin2 β .

By writing

(33) γ = i · (n2 × n0) , δ = n0 · n2 ,

and observing that

| (i · n2)n0 + (i · n0)n2 − (n0 · n2) i |2 = 1− [ i · (n2 × n0) ]
2 ,

we obtain

(34) |x|2 = 1− γ2 , x · y = − γ δ , |y|2 = 1− δ2 ,

and hence (32) can be expressed as

(35) z =
√
1− (γ cosβ + δ sin β)2 .

Since equation (29) is of the form (22), its solution can be written [9] as

(36) A1 =
√
�0�2 z n1 exp(φ1 i) ,

where φ1 is a free parameter, and

(37) n1 =
z i+ z

| z i+ z |
is the unit bisector of i and a unit vector in the direction of z.

In prior studies [8, 9] of Hermite interpolation with spatial PH quintics, it was
noted that the interpolants depend only on the differences of the angular parameters
φ0, φ1, φ2 occurring in (24) and (36), and thus one may set φ1 = 0 (say) without
loss of generality. In the present context, however, we observed in Remark 1 the
importance of the nonuniqueness of the polynomial A(ξ) in facilitating interpolation
of the initial frame (ti,ui,vi).

The free parameter ψ in the family (21) of quaternion polynomials that yield

exactly the same hodograph r′(ξ) on substituting Ã(ξ) for A(ξ) in (4) is equivalent
to retaining φ1 as a free parameter in (36), rather than imposing the customary
choice φ1 = 0 for Hermite interpolation of end points/tangents pi, pf and ti, tf
without reference to the frame vectors ui,vi and uf ,vf . We therefore retain φ1 as
a free parameter, for use in the interpolation scheme.

3.3. Interpolation of normal–plane vectors. The function (16) specifying the
orientation of the RMF relative to the ERF is defined in terms of the polynomials
a(ξ), b(ξ), i.e., the components of the quaternion polynomial (17). Identifying the
quaternion element i with the imaginary unit i, we may regard (17) as a complex
polynomial5. In the present context, we take it to be the quadratic

(38) w(ξ) = a(ξ) + i b(ξ) = w0(1− ξ)2 +w12(1− ξ)ξ +w2ξ
2

5Quaternion polynomials whose j, k components vanish identically can be interpreted as com-
plex polynomials, the algebra of complex numbers being regarded as a (commutative) subalgebra
of the quaternion algebra.
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with wi = ai + i bi for i = 0, 1, 2, where a0, a1, a2 and b0, b1, b2 are the Bernstein
coefficients of the real quadratic polynomials a(ξ) and b(ξ). Expression (16) can
then be written as

(39) θ(ξ) = 2 arg(w(ξ)) .

It was shown in [10] that, for an RRMF quintic defined in the Hopf map form (5)
by the complex quadratic polynomials (8) satisfying (13), an instance of (38) can
be specified in terms of the coefficients of α(ξ), β(ξ) as6

(40) w0 = 1 , w1 =
α0α1 + β0β1

|α0|2 + |β0|2
, w2 =

α1α2 + β1β2

α0α1 + β0β1

.

Through (38) and (39), these complex values completely specify the rational rota-
tion (15) of the ERF onto the RMF.

Since the RMF is defined relative to the ERF, we need to determine the initial
and final orientations of the latter. From (6), (11), and (24), the ERF normal plane
vectors at ξ = 0 and 1 can be written as

f(0) = cos 2φ0 j0 + sin 2φ0 k0 , g(0) = cos 2φ0 k0 − sin 2φ0 j0 ,

f(1) = cos 2φ2 j2 + sin 2φ2 k2 , g(1) = cos 2φ2 k2 − sin 2φ2 j2 ,(41)

where, in terms of the unit vectors n0 and n2 specified by (25), we define

j0 = 2 (j · n0)n0 − j , k0 = 2 (k · n0)n0 − k ,

j2 = 2 (j · n2)n2 − j , k2 = 2 (k · n2)n2 − k .(42)

These are simply the reflections of j and k in n0 and n2.
To impose the desired initial and final instances of the RMF it suffices to consider

the vector u(ξ), since v(ξ) = t(ξ)× u(ξ). From (15), the initial and final instances
of u(ξ) are given by

u(0) = cos θ(0) f(0) − sin θ(0)g(0) ,

u(1) = cos θ(1) f(1) − sin θ(1)g(1) ,

and on substituting from (41) and equating to ui, uf these can be written as

cos(2φ0 − θ(0)) j0 + sin(2φ0 − θ(0))k0 = ui ,

cos(2φ2 − θ(1)) j2 + sin(2φ2 − θ(1))k2 = uf .(43)

In the first equation we set θ(0) = 2 arg(w0) = 0 from (38)–(40). Taking dot
products with ui and vi, and noting that

(j0 · ui)(k0 · vi)− (k0 · ui)(j0 · vi) = (j0 × k0) · (ui × vi) = |ti|2 = 1 ,

two φ0 values (differing by π) are determined from

(44) cos 2φ0 = k0 · vi and sin 2φ0 = − j0 · vi .

Similarly, the dot products of the second equation in (43) with uf , vf yield

cos(2φ2 − θ(1)) = k2 · vf and sin(2φ2 − θ(1)) = − j2 · vf
where θ(1) = 2 arg(w2). Now by introducing a new variable η and writing

(45)
w2

|w2|
= ei (φ2−η) ,

6Although simpler expressions for w0, w1, w2 were derived in [6], they have not proved
advantageous in the context of the problem under consideration.



DESIGN OF RATIONAL RM RIGID BODY MOTIONS 889

we have θ(1) = 2(φ2−η). Hence, two η values (differing by π) are determined from

(46) cos 2η = k2 · vf and sin 2η = − j2 · vf .
It remains to fix the relation between φ2 and η. Writing w2 from (40) as

w2 =
α1α2 + β1β2

α0α1 + β0β1

=
(α1α2 + β1β2)(α0α1 + β0β1)

|α0α1 + β0β1 |2
,

we have

(47) ei (φ2−η) =
(α1α2 + β1β2)(α0α1 + β0β1)

| (α1α2 + β1β2)(α0α1 + β0β1) |
.

It can be shown (see Appendix 1) that this reduces to the quadratic equation

(48) (1− γ2 − δ2) (c2 tan
2 β + c1 tanβ + c0) = 0

in tanβ, where β = φ2 − φ0 and we define

c0 = γ2(t2 + 1)− t2 , c1 = 2(γδ(t2 + 1)− t) , c2 = δ2(t2 + 1)− 1 ,

with t = tan(φ0 − η) and γ, δ specified by (33). One can verify that

1− γ2 − δ2 = 1
2 (1− ti · tf ) ,

which is evidently positive when ti, tf are nonparallel (i.e., the Hermite data are
nonplanar). Thus, discarding this factor, we find that the discriminant of (48)
admits the nonnegative factorization

Δ = 4(t2 + 1)(δt− γ)2 ,

and hence (48) always has real solutions, given by

(49) β = arctan
t− γδ(t2 + 1)± (δ t− γ)

√
t2 + 1

δ2(t2 + 1)− 1
.

Due to the sign choice and multi–valued nature of the arctangent, this gives four
values of β = φ2 − φ0, modulo 2π. Since (48) was derived by squaring and taking
tangents, however, only one value satisfies (47). It can be identified by checking
that equations (71)–(72) in Appendix 1 are satisfied. From the correct β value and
known φ0 value, we obtain φ2 = β + φ0.

The above procedure yields four possible (φ0, φ2) pairs, of the form

(50) (φk, φl) , (φk + π, φl + π) , (φk, φm) , (φk + π, φm + π) .

3.4. Interpolation of displacement. Choosing pi as integration constant upon
integrating the hodograph (4), and writing Δp = pf − pi, interpolation of the end
points yields the condition∫ 1

0
A(ξ) iA∗(ξ) d ξ = 1

5 A0 iA∗
0 + 1

10 (A0 iA∗
1 +A1 iA∗

0)

+ 1
30 (A0 iA∗

2 + 4A1 iA∗
1 +A2 iA∗

0)

+ 1
10 (A1 iA∗

2 +A2 iA∗
1) + 1

5 A2 iA∗
2 = Δp .(51)

Without loss of generality, we may set Δp = L i. Then writing A0 iA∗
0 = �20ti,

A2 iA∗
2 = �20tf , and using (28) and (29), equation (51) reduces to

(52) (A0 +A2) iA∗
1 + A1 i (A∗

0 +A∗
2) + 2(�20ti + �22tf ) + 2�0�2z = 10L i .
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Since φ0, φ2 (and β = φ2 − φ0) have already been determined in Section 3.3, the
quaternions (24) and the vectors (30) and (37) are known quantities, so this is a
vector equation in the three remaining parameters �0, �2, φ1.

Substituting from (24) and (36), equation (52) becomes√
�0�2z [ (�0a0 + �2a2) cosφ1 + (�0b0 + �2b2) sinφ1 ]

+ �20ti + �22tf + �0�2z = 5L i ,(53)

where we define

a0 = [ (i · n0)n1 + (i · n1)n0 − (n0 · n1) i ] cosφ0 + n0 × n1 sinφ0 ,

b0 = [ (i · n0)n1 + (i · n1)n0 − (n0 · n1) i ] sinφ0 − n0 × n1 cosφ0 ,

a2 = [ (i · n2)n1 + (i · n1)n2 − (n2 · n1) i ] cosφ2 + n2 × n1 sinφ2 ,

b2 = [ (i · n2)n1 + (i · n1)n2 − (n2 · n1) i ] sinφ2 − n2 × n1 cosφ2 .(54)

In principle, the parameters �0, �2 may be both positive or both negative (they
must be nonzero for a regular curve, and cannot have opposite signs since the factor√
�0�2z in (36) should be real). However, if parameter values �0, �2, φ0, φ2 satisfy

(53), then −�0, −�2, φ0+π, φ2+π also satisfy it, and define exactly the same curve.
Hence, to avoid replication, we consider only solutions corresponding to positive �0,
�2 values.

Now (53) is a vector equation in the three parameters �0, �2, φ1 in which a0,
b0, a2, b2, z are known fixed vectors, and z is a known constant. Taking its dot
product with i, j, k gives the three scalar equations√

�0�2z i · [ (�0a0 + �2a2) cosφ1 + (�0b0 + �2b2) sinφ1 ]

+ �20λi + �22λf + �0�2 i · z = 5L ,(55) √
�0�2z j · [ (�0a0 + �2a2) cosφ1 + (�0b0 + �2b2) sinφ1 ]

+ �20μi + �22μf + �0�2 j · z = 0 ,(56) √
�0�2z k · [ (�0a0 + �2a2) cosφ1 + (�0b0 + �2b2) sinφ1 ]

+ �20νi + �22νf + �0�2 k · z = 0 .(57)

On dividing equations (56) and (57) by �20, it is apparent that they depend only on
the ratio

(58) λ =
�2
�0

,

and not on �0 and �2 individually. Furthermore, φ1 can be easily eliminated between
these equations, to obtain a polynomial equation

(59) G(λ) =
6∑

k=0

gkλ
k = 0

of degree 6 in λ alone. This is accomplished by observing that (56) and (57) can
be solved for cosφ1 and sinφ1 to obtain

(60) cosφ1 =
(b× c) · i
(a× b) · i and sinφ1 = − (a× c) · i

(a× b) · i ,

where we define

a =
√
λz (a0 + λ a2) , b =

√
λz (b0 + λb2) , c = ti + λ2tf + λ z .
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Now expressions (60) imply that

(61) [ (a× c) · i ]2 + [ (b× c) · i ]2 = [ (a× b) · i ]2 ,

and on expanding and collecting like powers of λ, we obtain (59). Since the coeffi-
cients g0, . . . , g6 are rather cumbersome, we defer them to Appendix 2.

To compute the positive real roots of (59), we observe that by introducing the
change of variables specified by

(62) λ =
ρ

1− ρ
,

and setting gk = g̃k
(
6
k

)
, this equation becomes

1

(1− ρ)6

6∑
k=0

g̃k

(
6

k

)
(1− ρ)6−kρk = 0 .

Then the positive real roots of (59) correspond to the roots ρ ∈ [ 0, 1) of this expres-
sion, which can be computed in a numerically stable manner [15] using standard
algorithms for Bernstein–form polynomials.

Equation (59) must have at least one positive real root if an interpolant is to
exist. For each positive root λ, two values of φ1 (that differ by π) are determined
by equations (60). Corresponding λ, φ1 values obtained in this manner may be
substituted into equation (55), with �2 = λ�0, to obtain

(63) �20 =
5L

i · [
√
λz ((a0 + λa2) cosφ1 + (b0 + λb2) sinφ1) + ti + λ2tf + λz ]

.

For a real nonzero �0 value, the expression on the right must be positive. If this
requirement is met,7 we have �2 = λ�0.

Remark 2. When the four possible (φ0, φ2) pairs (50) are used in the above proce-
dure, one finds that the first two pairs and last two pairs yield the same positive
roots of (59), and for each root λ the same �0, �2 values but φ1 values that differ
by π. Now from (4), (6), (24) and (36) one can see that the triples (φ0, φ1, φ2) and
(φ0 + π, φ1 + π, φ2 + π) generate the same hodograph r′(ξ). Hence, the solution
yields only two effectively distinct (φ0, φ1, φ2) triples.

Once the values of �0, �2, φ0, φ1, φ2 are determined as described above, the
quaternion coefficients (24) and (36) are completely determined, and the con-
struction of the quintic RRMF motion interpolant is complete. Setting Ak =
uk + vk i+ pk j+ qk k, the Hopf map coefficients are

(64) αk = uk + i vk and βk = qk + i pk

for k = 0, 1, 2. The coefficients (40) can then be computed, and by identifying (17)
with (38), the rational rotation–minimizing frame for the curve may be obtained
from expressions (19), where B(ξ) is defined by (18).

7Note that the existence of solutions is independent of L = |Δp|; this reflects the fact that the
RMF is essentially unchanged under a uniform scaling.
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In the present context, the RMF vectors (t(ξ),u(ξ),v(ξ)) defined by (19) are
degree 8 rational functions in the curve parameter, since A(ξ) and W(ξ) in (18)
are quadratic quaternion polynomials. By construction, this rational RMF satisfies
the end frame interpolation conditions (1)–(2).

Remark 3. In cases where the polynomial (59) has no positive real roots, or the
right–hand expression in (63) is negative — and thus no RRMF quintic motion
interpolants exist — it may be possible to construct interpolants of higher degree by
multiplying the hodograph (4) with a scalar polynomial h(ξ) to introduce new free
parameters. This does not change the RRMF condition or interpolation of the end
frames, as described in Sections 3.1–3.3, it only alters the end–point interpolation.
Experiments with a linear h(ξ) reveal that interpolants can be obtained in cases
where none exist with nominal RRMF quintics. A detailed analysis of this method,
and of existence conditions for nominal RRMF quintic interpolants, is deferred to
a future study.

3.5. Summary of algorithm. Since the above procedure is rather involved, we
summarize it as follows.

Algorithm
input: initial/final points pi, pf and frames (ti,ui,vi), (tf ,uf ,vf )

1. compute n0, n2 and γ, δ from (25) and (33),
and the vectors j0, j2, k0, k2 from (42);

2. determine the values of φ0 from equations (44);
3. from (49) identify the correct β values, satisfying

conditions (71)–(72) in Appendix 1, and set φ2 = β + φ0;
4. compute the quantities z, z, n1, a0, a2, b0, b2

defined by (30), (35), (37), and (54);
5. compute the coefficients (73) of the polynomial (59),

and identify its positive real roots λ;
6. for each λ, compute the corresponding φ1 and �0

values from (60) and (63), and set �2 = λ�0;
7. determine the quaternion coefficients A0, A1, A2

from (24) and (36);
8. compute the Bézier control points p0, . . . ,p5 from (7);
9. using (64) and (40), determine the rational RMF

(t(ξ),u(ξ),v(ξ)) from (18) and (19), where (17) is
identified with (38).

output: quintic RRMF curve r(ξ) with associated frame
(t(ξ),u(ξ),v(ξ)) that interpolates the prescribed data.

4. Computed examples

The following examples illustrate the procedure. An end–point displacement of
the form Δp = pf −pi = (L, 0, 0) is assumed in these examples, and for brevity we
only list values of the (φ0, φ1, φ2) variables that generate distinct RRMF quintic
interpolants; see Remark 2.
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Example 1. With L = 1, consider the initial and final frame orientations

ti = (0.707107, 0.707107, 0.000000) ,

ui = (0.000000, 0.000000,−1.000000) ,

vi = (−0.707107, 0.707107, 0.000000) ,

tf = (0.804738,−0.310617, 0.505879) ,

uf = (0.310617,−0.505879,−0.804738) ,

vf = (0.505879, 0.804738,−0.310617) .

In this case, the values (33) are

γ = −0.101898 and δ = 0.815055 ,

and from (44) and (49) with β = φ2 − φ0 we obtain

φ0 = 0.785398 , φ2 = −0.345273 , β = −1.130672 .

Equation (59) then has the two positive real roots

λ = 0.950478 and λ = 1.437231 .

For the first solution, we obtain from (60) and (63)

φ1 = 1.146778 , l0 = 1.388849 , l2 = 1.320071 ,

and hence the coefficients of the quaternion polynomial (6) and the complex polyno-
mial (38), needed to construct the control points (7) and the rational RMF defined
by (15)–(16), are given by

A0 = − 0.907309 + 0.907309 i+ 0.375820 j− 0.375820k ,

A1 = − 0.922515 + 0.416424 i− 0.346969 j− 0.025422k ,

A2 = 0.424413 + 1.179970 i− 0.322053 j+ 0.257706k ,

w0 = 1 , w1 = 0.567156 + 0.310609 i , w2 = 0.593849− 0.742127 i .

Satisfaction of the RRMF constraint (9) is verified by observing that

A1 iA∗
1 = vect(A2 iA∗

0) = (0.903409,−0.242068,−0.661341) .

For the second solution, we have

φ1 = − 0.557987 , l0 = 1.057830 , l2 = 1.520346 ,

and the coefficients of A(ξ) and w(ξ) are

A0 = − 0.691061 + 0.691061 i+ 0.286247 j− 0.286247k ,

A1 = 0.501934 + 0.804189 i+ 0.067003 j− 0.318878k ,

A2 = 0.488803 + 1.358990 i− 0.370913 j+ 0.296804k ,

w0 = 1 , w1 = 0.285373− 0.742188 i , w2 = 0.897967− 1.122180 i .

In this case we have

A1 iA∗
1 = vect(A2 iA∗

0) = (0.792484,−0.212345,−0.580139) .

Figure 2 shows the two RRMF quintic interpolants to the specified data, to-
gether with sampled positions of a rectangular parallelepiped whose center of mass
traverses the curves at constant speed, and whose spatial orientation is specified by
the rational RMF along them (the shortest parallelepiped side is aligned with the
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Figure 2. The two RRMF quintic interpolants of Example 1, for
λ = 0.950478 (upper) and 1.437231 (lower). Also shown (right)
is the spatial motion of a rectangular parallelepiped along these
paths, whose orientation is specified by their rational rotation–
minimizing frames. In both cases, the initial and final orientations
agree with the prescribed Hermite data (left).

curve tangent t, while the intermediate and longest sides are aligned with the two
normal–plane RMF vectors u and v).

Figure 3 shows two RRMF quintic interpolants to exactly the same data, except
that L is increased to 2. This case illustrates the fact that the existence of solutions
is independent of L, and the variation of the rational RMF when only L is changed
corresponds to uniform scaling of its angular velocity ω.

Example 2. Taking L = 1 again, consider the end frame orientations

ti = (0.866025, 0.447214,−0.223607) ,

ui = (−0.223607,−0.053590,−0.973205) ,

vi = (−0.447214, 0.892820, 0.053590) ,

tf = (0.583333,−0.623773,−0.520220) ,

uf = (−0.186887, 0.520220,−0.833333) ,

vf = (0.790440, 0.583333, 0.186887) .

In this case, we obtain

γ = 0.108248 and δ = 0.812130 ,
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Figure 3. The RRMF quintic interpolants to the data of Exam-
ple 1, except that L is increased to 2 (note that the scale differs
from that of Figure 2).

and

φ0 = 0.785398 , φ2 = 1.910795 , β = 1.125397 .

Equation (59) has the two positive real solutions

λ = 0.557847 and λ = 0.727110 .

For the first solution, we have

φ1 = 1.173752 , l0 = 1.571261 , l2 = 0.876524 ,

and the coefficients of A(ξ) and w(ξ) are given by

A0 = − 1.073191 + 1.073191 i+ 0.128601 j− 0.385803k ,

A1 = − 0.807974 + 0.338794 i+ 0.169303 j+ 0.257659k ,

A2 = − 0.735248− 0.260083 i− 0.139110 j+ 0.375113k ,

w0 = 1 , w1 = 0.467045 + 0.164070 i , w2 = 0.349414 + 0.434860 i .

Checking the RRMF condition (9) then yields

A1 iA∗
1 = vect(A2 iA∗

0) = (0.672552,−0.301645, 0.448171) .

For the second solution, we have

φ1 = 2.043388 , l0 = 1.531174 , l2 = 1.113333 ,
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and hence

A0 = − 1.045811 + 1.045811 i+ 0.125320 j− 0.375960k ,

A1 = − 0.867897− 0.443695 i+ 0.340544 j+ 0.041002k ,

A2 = − 0.933888− 0.330350 i− 0.176693 j+ 0.476456k ,

w0 = 1 , w1 = 0.200852 + 0.528263 i , w2 = 0.455434 + 0.566806 i ,

for the coefficients of A(ξ) and w(ξ). The RRMF condition (9) yields

A1 iA∗
1 = vect(A2 iA∗

0) = (0.832459,−0.373366, 0.554729) .

Figure 4. The two RRMF quintic interpolants of Example 2 for
λ = 0.557847 (upper) and 0.727110 (lower). Also shown (right)
is the spatial motion of a rectangular parallelepiped along these
paths, whose orientation is specified by their rational rotation–
minimizing frames. In both cases, the initial and final orientations
agree with the prescribed Hermite data (left).

Figure 4 shows rational rotation–minimizing motions of a parallelepiped, anal-
ogous to those shown for Example 1 in Figure 2, in the case of Example 2. In
Figure 5, we compare the motions generated along the second curve using the ERF
and RMF to orient the parallelepiped along the path — the more “natural” motion
afforded by the RMF is clearly apparent.
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Figure 5. Comparison of orientations specified by the ERF (left)
and RMF (right) along the RRMF quintic interpolant of Exam-
ple 2 with λ = 0.727110 (the orientations of the parallelepiped are
coincident at the left end point).

Example 3. For L = 1 and the initial and final frames

ti = (0.500000, 0.000000, 0.866025) ,

ui = (0.000000, 1.000000, 0.000000) ,

vi = (−0.866025, 0.00000, 0.500000) ,

tf = (0.500000,−0.707107, 0.500000) ,

uf = (0.707107, 0.000000,−0.707107) ,

vf = (0.500000, 0.707107, 0.500000) ,

we have
γ = −0.204124 and δ = 0.894338 ,

and the admissible values for (φ0, φ2) are

(1.570796, 6.183905) and (1.570796, 4.497600) ,

corresponding to β = 4.613109 and β = 2.926804, respectively. In both cases,
however, equation (59) has no positive real roots, and therefore no RRMF quintic
interpolants exist.

5. Asymptotic analysis

We now use a Taylor series expansion to investigate the asymptotic existence of
quintic RRMF curves interpolating given data of the form (1)–(2); i.e., we establish
if, for asymptotic data, the polynomial (59) admits positive real roots, and the
corresponding denominator on the right in (63) is positive.

The data for the asymptotic analysis are assumed to be sampled from an infin-
itesimal segment of a sufficiently smooth space curve R(s) parameterized by arc

length s, and its associated RMF (Ṙ(s),u(s),v(s)), which is fixed by imposing the
initial condition

u(0) = w , v(0) = Ṙ(0)×w ,

where w is any unit vector orthogonal to Ṙ(0). The arc–length derivatives of R(s)

are denoted by Ṙ(s), R̈(s),R(3)(s),R(4)(s), . . ., etc.
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Although the use of arc–length parameterization somewhat simplifies the anal-
ysis, it was found expedient to use MAPLE in the symbolic computation of the 6th–
order Taylor series expansion, required in the proof of the following result (the
MAPLE worksheet is available from the authors upon request).

Proposition 3. Let R(s), s ∈ [ 0,Δs ] be an arc–length parameterized regular space
curve with C7 continuity in a neighborhood of s = 0, and nonvanishing curvature,
derivative of curvature, and torsion at s = 0. Then if the data of the motion
problem in (1)–(2) are such that

pi = R(0) , (ti,ui,vi) = (Ṙ(0),u(0),v(0)) ,

pf = R(Δs) , (tf ,uf ,vf ) = (Ṙ(Δs),u(Δs),v(Δs)) ,

where (Ṙ(s),u(s),v(s)) is an RMF on R(s), the polynomial (59) has at least one
positive real root and the corresponding value for the right–hand side of (63) is
positive, when Δs is sufficiently small.

Proof. The proof uses a 6th–order Taylor expansion of R(s) about s = 0. Without
loss of generality, we may choose

R(0) = 0 , Ṙ(0) = i , u(0) = w = j , v(0) = k

at s = 0. As the arc length parameterization satisfies

(65) Ṙ(s) · R̈(s) ≡ 0 ,

we may set

R̈(0) = by j + bzk where b2y + b2z �= 0 ,

since the curvature is assumed nonzero at s = 0. Differentiating (65) then gives

i ·R(3)(0) = − |R̈(0)|2 = − (b2y + b2z). Hence, we may write

R(3)(0) = − (b2y + b2z)i + cy j + czk ,

where the values cy, cz are such that

bycy + bzcz �= 0 and bycz − bzcy �= 0 ,

because of the assumed nonzero curvature derivative and torsion at s = 0. Succes-
sively differentiating (65) and evaluating at s = 0, we may also write

R(4)(0) = dxi + dy j+ dzk ,

R(5)(0) = exi + ey j+ ezk ,

R(6)(0) = fxi + fy j+ fzk ,(66)

where

dx = − 3 R̈(0) ·R(3)(0) ,

ex = − 4 R̈(0) ·R(4)(0) − 3 |R(3)(0)|2 ,
fx = − 5 R̈(0) ·R(5)(0) − 10R(3)(0) ·R(4)(0) .

In the following analysis, the scalar parameters by, bz, cy, cz, dy, dz, ey, ez, fy, fz in-
troduced above are regarded as symbolic variables.

To obtain the necessary Taylor expansion of u(s) about s = 0, we use the
differential equation

u̇ = − (u · R̈) Ṙ
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(expressed in terms of arc–length derivatives) that identifies u as a rotation–mini-
mizing unit frame vector [21] in the normal plane of R(s). Successively differenti-
ating this equation, we obtain expressions for u̇(0), ü(0), . . . ,u(5)(0) in terms of the
symbolic parameters by, bz, . . . , fy, fz defined above.

Evaluating the Taylor expansions at s = Δs gives expressions of the form

R(Δs) = Δs i +
Δs2

2
R̈(0) + · · · + Δs6

6!
R(6)(0) + O(Δs7) ,

Ṙ(Δs) = i + Δs R̈(0) + · · · + Δs5

5!
R(6)(0) + O(Δs6) ,

u(Δs) = j + Δs u̇(0) + · · · + Δs5

5!
u(5)(0) + O(Δs6) ,

v(Δs) = Ṙ(Δs)× u(Δs) .

By using these expansions, we can obtain an asymptotic expression for the polyno-
mial (59) of the form

G(λ) =

4∑
i=0

Pi(λ)(λ− 1)4−iΔs4+i + O(Δs9) ,

where Pi(λ), i = 0, . . . , 4 are polynomials of degree 2 + i such that Pi(1) �= 0,
with coefficients dependent on the parameters by, bz, . . . , fy, fz. Evaluating this
expression at λ = 1 + ζΔs then gives

G(1 + ζΔs) = p(ζ)Δs8 + O(Δs9) ,

where p(ζ) =
∑4

i=0 Pi(1) ζ
4−i. Using MAPLE one can verify that, under the stated

assumptions, this polynomial always has the value

ζ̂ =
bycy + bzcz
3(b2y + b2z)

as a simple root. Thus, there exists a positive ε such that p(ζ̂−ε) p(ζ̂+ε) < 0, which

implies thatG(1+(ζ̂−ε)Δs)G(1+(ζ̂+ε)Δs) < 0 for a sufficiently small Δs such that

1+(ζ̂−ε)Δs > 0. Hence, we can conclude that there exists a positive real root λ̂ of

G(λ), with odd multiplicity, on the interval [ 1+(ζ̂−ε)Δs, 1+(ζ̂+ε)Δs ]. Assuming

λ = λ̂ = 1+O(Δs), a further MAPLE computation allows us to verify that the Taylor
expansion of the denominator on the right–hand side of (63) has a positive zero–
order term in Δs. Hence, the statement of the proposition is proved. �

6. Closure

A method for computing exact rational rotation–minimizing motions of rigid
bodies, that interpolate prescribed initial/final positions pi and pf and frame ori-
entations (ti,ui,vi) and (tf ,uf ,vf ), has been presented. Such motions are spec-
ified by a quintic RRMF curve r(ξ) and associated rational orthonormal frame
(t(ξ),u(ξ),v(ξ)) of degree 8, and have the characteristic property that the frame an-
gular velocity ω(ξ) has zero component along the curve tangent t(ξ) = r′(ξ)/|r′(ξ)|;
i.e., t(ξ) ·ω(ξ) ≡ 0 and the two normal–plane vectors u(ξ), v(ξ) exhibit no instan-
taneous rotation about t(ξ).

The method is expected to be useful for diverse applications in which the co-
ordinated translational and orientational motion of a body is of interest, such as



900 R. FAROUKI, C. GIANNELLI, C. MANNI, AND A. SESTINI

computer animation, robot end–effector manipulation, swept surface constructions
in computer–aided geometric design, and spatial path planning for computer control
of multi–axis manufacturing/inspection machines.

Two key components of the method — satisfaction of the constraint that iden-
tifies the RRMF curves among all spatial PH quintics, and interpolation of the
end frames — were shown to admit unique closed–form solutions. The remaining
component — interpolation of the end–point displacement — can be reduced to
finding the positive real roots of a degree 6 polynomial. Since the coefficients of
this polynomial have a complicated nonlinear dependence on the initial data, no
attempt has been made at present to identify general conditions for the existence of
solutions (although it has been verified in the case of data sampled asymptotically
from smooth analytic curves).

The identification of general constraints on the initial data pi, (ti,ui,vi) and
pf , (tf ,uf ,vf ) that are sufficient and necessary for existence of solutions, and also
modifications to the displacement interpolation problem that permit solutions in
cases where none exist, will be addressed in future studies.

Appendix 1. Derivation of equation (48). If a quaternion A is given in terms
of a scalar �, a vector v = vx i + vy j + vz k, and an angular parameter φ, in the
form

A = �
v i+ v

| v i+ v | exp(φ i) ,

it can be expressed as A = α+ kβ, in terms of the complex numbers

α =
�(v + vx) i

| v i+ v | eiφ and β =
�(vz + i vy)

| v i+ v | eiφ ,

when we identify the imaginary unit i with the quaternion basis element i.
Thus, writing z = z (l,m, n) where l2+m2+n2 = 1, the complex numbers αi, βi

for i = 0, 1, 2 that specify the Hopf map form (5) corresponding to the quaternion
coefficients (24) and (36) can be written as

(67) α0 =
�0(1 + λi) i√
2(1 + λi)

eiφ0 , β0 =
�0(νi + i μi)√

2(1 + λi)
eiφ0 ,

(68) α1 =

√
�0�2z (1 + l) i√

2(1 + l)
eiφ1 , β1 =

√
�0�2z (n+ i m)√

2(1 + l)
eiφ1 ,

(69) α2 =
�2(1 + λf ) i√
2(1 + λf )

eiφ2 , β2 =
�2(νf + i μf )√

2(1 + λf )
eiφ2 .

To reduce relation (47) to the quadratic equation (48) in tanβ, we observe that
the numerator on the right in (47) can be expressed as

(α1α2 + β1β2)(α0α1 + β0β1) = (|α1|2 + |β1|2)(α0α2 + β0β2)

+ (α0β1 −α1β0)(α1β2 −α2β1) .(70)

Now from the expressions (67)–(69) for αi, βi we obtain

|α1|2 + |β1|2 = �0�2z ,

α0α2 + β0β2 =
�0�2 ei(φ2−φ0) [ (1 + λi)(1 + λf ) + (μi + i νi)(μf − i νf ) ]

2
√
(1 + λi)(1 + λf )

,
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α0β1 −α1β0 =
�0
√
�0�2z e− i(φ0+φ1) [ (μi + i νi)(1 + l)− (1 + λi)(m+ i n) ]

2
√
(1 + λi)(1 + l)

,

α1β2 −α2β1 =
�2
√
�0�2z ei(φ1+φ2) [ (1 + λf )(m− i n)− (μf − i νf )(1 + l) ]

2
√
(1 + λf )(1 + l)

.

Substituting these into (70) and using l2 +m2 + n2 = 1 then gives

(α1α2 + β1β2)(α0α1 + β0β1) =
�20�

2
2 ei (φ2−φ0) (c0z + c1lz + c2mz + c3nz)

4
√
(1 + λi)(1 + λf )

,

where we set

c0 = (1 + λi)(1 + λf ) + (μi + i νi)(μf − i νf ) ,

c1 = (1 + λi)(1 + λf )− (μi + i νi)(μf − i νf ) ,

c2 = (1 + λi)(μf − i νf ) + (1 + λf )(μi + i νi) ,

c3 = (1 + λi)(μf − i νf )− (1 + λf )(μi + i νi) .

Hence, the relation (47) becomes

ei (φ2−η) = ei (φ2−φ0)
c0z + c1lz + c2mz + c3nz

| c0z + c1lz + c2mz + c3nz |
.

Multiplying by e− i (φ2−φ0) and setting (lz,mz, nz) = (i · z, j · z,k · z) where z is
given by (30), a straightforward but laborious calculation yields

(71) ei(φ0−η) =
ζ0 z(β)− ζ1 cosβ − ζ2 sin β

| ζ0 z(β)− ζ1 cosβ − ζ2 sin β | ,

where β = φ2 − φ0 and ζ0, ζ1, ζ2 are given in terms of the quantities (33) as

ζ0 = δ + i γ , ζ1 = γ2 − 1− i γδ , ζ2 = γδ + i (1− δ2) .

Thus, writing t = tan(φ0 − η), equation (71) implies that

(72) t =
γ z(β) + γδ cosβ − (1− δ2) sinβ

δ z(β)− (γ2 − 1) cosβ − γδ sinβ
or

(γ − δ t) z(β) = [ (1− γ2)t− γδ ] cosβ + [ 1− γδ t− δ2 ] sinβ .

On squaring both sides of this equation and using (35), it yields the quadratic
equation (48). The roots of the latter should be checked by substituting them into
(71) and (72), since equating tangents and squaring introduces spurious roots that
do not satisfy these conditions.

Appendix 2. Coefficients of equation (59). Equation (59) is obtained by ex-
panding the relation (61) and collecting like powers of λ. This gives the coefficients
g0, . . . , g6 in terms of the end tangents ti, tf and the quantities (30), (32), (54) as
follows. Writing

d0 = (a0 × b0) · i , d1 = (a0 × b2 + a2 × b0) · i , d2 = (a2 × b2) · i
and

e0 = (a0 × ti) · i , f0 = (b0 × ti) · i ,
e1 = (a0 × z+ a2 × ti) · i , f1 = (b0 × z+ b2 × ti) · i ,
e2 = (a0 × tf + a2 × z) · i , f2 = (b0 × tf + b2 × z) · i ,

e3 = (a2 × tf ) · i , f3 = (b2 × tf ) · i ,
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we obtain

g0 = e20 + f2
0 ,

g1 = 2 (e0e1 + f0f1)− zd20 ,

g2 = e21 + f2
1 + 2 (e0e2 + f0f2)− 2zd0d1 ,

g3 = 2 (e1e2 + e0e3 + f1f2 + f0f3)− z(d21 + 2d0d2) ,

g4 = e22 + f2
2 + 2 (e1e3 + f1f3)− 2zd1d2 ,

g5 = 2 (e2e3 + f2f3)− zd22 ,

g6 = e23 + f2
3 .(73)
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