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SERIES EXPANSIONS OF SYMMETRIC ELLIPTIC INTEGRALS

TOSHIO FUKUSHIMA

Abstract. Based on general discussion of series expansions of Carlson’s sym-
metric elliptic integrals, we developed fifteen kinds of them including eleven
new ones by utilizing the symmetric nature of the integrals. Thanks to the spe-
cial addition formulas of the integrals, we also obtained their complementary
series expansions. By considering the balance between the speed of conver-
gence and the amount of computational labor, we chose four of them as the
best series expansions. Practical evaluation of the integrals is conducted by the
most suitable one among these four series expansions. Its selection rule was
analytically specified in terms of the numerical values of given parameters. As
a by-product, we obtained an efficient asymptotic expansion of the integrals

around their logarithmic singularities. Numerical experiments confirmed the
effectiveness of these new series expansions.

1. Introduction

1.1. Symmetric elliptic integrals. Carlson reconstructed the theory of elliptic
integrals by starting from two symmetric elliptic integrals [7, 8, 39, 9, 11, 12]:

RF (x, y, z) ≡
1

2

∫ ∞

0

dt√
(t+ x)(t+ y)(t+ z)

,(1.1)

RJ (x, y, z, p) ≡
3

2

∫ ∞

0

dt

(t+ p)
√
(t+ x)(t+ y)(t+ z)

,(1.2)

where x, y, z, and p are nonnegative parameters and at least one of x, y, and z
is positive. He prepared a concise and comprehensive summary of the symmet-
ric and classic elliptic integrals in Chapter 19 of [35]; visit the website: http://

dlmf.nist.gov/19.
Besides RF (x, y, z) and RJ(x, y, z, p), useful are two degenerate forms of them:

RD(x, y, z) ≡ RJ (x, y, z, z),(1.3)

RC(x, y) ≡ RF (x, y, y),(1.4)

where the latter is expressed by elementary functions. Refer to the discussion in
§19.16 of [35].
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1.2. Relation with classic elliptic integrals. All elliptic integrals are finally
expressed as a linear combination of RF (x, y, z) and RJ(x, y, z, p). Indeed, the
classic incomplete elliptic integrals are written in terms of them as

F (ϕ|m) = sRF

(
c2, d2, 1

)
,(1.5)

E(ϕ|m) = sRF

(
c2, d2, 1

)
−
(
ms3

3

)
RD

(
c2, d2, 1

)
,(1.6)

Π(ϕ, n|m) = sRF

(
c2, d2, 1

)
+

(
ns3

3

)
RJ

(
c2, d2, 1, f2

)
,(1.7)

where ϕ is the amplitude, m is the parameter, n is the characteristic,

(1.8) mc ≡ 1−m, nc ≡ 1− n,

are the complementary parameter and characteristic, respectively, and

(1.9) s ≡ sinϕ, c ≡ cosϕ, d ≡
√
mc +mc2, f ≡

√
nc + nc2.

As a corollary, the classic complete elliptic integrals are expressed as

K(m) ≡ F
(π
2

∣∣∣m)
= RF (0,mc, 1) ,(1.10)

E(m) ≡ E
(π
2

∣∣∣m)
= RF (0,mc, 1)−

(m
3

)
RD (0,mc, 1) ,(1.11)

Π(n|m) ≡ Π
(π
2
, n

∣∣∣m)
= RF (0,mc, 1) +

(n
3

)
RJ (0,mc, 1, nc) .(1.12)

Refer to §19.25 of [35].

1.3. Existing researches on series expansions of elliptic integrals. The se-
ries expansions of the classic elliptic integrals have been discussed mainly in order to
seek a convenient way to evaluate them by means of the elementary functions such
as the logarithm or inverse trigonometric functions [18, 21, 27, 19, 32, 38, 33, 2, 34].
Nevertheless, these methods are known to be slower than: the standard methods
utilizing Landen and/or Gauss transformations [3, 4, 5, 6, 26, 36]. For example,
our study [23] showed that the series expansion method for computing F (ϕ|m) is
significantly slower than: (1) Carlson’s duplication method [12, 37], (2) Bulirsch’s
el1 based on the descending Landen transformation [3], and (3) our half argument
transformation method [23]. On the other hand, recent research on the series ex-
pansions of the symmetric and classic elliptic integrals is instead emphasized to
study the behavior of the integrals near their logarithmic singularities at x = 0
and/or y = 0 [13, 14, 30, 31, 20, 29, 28].

1.4. Contents of this article. During the course of our investigation on the fast
procedures to compute F (ϕ|m) in [23], we noticed that the methods based on the
series expansions we chose are the slowest but the most precise. Also, it runs fairly
fast when ϕ is small, but it runs very slowly otherwise. We regard that this defect is
due to the slowness of the convergence of the series expansions adopted. In order to
resolve this issue of slow convergence, we will develop several new series expansions
by using the symmetric nature of Carlson’s basic integrals in this article.

First, we provide 15 series expansions by a new approach in §2. Four of them
are essentially the same as given in the literature and the other eleven are new.
Next, in §3, we: (1) discuss the effectiveness of these series expansions and their fif-
teen complements obtained from the introduction of special addition formulas, (2)
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choose four appropriate expansions among the 30 that were obtained and specify
analytically the rule to select the best series expansion from the four candidates,
(3) show an effective approach to compute the complete integrals by way of the in-
complete ones, and (4) present algorithms to evaluate the complete and incomplete
integrals, respectively. Finally, we illustrate some results of numerical experiments
to confirm the effectiveness of the developed series expansions in §4.

Besides, in Appendix A, we describe some basic properties of the symmetric
elementary integrals used in developing the series expansions. Also, in Appendix B,
we derive the special addition formulas of the complete and incomplete symmetric
elliptic integrals. Further, in Appendix C, we summarize the existing and new
asymptotic series expansions of F (ϕ|m).

2. Development of series expansions

In this section, we first describe a general approach to obtain a series expansion
of elliptic and hyper-elliptic integrals in §2.1. Second, we discuss the rate of conver-
gence of the expansions in §2.2. Third, we apply this approach to the symmetric
elliptic integrals in §2.3. Finally, we develop four forms of their expansions and
obtain fifteen series expansions: two in §2.4, three in §2.5, three in §2.6, one in §2.7,
and six in §2.8. Four of the last six series expansions are the same as the existing
ones. The other eight are new.

2.1. Binomial expansion. Consider a real-valued integral containing the recip-
rocal square root of a polynomial as

(2.1) J ≡
∫ t1

t0

R(t)dt

Q(t)
√
P (t)

,

where P (t), Q(t), and R(t) are arbitrary polynomials. Depending on the order of
P (t), the integral is termed as elementary if the order is less than 3, elliptic if it is
3 or 4, and hyper-elliptic otherwise.

The base formula we use is the binomial expansion of the reciprocal square root,

(2.2)
1√
1 + x

=
∞∑
j=0

(
−1/2
j

)
xj .

Here the coefficients are directly expressed as

(2.3)

(
−1/2
j

)
=

(−1)j(2j − 1)!!

(2j)!!
=

(−1)j(2j − 1)(2j − 3) · · · 3 · 1
(2j)(2j − 2) · · · 4 · 2 , (j = 1, 2, · · · )

and

(2.4)

(
−1/2
0

)
= 1.

Let us split P (t) as a sum of its approximate and the remainder as

(2.5) P (t) = P0(t) + ΔP (t).

Then, by conducting the binomial expansion with respect to their ratio, ΔP (t)/P0(t),
and exchanging the summation and the integration by assuming the convergence
of the expansion, we obtain a series expansion of J as

(2.6) J =
∞∑
j=0

Jj
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where

(2.7) Jj ≡
(
−1/2
j

)∫ t1

t0

(
ΔP (t)

P0(t)

)j
R(t)dt

Q(t)
√
P0(t)

.

The integral composing Jj is expressed by elementary functions if: (1) P0(t) is at
most quadratic, or (2) the number of simple or odd multiple roots of P0(t) is at
most two such that the square root is rewritten as

(2.8)
√
P0(t) = Q0(t)

√
P1(t),

where Q0(t) is another polynomial and P1(t) is a polynomial of the order two or
less.

2.2. Rate of convergence. Even if a series expansion is convergent, it does not
automatically mean that the expansion is useful. The question is the rate of con-
vergence. In case of the expansions discussed in the previous subsection, it depends
on the manner of splitting of the given polynomial, P (t), into the main term, P0(t),
and the rest, ΔP (t). In fact, the expansion factor defined as the ratio of adjacent
two terms in the series expansion is roughly estimated as

(2.9) e ≡ Jj
Jj−1

≈ max
t0<t<t1

∣∣∣∣ΔP (t)

P0(t)

∣∣∣∣ .
When the ratio |ΔP (t)/P0(t)| can be large in the integral domain considered, it
would result in a slow convergence or a divergence. For example, if P0(t) has a
root within the integral domain, it generally leads to a divergence unless R(t) also
shares the same root, and therefore no pole remains.

The problem of convergence is only weakly related with the additional polyno-
mials in the integrand, Q(t) and/or R(t). The exceptions are: (1) when the root(s)
of Q(t) introduces another singularity, and (2) when the root(s) of R(t) removes
the singularity caused by P0(t). Thus the speed of convergence is mostly insensitive
with the forms of the additional polynomials. In this sense, the essential question
lies only in the treatment of RF (x, y, z) in case of the symmetric elliptic integrals.

2.3. Application to symmetric elliptic integrals. In symmetric elliptic inte-
grals, P (t) is a cubic polynomial with three nonpositive roots as

(2.10) P (t) = (t+ x)(t+ y)(t+ z) = t3 + E1t
2 + E2t+ E3,

where

(2.11) E1 ≡ x+ y + z, E2 ≡ xy + yz + zx, E3 ≡ xyz,

are elementary symmetric functions of three parameters, x, y, and z. Refer to
§19.19 of [35].

Hereafter, we assume that x and y are nonnegative, z is positive, and they are
ordered as

(2.12) 0 ≤ x ≤ y ≤ z.

This condition is always satisfied by, if necessary, an appropriate permutation of
the parameters and their renaming. Therefore, the assumption will not lose the
generality in the discussions below.

The integral domain is (0,∞) in symmetric elliptic integrals. Then we limit
ourselves to the case where P0(t) is cubic and ΔP (t) is at most quadratic. If not,
the cubic term in ΔP (t) would cause divergence of the expansions. At any rate,
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the approximation is limited to two types: (1) P0(t) = (t+ u)(t+ v)2 where u �= v,
or (2) P0(t) = (t+ u)3.

Even after this restriction, there remain many possibilities to split P (t). Since
P (t) includes three parameters, there exists no way of splitting containing only
two or less parameters. If it has three parameters, there may or may not be real
solution(s) to satisfy the splitting condition. On the other hand, if it contains four
or more parameters, they are generally indeterminate. More specifically speaking,
some of them would be free parameters. Since a general discussion including such
indeterminate cases would be too complicated, we will examine below only the
determinate cases.

2.4. Constant remainder of first type. Let us begin with the case when ΔP (t)
is a constant. The second type splitting cannot satisfy the splitting condition since
it contains only two parameters. Then we look for a solution of the first type as

(2.13) P0(t) = (t+ u)(t+ v)2, ΔP (t) = a,

where u, v, and a are new parameters to be determined from the original parameters
x, y, and z. If we find a solution satisfying the splitting condition, equation (2.5),
then RF (x, y, z), RD(x, y, z), and RJ (x, y, z, p) are expanded with respect to a as

RF (x, y, z) =
∞∑
j=0

(
−1/2
j

)
ajIj,2j+1(u, v),(2.14)

RD(x, y, z) = 3

∞∑
j=0

(
−1/2
j

)
ajIj,2j+1,1(u, v, z),(2.15)

RJ (x, y, z, p) = 3

∞∑
j=0

(
−1/2
j

)
ajIj,2j+1,1(u, v, p),(2.16)

where

(2.17) Ijk�(x, y, z) ≡
1

2

∫ ∞

0

dt

(t+ x)j(t+ y)k(t+ z)�
√
t+ x

,

is an auxiliary symmetric integral with three parameters and

(2.18) Ijk(x, y) ≡ Ijk0(x, y,−) =
1

2

∫ ∞

0

dt

(t+ x)j(t+ y)k
√
t+ x

,

is its degenerate form with two parameters. These auxiliary integrals are expressed
in terms of elementary functions as given in Appendix A. The expansion factor is
roughly approximated as

(2.19) e ≈ |a|
uv2

,

since the main part of the ratios Ij,k+1(x, y)/I01(x, y) and Ij,k+1,1(x, y, z)/I011(x, y, z)
is roughly in proportion to 1/(xjyk).

Let us return to finding solutions to satisfy the splitting condition, equation (2.5).
The condition is rewritten into three equations with respect to the new parameters
as

(2.20) u+ 2v = E1, 2uv + v2 = E2, uv2 + a = E3.

These reduce to a quadratic equation with respect to v as

(2.21) 3v2 − 2E1v + E2 = 0.
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Its quarter discriminant is nonnegative as

(2.22) D ≡ E2
1 − 3E2 =

(x− y)2

2
+

(y − z)2

2
+

(z − x)2

2
≥ 0.

We may exclude the case D = 0 since it means x = y = z, and therefore the
evaluation of the symmetric elliptic integrals is as trivial as

(2.23) RF (x, x, x) =
1√
x
, RD(x, x, x) =

1

x
√
x
, RJ (x, x, x, p) = I11(x, p),

where I11(x, y) is an elementary function explicitly given by equation (A.11) in
Appendix A.

Thus we assume that D > 0. Then the equations have two real solutions. One
of them is

(2.24) u1 =
E1 + 2

√
D

3
, v1 =

E2

E1 +
√
D
, a1 =

C − 2D
√
D

27
,

and the other one is

(2.25) u2 =
4E2 − E2

1

E1 + 2
√
D
, v2 =

E1 +
√
D

3
, a2 =

C + 2D
√
D

27
,

where

(2.26) C ≡ 2E3
1 − 9E1E2 + 27E3,

is an auxiliary symmetric polynomial of the third order.
It is easy to show that

(2.27) u1 − v1 = − (u2 − v2) =
√
D > 0,

and the variables except u2 do not change the sign as

0 < z ≤ u1 ≤ 4z

3
, 0 ≤ v1 ≤ z, −

(
4z3

27

)
≤ a1 ≤ 0,(2.28)

−
(z
3

)
≤ u2 ≤ z, 0 <

2z

3
≤ v2 ≤ z, 0 ≤ a2 ≤ 4z3

27
.(2.29)

Note that v1 = 0 only when x = y = 0. Also, u2 becomes nonpositive when√
x +

√
y ≤

√
z. In that case, the series expansion based on the second solution

will be inadequate since
√
t+ u2 may become purely imaginary.

2.5. Linear remainder of first type: case A. Next, we assume that ΔP (t) is
a linear function of t. The determinate splitting form of the first type becomes

(2.30) P0(t) = (t+ u)(t+ v)2, ΔP (t) = a(t+ w),

where w = u or w = v. First, we consider the case w = u. Then the resulting
expansions of the integrals are written as

RF (x, y, z) =

∞∑
j=0

(
−1/2
j

)
ajI0,2j+1(u, v),(2.31)

RD(x, y, z) = 3
∞∑
j=0

(
−1/2
j

)
ajI0,2j+1,1(u, v, z),(2.32)

RJ (x, y, z, p) = 3

∞∑
j=0

(
−1/2
j

)
ajI0,2j+1,1(u, v, p).(2.33)
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The approximate expansion factor becomes

(2.34) e ≈ |a|
v2

.

There are three solutions to satisfy the splitting condition:

u3 = x, v3 =
y + z

2
, a3 = −

(
z − y

2

)2

,(2.35)

u4 = y, v4 =
x+ z

2
, a4 = −

(
z − x

2

)2

,(2.36)

u5 = z, v5 =
x+ y

2
, a5 = −

(
y − x

2

)2

.(2.37)

Obviously, (1) u3, u4, and v5 are nonnegative, (2) v3, v4, and u5 are positive, and
(3) a3, a4, and a5 are nonpositive. There are the inequalities

(2.38) u3 ≤ v3, u5 ≥ v5,

meanwhile u4 can be greater than, equal to, or smaller than v4.
The auxiliary integrals used to evaluate RD by the third solution (u5, v5, a5) are

simplified as

(2.39) I0,2j+1,1 (u5, v5, z) = I1,2j+1

(
z,

x+ y

2

)
,

since u5 = z.

2.6. Linear remainder of first type: case B. The next case is when w = v.
This time, the expansions of the integrals become

RF (x, y, z) =
∞∑
j=0

(
−1/2
j

)
ajIj,j+1(u, v),(2.40)

RD(x, y, z) = 3

∞∑
j=0

(
−1/2
j

)
ajIj,j+1,1(u, v, z),(2.41)

RJ (x, y, z, p) = 3

∞∑
j=0

(
−1/2
j

)
ajIj,j+1,1(u, v, p).(2.42)

The approximate expansion factor is expressed as

(2.43) e ≈ |a|
uv

.

Again, there are three solutions to satisfy the splitting condition:

u6 = y + z − x, v6 = x, a6 = (z − x)(y − x),(2.44)

u7 = z + x− y, v7 = y, a7 = (x− y)(z − y),(2.45)

u8 = x+ y − z, v8 = z, a8 = (y − z)(x− z),(2.46)

Obviously, u6, u7, v6, v7, v8, a6, and a8 are nonnegative while a7 is nonpositive.
When x+ y < z, u8 is negative, and therefore this solution becomes inappropriate
since

√
t+ u8 may be imaginary.
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Again, the auxiliary integrals used to evaluate RD by the third solution (u8,v8,a8)
are simplified as

(2.47) Ij,j+1,1 (u8, v8, z) = Ij,j+2 (u8, z) ,

since v8 = z.

2.7. Linear remainder of second type. Let us move to the case of the linear
remainder with the second type solution as

(2.48) P0(t) = (t+ u)3, ΔP (t) = a(t+ u) + b.

This time, the integrals are expanded as

RF (x, y, z) =
∞∑
j=0

Aj(a, b)Ij+1(u),(2.49)

RD(x, y, z) = 3
∞∑
j=0

Aj(a, b)Ij+1,1(u, z),(2.50)

RJ (x, y, z, p) = 3

∞∑
j=0

Aj(a, b)Ij+1,1(u, p),(2.51)

where

(2.52) Ij(x) ≡ Ij00(x,−,−) = Ij0(x,−) =
1

2

∫ ∞

0

dt

(t+ x)j
√
t+ x

,

is a degenerate form of Ijk�(x, y, z) with one parameter, and

(2.53) Aj(a, b) ≡
�j/2�∑

k=�j/3�

(
−1/2
k

)(
k

3k − j

)
a3k−jbj−2k,

is a bivariate polynomial. Some low order expressions of Aj(a, b) are

A0 = 1, A1 = 0, A2 =
−a

2
, A3 =

−b

2
, A4 =

3a2

8
, A5 =

3ab

4
,

A6 =
6b2 − 5a3

16
, A7 =

−15a2b

16
, A8 =

35a4 − 120ab2

128
, · · ·

(2.54)

A very rough estimate of the expansion factor is given as

(2.55) e ∼ |a|u+ |b|
u3

.

Solving similar equations with respect to the new parameters, u, a, and b, we obtain
a unique solution,

(2.56) u9 =
E1

3
, a9 =

−D

3
, b9 =

C

27
,

where D and C are already given in equations (2.22) and (2.26), respectively.
We note that u9 is positive and a9 is nonpositive while b9 changes the sign as

(2.57) 0 <
z

3
≤ u9 ≤ z, −

(
z2

3

)
≤ a9 ≤ 0, |b9| ≤

2z3

27
.

In fact, b9 < 0 when 2y < x+ z and vice versa.
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2.8. Quadratic remainder of first type. Finally, we assume that ΔP (t) is qua-
dratic. We consider only the determinate case. It is of the first type as

(2.58) P0(t) = (t+ u)(t+ v)2, ΔP (t) = a(t+ u)(t+ v).

Then the integrals are expanded as:

RF (x, y, z) =
∞∑
j=0

(
−1/2
j

)
ajI0,j+1(u, v),(2.59)

RD(x, y, z) =

∞∑
j=0

(
−1/2
j

)
ajI0,j+1,1(u, v, z),(2.60)

RJ(x, y, z, p) =

∞∑
j=0

(
−1/2
j

)
ajI0,j+1,1(u, v, p).(2.61)

The expansion factor is roughly evaluated as

(2.62) e ≈ |a|
v
.

The following six solutions satisfy the splitting condition:

u10 = x, v10 = y, a10 = z − y,(2.63)

u11 = x, v11 = z, a11 = y − z,(2.64)

u12 = y, v12 = x, a12 = z − x,(2.65)

u13 = y, v13 = z, a13 = x− z,(2.66)

u14 = z, v14 = x, a14 = y − x,(2.67)

u15 = z, v15 = y, a15 = x− y.(2.68)

Apparently, the difference between the choice of u10, v10, and a10 and that of u11,
v11, and a11 is small. The same is said for that of the 12th and 13th solutions and
that of the 14th and 15th solutions. In some cases, the auxiliary integrals used to
evaluate RD are simplified as

I0,j+1,1 (u11, v11, z) = I0,j+2 (x, z) , I0,j+1,1 (u13, v13, z) = I0,j+2 (y, z) ,(2.69)

I0,j+1,1 (u14, v14, z) = I1,j+1 (z, x) , I0,j+1,1 (u15, v15, z) = I1,j+1 (z, y) ,(2.70)

since u11 = v14 = x, u13 = v15 = y, and v11 = v13 = u14 = u15 = z.
Some of these series expansions are essentially the same as the classic ones given

in the literature [2]. In fact, (1) the series expansions of RF (x, y, z), RD(x, y, z), and
RJ (x, y, z, p) using (u11, v11, a11) reduce to those of F (ϕ|m), E(ϕ|m), Π(n|m), and
Π(ϕ, n|m) with respect to m sin2 ϕ given as the formulas 902.00, 903.00, 906.00, and
906.01 of [2], (2) those of RF (x, y, z) and RD(x, y, z) using (u14, v14, a14) reduce to
those of F (ϕ|m) and E(ϕ|m) with respect to mc tan

2 ϕ given as the formulas 902.01
and 903.01 of [2], and (3) those using (u12, v12, a12) and (u13, v13, a13) reduce to the
Maclaurin series expansions of the classic integrals in terms of tan2 ϕ and sin2 ϕ,
respectively. Both of the last two group of series expansions further reduce to those
of the classic integrals in terms of ϕ by using the Maclaurin series expansions of
tanϕ or sinϕ with respect to ϕ.
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3. Selection of best formulas

Let us discuss the effectiveness of the series expansions we obtained in the pre-
vious section. First, in §3.1, we compare the magnitude of approximate expansion
factors by regarding them as an index of the rate of convergence. Second, in §3.2,
we examine the amount of computational labor required. Third, in §3.3, we in-
troduce the special addition formulas of the integrals as a remedy to overcome the
problem of slow convergence when the integrals are close to being complete. Fourth,
in §3.4, we introduce the complementary parameters and expansion factors to be
used with the special addition formulas. Since each series expansion we obtained
accompanies its complement, we finally have 30 different series expansions. Fifth,
in §3.5, we find the best combination among these series expansions. The usage of
the special addition formulas assumes the availability of another procedure to eval-
uate complete integrals. As its realization, we develop a formulation to compute
the complete integrals by way of the associated incomplete ones in §3.6. Finally,
in §3.7, we present algorithms to calculate the three symmetric elliptic integrals
simultaneously both for the complete and the incomplete cases.

3.1. Magnitude of expansion factor. In order to discuss the effectiveness of the
series expansions we presented, we first compare the magnitude of their approximate
expansion factors. The smaller it is, the faster the corresponding series expansion
would converge. Thus we shall search for the minimum expansion factor. Of course,
these factors are of approximate nature. Therefore we note that the result will be
also of approximate nature.

Recall that the expansion factor, e, defined in §2.2 is generally a function of the
index j as well as the integral arguments x, y, z, and/or p, but not the integral
variable, t. In fact, equation (2.9) simply approximates it by the maximum value
of the absolute ratio of two polynomials, ΔP (t)/P0(t), in the integrand. Then it is
independent on t as well as on the index j.

At any rate, the expansion factors we obtained in the previous section are sum-
marized as

e1 =
C − 2D

√
D

27E3 −
(
C − 2D

√
D
) , e2 =

C + 2D
√
D

27E3 −
(
C + 2D

√
D
) ,

e3 =

(
z − y

z + y

)2

, e4 =

(
z − x

z + x

)2

, e5 =

(
y − x

y + x

)2

,

e6 =
(z − x)(y − x)

x(y + z − x)
, e7 =

(z − y)(y − x)

y(z + x− y)
, e8 =

(z − y)(z − x)

z|x+ y − z| ,(3.1)

e9 =
3E1D + |C|

E3
1

,

e10 =
z − y

y
, e11 =

z − y

z
, e12 =

z − x

x
,

e13 =
z − x

z
, e14 =

y − x

x
, e15 =

y − x

y
.

All the factors are functions of x/z and/or y/z only. Especially e4, e12, and e13
are independent on y. This means that the convergence of the corresponding series
expansions of F (ϕ|m), E(ϕ|m), and Π(ϕ, n|m) is governed by ϕ only.
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Figure 1. Factors of various series expansions. Shown are the
expansion factors e1 through e15 as functions of y/z while x/z
is fixed as 0.1. The curve of e9 kinks at (y/z, e) ∼ (0.55, 0.67).
Meanwhile that of e12 is outside of the drawn region.

The above expressions lead to the inequalities among them:

e1 ≤ e5 ≤ e15 ≤ e6 ≤ e14, e3 ≤ e2, e3 ≤ e4 ≤ e13 ≤ e12,

e3 ≤ e9, e3 ≤ e11 ≤ e10 ≤ e8, e7 ≤ e6, e7 ≤ e8, e7 ≤ e4,
(3.2)

where we regard e2 as its positive value. See Figure 1 for an illustration of these
inequalities. It shows the expansion factors e1 through e15 as functions of y/z when
x/z = 0.1. The curve of e12 is scaled out of the figure.

The above inequalities tell us that the minimum expansion factor is the minimum
of e1 and e3 and the second minimum is realized by the minimum of e3 and e5.
The difference between these two minima is not so large. See Figure 2. Both
minima are unimodal with respect to y/z when x/z is fixed and are monotonically
decreasing with respect to x/z when y/z is fixed. Their maximum values are
around unity and are achieved when x/z ∼ y/z ∼ 0. This indicates that these
series expansions face with the problem of slow convergence near the logarithmic
singularity, x/z = y/z = 0.

3.2. Complexity of series computation. All the series expansions we developed
are composed of single summations. Then the complexity of their computation
depends on two factors: (1) the number of terms needed to assure a certain level of
precision, and (2) the complexity of computation of each term. The former factor
is controlled by the magnitude of the expansion factors, which we already discussed
in the previous subsection. Thus we concentrate ourselves to the latter factor here.
Below, we examine its components one by one.

First, the binomial coefficients consist of a one-dimensional array. The number
of its components required is at most 30 or less. Also, they are effectively computed
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Figure 2. Factors of efficient series expansions. Shown are the
expansion factors e1, e3, and e5 as functions of y/z while x/z is
fixed. The curves of e1 and e5 are shown for various values of x/z
meanwhile that of e3 is independent on x/z. The curves of e3 and
e5 are drawn as solid lines while those of e1 are broken lines. Note
that meaningful is the region x ≤ y.

by a recurrence formula

(3.3)

(
−1/2
j

)
=

1− 2j

2j

(
−1/2
j − 1

)
,

with the initial condition

(3.4)

(
−1/2
0

)
= 1.

Then it is easy to compute them beforehand and store their numerical values as
predefined constants in computational codes. Therefore this component has no
practical contribution to the complexity.

Second, the evaluation of the new parameters requires nonnegligible amount of
computational time only in cases of (u1, v1, a1) and (u2, v2, a2). There one call of

the square root is needed in computing
√
D. This computational overhead is small.

Third, we need to compute a bivariate polynomial Aj(a, b) in the case of
(u9, a9, b9). Its number of terms increases quadratically with respect to its degree
j. Then this causes significant increase in its computational labor.

Finally, the main computational work is the preparation of auxiliary integrals,
Ij , Ijk, and/or Ijk�. As will be explained later in Appendix A, their computation
mainly consists of two parts: the computation of RC(x, y) and the application of
recurrence formulas. The first part requires an evaluation of one transcendental
function: the logarithm or the inverse tangent. Nevertheless, it is common to all
the cases except the computation of RF in case of (u9, a9, b9). Then it makes no
practical difference.
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The second part is important. In the cases of (u1, v1, a1) and (u2, v2, a2), we need
to compute Ij,2j+1 and Ij,2j+1,1. Also, we have to calculate Ij,j+1 and Ij,j+1,1 in
the case of (u6, v6, a6) through (u8, v8, a8). These computational labors increase
quadratically with respect to the index j. This requires a significant number
of arithmetic operations when the maximum index to be considered amounts to
13-57 as will be estimated later. Meanwhile, the other cases demand: (1) the
pair of I0,2j+1 and I0,2j+1,1 in the case of (u3, v3, a3) through (u5, v5, a5), (2) the
pair of Ij+1 and Ij+1,1 in the case of (u9, a9, b9), or (3) the pair of I0,j+1 and
I0,j+1,1 in the case of (u10, v10, a10) through (u15, v15, a15). The computational
labor of these integrals increases only linearly with respect to j. Thus the best
series expansions in terms of the computational labor are those using (u3, v3, a3)
through (u5, v5, a5) or (u10, v10, a10) through (u15, v15, a15). Next comes that us-
ing (u9, a9, b9), then (u6, v6, a6) through (u8, v8, a8), and the most complicated are
those using (u1, v1, a1) or (u2, v2, a2).

By combining the observations in this and the previous subsections, we conclude
that the most efficient series expansions are those using (u3, v3, a3) or (u5, v5, a5).
The choice between these two depends on the smallness of the expansion factors e3
and e5 for the given parameters x, y, and z.

3.3. Special addition formulas. As we see in the previous subsections, the series
expansions we developed become inefficient when x/z and y/z are small. Of course,
the expansion factors of some series expansions such as e1, e3, or e5 remain to be
less than unity in most cases. Then these series expansions generally converge in
principle. Nevertheless, their convergence is so slow in some cases that we cannot
regard them as practical procedures to calculate the integrals. However, there is a
remedy [18, 21, 27, 19, 32, 38].

The special case when x = 0 leads to the complete integrals. If their values are
available by other approaches such as provided in the literatures [3, 15, 16, 17, 22,
24, 25] or as will be described later in §3.6, there is another way to compute the
incomplete integrals by the following formulas:

RF (x, y, z) = RF (0, y − x, z − x)−
√
xRF (xc, yc, zc) ,(3.5)

RD(x, y, z) = RD(0, y − x, z − x)− x
√
xRD (xc, yc, zc)−

(
3

z − x

)√
x

yz
,(3.6)

RJ(x, y, z, p) = RJ(0, y − x, z − x, p− x)− x
√
xRJ (xc, yc, zc, pc)(3.7)

−3

(√
x

p− x

)
RC (yz(p− x), ppc) ,

where

(3.8) xc ≡ (y − x)(z − x), yc ≡ z(y − x), zc ≡ y(z − x), pc ≡ x(p− x) + xc,

are the complementary parameters satisfying the similar order condition as the
original one as

(3.9) 0 ≤ xc ≤ yc ≤ zc.

The above expressions are rewritings of the addition theorem of the symmetric
elliptic integrals provided as the formulas 19.26.1, 19.26.7, and 19.26.9 of [35]. Refer
to Appendix B.2 for the rewriting. Classically, these are called the special addition
formulas. Refer to the formulas 116.01 through 116.03 of [2] and the formulas
19.11.7, 19.11.8, and 19.11.10 of [35].
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3.4. Complementary expansion factors. By means of the special addition for-
mulas provided in the previous subsection, we may overcome the problem of small
ratios of x/z and y/z. The corresponding ratios in terms of complementary param-
eters become

(3.10)
xc

zc
=

y − x

y
,

yc
zc

=
z(y − x)

y(z − x)
.

Even when x/z and y/z are small, these are not generally small, and therefore the
series expansions may become efficient again. In order to examine this situation
more clearly, let us denote the new parameters and expansion factors in terms of
the complementary parameters by adding the suffix c.

Then the complementary expansion factors are summarized as

e1c =
Cc − 2Dc

√
Dc

27E3c −
(
Cc − 2Dc

√
Dc

) , e2c =
Cc + 2Dc

√
Dc

27E3c −
(
Cc + 2Dc

√
Dc

) ,
e3c =

(
(z − y)x

2yz − (y + z)x

)2

, e4c =

(
x

2y − x

)2

, e5c =

(
x

2z − x

)2

,

e6c =
x2

yz − x2
, e7c =

x2(z − y)

z (x2 + yz − 2xy)
, e8c =

x2(z − y)

y |x2 + yz − 2xz| ,(3.11)

e9c =
3E1cDc + |Cc|

E3
1c

,

e10c =
x(z − y)

z(y − x)
, e11c =

x(z − y)

y(z − x)
, e12c =

x

y − x
,

e13c =
x

y
, e14c =

x

z − x
, e15c =

x

z
,

where

E1c ≡ 3yz − 2(y + z)x+ x2,(3.12)

E2c ≡ (3yz − (y + z)x)(y − x)(z − x),(3.13)

E3c ≡ yz(y − x)2(z − x)2,(3.14)

Dc ≡ E2
1c − 3E2c,(3.15)

Cc ≡ 2E3
1c − 9E1cE2c + 27E3c,(3.16)

The series expansions of RF and RD using u14c, v14c, and a14c are essentially the
same as the third series expansion of F (ϕ|m) and E(ϕ|m) given in [38]. It is
interesting to see that e5c, e14c, and e15c do not depend on y nor on m. This was
already pointed out for e14c in [38].

3.5. Minimum expansion factor. Again, in the complementary cases, we learn
that the minimum expansion factor is achieved by e1c or e3c and the second mini-
mum is done by e3c and e5c. Based on the conclusion we reached in §3.2, we focus
on four choices to compute the elliptic integrals by series expansions: (u3, v3, a3),
(u5, v5, a5), (u3c, v3c, a3c), and (u5c, v5c, a5c).

Figure 3 shows the contour map of the minimum of the four expansion factors as-
sociated with the focused series expansions, e3, e5, e3c, and e5c, as a two-dimensional
graph of x/z and mc ≡ (y − x)/(z − x), both of which move in the unit interval
(0, 1). The whole region is separated into four subregions where each of the four
expansion factors becomes the minimum. Roughly speaking, the minimum is (1)
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Figure 3. Contour map of minimum expansion factor. Illustrated
are the contour map of the minimum of four expansion factors,
e3, e5, e3c, and e5c, as two-dimensional graphs of x/z and mc ≡
(y−x)/(z−x). The contour level is started from 0 and incremented
with a constant interval of 2× 10−3. The zero values are achieved
at the boundary box. The minimum factor becomes (1) e5 when
x/z is large and mc is small, (2) e3 when x/z and mc are large,
(3) e3c when x/z is small and mc is large, and (4) e5c when x/z
and mc are small. The central ridge separating the regions of e3
and of e5 and those of e3c and of e5c is expressed as the curve
mc = [(x/z)/(1− x/z)]2. The right branch ridge discriminating
the region of e3 and that of e5 is expressed as the curve mc =√
x/z/(1 +

√
x/z). Meanwhile, the left branch ridge dividing the

region of e3c and that of e5c is expressed as the curve mc = (1 −
x/z)/(2 − x/z). The maximum value is achieved at the single

intersection of these separatrices. It is 9 − 4
√
5 ∼ 0.0557 and

reached when x/z = mc =
(
3−

√
5
)
/2 ∼ 0.382.

e5 when x/z is large and mc is small, (2) e3 when x/z and mc are large, (3) e3c
when x/z is small and mc is large, and (4) e5c when x/z and mc are small.

The separatrix between the ordinary pair (e3, e5) and the complementary pair
(e3c, e5c) is the curve

(3.17) mc =

(
x/z

1− x/z

)2

,

which is equivalent with the condition

(3.18) x(y + z) = yz.

This expression is obtained by solving the conditions e3 = e3c and/or e5 = e5c, the
results of which coincide with each other. At any rate, we select the ordinary pair
if x(y + z) > yz and the complementary pair otherwise.



972 TOSHIO FUKUSHIMA

Meanwhile, the separatrix between e3 and e5 is the curve

(3.19) mc =

√
x/z

1 +
√
x/z

,

which is translated as

(3.20) x
(
y2 + z2

)
= z

(
x2 + y2

)
.

Thus, if x
(
y2 + z2

)
< z

(
x2 + y2

)
, then we choose (u3, v3, a3) else (u5, v5, a5). A

similar separatrix between e3c and e5c is the curve

(3.21) mc =
1− x/z

2− x/z
,

which is rewritten as

(3.22) 2yz = z2 + xy.

Therefore, we use (u3c, v3c, a3c) when 2yz < z2 + xy and (u5c, v5c, a5c) otherwise.
The minimum expansion factor has a single maximum at the single intersection

of the three separatrices. The coordinates of the cross point are solved as

(3.23) (x/z)MAX = (mc)MAX =
3−

√
5

2
= 0.3819660....

This means that

(3.24) (y/z)MAX = 1− (x/z)MAX =

√
5− 1

2
= 0.6180340...,

and associates with the value of the expansion factor

(3.25) eMAX = 9− 4
√
5 = 0.05572809....

Since (0.0557)6 ∼ 3.0×10−8, (0.0557)13 ∼ 5.0×10−17, and (0.0557)28 ∼ 9.6×10−35,
we anticipate that at most 6, 13, and 28 terms of the series expansion are enough
for the single, double, and quadruple precision computations.

A similar discussion can be applied to the quartet of e1, e3, e1c, and e3c which
we did not adopt. The maximum value of the minimum expansion factor be-
comes around 0.0317 in this case. See Figure 4. This time (0.0317)5 ∼ 3.2× 10−8,
(0.0317)11 ∼ 3.2×10−17, and (0.0317)23 ∼ 3.3×10−35. Then the expected numbers
of terms reduce to 5, 11, and 23, respectively. Nevertheless, the degree of reduction
is not large enough to compensate the complexity to evaluate the auxiliary inte-
grals in substantially two-dimensional arrays faced with the series expansions using
(u1, v1, a1) or (u1c, v1c, a1c).

At any rate, it is noteworthy that the so-called critical region where x/z and
y/z are small is well covered by the combination of the series expansions using
(u5, v5, a5) and its complement; rather, most difficult is the case of middle values
where x/z ∼ 0.38 and y/z ∼ 0.62.

3.6. Complete integrals. Let us consider how to compute the complete integrals
by the present formulation. For this purpose, we use the following formulas derived
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Figure 4. Small expansion factors along the main separatrix.
Shown are the curve of small expansion factors of the series ex-
pansions along the main separatrix x(y + z) = yz where e1 = e1c,
e3 = e3c, and e5 = e5c. The curves are plotted as functions of
mc ≡ (y − x)/(z − x). The crossing of the curve of e1 and that of
e3 occurs at (mc, e) ∼ (0.4868, 0.0317) while that of the curve of
e3 and that of e5 locates at (mc, e) ∼ (0.3820, 0.0557)

from the special addition formulas:

RF (0, y, z) = 2RF (xm, ym, zm) ,(3.26)

RD(0, y, z) = 2RD (xm, ym, zm) +
3

zm
√
z
,(3.27)

RJ (0, y, z, p) = 2RJ (xm, ym, zm, pm) +

(
3
√
p

)
RC

(
p (ym + zm) , p2m

)
,(3.28)

where

(3.29) xm ≡ √
yz, ym ≡ y + xm, zm ≡ z + xm, pm ≡ p+ xm,

are the modified parameters for complete integrals satisfying the order condition

(3.30) 0 ≤ xm ≤ ym ≤ zm.

Refer to Appendix B.3 for the derivation of the above formulas. They are also
special cases of the duplication theorems presented in §19.26 (iii) of [35]. Their
translation into classic forms become

K(m) = 2F (ϕm|m) ,(3.31)

E(m) = 2E (ϕm|m)−
(

m

1 + kc

)
,(3.32)

Π(n|m) = 2Π (ϕm, n|m) +

(
n√
nc

)
RC

(
nc (1 + kc)

2
, (nc + kc)

2
)
,(3.33)
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where

(3.34) kc ≡
√
mc =

√
1−m,

is the complementary modulus and

(3.35) ϕm ≡ tan−1

(
1√
kc

)
,

is the amplitude corresponding to the modified parameters.
The modified parameters, xm, ym, and zm, satisfy the condition to locate on the

main separatrix shown in Figure 3 as

(3.36)
ym − xm

zm − xm
−

(
xm

zm − xm

)2

=
y

z
−
(√

yz

z

)2

= 0.

Then the computation of the complete integrals can be performed by the series
expansions based on (u3, v3, a3) or on (u5, v5, a5) using the modified parameters.

3.7. Algorithm. Summarizing the results in the previous subsections, we present
here algorithms to compute the three elliptic integrals RF (x, y, z), RD(x, y, z), and
RJ (x, y, z, p) simultaneously. The reason why we compute them simultaneously is
that the core part of three procedures is the same, and therefore can be shared in
the simultaneous computation. Below, we assume that the input parameters are
already ordered as 0 ≤ x ≤ y ≤ z.

First, the complete integrals where x = 0 are computed from the given y, z, and
p by the following algorithm:

C1. Compute xm, ym, zm, and pm from y, z, and p by equation (3.29).
C2. If xm > (x/z)MAX zm where (x/z)MAX is given in equation (3.23), then

compute u3, v3, and a3 from xm, ym, and zm by equation (2.35). Else
compute u5, v5, and a5 from xm, ym, and zm by equation (2.37).

C3. Evaluate equations (2.31) through (2.33) using zm, pm, and thus computed
u3, v3, and a3 or u5, v5, and a5.

C4. Compute RC

(
p(ym + zm), p2m

)
and obtain the complete integrals from the

evaluated incomplete integrals by equations (3.26) through (3.28).

Next, the incomplete integrals are computed from the given x, y, z, and p as follows:

IC1. If x(y + z) < yz, then compute xc, yc, zc, and pc from x, y, z, and p by
equation (3.8) and copy them to the working parameters xw, yw, zw, and
pw. Else copy x, y, z, and p to the working parameters.

IC2. If xw

(
y2w + z2w

)
< zw

(
x2
w + y2w

)
, then compute u3, v3, and a3 from xw, yw,

and zw by equation (2.35). Else compute u5, v5, and a5 from xw, yw, and
zw by equation (2.37).

IC3. Evaluate equations (2.31) through (2.33) using zw, pw, and thus computed
u3, v3, and a3 or u5, v5, and a5.

IC4. If x, y, z, and p are used as the working parameters, return the evaluated
integrals. Else compute the associated complete integrals RF (0, y−x, z−x),
RD(0, y−x, z−x), and RJ(0, y−x, z−x, p−x) by calling the routine of com-
plete integrals, compute RC (yz(p− x), ppc), and transform the evaluated
integrals by the formulas given as equations (3.5) through (3.7).

The steps C2 and C3 are almost the same as IC2 and IC3, respectively.
In the above procedures, we need to compute the auxiliary integrals, RC(x, y) =

I01(x, y), I0k(x, y) for k ≥ 2, I011(x, y, z), and I0k1(x, y, z) for k ≥ 2. They are
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efficiently evaluated by the formulas given in Appendix A as equations (A.20),
(A.6), (A.12), and (A.13), respectively.

4. Numerical examples

In this section, we present the result of numerical examination on three points
of the new series expansions. First, in §4.1, we confirm the correctness of our
assumption on the nature of expansion factors in the worst case, namely at the
peak of the contour map of the minimum expansion factor shown in Figure 3.
Next, in §4.2, we observe the manner of convergence of the series expansions of the
three elliptic integrals in this worst case. Finally, in §4.3, we compare the errors of
the new series expansions near the logarithmic singularity with those of the existing
asymptotic expansions summarized in Appendix C.

4.1. Proximity of expansion factor. According to equation (2.9), the factors
of the series expansions, e, are functions of the index j as well as the integral
arguments x, y, z, and/or p. Also, they may depend on the kind of integrals, i.e.,
whether RF , RJ , or RD in general. However, in discussing the rate of convergence
of the series expansions in §2, we assumed that the expansion factor remains to
be constant independently with the index of terms and with the kind of integrals.
This is only a conjecture. Thus, first of all, we must examine the degree to which
this assumption is correct.

For this purpose, we numerically compute the ratio of adjacent terms of the series
expansions of RF (x, y, z), RD(x, y, z), and RJ (x, y, z, p) by using the transformed
parameters (u3, v3, a3) for the worst case, i.e., at the maximum peak in the contour
map of the minimum expansion factor, Figure 3. For simplicity, we set z = 1 and
choose p arbitrary. Then the input arguments become

(4.1) x =
3−

√
5

2
, y =

−1 +
√
5

2
, z = 1, p =

1

2
,

where the last numerical value was arbitrary. These lead to the transformed pa-
rameters and the estimated expansion factor as

(4.2) u3 =
3−

√
5

2
, v3 =

1 +
√
5

4
, a3 =

−7 + 3
√
5

8
, e3 = 9− 4

√
5.

Our assumption in §2 is that the expansion factor, e, is (1) independent on the
index of terms in the series expansion, and (2) common to all three integrals. In
order to examine the validity of this assumption, we prepared Figure 5 showing the
ratio, to this assumed value e3, of the actual magnitude ratios of the adjacent two
terms in the series expansions adopted such as

rk ≡
∣∣∣∣
{(

−1/2
k

)
ak3I0,2k+1 (u3, v3)

}/{(
−1/2
k − 1

)
ak−1
3 I0,2k−1 (u3, v3)

}∣∣∣∣
=

(2k − 1) |a3| I0,2k+1 (u3, v3)

2kI0,2k−1 (u3, v3)
,

(4.3)

for RF . The figure indicates that all the actual ratios are smaller than the estimated
expansion factor for the index up to 10. This means that all three series converge
a little faster than expected.
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Figure 5. Proximity of expansion factor: worst case. Shown are
the ratio of the magnitude ratio of the adjacent two terms in the
series expansion to its estimate value. Considered is the worst
case in the selected series expansion where x ∼ 0.382, y ∼ 0.618,
z = 1, and p = 1/2. The series expansions are those using the
linear remainder of the first type with the transformed parameters
and the estimated expansion factor: u3 ∼ 0.382, v3 ∼ 0.809, and
a3 ∼ −0.0365, e3 ∼ 0.0557.

4.2. Manner of convergence. Now that the assumption on the estimated ex-
pansion factor is positively confirmed in the previous subsection, we shall examine
the rate of convergence of the series expansions we developed. As their represen-
tative, we again select the same worst case examined in the previous subsection.
The numerical values of the integrals in double precision are computed by means
of Carlson’s duplication algorithms [9, 12, 37] as

RF (x, y, z) = 1.2526492359292611,(4.4)

RD(x, y, z) = 1.4936381715116946,(4.5)

RJ(x, y, z, p) = 2.2867715735391876.(4.6)

Table 1 lists the relative errors of the three integrals evaluated by the series ex-
pansion formulas given in equations (2.31) through (2.33) using the transformed
parameters already described in the previous subsection. The relative errors de-
crease monotonically with respect to the number of terms. The measured errors
coincide with those expected from the next term in the series expansion at the pre-
cision shown here. The table shows that the necessary minimum number of terms
of the series expansions is 5 and 11 in the single and double precision environments,
respectively. They are a little smaller than our previous estimate provided in §3.5.
This is because the actual magnitude of each term in the series decrease a little
faster than expected as we observed in the previous subsection.



SERIES EXPANSIONS OF SYMMETRIC ELLIPTIC INTEGRALS 977

Table 1. Manner of convergence: worst case. Illustrated are the
relative errors of the truncated series expansions of three symmetric
elliptic integrals, RF (x, y, z), RD(x, y, z), and RJ (x, y, z, p), where
x ∼ 0.382, y ∼ 0.618, z = 1, and p = 1/2. The integral values are
RF ∼ 1.253, RD ∼ 1.494, and RJ ∼ 2.287.

j ΔRF /RF ΔRD/RD ΔRJ/RJ

0 6.5E-03 1.3E-02 1.4E-02
1 1.6E-04 3.4E-04 4.0E-04
2 5.2E-06 1.2E-05 1.4E-05
3 2.0E-07 4.6E-07 5.6E-07
4 8.1E-09 1.9E-08 2.3E-08
5 3.5E-10 8.3E-10 1.0E-09
6 1.6E-11 3.8E-11 4.7E-11
7 7.3E-13 1.8E-12 2.2E-12
8 3.4E-14 8.2E-14 1.1E-13
9 1.4E-15 3.3E-15 6.0E-15
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g 1

0|
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/F
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log10mc

Error of Asymptotic Expansions along Main Separatrix

BF1

BF2

BF3

BF4

CG1

CG2

KS1

KS2F1

F2

F3

Figure 6. Relative errors of asymptotic expressions of F (ϕ|m)
along the main separatrix. Shown are the relative errors of the ap-
proximate expansions of F (ϕ|m) along the main separatrix, where

ϕ = tan−1
√
1/(1−m). The errors are illustrated as functions of

mc in a log-log manner.

4.3. Asymptotic expansions around logarithmic singularity. As we stated
in §1, the recent studies on the series expansion of elliptic integrals are focused on
their asymptotic form in the so-called critical region where x/z, y/z, and/or p/z
are small. This condition is translated in terms of classic arguments as ϕ ≈ π/2,
m ≈ 1, and/or n ≈ 1, and therefore c ≡ cosϕ ≈ 0, mc ≡ 1 − m ≈ 0, and/or
nc ≡ 1− n ≈ 0.
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Let us take F (ϕ|m) as an example. Its existing and new asymptotic expansions
are summarized in Appendix C. They are coded as (1) BF1 through BF4 for the
first through the fourth order classic expressions [2], (2) KS1 and KS2 for the first
and the second order expressions of [29], (3) CG1 and CG2 for the first and the
second order ones of [14], and (4) F1, F2, and F3 for the first, the second, and the
third order ones of the new expressions using (u5, v5, a5) derived in §2.5.

We do not show the results of those using (u1, v1, a1) here. This is partly because
their expressions become complicated and partly because they become almost the
same as those based on (u5, v5, a5) near the singularity. The superiority of the
expansion using (u1, v1, a1) becomes eminent in the noncritical region such as when
mc > 10−3 along the main separatrix.

Figure 6 shows the relative errors of these approximate expressions along the
main separatrix as functions of mc in a log-log manner. This is the worst case for
the expressions other than CG1 and CG2. The errors illustrated in the figure are
roughly ordered as

|ΔFF3| 
 |ΔFKS2| 
 |ΔFF2| < |ΔFBF4| 
 |ΔFBF3| < |ΔFKS1|

 |ΔFF1| < |ΔFBF2| < |ΔFCG2| 
 |ΔFBF1| < |ΔFCG1| ,

(4.7)

near the logarithmic singularity mc = c = 0. Figure 6 illustrates the result only
along the main separatrix where mc tan

2 ϕ = 1, and therefore

(4.8) c = ccrit ≡
√

kc
1 + kc

.

We observe the same tendency when c is smaller than this critical value while the
error magnitude decreases significantly when c/ccrit → 0. If c > ccrit, on the other
hand, the complementary expressions show the similar inequalities.

The great inequality sign, 
, in equation (4.7) indicates that the power law
index with respect to kc ≡

√
mc is different before and after the sign. For example,

FCG2, FBF2, and FF1 are correct up to the order of kc. Meanwhile, FKS1 and FBF3

are so up to the order of k2c . As for the magnitude of proportional coefficients of
the leading error term among the asymptotic expressions of the same power law
index, we confirm that the new ones are the least, the classic ones are the second
least, then come those of Karp and Sitnik, and those of Carlson and Gustafson.

Noteworthy is the smallness of the error constants of the new asymptotic expres-
sions in the noncritical region, say when mc > 10−3 along the main separatrix. See
Figure 6 again. As a result, some of the new expressions become better than those
of the higher power law index for the purpose of low precision approximation. For
example, the error of FF2 of the order of k4c is smaller than that of FKS2 of the
order of k5c in the single precision environment, namely when |ΔF/F | ≥ 10−7.

5. Conclusion

We discussed a general formulation to construct the series expansions of an el-
liptic integral by using the binomial expansion of the reciprocal square root in
§2. In the case of Carlson’s standard symmetric elliptic integrals, RF (x, y, z),
RD(x, y, z), and RJ (x, y, z, p), we split the given cubic polynomial in the square
root, P (t) = (t + x)(t + y)(t + z), into its main part, P0(t), and the remainder,
ΔP (t), in several ways. Then we developed 15 kinds of their series expansions.
Four of them are essentially the same as the classic expansions given in the litera-
ture. Meanwhile the other eleven are new.
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Next, in §3, by utilizing the special addition formulas of the integrals, we ob-
tained the complementary series expansions for each of the above 15 ones. Thus we
have 30 different series expansions in total for each of RF (x, y, z), RD(x, y, z), and
RJ (x, y, z, p). Then we select four of them as the best formulas after considering the
balance between the rate of convergence and the amount of computational labor.

They are the series expansions derived from the splitting with the linear remain-
der of the first type case A such that P0(t) = (t+ u)(t+ v)2 and ΔP (t) = a(t+ u)
as

RF (x, y, z) =

∞∑
j=0

(
−1/2
j

)
ajI0,2j+1(u, v)(5.1)

= I01(u, v)−
a

2
I03(u, v) +

3a2

8
I05(u, v)− · · · ,

RD(x, y, z) = 3
∞∑
j=0

(
−1/2
j

)
ajI0,2j+1,1(u, v, z)(5.2)

= 3I011(u, v, z)−
3a

2
I031(u, v, z) +

9a2

8
I051(u, v, z)− · · · ,

RJ (x, y, z, p) = 3

∞∑
j=0

(
−1/2
j

)
ajI0,2j+1,1(u, v, p)(5.3)

= 3I011(u, v, p)−
3a

2
I031(u, v, p) +

9a2

8
I051(u, v, p)− · · · ,

where Ijk(x, y) and Ijk�(x, y, z) are the auxiliary symmetric integrals we introduced.
The auxiliary integrals are all elementary functions as explained in Appendix A,
where we provided practical procedures to compute them.

Here u, v, and a are the newly introduced parameters. They are uniquely trans-
formed from the input parameters x, y, and z and have no relations with p. The
transformed parameters of the selected four series expansions are explicitly ex-
pressed as functions of x, y, and z as

(u3, v3, a3) =

(
x,

y + z

2
,
−(z − y)2

4

)
,(5.4)

(u5, v5, a5) =

(
z,

x+ y

2
,
−(y − x)2

4

)
,(5.5)

and their complements

(u3c, v3c, a3c) =

(
(y − x)(z − x), yz − x(y + z)

2
,
−x2(z − y)2

4

)
,(5.6)

(u5c, v5c, a5c) =

(
y(z − x), (y − x)

(
z − x

2

)
,
−x2(y − x)2

4

)
.(5.7)

Thus we evaluate the elliptic integrals by choosing one of these four series expansions
giving the least errors. By using the approximate forms of the expansion factors,
we analytically specified its rule of selection in a simple way as described in §3.7.

Also, we obtained the series expansions of the complete integrals where x = 0 by
applying these formulations to the variation of duplication formulas which express
the complete integrals in terms of the incomplete ones with the modified parameters
xm =

√
yz, ym = y+xm, zm = z+xm, and pm = p+xm. Thus the formulation has
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been completed within the framework of the series expansions. As a by-product, we
obtained an efficient asymptotic expansion of the integrals around their logarithmic
singularities using the transformed parameter sets, (u5, v5, a5) or (u5c, v5c, a5c) as
illustrated in Appendix C.4.

Then, we conducted some numerical experiments in order to confirm the effec-
tiveness of the new series expansions obtained in §4. Table 1 indicates that at most
5 and 11 terms of the suitably chosen series expansions are sufficient to evaluate
the integrals in the single and double precision environments, respectively. This is
the same for the case of complete integrals.

Finally, we should stress that the development of new series expansions greatly
owes to the symmetric nature of Carlson’s elliptic integrals. Indeed, the series
expansions based on the transformed parameters mixing cos2 ϕ ≡ x/z and m ≡
(z − y)/(z − x) in a complicated manner like (u1, v1, a1) would not be hinted from
the classic expressions of the integrals treating ϕ and m in an asymmetric manner.

APPENDIX

Appendix A. Computation of auxiliary symmetric integrals

Let us describe how to compute efficiently the auxiliary symmetric integrals:

Ij(x) ≡
1

2

∫ ∞

0

dt

(t+ x)j
√
t+ x

,(A.1)

Ijk(x, y) ≡
1

2

∫ ∞

0

dt

(t+ x)j(t+ y)k
√
t+ x

,(A.2)

Ijk�(x, y, z) ≡
1

2

∫ ∞

0

dt

(t+ x)j(t+ y)k(t+ z)�
√
t+ x

,(A.3)

where j is a nonnegative integer and k and � are positive integers. These integrals
are all elementary functions. Note that I0(x) is not needed for our calculations.

A.1. Direct expressions. Some integrals are directly expressed in terms of ele-
mentary functions as

Ij(x) =
1

(2j − 1)xj−1
√
x
, (j = 1, 2, · · · )(A.4)

I01(x, y) = RC(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1√
x−y

log
(√

x+
√
x−y√
y

)
(x > y),

1√
x

(x = y),

1√
y−x

tan−1
√

y−x
x (x < y).

(A.5)
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A.2. Forward recurrence formulas. The remaining integrals are efficiently com-
puted by the forward recurrence formulas when the arguments are sufficiently dif-
ferent from each other:

I0k(x, y) =
1

(2k − 2)(y − x)

[
(2k − 3)I0,k−1(x, y)(A.6)

−
( √

x

yk−1

)]
, (k = 2, 3, · · · ),

Ijk(x, y) =
Ij,k−1(x, y)− Ij−1,k(x, y)

y − x
, (j, k = 1, 2, · · · ),(A.7)

Ijk�(x, y, z) =
Ij,k,�−1(x, y, z)− Ij,k−1,�(x, y, z)

z − y
, (j = 0, 1, · · · ; k, � = 1, 2, · · · ),

(A.8)

Ijk�(x, y, z) =
Ij,k,�−1(x, y, z)− Ij−1,k,�(x, y, z)

z − x
, (j, � = 1, 2, · · · ; k = 0, 1, · · · ),

(A.9)

where

(A.10) Ij0(x, y) = Ij(x), Ijk0(x, y, z) = Ijk(x, y), Ij0�(x, y, z) = Ij�(x, z).

For example, we obtain I11(x, y) and I0k1(x, y, z) as

I11(x, y) =
I1(x)− I01(x, y)

y − x
=

1

y − x

(
1√
x
−RC(x, y)

)
,(A.11)

I011(x, y, z) =
I01(x, y)− I01(x, z)

z − y
= −

(
RC(x, z)−RC(x, y)

z − y

)
,(A.12)

I0k1(x, y, z) =
I0k(x, y)− I0,k−1,1(x, y, z)

z − y
, (k = 2, 3, · · · )(A.13)

where we used the direct expression of Ij(x) given in equation (A.4).
The last two formulas of Ijk�(x, y, z), equations (A.8) and (A.9), are redundant

in some cases. In order to minimize the information loss, it is better to select the
formula with the larger denominator in redundant cases. Thus we choose equation
(A.8) when |z − y| > |z − x| and equation (A.9) otherwise.

A.3. Series expansions. The forward recurrence formulas suffer cancellation
problems when some of the parameters are similar. These are overcome by us-
ing the series expansions. For this purpose, we consider the following binomial
expansion:

(A.14)
1

(t+ y)k
=

1

[(t+ x) + (y − x)]k
=

1

(t+ x)k

∞∑
q=0

(
k + q − 1

q

)(
x− y

t+ x

)q

.

Thus the integrals containing the factor 1/(t+ y)k can be expanded when x ≈ y as

Ijk(x, y) =
∞∑
q=0

(
k + q − 1

q

)
(x− y)qIj+k+q(x),(A.15)

Ijk�(x, y, z) =

∞∑
q=0

(
k + q − 1

q

)
(x− y)qIj+k+q,�(x, z).(A.16)
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Similarly, we obtain the expansions of Ijk�(x, y, z) as

(A.17) Ijk�(x, y, z) =
∞∑
q=0

(
�+ q − 1

q

)
(x− z)qIj+�+q,k(x, y),

when |z − x| 
 x,

(A.18) Ijk�(x, y, z) =
∞∑
q=0

(
�+ q − 1

q

)
(y − z)qIj,k+�+q(x, y),

when |z − y| 
 y, and
(A.19)

Ijk�(x, y, z) =
∞∑
q=0

q∑
r=0

(
k + q − r − 1

q − r

)(
�+ r − 1

r

)
(x− y)q−r(x− z)rIj+k+�+q(x),

when |x− y| 
 x and |x− z| 
 x.
As for the practical judgment condition to switch from the forward recurrence

formula to the series expansion, we recommend setting the relative smallness as
1/8. For example, we apply the series expansion of Ijk(x, y) when |x− y| < x/8.

A.4. Practical computation of RC(x, y). The first expansion formula, equation
(A.15), includes the case of RC(x, y) = I01(x, y). Then we use the following expres-
sion for the practical calculation of RC(x, y):

(A.20) RC(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1√
x−y

log
(√

x+
√
x−y√
y

)
(y ≤ (7/8)x),

1√
y−x

tan−1
√

y−x
x (y ≥ (9/8)x),

1√
x

∑Q
q=0

1
2q+1

(
x−y
x

)q
(otherwise).

The number of terms in the above series expansion Q must be 6, 15, and 35 in
the single, double, and quadruple precision environments, respectively, in order to
assure that the truncation errors are less than the machine epsilon. By comparing
with the quadruple precision computations, we confirmed that these critical values
are correct in the single and double precision environments for RC(x, y).

This combination of the direct approach and the series expansion method to
compute RC(x, y) is around three times faster than Carlson’s duplication method
[11, 12]. See Table 2. It compares the CPU times of these two methods to compute
RC(x, y). The CPU times are measured at a PC with the Intel Core Duo processor,
averaged for x and y in the unit box (0, 1)× (0, 1), and scaled by that to compute
the double precision sine function.

A.5. Backward recurrence formulas. The series expansion methods are gener-
ally much slower than the direct computation method or its combination with the
forward recurrence formulas. An alternative solution to the cancellation problem
is the usage of backward recurrence formulas:

I0k(x, y) =
1

2k − 1

(
2k(y − x)I0,k+1(x, y) +

√
x

yk

)
, (k = 1, 2, · · · ),(A.21)

Ijk(x, y) = Ij−1,k+1(x, y) + (y − x)Ij,k+1(x, y), (j, k = 1, 2, · · · ),(A.22)

Ijk�(x, y, z) = Ij,k+1,�−1(x, y, z)− (z − y)Ij,k+1,�(x, y, z),(A.23)

Ijk�(x, y, z) = Ij+1,k,�−1(x, y, z)− (z − x)Ij+1,k,�(x, y, z).(A.24)
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Table 2. Averaged CPU times to compute RC(x, y). Listed are
the CPU times of two methods to compute RC(x, y) in the single
and double precision environments: the duplication method de-
scribed in [12] and the combined formula of the direct expressions
and the series expansion explained in equation (A.20) in Appen-
dix A.4. The CPU times are averaged for x and y in the unit box
(0, 1)×(0, 1). The necessary minimum numbers of the terms of the
series are 6 and 15 in the single and double precision computations.
The unit of CPU time is that to compute the double precision sine
function.

Method Reference Single Double

Duplication [11, 12] 6.90 7.44
Direct Expression + Series Expansion This article 2.36 2.91

Again, the index j is a nonnegative integer and k and � are positive integers in the
last two formulas. In order to use these recurrence formulas, one must prepare the
integrals for some large indices as the starting values of the backward recurrence.

A.6. Sample usage of backward recurrence formulas. As an illustration to
use the backward recurrence formulas, we describe how to compute efficiently a
set of I0j(x, y) for j = 1, 2, · · · , J when x ≈ y. In this case, we first evaluate the
integral with the largest index by a truncation of equation (A.15) as

(A.25) I0J (x, y) =
1

xJ−1
√
x

Q∑
q=0

1

2J + 2q − 1

(
x− y

x

)q

,

where Q is the truncation index. If |x − y| < x/8, the necessary minimum of
Q to assure the machine epsilon accuracy is at most 6, 15, and 35 in the single,
double, and quadruple precision environments, respectively. In order to minimize
the round-off errors, the summation should be done in the decreasing order with
respect to q. Finally, we deploy equation (A.21) in order to obtain the remaining
integrals I0j(x, y) in the reverse order from j = J − 1 down to j = 1.

As another example, let us calculate a set of I0j1(x, y, z) for j = 1, 2, · · · , J
when y ≈ z. In this case, we first fix a certain large number Q and prepare I0j(x, y)
for j = 1, 2, · · · , J + Q + 1. The preparation is done by the combination of the
series expansions and the backward recurrence formulas as described in the above
if x ≈ y, say |x− y| < x/8. Otherwise we compute I01(x, y) by equation (A.5) and
I0j(x, y) for j = 2, 3, · · · , J +Q + 1 by using equation (A.6). Second, we evaluate
the integral with the largest index by a truncation of equation (A.16) as

(A.26) I0J1(x, y, z) =

Q∑
�=0

(y − z)qI0,J+q+1(x, y).

Finally, we obtain the remaining integrals I0j1(x, y, z) for j = 1, 2, · · · , J − 1 by
using equation (A.23) as

(A.27) I0j1(x, y, z) = I0,j+1(x, y) + (y − z)I0,j+1,1(x, y, z),

in the reverse order of j.
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Appendix B. Derivation of special addition formulas

Let us derive the special addition formulas of the symmetric elliptic integrals
and their variations quoted in the main text from their general addition theorems.

B.1. General addition theorems. The general addition theorems of the sym-
metric elliptic integrals are found as the formulas 19.26.1, 19.26.7, and 19.26.9 of
[35] as

RF (x+ λ, y + λ, z + λ) +RF (x+ μ, y + μ, z + μ) = RF (x, y, z),(B.1)

RD(x+ λ, y + λ, z + λ) +RD(x+ μ, y + μ, z + μ)(B.2)

= RD(x, y, z)−
(

3√
z(z + λ)(z + μ)

)
,

RJ (x+ λ, y + λ, z + λ, p+ λ) +RJ(x+ μ, y + μ, z + μ, p+ λ)(B.3)

= RJ (x, y, z, p)− 3RC(γ − δ, γ),

where: (1) x and y are nonnegative, (2) z and λ are positive, (3) μ is uniquely
determined from x, y, z, and λ as

(B.4) μ ≡
(√

xyz +
√
(x+ λ)(y + λ)(z + λ)

λ

)2

− λ− (x+ y + z),

as given as the formula 19.26.5 of [35], and (4) γ and δ are cubic polynomials of p
defined as

γ ≡ p(p+ λ)(p+ μ),(B.5)

δ ≡ (p− x)(p− y)(p− z),(B.6)

as given as the formula 19.26.10 of [35]. The difference of γ and δ is quadratic with
respect to p as

(B.7) γ − δ = (λ+ μ+ x+ y + z)p2 + (λμ− xy − yz − zx)p+ xyz.

B.2. Special addition formulas. By setting x = 0 and introducing the new
variables as

(B.8) X ≡ λ, Y ≡ y + λ, Z ≡ z + λ, P ≡ p+ λ,

we rewrite μ, γ, and γ − δ as

μ =
Y Z

X
−X − (Y + Z − 2X) =

Xc

X
,(B.9)

γ = (P −X)P (P −X + μ) =
PPc(P −X)

X
,(B.10)

γ − δ = (λ+ μ+ y + z)p2 + (λμ− yz)p(B.11)

=

(
Xc

X
+ Y + Z −X

)
(P −X)2 =

Y Z(P −X)2

X
,

where we introduced a pair of complementary parameters as

(B.12) Xc ≡ (Y −X)(Z −X), Pc ≡ X(P −X) + (Y −X)(Z −X),

and used a relation

(B.13) λμ = Xc = yz,
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which holds when x = 0. Then we obtain

y + μ = Y −X +
Xc

X
=

Yc

X
, z + μ = Z −X +

Xc

X
=

Zc

X
,

p+ μ = P −X +
Xc

X
=

Pc

X
,

(B.14)

where

(B.15) Yc ≡ Z(Y −X), Zc ≡ Y (Z −X),

are another pair of complementary parameters. Using these expressions, we rewrite
the general addition theorems as

RF (X,Y, Z) = RF (0, Y −X,Z −X)−RF

(
Xc

X
,
Yc

X
,
Zc

X

)
,(B.16)

RD(X,Y, Z) = RF (0, Y −X,Z −X)(B.17)

−RD

(
Xc

X
,
Yc

X
,
Zc

X

)
− 3

√
X

(Z −X)ZZc
,

RJ (X,Y, Z, P ) = RJ (0, Y −X,Z −X,P −X)(B.18)

−RJ

(
Xc

X
,
Yc

X
,
Zc

X
,
Pc

X

)
− 3RC

(
Y Z(P −X)2

X
,
PPc(P −X)

X

)
.

Utilizing the scalar multiplication formulas of the integrals

RF (rx, ry, rz) =
RF (x, y, z)√

r
, RC(rx, ry) =

RC(x, y)√
r

,

RD(rx, ry, rz) =
RD(x, y, z)

r
√
r

, RJ (rx, ry, rz, rp) =
RJ (x, y, z, p)

r
√
r

,

(B.19)

given as the formulas 19.20.1 and 19.20.6 of [35], we further rewrite the above
expressions of the integrals as

RF (X,Y, Z) = RF (0, Y −X,Z −X)−
√
XRF (Xc, Yc, Zc) ,(B.20)

RD(X,Y, Z) = RD(0, Y −X,Z −X)−X
√
XRD (Xc, Yc, Zc)(B.21)

−
(

3

Z −X

)√
X

Y Z
,

RJ (X,Y, Z, P ) = RJ (0, Y −X,Z −X,P −X)−X
√
XRJ (Xc, Yc, Zc, Pc)(B.22)

−3

√
X

P −X
RC (Y Z(P −X), PPc) .

These are the formulas to compute incomplete integrals from the complete and
another incomplete ones. If we here rename X, Y , Z, and P as x, y, z, and p,
respectively, the formulas become the same as equations (3.5) through (3.7) given
in the main text.

B.3. Variation of special addition formulas. In the special addition formu-
las, let us further assume that λ = μ. Thanks to equation (B.4), the additional
assumption is rewritten in terms of λ, y, and z as

(B.23) λ =
(λ+ y)(λ+ z)

λ
− λ− (y + z).
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This turns out to be a pure quadratic equation with respect to λ and is solved as

(B.24) λ =
√
yz,

since λ > 0. Refer to the discussion in §19.26 (ii) of [35].
Then the expressions of γ − δ and γ change as

γ − δ = p2(2λ+ y + z) + p(λ2 − yz) = p2
(√

y +
√
z
)2

,(B.25)

γ = p(p+ λ)2 = p(p+
√
yz)2.(B.26)

Substituting these expressions into the special addition formulas derived in the
previous subsection, we obtain their variations to compute the complete integrals
from the incomplete ones as

RF (0, y, z) = 2RF (
√
yz, y +

√
yz, z +

√
yz) ,(B.27)

RD(0, y, z) = 2RD (
√
yz, y +

√
yz, z +

√
yz) +

3(
z +

√
yz

)√
z
,(B.28)

RJ (0, y, z, p) = 2RJ (
√
yz, y +

√
yz, z +

√
yz, p+

√
yz)(B.29)

+

(
3
√
p

)
RC

(
p
(√

y +
√
z
)2

, (p+
√
yz)2

)
,

where we used the scalar multiplication theorem in rewriting RC in the last ex-
pression. By introducing the modified parameters as defined in equation (3.29), we
arrive the same expressions as equations (3.26) through (3.28).

Appendix C. Asymptotic expressions of F (ϕ|m)

Let us summarize the existing and new asymptotic expansions of F (ϕ|m) around
its logarithmic singularity, ϕ = π/2 and m = 1. The expressions below are tagged
as: (1) BF1 through BF4 for the classic expressions given in [2], (2) KS1 and KS2
for the expressions of [29], (3) CG1 and CG2 for those of [14], and (4) F1 through
F3 for the new ones ones described in §2.5.

C.1. Classic expressions. There exists a classic series expansion of the incom-
plete elliptic integral of the first and the second kinds with respect to mc tan

2 ϕ as
we noted in §2.8. In case of F (ϕ|m), its first four terms are reproduced from the
formula 902.01 in [2] as

FBF1 = log

(
1 + s

c

)
,(C.1)

FBF2 =
(
1 +

mc

4

)
log

(
1 + s

c

)
− mcs

4c2
,(C.2)

FBF3 =

(
1 +

mc

4
+

9m2
c

64

)
log

(
1 + s

c

)
− mcs

4c2

(
1 +

9mc

16

)
+

3m2
cs

32c4
,(C.3)

FBF4 =

(
1 +

mc

4
+

9m2
c

64
+

25m3
c

256

)
log

(
1 + s

c

)
(C.4)

−mcs

4c2

(
1 +

9mc

16
+

25m2
c

256

)
+

3m2
cs

3

32c4

(
1 +

25mc

36

)
− 5m3

cs
5

96c6
,

where mc ≡ 1−m is the complementary parameter, and

(C.5) c ≡ cosϕ, s ≡ sinϕ =
√
1− c2,
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Near the logarithmic singularity, mc and c are small while s is close to unity.
The above approximations are effective when mc tan

2 ϕ < 1, and therefore c <√
kc/ (1 + kc) where kc ≡

√
mc is the complementary modulus. Ifmc tan

2 ϕ > 1, on
the other hand, the complementary forms become efficient. We shall not reproduce
them here since they are easily derived from the special addition formulas such as
the formula 116.01 of [2].

C.2. Expressions of Karp and Sitnik. Recently, Karp and his colleagues ob-
tained the expressions similar to but slightly different from the classic expansions
[29, 28]. The main formulas for F (ϕ|m) provided as equations (67) and (68) in [29]
are rewritten as

FKS1 =
(
1 +

mc

4

)
log

(
1 + s

c

)
+

1

s
log

(
2c

c+ d

)
,(C.6)

FKS2 =

(
1 +

mc

4
+

9m2
c

64

)
log

(
1 + s

c

)
(C.7)

+
1

s

(
1 +

mc

4
− c2

2s2

)
log

(
2c

c+ d

)
− mcd

4s(c+ d)
,

where

(C.8) d ≡
√
1−m sin2 ϕ =

√
mc +mc2,

is another small quantity in the critical region. We do not quote their complements
given as equations (69) and (71) in [29].

C.3. Expressions of Carlson and Gustafson. On the other hand, Carlson and
Gustafson obtained different expressions in [13, 14]. They are rewritten in the case
of F (ϕ|m) as

FCG1 = s log

(
4

c+ d

)
,(C.9)

FCG2 =
(
1 +

w

4

)
s log

(
4

c+ d

)
+

s (cd− w)

4
,(C.10)

where

(C.11) w ≡ c2 + d2,

is a small quantity of the second order in the critical region. These expressions are
effective in all the parameter domain. This uniformity is a noteworthy property of
them.

C.4. New expressions. Our recipe in this case is the combination of the series
expansions using (u5, v5, a5) and its complement (u5c, v5c, a5c) depending on the
ratio x(y + z)/(yz) as explained in §3.7. The former expansion of RF becomes

(C.12) RF = I01 (u5, v5)−
(a5
2

)
I03 (u5, v5) +

(
3a25
8

)
I05 (u5, v5) + · · · .
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Since u5 > v5, the expression of I01 (u5, v5) = RC (u5, v5) reduces to that using
the logarithm given in equation (A.5). Then the first three approximations of the
corresponding series expansion of F (ϕ|m) become

FF1 =

√
2

2−mc
log

(√
2 +

√
2− w√
w

)
,(C.13)

FF2 =

(
1 +

3m2
cs

4

16(2− w)2

)√
2

2−mc
log

(√
2 +

√
2− w√
w

)
(C.14)

+
m2

cs
5

8w(2− w)

(
2

w
− 3

2− w

)
,

FF3 =

(
1 +

3m2
cs

4

16(2− w)2
+

105m4
cs

8

1024(2− w)4

)√
2

2−mc
log

(√
2 +

√
2− w√
w

)
(C.15)

+
m2

cs
5

8w(2− w)

(
2

w
− 3

2− w

)

+
m4

cs
9

512w(2− w)

(
48

w3
− 56

w2(2− w)
+

70

w(2− w)2
− 105

(2− w)3

)
.
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