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ERROR SELF-CANCELING OF A DIFFERENCE SCHEME

MAINTAINING TWO CONSERVATION LAWS

FOR LINEAR ADVECTION EQUATION

CUI YANFEN AND MAO DE-KANG

Abstract. In recent years, Mao and his co-workers developed a new type of
difference schemes for evolution partial differential equations. The core of the
new schemes is to simulate, in addition to the original unknowns of the equa-
tions, some quantities that are nonlinear functions of the unknowns; therefore,
they maintain additional nonlinear discrete structures of the equations. The
schemes show a super-convergence property, and their numerical solutions are
far better than that of traditional difference schemes at both accuracy and
long-time behavior.

In this paper, to understand the super-convergence properties of the
schemes, we carry out a truncation error investigation on the scheme maintain-
ing two conservation laws for the linear advection equation. This scheme is the
simplest one of this type. Our investigation reveals that the numerical errors

of the scheme produced in different time steps are accumulated in a nonlinear
fashion, in which they cancel each other. As to our knowledge, such an error
self-canceling feature has not been seen in other numerical methods, and it is
this feature that brings the super-convergence property of the scheme.

1. Introduction

In recent years, Mao and his co-workers developed a new type of difference
schemes for numerical simulations of evolutional partial differential equations; see
[13], [14], [15], [20] and [21]. The core of the new schemes can be conceptually
described for a scalar PDE as follows:

For a scalar evolutional PDE

(1.1) ut = L(u),

where u is the unknown and L is the spatial differential operator, we may intro-
duce mathematical quantities U1(u), · · · , Uk(u), which are nonlinear functions of u.
These redundant quantities satisfy related PDEs,

(1.2) (Ul(u))t = Ll(u, U), l = 1, · · · , k,
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which are derived from (1.1), where Ll’s are the corresponding spatial differential
operators. In our scheme for (1.1), the numerical solution in each grid cell at
time tn has several components, un

j , Un
j,1, · · · , Un

j,k, the first one of which is the
approximation to the original unknown u and the following ones of which are the
approximations to the quantities Ul(u). The approximations can be in any sense,
and at present we take them as the cell-average approximations.

The numerical solution in each grid cell can then be reconstructed as a polyno-
mial,

R(x;un, Un
1 , · · · , Un

k ) =snj,0 + snj,1(x− xj) + · · ·
+ snj,k(x− xj)

k, x ∈ (xj− 1
2
, xj+ 1

2
),

(1.3)

and the coefficients of the polynomials snj,l can be determined by the requirements

(1.4)
1

h

∫ x
j+1

2

x
j− 1

2

R(x;un, Un
1 , · · · , Un

k )dx = un
j

and

(1.5)
1

h

∫ x
j+1

2

x
j− 1

2

Ul(R(x;un, Un
1 , · · · , Un

k ))dx = Un
j,l, j = 1, · · · , k.

The evolution of the numerical solution is carried by a proper temporal discretiza-
tion of (1.1), in which all un and all Un

l are computed. The schemes computing all
Un
l are discretizations of the PDEs in (1.2); however, they are consistent with the

scheme computing un in a certain sense.
We should note the similarity of our methods with the discontinuous Galerkin

(DG) methods [4]. Both methods consider numerical solutions of the form (1.3)
with several components in a grid cell. However, in DG methods, the coefficients
of the orthogonal polynomial expansion of the numerical solution are taken as the
components, which are linearly related to the numerical solution (1.3); while in our
methods, the approximations to Ul(u), Un

j,l, are taken as the components, which are

nonlinearly related to (1.3). Moreover, as in ordinary Galerkin methods, equation
(1.1) in DG methods is changed into weak form in each cell by multiplying it with
test functions and then integrating it over the cell. Such operations can actually be
viewed as linear functionals acting on (1.1). While in our methods, equation (1.1)

is multiplied with ∂Ul

∂u and integrated over the cell to be changed into the integral
forms of the redundant equations in (1.2); see (2.14) and (2.16) in the following
section. Such operations can actually be viewed as nonlinear functionals acting on
(1.1). In this sense, the methods can be viewed as nonlinear extensions of the DG
methods. In practical applications, the quantities Ul(u) are usually chosen to have
physical meanings, such as energy or entropy.

This type of scheme shows an extremely outstanding quality in both accuracy
and long-time behavior of numerical solutions. In the development of the methods,
Mao and his co-workers started with the linear advection equation (2.1). This equa-
tion possesses infinitely many conservation laws, and they chose u2 and u3 as the
redundant quantities to construct schemes maintaining two and three conservation
laws; see the references cited at the beginning of this section. The numerical exper-
iments showed that the scheme maintaining three conservation laws is superior to
the scheme maintaining two conservation laws. Cui and Mao constructed a scheme
for the KdV equation that maintained the conservation laws of both u and u2
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(see [5]) and the numerical experiments showed that the scheme had a very good
quality, comparable to that of symplectic schemes (see [1] and [2]) in long-time
numerical integration. Li, Wang and Mao [16], and Chen and Mao [3], chose the
entropy as the redundant quantity to construct a modified Godunov scheme for
the 1D Euler system. They used the so-called Ultra-bee technique (see [19] and
[6]) to suppress the numerical oscillations. The modified Godunov scheme greatly
improved the resolution of the second characteristic waves in numerical solutions.

Despite the success of the methods in improving accuracy and long-time behavior
of numerical solutions, a theoretical understanding of them is still lacking. The
purpose of this paper is to give a theoretical explanation of the good quality of
the methods in accuracy and long-time behavior. For the simplicity of discussion,
we will study the scheme maintaining u and u2 conserved for the linear advection
equation. This scheme is the simplest one of this type. Since the scheme is nonlinear
as mentioned before, linear analysis methods, such as the phase error analysis (see
[17]) do not apply. We thus give a truncation error study of the scheme to investigate
the accumulation of the numerical errors.

The investigation reveals that the numerical errors in different time steps of the
scheme are accumulated in a nonlinear fashion, in which they cancel each other.
It is this error self-canceling feature that makes the scheme a super-convergence
property: the global error of the scheme is of an order higher than its truncation
error; see §5. We have not seen this error self-canceling feature in other numerical
methods for PDE.

The paper is organized as follows: §1 is the introduction. In §2 we describe the
scheme maintaining two conservation laws for the linear advection equation. In §3
we present two numerical experiments to illustrate the super-convergence property
of the scheme and its good quality in long-time simulation. In §4 we prove two
theorems concerning the evolution of the global error. In §5 we investigate the
error self-canceling feature of the scheme and show that this feature brings the
super-convergence property to the scheme. Finally, §6 is the conclusion.

2. Scheme maintaining two conservation laws

for linear advection equation

In this section, we describe the scheme maintaining two conservation laws for
the linear advection equation,

(2.1) ut + ux = 0.

We know that (2.1) possesses infinitively many conservation laws; as a matter of
fact, for any smooth function U(u) of u the equation

(2.2) U(u)t + U(u)x = 0

also holds. We call u the momentum. We then choose U(u) = u2 as the redundant
quantity and call it the energy.

For numerical discretization, we consider only uniform grids and use the notation
xj = jh, xj± 1

2
= (j± 1

2 )h and tn = nτ , with h and τ being the spatial and temporal

increments, respectively. The scheme is of the Godunov-type; however, different
from the ordinary Godunov-type schemes as described in [11] and [12], it involves
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two numerical components, one is a cell-average approximation to the momentum,

(2.3) un
j � ūn

j =
1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx,

and the other is a cell-average approximation to the energy,

(2.4) Un
j � Ūn

j =
1

h

∫ x
j+1

2

x
j− 1

2

U(u(x, tn))dx =
1

h

∫ x
j+1

2

x
j− 1

2

u2(x, tn)dx.

Like all Godunov-type schemes, the scheme proceeds in the reconstruction, evo-
lution and cell-averaging steps.

Reconstruction. We use the numerical solution {(un
j , U

n
j )} to reconstruct in each

cell a piecewise linear function R(x;un, Un), which is of the form

(2.5) R(x;un, Un) = un
j + snj (x− xj), x ∈ (xj− 1

2
, xj+ 1

2
).

Obviously, R(x;un, Un) satisfies

(2.6)
1

h

∫ x
j+1

2

x
j− 1

2

R(x;un, Un)dx = un
j .

We require that

(2.7)
1

h

∫ x
j+1

2

x
j− 1

2

U(R(x;un, Un))dx = Un
j ,

i.e., the energy cell-average of the reconstructed solution must be equal to the
numerical energy. (2.7) is an equation of slope snj , from which we solve snj for the
reconstruction (2.5), i.e.,

(2.8) (snj )2 =
12(Un

j − (un
j )2)

h2
.

Since snj is an approximation to ux(xj , tn), it should have the same sign as that of
(un

j+1 − un
j−1); therefore, it is computed as

(2.9) snj = sgn(un
j+1 − un

j−1)

√
12(Un

j − (un
j )2)

h2
.

Evolution. Evolve (2.1) with the reconstructed solution R(x;un, Un) as the initial
value at time tn,

(2.10)

{
vt + vx = 0, −∞ < x < ∞, tn < t ≤ tn+1,
v(x, tn) = R(x;un, Un), −∞ < x < ∞,

and we obtain the solution v(x, t) over the time interval [tn, tn+1].
Cell-Averaging. At tn+1, the numerical momentum un+1

j and numerical energy

Un+1
j are computed as

(2.11) un+1
j =

1

h

∫ x
j+1

2

x
j− 1

2

v(x, tn+1)dx

and

(2.12) Un+1
j =

1

h

∫ x
j+1

2

x
j− 1

2

(v(x, tn+1))
2dx.
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In practice, we use the integral form of (2.1) and (2.2) over the cell, instead, to
compute un+1

j and Un+1
j , i.e.,

(2.13) un+1
j = un

j − λ(f̂n
j+ 1

2
− f̂n

j− 1
2
)

and

(2.14) Un+1
j = Un

j − λ(F̂n
j+ 1

2
− F̂n

j− 1
2
),

where λ =
τ

h
is the mesh ratio and the numerical momentum flux f̂n

j± 1
2

and

numerical energy flux F̂n
j± 1

2

are computed as

(2.15) f̂n
j± 1

2
=

1

τ

∫ tn+1

tn

v(xj± 1
2
, t)dt

and

(2.16) F̂n
j± 1

2
=

1

τ

∫ tn+1

tn

v2(xj± 1
2
, t)dt.

Thus, we complete a step of computation. For the stability of the scheme the mesh
ratio is restricted by the CFL condition

(2.17) λ < 1,

so that waves emanating from each xj+ 1
2

at tn will not affect the neighboring cell-

edges.

Remark 2.1. The scheme maintains the discrete conservations of the momentum
and energy.

Remark 2.2. Because the solution v(x, t) to (2.10) is simply R(x − t;un, Un), the
integrals (2.15) and (2.16) can be exactly computed. However, we may numerically
compute the integrals, say, by a trapezoid formula, and our experiments show that
the scheme using numerical integrations is almost of the same quality as that using
exact integrations in computing smooth solutions. This is because when computing
smooth solutions the discontinuities of the reconstructed piecewise solution at cell
boundaries xj+1/2 are of type O(h2); therefore, there is no strong nonsmooth waves
generated from there. The following discussion in this paper will consider only the
scheme using exact integrations for the two numerical fluxes.

We present the following theorems concerning the feasibility and stability of the
scheme without proof. The proofs of these theorems can be found in [5], [13] or
[20].

Theorem 2.1. The scheme maintains Un
j ≥ (un

j )2 provided U0
j ≥ (u0

j)
2 holds at

the initial time.

Remark 2.3. Theorem 2.1 guarantees that the square-root operation in (2.9) is
always valid. According to the Jensen inequality and the convexity of U(u) the
true solution u(x, tn) and its energy U(u(x, tn)) satisfy

(2.18)
1

h

∫ x
j+1

2

x
j− 1

2

U(u(x, tn))dx ≥ U(
1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn));

therefore, we called the condition

(2.19) Un
j ≥ (un

j )2

the Jensen condition.
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Theorem 2.2. For the scheme, (1) ‖un‖2 < C; (2) Un ≥ 0; (3) ‖Un‖1 ≤ C,
provided the initial energy satisfies ‖U0‖1 ≤ C and the Jensen condition holds at
the initial time.

Remark 2.4. Theorem 2.2 shows that the numerical momentum is L2 controlled
by the numerical energy, and the numerical energy itself is nonnegative and L1

bounded, which indicates that the scheme is stable.

As will be seen in §5, the truncation error of the scheme is of second-order.
However, the numerical experiments in the following section will show that the
scheme has a third-order convergence rate away from extremes of the solution. We
will give an explanation of the super-convergence property of the scheme in §4 and
§5.

3. Numerical experiments

To give a numerical view of the scheme, we reconduct in this section two numer-
ical experiments in [20] and [21]. However, we shall more carefully investigate the
accuracy and long-time behavior of the numerical solutions. We will only look at
the momentum u; therefore, in the following discussion of this section, when talk
about the true or numerical solutions, we mean the true or numerical momentums.

As a convention of numerical practice (see §8.1 of [11]) we measure the accuracy
of a numerical solution by its global error, the error between the true and numerical
solutions, at the final time T of the experiment,

(3.1) enj = ūn
j − un

j ,

where ūn
j is the cell-average of the true solution as defined in (2.3). The time step

n is determined by T = nτ and will go to infinity as the time step τ tends to zero.
When the global error is periodic in x direction with L the period, which happens
when both the true and numerical solutions are periodic, the l1 and l∞ norms of it
over the domain (0, L) are defined as

(3.2) ‖en‖1 =
∑

1≤j≤J

h|enj |

and

(3.3) ‖en‖∞ = max
1≤j≤J

|enj |,

respectively, with Jh = L. The number of cells, J , also goes to infinity as h tends
to zero. We will use these two norms to measure the magnitude of the numerical
error. We will also define sub-domain l1 and l∞ norms of en over a sub-domain
Ω ⊂ (0, L) as

(3.4) ‖en‖Ω,1 =
∑
xj∈Ω

h|enj |

and

(3.5) ‖en‖Ω,∞ = max
xj∈Ω

|enj |,

respectively, with xj = jh, and sometimes use them to measure the magnitude of
the numerical error in the sub-domain.
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Example 3.1. Consider the following initial value for the linear advection equation
(2.1),

(3.6) u(x, 0) = sin(2πx), 0 ≤ x ≤ 1,

with periodic boundary conditions at the two ends. The true solution of this prob-
lem is simply a periodic function u(x, t) = sin(2π(x − t)) with the period L = 1.
We use this example to study the accuracy and convergence rate of the scheme.

The mesh ration λ = τ
h is taken to be 0.8. We perform the computation on grids

of 20, 40, 80, 160, 320, 640 and 1280 cells, respectively, up to final time T = 1 (one
period), and the l1 and l∞ norms of the global error and the convergence rate of
the numerical solution are presented in Table 1.

Table 1. Global error and convergence rates over domain (0, L).

N l∞ rate l1 rate
20 1.1660E-002 - 2.5230E-003 -
40 5.0662E-003 1.2030 5.5097E-004 2.1952
80 2.0434E-003 1.3100 1.1655E-004 2.2412
160 7.9422E-004 1.3635 2.4419E-005 2.2550
320 3.0190E-004 1.3956 5.2994E-006 2.2040
640 1.0828E-004 1.4794 1.1327E-006 2.2262
1280 4.0400E-005 1.4224 2.3414E-007 2.2745

The table shows that the l1 norm of the numerical error of the numerical solu-
tion is higher than second-order, which is contrary to what is expected since the
numerical error of a second-order scheme is expected to be also of second-order; see
the discussion in §5. The l∞ norm of the numerical error of the scheme is however
lower than second-order, but still higher than first-order. We checked the numerical
error cell by cell and found that the accuracy degeneration happened in the cells
near the two extremes, x = 1

4 and x = 3
4 , of the solution.

Table 2. Numerical error and convergence rates over the sub-
domain Ω.

N L∞ rate L1 rate
40 2.3945E-004 - 6.7777E-005 -
80 3.6268E-005 2.7231 9.5596E-006 2.8260
160 4.5369E-006 2.9991 1.1395E-006 3.0687
320 5.9680E-007 2.9266 1.4615E-007 2.9631
640 7.4664E-008 2.9990 1.8050E-008 3.0176
1280 9.4589E-009 2.9808 2.2708E-009 2.9909
2560 1.1924E-009 2.9880 2.8293E-010 3.0049

To more carefully investigate the accumulation of numerical error away from the
two extremes, we take Ω = [0, 1

6 ] ∪ [ 13 ,
2
3 ] ∪ [ 56 , 1] as a sub-domain, which excludes

the vicinities of the two extremes, and measure the global error over Ω. Table 2
shows the sub-domain l1 and l∞ norms of the global error and the corresponding
convergence rates. It is clearly seen from Table 2 that the global error of the
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numerical solution in both the norms is of third-order away from the two extremes
of the solution. This indicates that the scheme is super-convergent away from the
extremes of solutions, and the accuracy degeneration occurs only near the extremes.

Example 3.2. Consider the linear advection equation (2.1) with the following
initial value

(3.7) u(x, 0) = exp{−100 × (x− 1

2
)2} sin(80x), 0 ≤ x < 1,

with periodic boundary conditions at the two ends. This example is the Wave-
packet problem; see [11]. The true solution of the problem is still u(x, t) = u(x−t, 0).
Because of the highly oscillatory structure of the solution, this example is more
difficult than the previous one, and is always used to test the long-time behaviors
of different numerical methods.

We conduct the numerical experiment on a grid of 200 cells (h = 0.005), with
the mesh ratio λ = 0.8, up to t = 10, 100 and 200, and the plots at the times are
displayed in Figure 3.1 with solid lines to represent the true solution and circles to
represent the numerical. It is seen that the numerical solution of the scheme has a
good long-time behavior with the oscillatory structure well preserved even at very
late times. There are over- and under-shootings near the extremes of the solution,
which also indicate that there is accuracy degeneration there.

To make comparisons, we use a second-order DG method (without TVD limiter)
and the Lax-Wendroff scheme (second-order) to compute the same problem. To
make the comparisons fair, the experiment of the DG method is implemented on
a 200-cell grid and the experiment of the Lax-Wendroff scheme is implemented on
a 400-cell grid, so that all the numerical methods in competition are of the same
order and have the same degrees of freedom. The plots of the two solutions at
t = 10 are displayed in Figure 3.2, and still the solid lines are the true solution and
the circles are the numerical solutions. It is clearly seen that both the numerical
solutions at the time lose their integrities due to the numerical diffusions and phase
errors and have no way to compete with the solution computed by our scheme.

Remark 3.1. In [20] and [21], Wang used the scheme maintaining three conservation
laws for (2.1) to compute this Wave-packet problem up to the time t = 20, 000,
and the numerical result at that time was even better than the result at t = 100
presented in Figure 3.1; see also [5] and [16] for the numerical results.

4. Two theorems concerning the evolution of global error

In this section, we shall prove two theorems that describe the evolution of global
error of our scheme. In the following discussion we assume that the true solution
to (2.1), u(x, t), is smooth enough, which means that u(x, t) and all its derivatives
appear in the following discussion are continuous functions of x and t. Also when
we say a point (xj , tn) is away from extremes of the solution, we mean

(4.1) |ux(xj , tn)| ≥ α > 0,

with α an arbitrary constant. The global error of the momentum has been stated
in (3.1), which is equivalent to

(4.2) ūn
j = un

j + enj .
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(a) Numerical solution at t = 10.
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(b) Numerical solution at t = 100.
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(c) Global solution at t = 200.

Figure 3.1. Numerical solutions computed by the scheme
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(a) Numerical solution at t = 10 computed by the second-order DG method.
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(b) Numerical solution at t = 10 computed by the Lax-Wendroff scheme (second-order).

Figure 3.2. Numerical solutions computed by the DG method
and Lax-Wendroff scheme.

For the investigation, we need also to introduce the global error of the energy, En
j ,

at tn as

(4.3) Ūn
j = Un

j + En
j ,

where Ūn
j is the cell-average of the true energy defined as in (2.4). In the following

discussion we shall use the notation

(4.4) Δwj = wj+1 − wj .

For simplicity of discussion, we take λ = τ/h to be a constant smaller than 1
in the following discussion; therefore, we can use only the spatial increment h to
measure all the errors in the discussion. We say that a grid function w = O(hr) is
continuous in space if

(4.5) Δwj = O(hr+1).

We assume that the global errors en and En are all continuous in space. This
assumption comes from the fact that the scheme, as described in §2, performs in
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the same way in all grid cells and involves no discontinuous operations; therefore,
the global errors should be continuous in space when a smooth solution is simulated.
We should note that this is not always true for schemes simulating (2.1). Nonlinear
schemes such as TVD or ENO types (see [7] and [8]) involve sudden changes of
stencils, and they may thus perform in different ways in neighboring cells. However,
the WENO schemes using weighted ENO-stencils (see [10]) do not involve sudden
change of stencils, and the assumption can be made for them.

We shall first prove the following theorem concerning the error evolution of the
scheme.

Theorem 4.1. If both en and En are of O(h3), then away from extremes of the
solutions we have

en+1
j = enj + λC(λ)uxxx(xj , tn)h3 + λD(λ)Δdnj h

2 + O(h4),(4.6)

En+1
j = En

j + 2λC(λ)(u(xj, tn)uxx(xj , tn))xh
3

+ 2λD(λ)Δ(u(xj, tn)dnj )h2 + O(h4), 1(4.7)

where

(4.8) dnj =
6

ux(xj , tn)h3
(2u(xj , tn)enj − En

j )

and

(4.9) C(λ) = −(2λ2 − 3λ + 1)/12, D(λ) = (1 − λ)/2,

and near extremes of the solution enj and En
j are at least of O(h2).

We should note that according to the assumptions on enj and En
j and (4.8), the

term dnj is of O(1), and both the terms Δdnj and Δ(u(xj , tn)dnj ) in (4.6) and (4.7)
are of O(h). Therefore, the global errors of the momentum and energy at tn+1 are
still of O(h3) as at tn away from extremes of the true solution.

The proof of Theorem 4.1 is somehow lengthy, and it is helpful to sketch a road-
map of the proof at first. We see that the linear advection equation (2.1) can be
written in an integral form,

(4.10) ūn+1
j = ūn

j − λ(f̃n
j+ 1

2
− f̃n

j− 1
2
),

with f̃n
j± 1

2

the cell-boundary-average of the true momentum flux at x = xj± 1
2
,

(4.11) f̃n
j± 1

2
=

1

τ

∫ tn+1

tn

u(xj± 1
2
, t)dt.

We also have for the energy of the solution,

(4.12) Ūn+1
j = Ūn

j − λ(F̃n
j+ 1

2
− F̃n

j− 1
2
),

with F̃n
j± 1

2

the cell-boundary-average of the true energy flux at xj± 1
2
,

(4.13) F̃n
j± 1

2
=

1

τ

∫ tn+1

tn

u2(xj± 1
2
, t)dt.

By subtracting (2.13) from (4.10) and (2.14) from (4.12) and denoting the errors
between the numerical and true fluxes by

(4.14) Rn,f

j+ 1
2

= f̃n
j+ 1

2
− f̂n

j+ 1
2

and Rn,F

j+ 1
2

= F̃n
j+ 1

2
− F̂n

j+ 1
2
,
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we obtain

(4.15) en+1
j = enj − λ(Rn,f

j+ 1
2

−Rn,f

j− 1
2

),

and

(4.16) En+1
j = En

j − λ(Rn,F

j+ 1
2

−Rn,F

j− 1
2

).

It is clearly seen from (4.15) and (4.16) that the estimations of en+1
j and En+1

j turn

out to be the estimations of the two flux errors defined in (4.14). According to
the description of the scheme in §2, to estimate the flux errors one needs first to
estimate the error between the reconstruction slope snj computed by (2.9) and the
ux(xj , tn) of the true solution. Thus, the roadmap of the proof is: 1) estimate the
error of snj ; 2) estimate the errors of the two numerical fluxes; and then 3) estimate
the errors of the numerical momentum and energy.

Lemma 4.1. If both en and En are of O(h3), we then have for the slope computed
by (2.9),

(4.17) snj = ux(xj , tn) + dnj h + O(h2)

away from extremes of the true solution with the O(h2) remainder continuous in
space in the sense of (4.5), and we still have

(4.18) snj = ux(xj , tn) + βn
j

near extremes of the solution with βn
j a grid function of O(1) and Δβn

j = O(h).

Lemma 4.2. If both en and En are of O(h3), we then have for the error of the
momentum flux Rn,f ,

(4.19) Rn,f

j+ 1
2

= −C(λ)uxx(xj , tn)h2 −D(λ)dnj h
2 + O(h3)

away from extremes of the true solution with the O(h3) remainder continuous in
space, and we still have

(4.20) Rn,f

j+ 1
2

= D(λ)βn
j h + O(h2)

near extremes of the solution.

Lemma 4.3. If en and En are of O(h3), we then have for the error of the energy
flux Rn,F ,

(4.21) Rn,F

j+ 1
2

= −2C(λ)u(xj , tn)uxx(xj , tn)h2 − 2D(λ)u(xj , tn)dnj h
2 + O(h3)

away from extremes of the true solution with the O(h3) remainder continuous in
space, and still have

(4.22) Rn,F

j+ 1
2

= 2D(λ)u(xj, tn)βn
j h + O(h2)

near extremes of the solution.

The proofs of all of the lemmas are left to Appendix A.

Proof of Theorem 4.1. The first conclusion of the theorem, (4.6) and (4.7) in the
regions away from extremes of the solution, follows easily by substituting (4.19) into
(4.15) and (4.21) into (4.16) and noting that the O(h3) remainders are continuous
in space. The second conclusion of the theorem, i.e., the errors of the numerical
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momentum and energy near extremes of the solution are still at least of second-
order, and follows easily by substituting (4.20) into (4.15) and (4.22) into (4.16)
and noting Δβn

j = O(h). ♠

In the following discussion, we will focus only on the solution regions away from
extremes. We need to prove the following theorem concerning the evolution of dn,
Δdn and Δ(u(xj , tn)dnj ) for the further study of error accumulation.

Theorem 4.2. If both en and En are of O(h3), we then have for dn away from
extremes of the solution,

(4.23) dn+1
j = (1 − 12λD(λ))dnj − 12λC(λ)uxx(xj , tn) + O(h)

and

(4.24) Δdn+1
j = (1 − 12λD(λ))Δdnj − 12λC(λ)uxxx(xj , tn)h + O(h2).

If we denote Dn
j = u(xj , tn)dnj , we then have for ΔDn

j away from extremes of the
solution

(4.25) ΔDn+1
j = (1 − 12λD(λ))ΔDn

j − 12λC(λ)(u(xj, tn)uxx(xj , tn))xh + O(h2).

The proof of the theorem will be left to Appendix B.

5. Error self-canceling of the scheme

In this section, we shall investigate the accumulation of numerical errors of the
scheme to give an explanation of its super-convergence property away from extremes
of the solutions. To this end, we need first to observe how the numerical error is
accumulated in a linear scheme modeling (2.1). We consider a linear finite volume
scheme in the form,

(5.1) un+1
j = un

j − τLh(un; j) = un
j − λLh(un; j)h,

where un
j is a cell-average approximation to the true solution as in (2.3) and Lh

is a linear difference operator approximating ∂
∂x . It is obvious that Lh must be

a linear combination of Δ’s as defined in (4.4) acting in the nearby cells. The
most important linear schemes for (2.1), such as the Lax-Wendroff scheme, Beam-
Warming scheme, MacCormack scheme, etc., can all be written in this form.

We know that the truncation error of scheme (5.1), Tn
j , is defined by replacing

the cell-average approximation un
j by the cell-average of the true solution ūn

j ,

(5.2) Tn
j =

ūn+1
j − ūn

j

τ
+ Lh(ūn; j);

see [12]. The truncation error measures how well the scheme models (2.1) locally.
A scheme is said to be of rth-order if Tn

j = O(hr). The quantity τTn
j = λTn

j h,
called residual, is the numerical error produced in one step by the scheme starting
with the true solution.

It is a well-known fact that for a linear scheme the numerical errors produced in
different time steps are accumulated in a linear fashion; therefore, the truncation
and global errors are of the same order. The fact can be theoretically interpreted
in many different ways, say, by phase error analysis (see [17] and [18]), or by energy
analysis; see [9]. Here we would like to give an intuitive interpretation of it in



728 CUI YANFEN AND MAO DE-KANG

truncation error. Let us assume that (5.1) is of second-order with its truncation
error in the form

(5.3) Tn
j = A(xj , tn, λ;u)h2 + O(h3),

where A(xj , tn, λ;u) is the coefficient of the leading part of the error, which can
be evaluated by Taylor expansions and is thus related to the third derivatives of
u(x, t).

The global error en is still defined as in (4.2), which can also be assumed to be
continuous in space in the sense of (4.5) because of the linear form of Lh. Now we
are going to observe the accumulation of numerical error of the scheme, and to this
end we assume en = O(h3). Then by multiplying τ onto (5.2), subtracting (5.1)
from it, substituting (5.3), and noting the linearity of Lh, we have

(5.4) en+1
j = enj + λA(xj, tn, λ;u)h3 + O(h4).

Note that Lh(en; j) = O(h4) because of the linear form of Lh and the continuity
of en in space. Estimation (5.4) indicates that the numerical error of the scheme is
accumulated in a linear fashion. To see this, let us start from the initial time level
at which en ≡ 0. We then repeatedly use (5.4) to obtain

e1j = λA(xj , t1, λ;u)h3 + O(h4),

e2j = λA(xj , t1, λ;u)h3 + τA(xj, t2, λ;u)h2 + O(h4), · · · .(5.5)

Estimations (5.5) indicate that the leading parts of the residuals in different time
steps are simply summed up in the global error as the scheme evolves in time. If
we ignore the O(h4) remainder in (5.4) and sum it up from n = 0 to n ≤ T/τ with
T the final time, we can easily obtain an estimation of the global error

(5.6) |enj | ≤ KATh
2, for 0 < n ≤ T

τ
,

with KA an upper bound of A(xj , tn, λ;u). Estimation (5.6) indicates that the
global error is of second-order. Moreover, the coefficient of the global error, KAT , is
proportional to the final time T . In the real situation, the ignored O(h4) remainder
also contributes to the global error; therefore, the coefficient of the global error is
expected to be of exp(CT ) with C a constant; see [9] and [18].

Estimation (5.6) is obtained assuming that the truncation errors in different
time steps do not cancel each other, and one may expect that there is self-canceling
of the truncation error in reality, which may increase the order of global error.
Unfortunately, all numerical practices show that the order of global error of a linear
scheme is the same as its truncation error and the global error grows exponentially
along with the time, which indicates that there is essentially no self-canceling of
truncation error. Moreover, this situation is true even for most modern nonlinear
scheme modeling (2.1), such as that of the TVD, ENO or WENO types; numerical
errors in those nonlinear schemes are also accumulated in linear fashions.

Now we are going to investigate the accumulation of numerical error of our
scheme. We can also define the truncation error of the scheme as by replacing the
cell-average approximations by the true cell-averages. However, since our scheme
involves two numerical entities, the truncation error will also have two components.
For clarity, we denote by Lu

h and LU
h the difference operators in (2.13) and (2.14),
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i.e.,

(5.7) Lu
h(un, Un; j) =

f̂n
j+ 1

2

− f̂n
j− 1

2

h

and

(5.8) LU
h (un, Un; j) =

F̂n
j+ 1

2

− F̂n
j− 1

2

h
.

Note that Lu
h and LU

h are nonlinearly related to un and Un because both the

numerical fluxes f̂n
j± 1

2

and F̂n
j± 1

2

are evaluated in nonlinear fashions as described in

§2.

Definition 5.1. The two components of the truncation error of the scheme de-
scribed in §2 are

(5.9) Tn,u
j =

ūn+1
j − ūn

j

τ
+ Lu

h(ūn, Ūn; j)

and

(5.10) Tn,U
j =

Ūn+1
j − Ūn

j

τ
+ LU

h (ūn, Ūn; j),

respectively.

To evaluate the truncation error of our scheme, we take en ≡ 0 and En ≡ 0

in Theorem 4.1, which implies also dn ≡ 0, and note Tn,u
j = en+1

j /τ and Tn,U
j =

En+1
j /τ at the time. Then from Theorem 4.1, the two components of the truncation

error are

(5.11) Tn,u
j = C(λ)uxxx(xj , tn)h2 + O(h3)

and

(5.12) Tn,U
j = 2C(λ)(u(xj, tn)uxx(xj , tn))xh

2 + O(h3),

away from extremes of the solution, and they are at least of O(h) near extremes of
the solution. This indicates that the scheme is of second-order away from extremes
of the solution and is still at least of first-order near extremes.

In the following discussion we focus only on the region away from extremes of
the solution. As for the linear scheme (5.1), we use Theorem 4.1 and Theorem 4.2
to estimate the global error of our scheme starting from the initial time level. It is
easy to obtain by taking n = 0 in (5.11) and (5.12),

(5.13) e1,uj = λC(λ)uxxx(xj , t0)h
3 + O(h4)

and

(5.14) E1,U
j = 2λC(λ)(u(xj, t0)uxx(xj , t0))xh

3 + O(h4).

Note that (5.13) and (5.14) indicate that both e1 and E1 are of O(h3) and are
continuous in space because of the smoothness of the true solution; therefore, we
can use Theorem 4.1 and Theorem 4.2 again to obtain the estimation of the global
error at t2. By noting d0 ≡ 0, we can obtain from Theorem 4.2

(5.15) Δd1j = −12λC(λ)uxxx(xj , t0)h + O(h2)
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Figure 5.1. The plot of the function P (λ)

and

(5.16) Δ(u(xj , t1)d
1
j ) = −12λC(λ)(u(xj, t0)uxx(xj , t0))xh + O(h2),

away from extremes of the solution. Then from Theorem 4.1 we can obtain

(5.17) e2j = (1 − 12λD(λ))λC(λ)uxxx(xj , t0)h
3 + λC(λ)uxxx(xj , t1)h

3 + O(h4)

and

E2
j =(1 − 12λD(λ))2λC(λ)(u(xj, t0)uxx(xj , t0))xh

3

+ 2λC(λ)(u(xj, t1)uxx(xj , t1))xh
3 + O(h4),

(5.18)

away from extremes of the solution. We note in (5.17) and (5.18) that the leading
parts of the residuals in the two steps are not simply summed up in e2 and E2 as in
linear scheme (5.1), the residual in the first step is reduced by a factor (1−12λD(λ)).
This is because the terms Δd1j and Δ(u(xj , t1)d

1
j ) produce quantities that cancel

part of them.
We need to study the factor (1− 12λD(λ)), and we denote it by P (λ). It is not

difficult to obtain from (4.9) that

(5.19) P (λ) = 6λ2 − 6λ + 1.

The function P (λ) is quadratic of the mesh ratio λ = τ
h and its plot is presented in

Figure 5.1. The plot tells us the following things:
(1) When 0 < λ < 1, which is required by the CFL condition for the scheme, we

have |P (λ)| < 1. This indicates that P (λ) does reduce the residual in the first step
in (5.17) and (5.18).

(2) Function P (λ) has two roots λ1 = (3 −
√

3)/6 and λ2 = (3 +
√

3)/6, and
P (λ) < 0 when λ1 < λ < λ2. This indicates that in this region of λ the residuals
in the first and second steps in (5.17) and (5.18) continue to cancel each other.

(3) Function P (λ) reaches its minimum −0.5 at λ = 0.5. This indicates that at
λ = 0.5 the canceling-each-other of the residuals in the two successive steps reaches
its maximum.

We would like to have a view of the global error at late times. To simplify
the discussion, we ignore all the higher-order remainders in (4.6), (4.7), (4.24) and
(4.25). We then have the following proposition.
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Proposition 5.1. If the O(h4) remainders in (4.6) and (4.7) and the O(h2) re-
mainders in (4.24) and (4.25) are ignored, then away from extremes of the solution
we have the following estimations of the two components of the global error at tn,

(5.20) enj =

n−1∑
i=0

λC(λ)P i(λ)uxxx(xj , tn−1−i)h
3

and

(5.21) En
j =

n−1∑
i=0

2λC(λ)P i(λ)(u(xj, tn−1−i)uxx(xj , tn−1−i))xh
3.

The proof of Proposition 5.1 is left to Appendix C.
Now if we assume |uxxx| ≤ K1 and |(uuxx)x| ≤ K2 we can obtain the following

estimations of the global error

(5.22) |enj | ≤
n−1∑
i=0

λC(λ)P i(λ)K1h
3 <

2λC(λ)

1 − P (λ)
K1h

3

and

(5.23) |En
j | ≤

n−1∑
i=0

2λC(λ)P i(λ)K2h
3 <

4λC(λ)

1 − P (λ)
K2h

3.

The estimations (5.22) and (5.23) indicate that the two components of the global
error of the numerical solution are both of the third-order, an order higher than

the truncation error. Moreover, the coefficients of the global error, 2λC(λ)
1−P (λ)K1 and

4(λCλ)
1−P (λ)K2, are all uniformly bounded with respect to the final time T > nτ . The

ignored higher-order remainders in (4.6), (4.7), (4.24) and (4.25) will surely con-
tribute to the global errors; however, their contribution will not affect the order
but change the coefficients in (5.22) and (5.23). We guess that there are also self-
canceling in the higher-order remainders, and thus the real situation is that the
increase of the coefficients with respect to the time is slower than the linear fash-
ion. However, this should be investigated with further analysis. We thus finally
explain the super-convergence of the scheme away from extremes of the solution.

From the above discussion, we see that dnj defined in (4.8) plays an important
role in the self-canceling of numerical errors; therefore, we would like to see its
mathematical meaning before ending this section. From (A.3) in the proof of the
Lemma 4.1 in Appendix A, we see

(5.24) ūn
j = u(xj , tn) +

1

24
h2uxx(xj , tn) + O(h4).

If enj = ūn
j − un

j = O(h3), we have from (5.24),

(5.25) 2u(xj , tn) = 2ūn
j + O(h2) = ūn

j + un
j + O(h2).

Substituting enj = ūn
j −un

j and En
j = Ūn

j −Un
j into (4.8) and noting (5.25), we have

(5.26) dnj =
6

ux(xj , tn)h3
[(Un

j − (un
j )2) − (Ūn

j − (ūn
j )2)] + O(h2).

We call the term

(5.27) Ūn
j − (ūn

j )2
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the Jensen difference of the true solution and the term

(5.28) Un
j − (un

j )2

the Jensen difference of the numerical solution. According to Remark 2.3 and The-
orem 2.1, both the terms are nonnegative. Now (5.26) shows that dnj is essentially
the discrepancy of the numerical and true Jensen differences, which is obviously
closely related to the multi-conservation feature of the scheme.

6. Conclusion

We have carried out a truncation error investigation on the scheme maintaining
two conservation laws for the linear advection equation (2.1). Our investigation
reveals that the numerical errors produced in different steps of the scheme are
accumulated in a nonlinear fashion, in which they cancel each other. This error
self-canceling feature brings the super-convergence property to the scheme, which
makes it superior to other numerical schemes modeling (2.1) in both accuracy and
long-time simulation.

Appendix A

Proof of Lemma 4.1. We first investigate the true solution in the grid cell [xj− 1
2
,

xj+ 1
2
], and we start with the momentum u(x, t). By the Taylor expansion of u(x, tn)

at (xj , tn) we obtain

u(x, tn) =u(xj , tn) + ux(xj , tn)(x− xj) +
1

2
uxx(xj , tn)(x− xj)

2

+
1

6
uxxx(xj , tn)(x− xj)

3 + O(h4).

(A.1)

Cell-averaging the two sides of (A.1), we obtain

(A.2) u(xj , tn) = ūn
j − 1

24
h2uxx(xj , tn) + O(h4).

Now we substitute (A.2) into (A.1) and obtain

(A.3) u(x, tn) = ūn
j − 1

24
h2uxx(xj , tn) + kj(x, tn),

with

kj(x, tn) =ux(xj , tn)(x− xj) +
1

2
uxx(xj , tn)(x− xj)

2

+
1

6
uxxx(xj , tn)(x− xj)

3 + O(h4).

(A.4)

Now we investigate the cell-average of the true energy Ūn
j and note

(A.5) Ūn
j =

1

h

∫ xj+1/2

xj−1/2

U(u(x, tn))dx =
1

h

∫ xj+1/2

xj−1/2

u2(x, tn)dx.

Substituting (A.3) into (A.5), we obtain

(A.6) Ūn
j = (ūn

j )2 +
h2

12
(ux(xj , tn))2 + O(h4).

We then investigate the numerical solution. From (4.2) and (4.3) we have

(A.7) un
j = ūn

j − enj
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and

(A.8) Un
j = Ūn

j − En
j ,

with both enj and En
j are O(h3). Substituting (A.7) and (A.8) into (2.8), we obtain

(A.9) (ūn
j )2 − 2ūn

j e
n
j +

h2

12
(snj )2 + O(h6) = Ūn

j − En
j .

Substituting (A.6) and (A.2) into (A.9), we have

(A.10) (snj )2 = (ux(xj , tn))2 + 12(2u(xj , tn)enj − En
j )/h2 + O(h2).

In the following we first consider the case that the grid cell under concern is
away from extremes of the solution. Because ux(xj , tn) has the same sign as that
of (un

j+1 − un
j−1) away from extremes of the solution, we have from (2.9)

(A.11) snj = sgn(ux(xj , tn))
√

(ux(xj , tn))2 + 12(2u(xj , tn)enj − En
j )/h2 + O(h2).

By the Taylor expansion of the square-root function on the RHS of (A.11) at
(ux(xj , tn))2 we have

(A.12) snj = ux(xj , tn) + dnj h + O(h2),

where

(A.13) dnj =
6

ux(xj , tn)h3
(2u(xj , tn)enj − En

j ).

The O(h2) remainder in (A.12) is continuous in space because both en and En are
continuous in space and the true solution u(x, t) is smooth.

Now we consider the case that the grid cell under concern is near extremes of
the solution. In this case, from (A.10) and (2.9) we can have

(A.14) snj = ux(xj , tn) + βn
j ,

with
(A.15)

βn
j =sgn(un

j+1−un
j−1)

√
(ux(xj , tn))2+12(2u(xj , tn)enj −En

j )/h2+O(h2)−ux(xj , tn),

Obviously, βn
j is bounded and satisfies Δ(βn

j ) = O(h) because of the smoothness
of the true solution. Thus, the proof is complete. ♠

Proof of Lemma 4.2. We first consider the true momentum flux

(A.16) f̃n
j+ 1

2
=

1

τ

∫ tn+1

tn

u(xj+ 1
2
, t)dt.

Because u(x, t) is the true solution of the linear advection equation (2.1), the true
flux can be written as

(A.17) f̃n
j+ 1

2
=

1

τ

∫ tn+1

tn

u(xj+ 1
2
− (t− tn), tn)dt.

We substitute x = xj+ 1
2
− (t− tn) in (A.3) and obtain

(A.18) u(xj+ 1
2
− (t− tn), tn) = ūn

j − 1

24
h2uxx(xj , tn) + kj(xj+ 1

2
− (t− tn), tn),
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with

kj(xj+ 1
2
− (t− tn), tn) =ux(xj , tn)(

h

2
− (t− tn))

+
1

2
uxx(xj , tn)(

h

2
− (t− tn))2 + O(h3).

(A.19)

In (A.19) we ignore the term 1
6uxxx(xj+ 1

2
− (t− tn), tn)(x− xj)

3 in kj(xj+ 1
2
− (t−

tn), tn) because, as will be seen in the following discussion, this term will have no
contribution to the leading part of momentum flux error.

Now we substitute (A.18) into (A.17) and have for the true momentum flux

(A.20) f̃n
j+ 1

2
= I1 + I2 + I3 + O(h3),

where the three integrations I1, I2 and I3 are

(A.21)

I1 =
1

τ

∫ tn+1

tn

[ūn
j − 1

24
h2uxx(xj , tn)]dt,

I2 =
1

τ

∫ tn+1

tn

ux(xj , tn)(
h

2
− (t− tn))dt,

I3 =
1

τ

∫ tn+1

tn

1

2
uxx(xj , tn)(

h

2
− (t− tn))2dt.

By noting

(A.22)
1

τ

∫ tn+1

tn

(
h

2
− (t− tn))dt =

1 − λ

2
h

and

(A.23)
1

τ

∫ tn+1

tn

(
h

2
− (t− tn))2dt =

4λ2 − 6λ + 3

12
h2,

we can easily compute

(A.24)

I1 = ūn
j − 1

24
h2uxx(xj , tn),

I2 =
1 − λ

2
ux(xj , tn)h,

I3 =
4λ2 − 6λ + 3

24
uxx(xj , tn)h2.

We substitute (A.24) into (A.20), and then the true flux is

(A.25) f̃n
j+ 1

2
= ūn

j +
1 − λ

2
ux(xj , tn)h +

2λ2 − 3λ + 1

12
uxx(xj , tn)h2 + O(h3).

Now we consider the numerical momentum flux f̂n
j+ 1

2

. From (2.15) and by noting

that v(x, t) there is the solution of the IVP (2.10), we have

(A.26) f̂n
j+ 1

2
=

1

τ

∫ tn+1

tn

R(xj+ 1
2
− (t− tn);un, Un)dt.

Substituting the reconstruct function (2.5) into (A.26), we obtain for the numerical
momentum flux

(A.27) f̂n
j+ 1

2
=

1

τ

∫ t1

tn

[un
j + snj (xj+ 1

2
− xj − (t− tn))]dt = un

j +
1 − λ

2
snj h.
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When the grid cell under concern is away from extremes of the solution, we
substitute (A.7) and (A.12) into (A.27) and obtain

(A.28) f̂n
j+ 1

2
= ūn

j +
1 − λ

2
ux(xj , tn)h +

1 − λ

2
dnj h

2 + O(h3).

with dnj defined as in (A.13) or (4.8). By comparing the true flux in (A.25) and the
numerical flux in (A.28) we obtain the error of the momentum flux

(A.29) Rn,f

j+ 1
2

=
2λ2 − 3λ + 1

12
uxx(xj , tn)h2 − 1 − λ

2
dnj h

2 + O(h3).

The O(h3) remainder in (A.29) is continuous in space because the O(h2) remainder
in (A.12) is continuous in space and the true solution is smooth. By noting C(λ)
and D(λ) in (4.9), the first conclusion of the lemma then follows.

When the grid cell under concern is near extremes of the solution, by substituting
(A.7) and (A.14) into (A.27) we obtain

(A.30) f̂n
j+ 1

2
= ūn

j +
1 − λ

2
ux(xj , tn)h +

1 − λ

2
βn
j h + O(h2),

with βn
j as in (A.15). Again, by comparing the true flux in (A.25) and the numerical

flux in (A.30) we obtain the error of the momentum flux in this case

(A.31) Rn,f

j+ 1
2

=
1 − λ

2
βn
j h + O(h2),

which is the second conclusion of the lemma. The proof is thus complete. ♠

Proof of Lemma 4.3. We first consider the true energy flux, and by the same argu-
ment as for deriving (A.17) for the true momentum flux we have

(A.32) F̃n
j+ 1

2
=

1

τ

∫ tn+1

tn

u2(xj+ 1
2
− (t− tn), tn)dt.

We also substitute (A.18), with kj(xj+ 1
2
− (t − tn), tn) as defined in (A.19), into

(A.32) and have for the true energy flux

(A.33) F̃n
j+ 1

2
= I1 + I2 + I3 + I4 + I5 + O(h3),

where the five integrations I1, I2, I3, I4 and I5 are

(A.34)

I1 =
1

τ

∫ tn+1

tn

(ūn
j )2dt,

I2 =
1

τ

∫ tn+1

tn

u2
x(xj , tn)(

h

2
− (t− tn))2dt,

I3 =
1

τ

∫ tn+1

tn

−h2

12
ūn
j uxx(xj , tn)dt,

I4 =
1

τ

∫ tn+1

tn

2ūn
j ux(xj , tn)(

h

2
− (t− tn))dt,

I5 =
1

τ

∫ tn+1

tn

ūn
j uxx(xj , tn)(

h

2
− (t− tn))2dt.
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By noting (A.22) and (A.23), the five integrations I1, I2, I3, I4 and I5 can be easily
computed as

(A.35)

I1 = (ūn
j )2,

I2 =
4λ2 − 6λ + 3

12
u2
x(xj , tn)h2,

I3 = −h2

12
ūn
j uxx(xj , tn),

I4 = ūn
j ux(xj , tn)(1 − λ)h,

I5 =
4λ2 − 6λ + 3

12
ūn
j uxx(xj , tn)h2.

We substitute (A.35) into (A.33), and then the true energy flux is

(A.36)
F̃n
j+ 1

2
= (ūn

j )2 +
4λ2 − 6λ + 3

12
u2
x(xj , tn)h2 + ūn

j ux(xj , tn)(1 − λ)h

+
2λ2 − 3λ + 1

6
ūn
j uxx(xj , tn)h2 + O(h3).

Now we consider the numerical energy flux F̂n
j+ 1

2

, and in the same way as for the

numerical momentum flux we have

(A.37) F̂n
j+ 1

2
=

1

τ

∫ tn+1

tn

R2(xj+ 1
2
− (t− tn);un, Un)dt.

Substituting the reconstruct function (2.5) into (A.37), we obtain the numerical
energy flux

(A.38) F̂n
j+ 1

2
= (un

j )2 + un
j s

n
j (1 − λ)h + (snj )2

4λ2 − 6λ + 3

12
h2,

When the grid cell under concern is away from extremes of the solution, we
substitute (A.7) and (A.12) into (A.38) and obtain

(A.39)
F̂n
j+ 1

2
= (ūn

j )2 + [ūn
j ux(xj , tn) + ūn

j d
n
j h](1 − λ)h

+
4λ2 − 6λ + 3

12
u2
x(xj , tn)h2 + O(h3),

with dnj as in (A.13) or (4.8). By comparing the true flux in (A.36) and the numer-
ical flux in (A.39) we obtain the error of the energy flux

(A.40) Rn,F

j+ 1
2

=
2λ2 − 3λ + 1

6
ūn
j uxx(xj , tn)h2 − (1 − λ)ūn

j d
n
j h

2 + O(h3).

Substituting (A.3) into (A.40), the error of the energy flux can be written as

(A.41) Rn,F

j+ 1
2

=
2λ2 − 3λ + 1

6
u(xj , tn)uxx(xj , tn)h2−(1−λ)u(xj , tn)dnj h

2+O(h3).

The O(h3) remainder in (A.41) is continuous in space because the O(h2) remainder
in (A.12) is continuous in space and the true solution is smooth. By noting the
definition of C(λ) and D(λ) in (4.9), the first conclusion of the lemma then follows.

When the grid cell under concern is near extremes of the solution, we substitute
(A.7) and (A.14) into (A.38) and obtain

(A.42) F̂n
j+ 1

2
= (ūn

j )2 + (1 − λ)ūn
j ux(xj , tn)h + (1 − λ)ūn

j β
n
j h + O(h2),
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with βn
j as in (A.15). Again, by comparing the true flux in (A.36) and the numerical

flux in (A.42) we obtain the error of the energy flux in this case,

(A.43) Rn,F

j+ 1
2

= (1 − λ)ūn
j β

n
j h + O(h2).

Substituting (A.3) into (A.43), the error of the energy flux can be written as

(A.44) Rn,F

j+ 1
2

= (1 − λ)u(xj , tn)βn
j h + O(h2),

which is the second conclusion of the lemma. The proof is thus complete. ♠

Appendix B

Proof of Theorem 4.2. Multiplying (4.6) by 2u(xj , tn) and then subtracting (4.7)
from it, we obtain

(B.1) L1 = R1 + R2 + R3 + O(h4),

with

(B.2)

L1 = 2u(xj , tn)en+1
j − En+1

j ,

R1 = 2u(xj , tn)enj − En
j ,

R2 = 2C(λ)[u(xj, tn)uxxx(xj , tn) − (u(xj , tn)uxx(xj , tn))x]h
3,

R3 = 2D(λ)[u(xj , tn)Δdnj − Δ(u(xj , tn)dnj )]h2.

Multiply (B.1) by
6

ux(x, tn)h2
and then noting the definition of dnj (4.8) and the

smoothness of the solution, we obtain

6

ux(x, tn)h2
L1 = dn+1

j h + O(h2),

6

ux(x, tn)h2
R1 = dnj h,(B.3)

6

ux(x, tn)h2
R2 = −12C(λ)uxx(xj , tn)h,

and

(B.4)
6

ux(x, tn)h2
R3 = −12D(λ)dnj−1h + O(h2) = −12D(λ)dnj h + O(h2).

In the derivation of (B.4) we used the fact Δdnj = O(h). Substitute all of these
relations into (B.1) and the conclusion of (4.23) then follows.

We shall note that the O(h) remainder in (4.23) is continuous in space because
of the continuity of en and En in space and the smoothness of the true solution.
Therefore, the conclusion of (4.24) follows by taking the difference operation Δ on
the two sides of (4.23). Likewise, the conclusion of (4.25) follows by multiplying
u(xj , tn+1) to (4.23) and then taking operation Δ on both sides of it. ♠
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Appendix C

Proof of Proposition 5.1. We are actually going to prove the following four conclu-
sions:

enj =

n−1∑
i=0

λC(λ)P i(λ)uxxx(xj , tn−1−i)h
3,(C.1)

En
j =

n−1∑
i=0

2λC(λ)P i(λ)(u(xj, tn−1−i)uxx(xj , tn−1−i))xh
3,(C.2)

Δdnj = −
n−1∑
i=0

12λC(λ)P i(λ)uxxx(xj , tn−1−i)h,(C.3)

and

(C.4) ΔDn
j = −

n−1∑
i=0

12λC(λ)P i(λ)(u(xj, tn−1−i)uxx(xj , tn−1−i))xh,

with Dn
j = u(xj , tn)dnj as defined in Theorem 4.2. The first two of the estimations

are the conclusions of the proposition. We are going to use the induction arguments
to prove them.

We first need to verify the conclusions at n = 1. Note that initially we have
e0j = 0 and E0

j = 0, and thus d0j = 0 from (4.8); therefore, at n = 1 we have
from (4.6) and (4.7) in Theorem 4.1 and (4.24) and (4.25) in Theorem 4.2 and the
assumptions of the proposition

e1j = λC(λ)uxxx(xj , t0)h
3,(C.5)

E1
j = 2λC(λ)(u(xj, t0)uxx(xj , t0))xh

3,(C.6)

C(λ)uxxx(xj , t0))h,(C.7)

and

(C.8) ΔD1
j = −12λC(λ)(u(xj, t0)uxx(xj , t0)))xh.

This verifies the conclusions (C.1), (C.2), (C.3) and (C.4) at n = 1.
We assume that the conclusions (C.1), (C.2), (C.3) and (C.4) are true at n = k,

i.e.,

ekj =
k−1∑
i=0

λC(λ)P i(λ)uxxx(xj , tk−1−i)h
3,(C.9)

Ek
j =

k−1∑
i=0

2λC(λ)P i(λ)(u(xj, tk−1−i)uxx(xj , tk−1−i))xh
3,(C.10)

Δdkj = −
k−1∑
i=0

12λC(λ)P i(λ)uxxx(xj , tk−1−i)h,(C.11)

and

(C.12) ΔDk
j = −

k−1∑
i=0

12λC(λ)P i(λ)(u(xj, tk−1−i)uxx(xj , tk−1−i))xh.
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Now we are going to prove that the conclusions are also true at n = k + 1 under
the assumptions of the proposition. We first prove the conclusions (C.1) and (C.2)
at n = k + 1. From (4.6) and (4.7) in Theorem 4.1, we have

ek+1
j = ekj + λC(λ)uxxx(xj , tk)h

3 + λD(λ)Δdkjh
2,(C.13)

Ek+1
j = Ek

j + 2λC(λ)(u(xj, tk)uxx(xj , tk))xh
3

+ 2λD(λ)Δ(u(xj , tk)d
k
j )h

2.
(C.14)

We substitute (C.9) and (C.11) into (C.13) and obtain

ek+1
j =

k−1∑
i=0

λC(λ)P i(λ)uxxx(xj , tk−1−i)h
3 + λC(λ)uxxx(xj , tk)h

3

−
k−1∑
i=0

12λD(λ)λC(λ)P i(λ)uxxx(xj , tk−1−i)h
3

=

k−1∑
i=0

(1 − 12λD(λ))λC(λ)P i(λ)uxxx(xj , tk−1−i)h
3

+ λC(λ)uxxx(xj , tk)h
3.

(C.15)

Note in (C.15) that (1 − 12λD(λ)) = P (λ); therefore, we obtain from (C.15),

(C.16) ek+1
j =

k∑
i=0

λC(λ)P i(λ)uxxx(xj , tk−i)h
3,

which is the conclusion (C.1) at n = k + 1. By substituting (C.10) and (C.12) into
(C.14) the conclusion (C.2) at n = k + 1,

(C.17) Ek+1
j =

k∑
i=0

2λC(λ)P i(λ)(u(xj, tk−i)uxx(xj , tk−i))xh
3,

can be proved in the same way.
Now we prove the conclusions (C.3) and (C.4) at n = k + 1. From (4.24) and

(4.25) in Theorem 4.2 and the assumptions of the proposition we have

Δdk+1
j = P (λ)Δdkj − 12λC(λ)uxxx(xj , tk)h,(C.18)

ΔDk+1
j = P (λ)ΔDk

j − 12λC(λ)(u(xj, tk)uxx(xj , tk))xh.(C.19)

We substitute (C.11) into (C.18) and obtain

Δdk+1
j = − P (λ)

k−1∑
i=0

12λC(λ)P i(λ)uxxx(xj , tk−1−i)h− 12λC(λ)uxxx(xj , tk)h

= −
k∑

i=0

12λC(λ)P i(λ)uxxx(xj , tk−i)h.(C.20)



740 CUI YANFEN AND MAO DE-KANG

In the same way, we substitute (C.12) into (C.19) and obtain

(C.21) ΔDk+1
j = −

k∑
i=0

12λC(λ)P i(λ)(u(xj, tk−i)uxx(xj , tk−i))xh.

Thus, the conclusions (C.3) and (C.4) at n = k + 1 are obtained and the proof of
the proposition is complete. ♠
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