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GALERKIN AND STREAMLINE DIFFUSION

FINITE ELEMENT METHODS ON A SHISHKIN MESH

FOR A CONVECTION-DIFFUSION PROBLEM

WITH CORNER SINGULARITIES

SEBASTIAN FRANZ, R. BRUCE KELLOGG, AND MARTIN STYNES

Abstract. An error analysis of Galerkin and streamline diffusion finite ele-

ment methods for the numerical solution of a singularly perturbed convection-
diffusion problem is given. The problem domain is the unit square. The
solution contains boundary layers and corner singularities. A tensor prod-
uct Shishkin mesh is used, with piecewise bilinear trial functions. The error
bounds are uniform in the singular perturbation parameter. Numerical results
supporting the theory are given.

1. Introduction

Consider the singularly perturbed boundary value problem

−εΔu− pux + qu = f on Ω = (0, 1)2,(1.1a)

u = 0 on the boundary ∂Ω,(1.1b)

where the functions p, q and f are arbitrarily smooth and satisfy p ≥ β > 0 for
some constant β, and q > 0. The parameter ε lies in the interval (0, 1]. Since q > 0
and the boundary data is continuous on ∂Ω, the problem has a unique classical
solution u that lies in C2,α(Ω)∩C(Ω̄), where C2,α(Ω) is the standard Hölder space.

The solution u of (1.1) usually has boundary layers on three sides of the square
Ω̄: an exponential outflow layer along x = 0 and parabolic boundary layers along
the tangential flow boundaries y = 0 and y = 1. In addition, if the right-hand side
and the zero boundary data are not compatible with the differential equation at
a corner, the solution has a singularity at the corner. These solution phenomena
have been widely studied in the literature; see for example [10] for the boundary
layers and [5, 6] for the corner singularities.

Analyses of Galerkin and streamline diffusion finite element methods for (1.1)
that used bilinears on a tensor-product Shishkin mesh were given in [3, 4]; see also
[8, 12, 13] and their references, where analogous methods for a related problem that
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has exponential layers but no parabolic layers were investigated. The hypotheses
in all of these papers exclude corner singularities.

In the present paper we examine similar numerical methods, but minimal corner
compatibility assumptions are made on the data so that at each corner one can
have the classical r2 ln r singularity. The complicated interaction of these corner
singularities with the boundary layers was described in [6] for constant p and q. The
corner singularities introduce fresh difficulties that did not arise in [3, 4, 8, 12, 13]
and affect the choice of the streamline diffusion parameter.

Our mesh is the same as that of [3, 4]. Related meshes appeared in [8, 12, 13].
Thus the mesh is designed to handle exponential and parabolic boundary layers,
but is not modified to fit the corner singularities.

Our aim is to devise a numerical method whose accuracy is guaranteed indepen-
dently of the value of the singular perturbation parameter ε; thus, in our analysis
we state explicitly all dependence on ε.

The paper is structured as follows. In Section 2 we give a decomposition of
the solution u that reveals the precise nature of the layers and singularities that it
contains. Section 3 constructs a tensor-product Shishkin mesh suited to (1.1). The
accuracy of piecewise bilinear interpolation on this mesh is analysed in Section 4.
Section 5 analyses a Galerkin finite element method that uses bilinears on the same
mesh; this section is subdivided by treating separately the diffusion and convection
terms that appear in the associated bilinear form. It is shown that, measured in
an ε-weighted energy norm, the Galerkin finite element solution attains the same
order of accuracy as the bilinear nodal interpolant. Section 6 extends this analysis
to the streamline diffusion finite element method and investigates how the presence
of the corner singularities influences the choice of the stabilising parameters in this
method. Finally, Section 7 describes some numerical experiments that verify the
accuracy of our two finite element methods.

Notation. Throughout the paper C denotes a generic constant that is independent
of ε and any mesh, and can take on different values at different points in the
argument. For all measurable sets ω ⊂ Ω, let (·, ·)ω denote the inner product in
L2(ω) and let ‖ · ‖0,ω denote the norm in L2(ω). When ω = Ω we simply write
(·, ·) and ‖ · ‖0. The standard H1(Ω) seminorm will be denoted by | · |1. The norm
in Lp(ω) is written as ‖ · ‖Lp(ω) for general p. The measure of a subset ω of Ω is
written |ω|.

2. A priori bounds on the solution u

The papers [5, 6] consider (1.1) in the case of positive constants p and q, with
arbitrary data compatibility at each corner, and give a decomposition of the solution
with pointwise bounds on the derivatives of the terms from this decomposition. As
no corresponding analysis exists in the literature for variable positive functions p
and q, we shall make the reasonable assumption that the results of [5, 6] are also
valid for (1.1). That is, we assume that

(2.1) u = v + E + z00 + z01 + z10 + z11,

where for non-negative integers m and n and (x, y) ∈ Ω the derivatives of the
various components satisfy the bounds
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|Dm
x Dn

y v(x, y)| ≤ C,(2.2a)

|Dm
x Dn

yE(x, y)| ≤ Cε−me−βx/ε,(2.2b)

|Dm
x Dn

y z1μ(x, y)| ≤ C[ε−n/2 + ε1−m−n] for m+ n < 2 and r1μ < ε,(2.2c)

|Dm
x Dn

y z1μ(x, y)| ≤ C[ε−n/2 + ε−1| ln r1μ|] for m+ n = 2 and r1μ < ε,(2.2d)

|Dm
x Dn

y z1μ(x, y)| ≤ C[ε−n/2 + ε−1r2−m−n
1μ ] for m+ n > 2 and r1μ < ε,(2.2e)

|Dm
x Dn

y z10(x, y)| ≤ Cε−n/2
[
1 + r

1−m−n/2
10

]
e−ρy/

√
ε for ε ≤ r10,(2.2f)

|Dm
x Dn

y z11(x, y)| ≤ Cε−n/2
[
1 + r

1−m−n/2
11

]
e−ρ(1−y)/

√
ε for ε ≤ r11,(2.2g)

|Dm
x Dn

y z0μ(x, y)| ≤ C[ε−m−n/2 + ε1−m−n] for m+ n < 2 and r0μ < ε,(2.2h)

|Dm
x Dn

y z0μ(x, y)| ≤ C[ε−m−n/2 + ε−1| ln r0μ|] for m+ n = 2 and r0μ < ε,(2.2i)

|Dm
x Dn

y z0μ(x, y)| ≤ C[ε−m−n/2 + ε−1r2−m−n
0μ ] for m+ n > 2 and r0μ < ε,(2.2j)

|Dm
x Dn

y z00(x, y)| ≤ Cε−m−n/2[1 + r
1−n/2
00 ]e−γy/

√
εe−βx/ε for ε ≤ r00,(2.2k)

|Dm
x Dn

y z01(x, y)| ≤ Cε−m−n/2
[
1 + r

1−n/2
01

]
e−γ(1−y)/

√
εe−βx/ε for ε ≤ r01.(2.2l)

In these formulas μ ∈ {0, 1} and rij denotes the Euclidean distance from the point
(x, y) to the corner (i, j), while γ and ρ are constants in the interval (0,

√
minΩ̄ q/2).

(In the case of constant coefficients the analysis of [5, 6] shows that one can take
γ = ρ =

√
q/2.)

Here v is a smooth component of the solution, E is the outflow boundary layer,
and each zij includes a corner singularity at the corner (i, j); furthermore, as (2.2f)
and (2.2g) show, the terms z1j also contain parabolic boundary layers.

In our later analysis, a derivative such as D2
xDyz01 is usually written as z01,xxy .

3. The Shishkin mesh

The tensor product Shishkin mesh that we shall construct on Ω̄ is the same as in
[3, 4]; it is piecewise equidistant in each coordinate direction, with a fine mesh at the
outflow boundary x = 0 and along the characteristic boundaries y = 0 and y = 1.
(For a discussion of Shishkin meshes see [10, 11].) Our finite element method on
this mesh will use globally continuous piecewise bilinears. Thus in Section 4.1 some
local interpolation bounds are given for bilinears on anisotropic mesh rectangles.

Let N be a positive integer that is divisible by 4. Our tensor-product rectan-
gular meshes will have N intervals in each coordinate direction. Define the mesh
transition points by

(3.1) λx = min

{
1

2
,
5

2β
ε lnN

}
and λy = min

{
1

4
,

2

min{γ, ρ}
√
ε lnN

}
.

The choice of λx here is the same as in [3, 13]. Assume that ε is so small that (3.1)
can be replaced by

(3.2) λx =
5

2β
ε lnN and λy =

2

min{γ, ρ}
√
ε lnN,
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Ωsw

Ωw

Ωnw

Ωs

Ωe

Ωn

x = 0
i = N/2
x = λx

y = 0

y = λy, j = N/4

y = 1− λy, j = 3N/4

� �

�

�

Figure 1. Decomposition of Ω

as otherwise N−1 is much smaller than ε and the problem can be analysed in a
classical manner. In fact for our analysis of the Galerkin method one could take
λx = (2/β) ε lnN , but the analysis of the streamline diffusion method requires (3.2).

Set

xi =
2iλx

N
for i = 0, . . . ,

1

2
N,(3.3a)

xi = λx +
2

N
(1− λx)

(
i− N

2

)
for i =

1

2
N, . . . , N,(3.3b)

yj = λy(4j/N) for j = 0, . . . ,
1

4
N,(3.3c)

yj = λy +
2

N
(1− 2λy)

(
j − 1

4
N

)
for j =

1

4
N, . . . ,

3

4
N,(3.3d)

yj = 1− λy

(
4N−1(N − j)

)
for j =

3

4
N, . . . , N.(3.3e)

Set hi = xi − xi−1 and kj = yj − yj−1 for i, j = 1, . . . , N . Then the hi and kj
satisfy the following bounds:

hi = 2λxN
−1 for i = 1, 2, . . . ,

1

2
N,(3.4a)

hi ≤ 2N−1 for i =
1

2
N + 1, . . . , N,(3.4b)

kj = 4λyN
−1 for j = 1, 2, . . . ,

1

4
N and j =

3

4
N + 1, . . . , N,(3.4c)

kj ≤ 2N−1 for j =
1

4
N + 1, . . . ,

3

4
N.(3.4d)

Our mesh corresponds to the decomposition of Ω displayed in Figure 1. For later
convenience, in the notation of Figure 1 set

(3.5) Ωw = Ωsw ∪ Ωw ∪ Ωnw, Ωs = Ωsw ∪ Ωs and Ωn = Ωnw ∪ Ωn.
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3.1. Inequalities for ε and N−1. Throughout the paper we make the reasonable
practical assumption that

(3.6) ε ≤ N−1,

as otherwise it is straightforward to compute an accurate solution to (1.1).
Elementary calculus shows easily that

(3.7) N−1/2(lnN)3 ≤
(
6

e

)3

≈ 10.75 for N ≥ 4.

We appeal to this bound at several places in our analysis.
Likewise, for constant r > 0, the function x �→ xr| lnx| is increasing on the

interval 0 < x ≤ 1/e; but N−1 < 1/e since N ≥ 4. Consequently,

(3.8) εr| ln ε| ≤ N−r(lnN) for ε ≤ N−1,

which we use occasionally.

Remark 3.1. As the constants C in our error estimates are of moderate size and
independent of ε, the Shishkin mesh finite element method and its analysis are
robust, even for problems that are severely singularly perturbed. Bounds such
as (3.7) in this analysis would be much smaller if the lnN factor were absent —
but to remove such logarithmic factors would require the use of a more complicated
mesh (e.g., a Bakhvalov mesh), and the analysis of our method would then become
longer and more difficult.

4. Errors in interpolating to u

Let V N ⊂ C(Ω̄) denote the conforming space of continuous piecewise bilinears
on our Shishkin mesh. Given any function w ∈ C(Ω̄), we write wI for its nodal
interpolant from V N .

Define the energy norm |||w|||ε := [ε|w|21 + ‖w‖20]1/2 for all w ∈ H1(Ω). We shall
estimate u− uI in both the L2(Ω) and energy norms.

4.1. Interpolation inequalities for bilinears. The bounds in this section, which
are quite general in their applicability, hold true on our mesh. Let hi and kj be
as in the previous subsection. For each i and j, let τij denote the mesh rectangle
[xi−1, xi]× [yj−1, yj ]. Then (see [1]) one has the following anisotropic interpolation
inequalities for the bilinear nodal interpolant wI on τij :

‖w − wI‖L∞(τij) ≤ C‖w‖L∞(τij),(4.1a)

‖w − wI‖0,τij ≤ C(hi‖wx‖0,τij + kj‖wy‖0,τij ),(4.1b)

‖w − wI‖0,τij ≤ C
(
h2
i ‖wxx‖0,τij + k2j ‖wyy‖0,τij

)
,(4.1c)

‖(w − wI)x‖0,τij ≤ C
(
hi‖wxx‖0,τij + kj‖wxy‖0,τij

)
,(4.1d)

‖(w − wI)x‖L∞(τij) ≤ 2‖wx‖L∞(τij).(4.1e)

There are analogous inequalities for wy, which we shall also use.
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4.2. The interpolation error estimate.

Lemma 4.1. There exists a constant C such that the L2-norm interpolation error
satisfies

‖u− uI‖0,Ω ≤ CN−2 lnN.(4.2)

Proof. Recall the decomposition (2.1): u = v+E + z00 + z01 + z10 + z11. Consider
first the smooth component v. By (4.1c) and (2.2a) one has

‖v − vI‖20,Ω ≤ C
∑

τij⊂Ω

[
h4
i ‖vxx‖20,τij + k4j ‖vyy‖20,τij

]
≤ CN−4(‖vxx‖20,Ω + ‖vyy‖20,Ω) ≤ CN−4.(4.3)

For the exponential layer component E, outside Ωw the stability bound (4.1a)
and (2.2b) give

‖E − EI‖0,Ω\Ωw ≤ ‖E − EI‖L∞(Ω\Ωw) ≤ C‖E‖L∞(Ω\Ωw) ≤ CN−2,

while on Ωw, by (4.1c) and (2.2b) we have

‖E − EI‖20,Ωw ≤ C
∑

τij⊂Ωw

[
h4
i ‖Exx‖20,τij + k4j ‖Eyy‖20,τij

]

≤ C
∑

τij⊂Ωw

[
h4
i

∫∫
τij

ε−4e−2βx/ε + k4j

∫∫
τij

e−2βx/ε

]

≤ C(N−1 lnN)4
∫∫

Ωw

e−2βx/ε ≤ CεN−4(lnN)4 ≤ CN−4(lnN)2,

where we used (3.6) and (3.7). Hence

(4.4) ‖E − EI‖0 ≤ CN−2 lnN.

Next, consider z00. First, the stability result (4.1a) gives

(4.5) ‖z00 − zI00‖0,Ω\Ωsw
≤ C‖z00‖L∞(Ω\Ωsw) ≤ CN−2.

On Ωsw, by (4.1c) one has ‖z00 − zI00‖20,Ωsw
≤C

∑
τij⊂Ωsw

∫∫
τij

[
h4
i z

2
00,xx + k4j z

2
00,yy

]
.

Now (2.2i) and (2.2k) imply that

|z00,xx(x, y)| ≤ C(ε−2 + ε−1| ln r00|) and |z00,yy(x, y)| ≤ Cε−1(1 + | ln r00|)
for all (ξ, y) ∈ Ω. Consequently,

‖z00 − zI00‖20,Ωsw
≤ C(N−1 lnN)4

∫∫
Ωsw

[
ε4(ε−4 + ε−2| ln r00|2)

+ ε2ε−2(1 + | ln r00|2)
]

≤ C(N−1 lnN)4
∫∫

Ωsw

(1 + | ln r00|2)

≤ C(N−1 lnN)4

[
|Ωsw|+

∫ C
√
ε lnN

0

| ln r00|2r00 dr00

]

≤ C(N−1 lnN)4
[
ε3/2(lnN)2 + ε(lnN)2| ln(C

√
ε lnN)|2

]
≤ Cε1/2N−4(lnN)5

≤ CN−4(lnN)2,(4.6)
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where we used (3.6) and (3.7).
Combining (4.5) and (4.6) yields

‖z00 − zI00‖0,Ω ≤ CN−2 lnN.(4.7)

Similarly, one obtains

(4.8) ‖z01 − zI01‖0,Ω ≤ CN−2 lnN.

We now come to the terms associated with the inflow corner singularities and
parabolic layers. Consider z10. First, on Ω \ Ωs one has

‖zI10‖L∞(Ω\Ωs) ≤ ‖z10‖L∞(Ω\Ωs) ≤ Ce−ρλy/
√
ε ≤ CN−2,

so

(4.9) ‖z10 − zI10‖0,Ω\Ωs ≤ CN−2.

Let Ry
10 :=

⋃N/4
j=1 τNj denote the rightmost column of mesh rectangles in Ωs. On

Ωs \Ry
10 one has r10 ≥ N−1 ≥ ε by (3.6). Hence, by (4.1c) and (2.2f) one gets

‖z10 − zI10‖20,Ωs\Ry
10

≤ C
∑

τij⊂Ωs\Ry
10

[
h4
i ‖z10,xx‖20,τij + k4j ‖z10,yy‖20,τij

]

≤ CN−4

∫∫
Ωs\Ry

10

r−2
10 r10 dr10 dθ

+ Cε2(N−1 lnN)4
∫∫

Ωs\Ry
10

ε−2e−2ρy/
√
ε

≤ CN−4 lnN + Cε1/2(N−1 lnN)4

≤ CN−4 lnN(4.10)

using r10 ≥ N−1 on Ωs \Ry
10, (3.6) and (3.7).

It remains to estimate ‖z10 − zI10‖0,Ry
10
. Let Dε

10 ⊂ Ω denote the quarter disk

with centre (1,0) and radius ε. Assume for the moment that ε ≤ N−3. Now
|Ry

10| ≤ CN−1ε1/2 lnN , so (4.1b), (2.2c) and (2.2f) yield

‖z10 − zI10‖20,Ry
10

≤ C
∑

τij⊂Ry
10

[
h2
i ‖z10,x‖20,τij + k2j ‖z10,y‖20,τij

]

≤ CN−2

(∫∫
Dε

10

+

∫∫
Ry

10

e−2ρy/
√
ε

)

+ Cε(N−1 lnN)2

(∫∫
Dε

10

ε−1 +

∫∫
Ry

10

ε−1e−2ρy/
√
ε

)

≤ CN−2(lnN)2
[
|Dε

10|+ |Ry
10|
]
≤ CN−4,(4.11)

where we used ε ≤ N−3 and (3.7).
If instead ε > N−3, then split Ry

10 as

Ry
10 =

=:Ry
10,l︷ ︸︸ ︷⎛

⎝ ⋃
τij∩Dε

10 �=∅
τij

⎞
⎠∪

=:Ry
10,u︷ ︸︸ ︷⎛

⎝ ⋃
τij∩Dε

10=∅
τij

⎞
⎠ .
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Then

‖z10 − zI10‖20,Ry
10

≤ C
∑

τij⊂Ry
10,l

[
h2
i ‖z10,x‖20,τij + k2j ‖z10,y‖20,τij

]
(4.12)

+ C
∑

τij⊂Ry
10,u

[
h4
i ‖z10,xx‖20,τij + k4j ‖z10,yy‖20,τij

]

by (4.1b) and (4.1c). For each τij ⊂ Ry
10 one has

kj ≤ CλyN
−1 ≤ Cε1/2N−1 lnN ≤ CN−3/2 lnN

by (3.6); consequently, the rectangle Ry
10,l has height at most ε + CN−3/2 lnN ≤

CN−1. It follows that |Ry
10,l| ≤ CN−2. Thus (2.2c) and (2.2f) yield∑

τij⊂Ry
10,l

[
h2
i ‖z10,x‖20,τij + k2j ‖z10,y‖20,τij

]

≤ CN−2

(∫∫
Dε

10

+

∫∫
Ry

10,l

e−2ρy/
√
ε

)

+ Cε(N−1 lnN)2

(∫∫
Dε

10

ε−1 +

∫∫
Ry

10,l

ε−1e−2ρy/
√
ε

)

≤ CN−2(lnN)2[|Dε
10|+ |Ry

10,l|] ≤ CN−4(lnN)2,(4.13)

where we used (3.6) again. Now (3.6) implies that Dε
10 ⊂ Ry

10,l , so r10 ≥ ε > N−3

on Ω \Ry
10,l. Then the bound (2.2f) yields∑

τij⊂Ry
10,u

[
h4
i ‖z10,xx‖20,τij + k4j ‖z10,yy‖20,τij

]

≤ CN−4

∫∫
Ry

10,u

(1 + r−1
10 )

2e−2ρy/
√
ε

+ Cε2(N−1 lnN)4
∫∫

Ry
10,u

ε−2e−2ρy/
√
ε

≤ CN−4

∫∫
Ry

10,u

r−1
10 dr10dθ + Cε1/2N−5(lnN)4

≤ CN−4 lnN.(4.14)

From (4.9)–(4.14) we get

(4.15) ‖z10 − zI10‖0,Ω ≤ CN−2 lnN.

Analogously,

(4.16) ‖z11 − zI11‖0,Ω ≤ CN−2 lnN.

Combine (4.3), (4.4), (4.7), (4.8), (4.15) and (4.16) to complete the proof. �

Lemma 4.2. There exists a constant C such that the ε-weighted H1-seminorm
interpolation error satisfies

ε1/2‖∇(u− uI)‖0,Ω ≤ CN−1 lnN.(4.17)
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Proof. Again we rely on the decomposition u = v + E + z00 + z01 + z10 + z11.
Consider first the smooth component v, for which (4.1d) and (2.2a) yield

(4.18) ε‖∇(v − vI)‖20,Ω ≤ Cε
∑

τij⊂Ω

(
h2
i ‖(∇v)x‖20,τij + k2j ‖(∇v)y‖20,τij

)
≤ CεN−2.

For the exponential layer component, apply triangle and inverse inequalities to
obtain

ε‖(E − EI)x‖20,Ω\Ωw ≤ Cε

N∑
i=N/2+1

N∑
j=1

(
‖Ex‖20,τij + ‖EI

x‖20,τij
)

≤ Cε

⎡
⎣‖Ex‖20,Ω\Ωw +

N∑
i=N/2+1

N∑
j=1

h−2
i |τij | ‖E‖2L∞(τij)

⎤
⎦

≤ C

⎡
⎣N−5 + εN−5

N∑
i=N/2+1

N∑
j=1

Nkj

⎤
⎦

≤ C(N−5 + εN−3)

≤ CN−4(4.19)

by (2.2b), (3.2) and (3.6). Inside Ωw we apply (4.1d) and get

ε‖(E − EI)x‖20,Ωw ≤ Cε
∑

τij⊂Ωw

(
h2
i ‖Exx‖20,τij + k2j ‖Exy‖20,τij

)
≤ Cε−1(N−1 lnN)2‖e−βx/ε‖20,Ωw ≤ C(N−1 lnN)2.

Thus

ε1/2‖(E − EI)x‖0,Ω ≤ CN−1 lnN.(4.20)

For Ey apply (4.1e) outside Ωw to obtain

ε1/2‖(E − EI)y‖0,Ω\Ωw ≤ Cε1/2‖Ey‖L∞(Ω\Ωw) ≤ Cε1/2N−5/2 ≤ CN−3.(4.21)

Inside Ωw apply (4.1d), which gives

ε‖(E − EI)y‖20,Ωw ≤ Cε
∑

τij⊂Ωw

(
h2
i ‖Exy‖20,τij + k2j ‖Eyy‖20,τij

)
≤ Cε(N−1 lnN)2‖e−βx/ε‖20,Ωw

≤ Cε2(N−1 lnN)2 ≤ CN−3

by (3.6). Altogether, we have shown that

ε1/2‖(E − EI)y‖0,Ω ≤ CN−3/2.(4.22)
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We now tackle the outflow singularity z00. The analysis of z00 in Ω\Ωw is similar
to that for E and via (2.2k) produces

ε‖(z00 − zI00)x‖20,Ω\Ωw ≤ ε
∑

τij∈Ω\Ωw

[
‖z00,x‖20,τij + |τij |h−2

i ‖z00‖2L∞(τij)

]

≤ Cε

⎛
⎝ε−2‖e−γy/

√
εe−βx/ε‖20,Ω\Ωw +N−5

N∑
i=N/2+1

N

⎞
⎠

≤ C
(
ε1/2N−5 + εN−3

)
≤ CN−4(4.23)

where we used (3.6). In Ωw ∪ Ωnw the stability bound (4.1e) and (2.2k) yield

ε1/2‖(z00 − zI00)x‖0,Ωw∪Ωnw
≤ Cε1/2

∣∣Ωw ∪ Ωnw

∣∣1/2‖z00,x‖L∞(Ωw∪Ωnw)

≤ Cε1/2λ1/2
x ε−1‖e−γy/

√
εe−βx/ε‖L∞(Ωw∪Ωnw)

≤ CN−2(lnN)1/2.(4.24)

Let Dε
00 be the quarter-disc in Ωsw with centre (0,0) and radius ε. In Ωsw apply

(4.1d) with the bounds

‖z00,xx‖20,τij ≤ C

(∫∫
τij∩Dε

00

(ε−4 + ε−2| ln r00|2) +
∫∫

τij\Dε
00

ε−4e−2γy/
√
εe−2βx/ε

)

‖z00,xy‖20,τij ≤ C

(∫∫
τij∩Dε

00

(ε−3 + ε−2| ln r00|2) +
∫∫

τij\Dε
00

ε−3e−2γy/
√
εe−2βx/ε

)
,

from (2.2i) and (2.2k). This leads to

ε‖(z00 − zI00)x‖20,Ωsw
≤ Cε

∑
τij⊂Ωsw

(
h2
i ‖z00,xx‖20,τij + k2j ‖z00,xy‖20,τij

)

≤ C(N−1 lnN)2
[ ∫∫

Dε
00

(ε−1 + | ln r00|2)

+ ε−1

∫∫
Ωsw\Dε

00

e−2γy/
√
εe−2βx/ε

]
≤ Cε1/2(N−1 lnN)2 ≤ CN−5/2(lnN)2(4.25)

on invoking (3.6). Combining (4.23)–(4.25), we have

ε1/2‖(z00 − zI00)x‖0,Ω ≤ CN−5/4 lnN.(4.26)

For z00,y on Ω \ Ωw, if one proceeds similarly to the x-derivative the outcome

is suboptimal because sums of k−1
j enter the calculation and contribute a factor

ε−1/2N1; consequently, we start with the triangle inequality then avoid any inverse
estimate by moving to the L∞ norm of z00,y. Thus by (4.1e) and (2.2k) one gets

(4.27) ε‖(z00 − zI00)y‖20,Ω\Ωw ≤ Cε‖z00,y‖2L∞(Ω\Ωw) ≤ CN−5.
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On Ωw ∪ Ωnw the stability bound (4.1e) and (2.2k) give

ε1/2‖(z00 − zI00)y‖0,Ωw∪Ωnw
≤ Cε1/2

∣∣Ωw ∪ Ωnw

∣∣1/2‖z00,y‖L∞(Ωw∪Ωnw)

≤ Cε(lnN)1/2ε−1/2‖e−γy/
√
εe−βx/ε‖L∞(Ωw∪Ωnw)

≤ CN−5/2(lnN)1/2(4.28)

by (3.6). On Ωsw, from (2.2i) one has

‖z00,xy‖20,τij ≤ C

[∫∫
τij∩Dε

00

(ε−3 + ε−2| ln r00|2) +
∫∫

τij\Dε
00

ε−3e−2γy/
√
εe−2βx/ε

]

and

‖z00,yy‖20,τij ≤ C

[∫∫
τij∩Dε

00

(ε−2 + ε−2| ln r00|2) +
∫∫

τij\Dε
00

ε−2e−2γy/
√
εe−2βx/ε

]
;

now apply (4.1d) to get

ε‖(z00 − zI00)y‖20,Ωsw
≤ Cε

∑
τij⊂Ωsw

(
h2
i ‖z00,xy‖20,τij + k2j ‖z00,yy‖20,τij

)

≤ C(N−1 lnN)2
[ ∫∫

Dε
00

(1 + | ln r00|2)

+

∫∫
Ωsw\Dε

00

e−2γy/
√
εe−2βx/ε

]
≤ Cε3/2(N−1 lnN)2 ≤ CN−7/2(lnN)2,(4.29)

where (3.6) was also used. Combining (4.27)–(4.29), we have

ε1/2‖(z00 − zI00)y‖0,Ω ≤ CN−7/4 lnN.(4.30)

One obtains analogous results for z01.
Now consider the inflow singularity term z10. We begin with its y derivative.

Outside Ωs the stability result (4.1e) and (2.2f) yield
(4.31)

ε1/2‖(z10 − zI10)y‖0,Ω\Ωs ≤ Cε1/2‖z10,y‖L∞(Ω\Ωs) ≤ Cε1/2ε−1/2N−2 ≤ CN−2.

By (4.1d) one has

(4.32) ε‖(z10 − zI10)y‖20,Ωs ≤ Cε

N∑
i=1

N/4∑
j=1

(
h2
i ‖z10,xy‖20,τij + k2j ‖z10,yy‖20,τij

)
.

For each mesh rectangle τij , the bounds (2.2d) and (2.2f) provide the estimates

‖z10,xy‖20,τij ≤ C

[∫∫
τij∩Dε

10

(ε−1 + ε−2| ln r10|2) +
∫∫

τij\Dε
10

ε−1(1 + r−1
10 )e

−2ρy/
√
ε

]

and

‖z10,yy‖20,τij ≤ C

[∫∫
τij∩Dε

10

(ε−2 + ε−2| ln r10|2) +
∫∫

τij\Dε
10

ε−2e−2ρy/
√
ε

]
.
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Thus from (4.32) we obtain

ε‖(z10 − zI10)y‖20,Ωs

≤ Cε

[
N−2

∫∫
Dε

10

(ε−1 + ε−2| ln r10|2) +N−2

∫∫
Ωs\Dε

10

ε−1 1

r10
r10 dr10 dθ

+ (N−1 lnN)2
∫∫

Dε
10

ε−1(1 + | ln r10|2) + (N−1 lnN)2
∫∫

Ωs\Dε
10

ε−1e−2ρy/
√
ε

]
≤ C

[
N−2(ε2 + ε| ln ε|2) +N−2 + (N−1 lnN)2(ε2 + ε2| ln ε|2) + (N−1 lnN)2ε1/2

]
≤ CN−2

using (3.6). The bound on z10,xx is smaller than the bound on z10,yy and a similar
argument yields

ε‖(z10 − zI10)x‖20,Ωs ≤ CN−2.

Thus we have shown that

ε1/2‖∇(z10 − zI10)‖0,Ω ≤ CN−1.(4.33)

A similar result is valid for z11.
Combining (4.18), (4.20), (4.22), (4.26), (4.30) and (4.33), the proof is complete.

�

Theorem 4.3. There exists a constant C such that the energy-norm interpolation
error satisfies ∣∣∣∣∣∣u− uI

∣∣∣∣∣∣
ε
≤ CN−1 lnN.(4.34)

Proof. This is immediate from Lemmas 4.1 and 4.2. �

5. Galerkin error analysis for bilinears

Define the bilinear form

aGal(v, w) := ε(∇v,∇w)− (pvx, w) + (qv, w) ∀v, w ∈ H1
0 .

Assume without loss of generality that q + (div p)/2 ≥ C > 0 for some constant C,
since a simple change of variable u(x, y) = ekxv(x, y) for some suitable constant k,
combined with p ≥ β > 0 and ε sufficiently small, will yield this standard inequality
in finite element analyses. Then for some positive constant C one has the coercivity
inequality

aGal(v, v) ≥ C|||v|||2ε ∀ v ∈ H1
0 .

To solve (1.1) approximately, define the Galerkin piecewise bilinear finite element
solution uN ∈ V N by

(5.1) aGal(u
N , vN ) = (f, vN ) for vN ∈ V N .

It follows easily that uN enjoys the Galerkin orthogonality property:

aGal(u− uN , vN ) = 0 for vN ∈ V N .
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Then by coercivity and Galerkin orthogonality one has

C|||uN − uI |||2ε ≤ aGal(u
N − uI , uN − uI) = aGal(u− uI , uN − uI)

≤ ε|(∇(u− uI),∇(uN − uI))|+ |(p(u− uI)x, u
N − uI)|

+ |(q(u− uI), uN − uI)|
≤ CN−1(lnN) |||uN − uI |||ε + |(p(u− uI)x, u

N − uI)|(5.2)

by Theorem 4.3.

Remark 5.1. By invoking an identity of Lin [7] (see [13] for its derivation), one can
obtain the sharper estimate

ε|(∇(u− uI),∇(uN − uI))|+ |(q(u− uI), uN − uI)| ≤ CN−3/2(lnN) |||uN − uI |||ε,
but this improvement is useless here since later we can prove only the bound

|(p(u− uI)x, u
N − uI)| ≤ CN−1(lnN)|||uN − uI |||ε

for the remaining term in (5.2).

Throughout the analysis that follows we consider |(p(u−uI)x, χ)| where χ ∈ V N

is arbitrary; eventually we shall take χ = uN − uI .

5.1. The convection term. In considering the term (p(u−uI)x, χ) in (5.2), once
again we use the decomposition (2.1).

Estimate of
(
p(v − vI)x, χ

)
. This is very similar to the analysis of this term in

[3, pp. 159, 160]. One obtains

(5.3)
∣∣(p(v − vI)x, χ

)∣∣ ≤ CN−2‖χ‖0.

Estimate of
(
p(E − EI)x, χ

)
. A minor variation of the argument used to handle

this term in [3] yields

(5.4)
∣∣(p(E − EI)x, χ

)∣∣ ≤ CN−2(lnN)2|||χ|||ε.

Estimate of
(
p(z00 − zI00)x, χ

)
. Integrating by parts,(

p(z00 − zI00)x, χ
)
= −

(
px(z00 − zI00), χ

)
−
(
p(z00 − zI00), χx

)
Ωsw

−
(
p(z00 − zI00), χx

)
Ω\Ωsw

.(5.5)

Here

(5.6) |
(
px(z00 − zI00), χ

)
| ≤ C‖z00 − zI00‖0‖χ‖0 ≤ CN−2|||χ|||ε

by (4.7).
To deal with the next term in (5.5), we prove a modification of the bound

on ‖z00 − zI00‖0,Ωsw
that was derived in the proof of Lemma 4.1. By (4.1b) one

has ‖z00 − zI00‖20,Ωsw
≤ C

∑
τij⊂Ωsw

∫∫
τij

[
h2
i z

2
00,x + k2j z

2
00,y

]
. Now (2.2i) and (2.2k)

imply that |z00,x(x, y)| ≤ Cε−1 and |z00,y(x, y)| ≤ Cε−1/2 for all (ξ, y) ∈ Ω.
Thus

‖z00 − zI00‖20,Ωsw
≤ C(N−1 lnN)2

∫∫
Ωsw

[
ε4(ε−2) + ε(ε−1)

]
≤ C(N−1 lnN)2|Ωsw| = Cε3/2N−2(lnN)4.
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Consequently,

|
(
p(z00 − zI00), χx

)
Ωsw

| ≤ C‖z00 − zI00‖0,Ωsw
‖χx‖0 ≤ Cε1/4N−1(lnN)2|||χ|||ε

≤ CN−1(lnN)|||χ|||ε(5.7)

by (3.6) and (3.7).
To estimate

(
p(z00 − zI00), χx

)
Ω\Ωsw

write Ω \ Ωsw = A ∪B where

A = (0, λx)× (λy, 1) and B = (λx, 1)× (0, 1).

The inner product is estimated separately over each region. First, ‖zI00‖L∞(A) ≤
‖z00‖L∞(A) ≤ Ce−γλy/

√
ε so

|(z00 − zI00, χx)A| ≤ Ce−γλy/
√
ε|A|1/2‖χx‖0 ≤ CN−2λ1/2

x ‖χx‖0
≤ CN−2(lnN)1/2|||χ|||ε.

Next, ‖zI00‖L∞(B) ≤ ‖z00‖L∞(B) ≤ Ce−βλx/ε ≤ CN−5/2 so

|(z00 − zI00, χx)B| ≤ CN−5/2|B|1/2‖χx‖0,B ≤ CN−3/2‖χ‖0,B ≤ CN−3/2|||χ|||ε
by an inverse inequality. Collecting these inequalities yields

(5.8) |
(
p(z00 − zI00), χx

)
Ω\Ωsw

| ≤ CN−3/2|||χ|||ε.

By virtue of (5.5)–(5.8) we obtain

(5.9)
∣∣(p(z00 − zI00)x, χ

)∣∣ ≤ CN−1(lnN)|||χ|||ε.

Estimate of
(
p(z10 − zI10)x, χ

)
. On Ω \ Ωs, by (2.2f) one gets

|z10,x(x, y)| ≤ Ce−ρλy/
√
ε ≤ CN−2,

and it follows that |zI10,x(x, y)| ≤ CN−2 on Ω \ Ωs also. Hence

(5.10) ‖(z10 − zI10)x‖0,Ω\Ωs ≤ CN−2.

Recall from Section 4 that Dε
10 ⊂ Ω is the quarter disk with centre (1,0) and

radius ε, and Ry
10 =

⋃N/4
j=1 τNj is the rightmost strip of mesh rectangles in Ωs; one

has Dε
10 ⊂ Ry

10 since ε ≤ N−1, and r10 ≥ CN−1 on Ωs \Ry
10. By (4.1d) and (2.2f)

we have

‖(z10 − zI10)x‖20,Ωs\Ry
10

≤ C
∑

τij⊂(Ωs\Ry
10)

∫∫
τij

(
h2
i z

2
10,xx + k2j z

2
10,xy

)

≤ C

[
N−2

∫∫
Ωs\Ry

10

r−2
10 r10 dr10 dθ

+ εN−2(lnN)2
∫∫

Ωs\Ry
10

ε−1r−1
10 r10 dr10 dθ

]
≤ C

[
N−2 lnN +N−2(lnN)2

]
≤ CN−2(lnN)2.(5.11)

The inequalities (5.10) and (5.11) imply that

(5.12)
∣∣(p(z10 − zI10)x, χ

)
Ω\Ry

10

∣∣ ≤ C‖(z10 − zI10)x‖0,Ω‖χ‖0,Ω ≤ CN−1(lnN)‖χ‖0.
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Finally, as ‖zI10,x‖L∞(Ω) ≤ ‖z10,x‖L∞(Ω) ≤ C, the Cauchy-Schwarz inequality
yields∣∣(p(z10 − zI10)x, χ

)
Ry

10

∣∣
≤ C‖(z10 − zI10)x‖0,Ry

10
‖χ‖0,Ry

10

≤ C|Ry
10

∣∣1/2‖χ‖0,Ry
10

≤ Cε1/4N−1/2(lnN)1/2‖χ‖1/2
0,Ry

10
‖χ‖1/2

0,Ry
10

≤ Cε1/4N−1/2(lnN)1/2‖χ‖1/2
0,Ry

10

{∫ λy

y=0

∫ 1

x=xN−1

hN

∫ 1

t=xN−1

|χx(t, y)|2dt dx dy
}1/4

,

since χ(1, y) = 0 for all y implies that for (x, y) ∈ Ry
10 one has

|χ(x, y)| ≤
∫ 1

t=x

|χx(t, y)| dy ≤ h
1/2
N

(∫ 1

t=xN−1

|χx(t, y)|2 dy
)1/2

via a Cauchy-Schwarz inequality. Consequently,∣∣(p(z10 − zI10)x, χ
)
Ry

10

∣∣ ≤ Cε1/4N−1(lnN)1/2‖χ‖1/2
0,Ry

10
‖χx‖1/20,Ry

10

= CN−1(lnN)1/2‖χ‖1/2
0,Ry

10

(
ε1/2‖χx‖0,Ry

10

)1/2
≤ CN−1(lnN)1/2|||χ|||ε.(5.13)

From (5.12) and (5.13) we have

(5.14)
∣∣(p(z10 − zI10)x, χ

)∣∣ ≤ CN−1(lnN)|||χ|||ε.

Then (5.3), (5.4), (5.9) and (5.14) (and analogous bounds for z10 and z11) yield

(5.15)
∣∣(p(u− uI)x, χ

)∣∣ ≤ CN−1(lnN)|||χ|||ε.

Remark 5.2. The analysis of the diffusion terms in [3] draws on an integral identity
of Lin [7, 13] to demonstrate the optimal order of convergence. There is a related
but more complicated formula for convection terms (see [3, Lemma 4.3]) that when
applied here would leave a negative power of ε in the final bound (5.15), so we do
not invoke it in our analysis.

Theorem 5.3. The Galerkin solution uN satisfies the error estimate

|||uN − uI |||ε ≤ CN−1 lnN.

Proof. Take χ = uN − uI in (5.15) then substitute this bound into (5.2). �

Corollary 5.4. There exists a constant C such that

|||u− uN |||ε ≤ CN−1 lnN.

Proof. Combine Theorems 5.3 and 4.3. �

Comparing Corollary 5.4 with Theorem 4.3 shows that with respect to the energy
norm ||| · |||ε the Galerkin solution uN achieves the same order of accuracy as the
nodal interpolant uI .
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6. The streamline diffusion finite element method

Solutions of convection-diffusion problems that are computed by the standard
Galerkin finite element method generally exhibit oscillations, even on Shishkin
meshes, and moreover the associated discrete algebraic systems cannot be solved
efficiently; see [9]. To ameliorate these problems, stabilised finite element methods
are generally applied to convection-diffusion problems. Several such methods are
described in [10]. One popular stabilised method is the streamline diffusion finite
element method (SDFEM) which we now describe and analyse.

In the SDFEM one adds weighted residuals to the standard Galerkin method
(5.1). Begin by defining the bilinear form

astab(w, v) :=
∑

τ∈TN

δτ (εΔw + pwx − qw, pvx)τ

provided that w ∈ H2(τ ) and v ∈ H1(τ ) for all τ ∈ TN . Here the user-chosen
parameters δτ ≥ 0, which are constant on each τ , will be specified later. Then the
SDFEM is: Find wN ∈ V N such that

aSD(wN , vN ) := aGal(w
N , vN ) + astab(w

N , vN ) = fSD(vN ) for all vN ∈ V N ,

(6.1)

with

fSD(u, v) := (f, v)−
∑

τ∈TN

δτ (f, pvx)τ .(6.2)

The SDFEM is consistent with (1.1), i.e., the solution u of (1.1) satisfies
aSD(uN , vN ) = fSD(vN ) for all vN ∈ V N . Furthermore, the SDFEM enjoys the
Galerkin orthogonality property

aSD(u− wN , vN ) = 0 for all vN ∈ V N .

Define the streamline diffusion norm |||·||| by

|||v|||2SD := |||v|||2ε +
∑

τ∈TN

δτ (pvx, pvx)τ .

Assume as in Section 5 that q + (div p)/2 ≥ C1 > 0 for some constant C1. It is
shown in, e.g., [10, III.3.2.1] that if 0 ≤ δτ and 2δτ‖q‖2L∞(τ) ≤ C1 for all τ ∈ TN ,

then one obtains coercivity with respect to |||·|||SD:

aSD(v, v) ≥ 1

2
|||v|||2SD ∀v ∈ V N .

The coercivity and Galerkin orthogonality properties imply that

1

2

∣∣∣∣∣∣uI − wN
∣∣∣∣∣∣2

SD
≤ aGal

(
uI − u, uI − wN

)
+ astab

(
uI − u, uI − wN

)
.(6.3)

Here, combining (5.15) with the calculation leading to (5.2), we have∣∣aGal

(
uI − u, χ

)∣∣ ≤ CN−1(lnN) |||χ|||ε for all χ ∈ V N .(6.4)

Thus to bound
∣∣∣∣∣∣uI − wN

∣∣∣∣∣∣ we must estimate the term astab(·, ·) in (6.3). While
doing this we analyse the influence of the parameter δτ on the stability and accuracy
of the SDFEM. Although a term of the same form astab

(
uI − u, uI − wN

)
was

bounded in [4], the solution u of (1.1) behaves so differently from the function u
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of [4] that very little of the analysis of [4] can be reused here and consequently,
apart from Lemma 6.1, we do not quote any results from [4] below.

In our analysis we shall make the reasonable assumption that δτ takes the con-
stant value δ∗ on each mesh region Ω∗, where Ω∗ is any one of the 6 mesh regions
Ωw,Ωsw, etc., in Figure 1. Note that the mesh is uniform on each Ω∗.

The reaction term in astab
(
uI − u, uI − wN

)
is easily handled: by Lemma 4.1

and the definition of |||·|||SD one has immediately the bound

δ∗|(q(u− uI), pχx)Ω∗ | ≤ Cδ
1/2
∗ N−2(lnN) |||χ|||SD(6.5)

for each mesh region Ω∗ and all χ ∈ V N .
We bound the diffusion and convection terms in astab

(
uI − u, uI − wN

)
by

considering them on each separate mesh region in Sections 6.1–6.4. The diffu-
sion term is simplified by the observation that, since uI is piecewise bilinear,
one has ΔuI = 0 on each mesh rectangle τ . We again use the decomposition
u = v + E + z00 + z01 + z10 + z11 of (2.1).

The following two lemmas are used several times in the subsequent analysis.

Lemma 6.1. Let p ∈ W 1
∞(Ω). Let Ω∗ be any mesh region of our Shishkin mesh.

Denote by h∗ and k∗ the meshsizes in the x and y directions inside Ω∗. Let ϕ ∈
H2(Ω∗) and χ ∈ V N . Then∣∣∣(p(ϕ− ϕI)x, pχx

)
Ω∗

∣∣∣ ≤ C
[
(h∗ + k∗)

(
h∗‖ϕxx‖0,Ω∗ + k∗‖ϕxy‖0,Ω∗

)
+ k2∗‖ϕxyy‖0,Ω∗

]
‖χx‖0,Ω∗ ,

where C is independent of ϕ and χ.

Proof. See [4, Proposition 8]. �

Lemma 6.2. Let τ be a mesh rectangle with base length h and height k. Let
χ ∈ V N . Then

‖χx‖Lp(τ) ≤ Ch−1‖χ‖Lp(τ), ‖χy‖Lp(τ) ≤ Ck−1‖χ‖Lp(τ),

‖χ‖Lq(τ) ≤ C(hk)1/q−1/p‖χ‖Lp(τ)

for all p, q ∈ [1,∞], where the constant C is independent of τ and χ.

Proof. These finite element inverse estimates are well known. �

The inequality |||·|||ε ≤ |||·|||SD and the equivalence of ‖pχx‖ and ‖χx‖ for various
norms ‖·‖ will be used frequently in the analysis. Throughout, χ ∈ V N is arbitrary.

6.1. Subdomain Ωe. For v, by (2.2a) we have

δeε|(Δv, pχx)Ωe
| ≤ δeε‖Δv‖0,Ωe

‖χx‖0,Ωe
≤ Cδeε

1/2 |||χ|||ε
and, by Lemma 6.1,

δe|(p(v − vI)x, pχx)Ωe
| ≤ CδeN

−2‖χx‖0,Ωe
≤ Cδ1/2e N−2 |||χ|||SD .

Set η1 = E + z00 + z01. By (2.2) and Lemma 6.2 we have

δeε|(Δη1, pχx)Ωe
| ≤ Cδeε‖Δη1‖L1(Ωe)‖χx‖L∞(Ωe) ≤ CδeN

−3/2‖χx‖0,Ωe

≤ Cδ1/2e N−3/2 |||χ|||SD
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and

δe|(p(η1 − ηI1)x, pχx)Ωe
| ≤ Cδe

(
‖η1,x‖L1(Ωe)N‖χx‖0,Ωe

+N‖ηI1‖L∞(Ωe)‖χx‖0,Ωe

)
≤ Cδ1/2e N−3/2 |||χ|||SD .

For the inflow singularities, setting η2 = z10 + z11 one has, similarly,

δeε|(Δη2, pχx)Ωe
| ≤ Cεδe‖Δη2‖L1(Ωe)‖χx‖L∞(Ωe) ≤ Cε1/2δeN

−1‖χx‖0,Ωe

≤ CδeN
−1 |||χ|||SD

and

δe|(p(η2 − ηI2)x, pχx)Ωe
| ≤ Cδe‖(η2 − ηI2)x‖L∞(Ωe)‖χx‖0,Ωe

≤ Cδe‖η2,x‖L∞(Ωe)‖χx‖0,Ωe
≤ Cδ1/2e N−2 |||χ|||ε .

Combining these inequalities with (6.5), we have

(6.6) |astab(u− uI , χ)Ωe
| ≤ C

[
δe(ε

1/2 +N−1) + δ1/2e N−3/2
]
|||χ|||SD

for all χ ∈ V N .

6.2. Subdomain Ωw. Set η3 = v + E. Then by (2.2) we have

δwε|(Δη3, pχx)Ωw
| ≤ Cδwε‖Δη3‖0,Ωw

‖χx‖0,Ωw
≤ Cδwε

−1/2‖χx‖0,Ωw

≤ Cδwε
−1 |||χ|||ε ,

and, by Lemma 6.2,

δw|(p(η3 − ηI3)x, pχx)Ωw
|

≤ CδwN
−2 [ε(lnN)‖η3,xx‖0,Ωw

+ ‖η3,xy‖0,Ωw
+ ‖η3,xyy‖0,Ωw

] ‖χx‖0,Ωw

≤ Cδwε
−1/2N−2(lnN)‖χx‖0,Ωw

≤ Cδwε
−1N−2(lnN) |||χ|||ε .

Set η4 = z00 + z01 + z10 + z11. Then from (2.2) and Lemma 6.2 one gets

δwε|(Δη4, pχx)Ωw
| ≤ Cδwε‖Δη4‖L1(Ωw)‖χx‖L∞(Ωw)

≤ Cδwε
1/2N−2(εN−2 lnN)−1/2‖χx‖0,Ωw

≤ Cδwε
−1/2N−1(lnN)−1/2 |||χ|||ε

and, by Lemma 4.2 applied in the case where v + E ≡ 0,

δw|(p(η4 − ηI4)x, pχx)Ωw
| ≤ Cδwε

−1/2N−1(lnN)‖χx‖0,Ωw

≤ Cδwε
−1N−1(lnN) |||χ|||ε .

Combining these inequalities with (6.5), we have

(6.7) |astab(u−uI , χ)Ωw
| ≤ C

[
δwε

−1 + δ1/2w N−2(lnN)
]
|||χ|||SD for all χ ∈ V N .
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6.3. Subdomains Ωn and Ωs. In this section we shall need the inequality

δ1/4s ε1/4‖χx‖0,Ωs
=
(
δ1/4s ‖χx‖1/20,Ωs

)(
ε1/4‖χx‖1/20,Ωs

)
≤
(
δ1/2s ‖χx‖0,Ωs

+ ε1/2‖χx‖0,Ωs

)/
2 ≤ |||χ|||SD .(6.8)

Now (Δv, pχx)Ωs
+ (Δv, pχx)Ωsw

= − ((pΔv)x, χ)Ωs∪Ωsw
so by (2.2a) and the

Cauchy-Schwarz inequality one has

δsε
∣∣(Δv, pχx)Ωs

∣∣ ≤ Cδsε
(
|Ωs ∪ Ωsw|1/2‖χ‖0,Ωs∪Ωsw

+ |Ωsw|1/2‖χx‖0,Ωsw

)
≤ Cδsε |||χ|||ε ,

where we used (3.6). For the convection term, Lemma 6.1, (2.2a) and (6.8) yield

δs

∣∣∣(p(v − vI)x, pχx

)
Ωs

∣∣∣ ≤ CδsN
−2
[
‖vxx‖0,Ωs

+ ε1/2(lnN) ‖vxy‖0,Ωs

+ ε(lnN)2‖vxyy‖0,Ωs

]
‖χx‖0,Ωs

≤ Cδsε
1/4N−2(lnN) ‖χx‖0,Ωs

≤ Cδ3/4s N−2(lnN) |||χ|||SD .

Recall that η1 = E + z00 + z01. By (2.2), Lemma 6.2 and (6.8) one has

δsε
∣∣(Δη1, pχx)Ωs

∣∣ ≤ δsε‖Δη1‖L1(Ωs)‖χx‖L∞(Ωs)

≤ CδsεN
−5/2ε−1/2(lnN)[ε1/2N−2(lnN)]−1/2‖χx‖0,Ωs

≤ Cδ3/4s N−3/2(lnN)1/2 |||χ|||SD

and

δs

∣∣∣(p(η1 − ηI1)x, pχx

)
Ωs

∣∣∣ ≤ Cδs

(
‖η1,x‖L1(Ωs)‖χx‖L∞(Ωs) + ‖ηI1,x‖0,Ωs

‖χx‖0,Ωs

)
≤ CδsN

[
‖η1,x‖L1(Ωs)ε

−1/4(lnN)−1/2‖χx‖0,Ωs

+ ε1/4(lnN)1/2‖ηI1‖L∞(Ωs)‖χx‖0,Ωs

]
≤ Cδ3/4s N−3/2(lnN)1/2 |||χ|||SD .

Recall that η2 = z10+z11 and that Dε
10 ⊂ Ω is the quarter disc with centre (1, 0)

and radius ε. Now

‖Δη2‖0,Ωs
≤ ‖Δη2‖0,Dε

10
+ ‖Δη2‖0,Ωs\Dε

10
≤ C(| ln ε|+ ε−3/4) ≤ Cε−3/4

using (2.2d), (2.2f) and (2.2g). Hence, invoking (6.8),

δsε|(Δη2, pχx)Ωs
| ≤ Cδsε‖Δη2‖0,Ωs

‖χx‖0,Ωs
≤ Cδsε

1/4‖χx‖0,Ωs
≤ Cδ3/4s |||χ|||SD .

Furthermore,

δs|(p(η2 − ηI2)x, pχx)Ωs
| ≤ Cδs‖(η2 − ηI2)x‖0,Ωs

‖χx‖0,Ωs

≤ Cδs|Ωs|1/2‖(η2 − ηI2)x‖L∞(Ωs)‖χx‖0,Ωs

≤ Cδsε
1/4(lnN)1/2‖η2,x‖L∞(Ωs)‖χx‖0,Ωs

≤ Cδ3/4s (lnN)1/2 |||χ|||SD ,

where we used (2.2d), (2.2f), (2.2g) and (6.8).
By symmetry, similar estimates are valid on Ωn, where we assume that δn = δs.
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Combining these inequalities with (6.5), we have

(6.9) |astab(u− uI , χ)Ωs∪Ωn
| ≤ C

[
δsε+ δ3/4s (lnN)1/2 + δ1/2s N−2(lnN)

]
|||χ|||SD

for all χ ∈ V N .

6.4. Subdomains Ωnw and Ωsw. Recall that η3 = v + E. The Cauchy-Schwarz
inequality, (2.2a) and (2.2b) yield

δswε
∣∣(Δη3, pχx)Ωsw

∣∣ ≤ Cδswε
−1/4‖χx‖0 ≤ Cδswε

−3/4 |||χ|||ε ,
and by Lemma 6.1 and a variant of (6.8),

δsw

∣∣∣(p(η3 − ηI3)x, χx

)
Ωsw

∣∣∣ ≤ Cδswε
1/4N−2(lnN)2‖χx‖0,Ωsw

≤ Cδ3/4sw N−2(lnN)2 |||χ|||SD .

Recall that η4 = z00+z01+z10+z11 and Dε
00 ⊂ Ω is the quarter disc with centre

(0, 0) and radius ε. Now

‖Δη4‖0,Ωsw
≤ ‖Δη2‖0,Dε

00
+ ‖Δη2‖0,Ωsw\Dε

00
≤ C(| ln ε|+ ε−5/4) ≤ Cε−5/4

using (2.2). Hence

δswε|(Δη4, pχx)Ωsw
| ≤ Cδswε‖Δη4‖0,Ωsw

‖χx‖0,Ωsw
≤ Cδswε

−3/4 |||χ|||SD

Also, using (2.2) and Lemma 6.2 we get

δsw|(p(η4 − ηI4)x, pχx)Ωsw
| ≤ Cδsw‖(η4 − ηI4)x‖0,Ωsw

‖χx‖0,Ωsw

≤ Cδsw|Ωsw|1/2 ‖η4,x‖L∞(Ωsw)‖χx‖0,Ωsw

≤ Cδswε
−1/4(lnN) |||χ|||SD .

By symmetry similar estimates are valid on Ωnw, where we assume that δnw =
δsw.

Combining these inequalities with (6.5), we have

|astab(u− uI , χ)Ωsw∪Ωnw
|

≤ C
[
δswε

−3/4 + δ3/4sw N−2(lnN)2 + δ1/2sw N−2
]
|||χ|||SD(6.10)

for all χ ∈ V N .

6.5. Error bound for SDFEM solution. We will now use the bounds derived
so far for |astab(u − uI , χ)Ω∗ | in each mesh region Ω∗ to make good choices for
the SDFEM parameters δ∗. Increasing δ∗ strengthens the norm |||·|||SD in which
we derive an error bound, but increasing it too much will decrease the order of
convergence attained. Our main result (Theorem 6.3) restricts the δ∗ to ensure
almost first-order convergence, which is the highest order that we can prove in our
analysis.

Theorem 6.3. Let wN be the SDFEM solution defined in (6.1). Let θ ∈ [1, 2] be
arbitrary. If we choose

δe ≤ Cmin{N1−θ, ε−1/2N−θ}, δw ≤ CεN−θ,

δn = δs ≤ CN−4θ/3, δnw = δsw ≤ Cε3/4N−θ,

then ∣∣∣∣∣∣wN − uI
∣∣∣∣∣∣

SD
≤ CN−1 lnN
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and ∣∣∣∣∣∣wN − u
∣∣∣∣∣∣

ε
≤ CN−1 lnN.

Proof. Adding the bounds (6.6), (6.7), (6.9) and (6.10), and observing in the case
of (6.9) that min{ε−1N−θ, N−4θ/3} = N−4θ/3, we get

|astab(u− uI , χ)| ≤ C(N−1 lnN)θ |||χ|||SD for all χ ∈ V N .

This inequality, (6.3) and (6.4) give the desired bound on
∣∣∣∣∣∣wN − uI

∣∣∣∣∣∣
SD

. The

bound on
∣∣∣∣∣∣wN − u

∣∣∣∣∣∣
ε
then follows from Theorem 4.3 and a triangle inequality. �

Remark 6.4. The values prescribed for the SD parameters in [4], where no corner
singularities appear, are δe ≤ CN−1 (when ε ≤ N−1, as we assumed in (3.6)),
δw ≤ CεN−2, δn ≤ Cε−1/4N−2 and δnw ≤ Cε3/4N−2. These agree with our
choices of δe (provided that ε ≤ N−2), δw and δnw when θ = 2. Our different
choice of δn is caused by the inflow corner singularities.

7. Numerical results

It is difficult to construct an example that satisfies exactly the hypotheses of our
paper yet whose solution u is known explicitly. Thus to conduct numerical exper-
iments into the accuracy of our Galerkin method we use a double-mesh principle
[2] where the computed solution on a given mesh is compared with the computed
solution on a finer mesh.

Let SN denote the Shishkin mesh of Section 3, which has N mesh intervals in
each coordinate direction with transition points specified by (3.1). Let S̃2N denote
a modified Shishkin mesh that is piecewise equidistant with 2N mesh intervals in
each coordinate direction but with the transition points still specified by (3.1);

that is, we do not change N to 2N in (3.1) so S̃2N �= S2N . The mesh S̃2N can
equivalently be obtained by bisecting each mesh interval in SN .

We introduce S̃2N since piecewise bilinear functions on SN and S̃2N can be
compared more easily than piecewise bilinears on SN and S2N . From the theoretical
point of view S̃2N has the same convergence properties as S2N . Write ũ2N for the
Galerkin bilinear solution computed on the mesh S̃2N . Let (ũ2N )I denote the
piecewise bilinear nodal interpolant of ũ2N on the mesh SN .

Our first example has constant data.

Example 7.1.

−εΔu− ux + 2u = 1 in Ω,(7.1a)

u = 0 on ∂Ω,(7.1b)

The second example has variable data.

Example 7.2.

− εΔu− (2− x)
(
1 + y(1− y)

)
ux +

(
3/2 + sin(πy)

)
u(7.2a)

= (2− x)
(
3/2− sin(πy)

)
in Ω,

u = 0 on ∂Ω,(7.2b)
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Table 1. Numerical errors for Galerkin method (5.1) applied to Example 7.1

N
∣∣∣∣∣∣ũ2N − uN

∣∣∣∣∣∣
ε

∣∣∣∣∣∣(ũ2N )I − uN
∣∣∣∣∣∣

ε

8 1.008e-1 0.94 2.370e-2 1.80
16 6.886e-2 0.97 1.144e-2 1.89
32 4.370e-2 0.99 4.716e-3 1.94
64 2.641e-2 0.99 1.752e-3 1.97

128 1.545e-2 1.00 6.064e-4 1.98
256 8.839e-3 1.00 2.000e-4 1.99
512 4.974e-3 6.367e-5

Table 2. Numerical errors for Galerkin method (5.1) applied to Example 7.2

N
∣∣∣∣∣∣ũ2N − uN

∣∣∣∣∣∣
ε

∣∣∣∣∣∣(ũ2N )I − uN
∣∣∣∣∣∣

ε

8 3.435e-1 0.81 1.407e-1 1.52
16 2.472e-1 0.92 7.589e-2 1.78
32 1.604e-1 0.97 3.293e-2 1.91
64 9.778e-2 0.99 1.242e-2 1.96

128 5.737e-2 1.00 4.308e-3 1.98
256 3.285e-2 1.00 1.421e-3 1.98
512 1.849e-2 4.536e-4

The homogeneity of the Dirichlet boundary data and the property that f �= 0 at
each corner together ensure that the solution of Example 7.1 satisfies the estimates
(2.1) and (2.2); see [5, 6]. For Example 7.2 no analogous pointwise a priori bounds
on derivatives are known so, as in our theoretical analysis, we assume that the same
estimates are satisfied.

Our numerical results will illustrate the convergence results of Theorem 5.3,
Corollary 5.4 and Theorem 6.3, and also show the effect of choosing too large a
value of θ in Theorem 6.3.

Tables 1 and 2 give the numerical results when the Galerkin method (5.1) is
used to solve these two examples. In each table the errors

∣∣∣∣∣∣ũ2N − uN
∣∣∣∣∣∣

ε
and∣∣∣∣∣∣(ũ2N )I − uN

∣∣∣∣∣∣
ε
shown are, for each value of N , the maximum error obtained

when ε takes the values 10−4, 10−6, 10−8, 10−10. This is done to illustrate that
the method is robust with respect to small ε. The convergence rate in each column
entry is the value of α in O((N−1 lnN)α), where two successive vertical entries are
used to compute each α in the usual way [2].

The errors for Example 7.2 are a little larger than those for Example 7.1, as
one might expect, but it is clear that the method works equally well for both prob-
lems. From the convergence rates for

∣∣∣∣∣∣ũ2N − uN
∣∣∣∣∣∣

ε
one sees that the O(N−1 lnN)

prediction of Corollary 5.4 is fulfilled. The
∣∣∣∣∣∣(ũ2N )I − uN

∣∣∣∣∣∣
ε
column, where second-

order convergence is apparent, exhibits a second-order supercloseness property at
the discrete level that is superior to the first-order convergence of Theorem 5.3.
Whether this supercloseness is due to the double-mesh principle or whether Theo-
rem 5.3 is not sharp is a topic for future research.
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Table 3. Numerical errors for SDFEM (6.1) applied to Exam-
ple 7.2 with θ = 1.5

N
∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
SD

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
SD

8 2.993e-1 0.62 3.381e-1 0.80 8.183e-2 0.89 1.101e-1 1.20
16 2.330e-1 0.85 2.447e-1 0.91 5.698e-2 1.36 6.765e-2 1.49
32 1.564e-1 0.94 1.599e-1 0.97 3.003e-2 1.60 3.354e-2 1.70
64 9.669e-2 0.98 9.755e-2 0.99 1.328e-2 1.71 1.410e-2 1.71

128 5.701e-2 0.99 5.732e-2 1.00 5.273e-3 1.67 5.598e-3 1.72
256 3.276e-2 1.00 3.284e-2 1.00 2.069e-3 1.69 2.142e-3 1.73
512 1.847e-2 1.849e-2 7.824e-4 7.938e-4

Table 4. Numerical errors for SDFEM (6.1) applied to Exam-
ple 7.2 with θ = 2.0

N
∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
SD

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
SD

8 3.280e-1 0.74 3.439e-1 0.82 1.137e-1 1.22 1.226e-1 1.35
16 2.434e-1 0.90 2.463e-1 0.92 6.928e-2 1.68 7.091e-2 1.71
32 1.593e-1 0.96 1.601e-1 0.97 3.146e-2 1.87 3.169e-2 1.88
64 9.749e-2 0.99 9.770e-2 0.99 1.210e-2 1.95 1.213e-2 1.95

128 5.732e-2 1.00 5.736e-2 1.00 4.236e-3 1.97 4.239e-3 1.97
256 3.284e-2 1.00 3.285e-2 1.00 1.403e-3 1.98 1.404e-3 1.98
512 1.849e-2 1.849e-2 4.491e-4 4.491e-4

Table 5. Numerical errors for SDFEM (6.1) applied to Exam-
ple 7.2 with θ = 2.5

N
∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣w̃2N − wN

∣
∣
∣
∣
∣
∣
SD

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
ε

∣
∣
∣
∣
∣
∣(w̃2N )I − wN

∣
∣
∣
∣
∣
∣
SD

8 3.382e-1 0.79 3.440e-1 0.82 1.284e-1 1.38 1.315e-1 1.42
16 2.459e-1 0.91 2.469e-1 0.92 7.351e-2 1.74 7.382e-2 1.75
32 1.602e-1 0.97 1.604e-1 0.97 3.246e-2 1.90 3.249e-2 1.90
64 9.774e-2 0.99 9.777e-2 0.99 1.233e-2 1.96 1.233e-2 1.96

128 5.737e-2 1.00 5.737e-2 1.00 4.292e-3 1.98 4.293e-3 1.98
256 3.285e-2 1.00 3.285e-2 1.00 1.419e-3 1.98 1.419e-3 1.98
512 1.849e-2 1.849e-2 4.532e-4 4.532e-4

Next we move on to the SDFEM defined in (6.1). Let w̃2N be the SDFEM

solution on the mesh S̃2N . Tables 3 and 4 give results when this method is applied
to Example 7.2 with θ = 1.5 and θ = 2.0, respectively. Here the δ∗ are such that
the upper bounds assumed in Theorem 6.3 are satisfied with C = 1 in each case.
We see from the tables that this change in the value of θ affects uI − wN , but not
u−wN . Increasing θ still further, to 2.5, has little apparent effect on the numerical
results — compare Tables 4 and 5 — but now the SD norm is weaker.
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8. Conclusions

The problem at hand contains boundary layers of two types: exponential and
characteristic; and corner singularities of two types: incoming and outgoing. We
constructed a piecewise-uniform Shishkin mesh that is refined so that boundary
layers are resolved, but the mesh is not modified to address the corner singularities.
On this mesh, Galerkin and streamline diffusion finite element methods with piece-
wise bilinears were examined. We gave error analyses for these methods that took
account of both the boundary layers and the corner singularities. This analysis
yielded an error bound of order N−1 lnN in various norms, where N is the number
of mesh intervals in each coordinate direction. As no example is available with
a known exact solution that exhibits the precise solution behaviour predicted by
theoretical bounds on derivatives, we carried out numerical tests using a “double-
mesh principle” to study the solution error and rate of convergence. The tests show
clearly the expected O(N−1 lnN) convergence rate.
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