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THE GENERALIZED POLARIZATION TENSORS

FOR RESOLVED IMAGING PART II: SHAPE AND

ELECTROMAGNETIC PARAMETERS RECONSTRUCTION

OF AN ELECTROMAGNETIC INCLUSION

FROM MULTISTATIC MEASUREMENTS

HABIB AMMARI, HYEONBAE KANG, EUNJOO KIM, AND JUNE-YUB LEE

Abstract. This paper deals with the problem of reconstructing the electro-
magnetic parameters and the shape of a target from multi-static response ma-
trix measurements at a single frequency. The target is of characteristic size less
than the operating wavelength. Using small-volume asymptotic expansions of
the measurements of high-order, we show how the electromagnetic parameters
and the equivalent ellipse of the target can be reconstructed. The asymptotic
expansions of the measurements are written in terms of the new concept of fre-
quency dependent polarization tensors. Moreover, we extend the optimization
approach proposed in Part I to image geometric details of an electromagnetic
target that are finer than the equivalent ellipse. The equivalent ellipse still pro-
vides a good initial guess for the optimization procedure. However, compared
to the conductivity case in Part I, the cost functional measures the discrepancy
between the computed and measured high-order frequency dependent polar-
ization tensors rather than between the generalized polarization tensors. The

main reason for such a modification of the cost functional is the fact that the
(measured) frequency dependent polarization tensors can be easily obtained
from multistatic measurements by solving a linear system while the deriva-
tion of the generalized polarization tensors from measurements requires more
delicate treatment. The proposed methods are numerically implemented to
demonstrate their validity and efficiency.

1. Introduction

In this paper we deal with the problem of imaging and characterizing an elec-
tromagnetic target using multistatic response (MSR) matrix measurements at a
single frequency. The size of the target is supposed to be less than the operating
wavelength. Moreover, we assume that we have coincident transmitter and receiver
arrays of N elements. The multistatic response (MSR) matrix is the transmit-
receive responses of this array.

Our aim in this paper is to exploit the possibility of imaging fine details of the
shape of the target and reconstructing its material properties (electric permittiv-
ity and magnetic permeability) as well by using the new notion of higher-order
frequency-dependent polarization tensors (FDPTs). A remarkable feature of our
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method is the fact that these FDPTs can be obtained from the MSR measurements
by just solving a linear system.

There have been significant works on imaging small acoustic and electromagnetic
targets from the MSR matrix. Ammari et al. [3, 4] proposed a MUSIC (which
stands for MUltiple SIgnal Classification) type algorithm based on the asymptotic
expansion formula of [21], and successfully reconstructed the location of the target.
See also the recent papers [2, 12] for wave imaging of electromagnetic cracks. We
emphasize that in the above mentioned works the location and the polarization
tensor (PT) are reconstructed. The PT can be interpreted as the zero-frequency
limit of the first-order FDPT. The reconstructed PT provides geometric information
depicted by the equivalent ellipse or ellipsoid. The purpose of this paper is to extend
the method proposed in [9] in order to reconstruct electromagnetic parameters and
geometric information finer than the equivalent ellipse or ellipsoid. Compared to the
conductivity case in [9], the cost functional here measures the discrepancy between
the computed and measured high-order FDPTs rather than between the generalized
polarization tensors. The main reason for such a modification of the cost functional
is the fact that the (measured) frequency dependent polarization tensors can be,
as will be shown later, easily obtained from multistatic measurements by solving a
linear system while the derivation of the GPTs from MSR measurements requires
more delicate treatment.

To be more precise, let ε0 and μ0 be, respectively, the electric permittivity and
the magnetic permeability of the free space and let ε and μ be those of the target.
Suppose that the target D is of the form

(1) D = δB + z,

where δ is a small parameter representing the characteristic size of the target, B is
a reference domain of volume 1 whose center of mass is the origin, and z indicates
the location of the target. The problem we consider is to reconstruct ε, μ, z, and
some geometric information on D such as its volume |D| and its shape.

Suppose that we have coincident transmitter and receiver arrays, say {y1, . . . , yN}.
Suppose also that the distance between the target and the array of transmitters
and receivers is much larger than the size of the target. At each point yi of the
transmitter the outgoing Green function is generated, and then the scattered wave
is recorded at the receiver yj for each j, which provides a MSR matrix of size N×N .

The basic idea for reconstructing the target is that the significant singular values
of the MSR matrix corresponding to a target of characteristic size less than a
wavelength are in fact functions of the high-order FDPTs associated to the target.
Indeed, the singular vectors are written in terms of the free space Green function
and its high-order derivatives on the array. These fine properties of the MSR matrix
allow imaging of fine shape details of the target as well as reliable reconstruction of
its physical parameters. In this connection, we refer to [23] for the analysis of the
MSR matrix under the Born approximation.

To see this quantitatively, we use the asymptotic formula obtained in [6]. This
asymptotic formula for the scattered wave as the size δ of the target tends to 0
contains higher-order terms and is written in terms of the FDPTs instead of the
PTs. This formula clearly reveals that the MSR matrix can be described approxi-
mately in terms of the Green function and its derivatives together with higher-order
FDPTs.
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To locate the target, we can use exactly the same estimator as in [3, 4, 18], which
peaks at the location of the target. This estimator is in fact a MUSIC (which stands
for MUltiple SIgnal Classification) imaging functional. For other direct algorithms,
we refer, for instance, to [22]. Once the target is located, then we can find high-
order FDPTs from the MSR matrix by solving a linear system. These FDPTs carry
information richer than the usual PTs. We are able to reconstruct electromagnetic
parameters from these terms. We also reconstruct geometric information finer than
the equivalent ellipse using an optimization procedure. The optimization procedure
uses the shape derivative formula of the PTs obtained in [9], which deals with the
closely related problem of reconstructing finer details of shape using high-order
PTs. Our work here can be seen as an extension of [9] to wave imaging.

As far as we know, it is for the first time that both physical parameters and
fine shape details of a target of a characteristic size smaller than the operating
wavelength are provided from MSR measurements. For extended targets, we refer
the reader to [17, 14, 19, 20, 1].

This paper is organized as follows. In Section 2 we formulate the model problem.
In Section 3, we review the asymptotic formula for the scattered wave. For that
purpose we discuss the notions of high-order PTs and FDPTs. We also analyze the
structure of the MSR matrix using our asymptotic formalism. Section 4 is to present
the reconstruction methods for the location, the electromagnetic parameters and
fine shape details. Section 5 is devoted to results of numerical simulations. The
paper ends with a discussion in Section 6.

2. Problem formulation

Recall that μ0 > 0 and ε0 > 0 denote the magnetic permeability and electrical
permittivity of the free space, respectively, and μ > 0 and ε > 0 those of the target
D. We assume that D is a bounded C2-domain in R

d, d = 2 or 3. We denote by
ν(x) the outward normal to ∂D at x.

Let ω > 0 denote the frequency and set

k0 = ω
√
ε0μ0 and k = ω

√
εμ.

Let Γk0(x) be the outgoing Green function for Δ + k20 in R
d corresponding to a

Dirac mass at 0. That is, Γk0 is the solution to(
Δ+ k20

)
Γk0(x) = −δ0(x) in R

d,

subject to the outgoing radiation condition. In three dimensions, the Green function
is given by

Γk0(x) =
eik0|x|

4π|x| , x �= 0,

while in two dimensions,

Γk0(x) =
i

4
H

(1)
0 (k0|x|) , x �= 0,

where H
(1)
0 is the Hankel function of the first kind of order zero.
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Suppose that D is illuminated by a time-harmonic wave generated at the point
source y with the operating frequency ω. In this case, the incident field is given by

Uy(x) = Γk0(x, y) := Γk0(x− y),

and the field perturbed in the presence of the target is the solution to the following
transmission problem:

(2) ∇ ·
(

1

μ0
χ(Rd \D) +

1

μ
χ(D)

)
∇uy + ω2

(
ε0χ(R

d \D) + εχ(D)
)
uy = − 1

μ0
δy,

and is subject to the outgoing radiation condition, or equivalently,

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δuy + k20uy = −δy in R
d \D,

Δuy + k2uy = 0 in D,

uy

∣∣
+
− uy

∣∣
− = 0 on ∂D,

1

μ0

∂uy

∂ν

∣∣∣∣
+

− 1

μ

∂uy

∂ν

∣∣∣∣
−
= 0 on ∂D,

uy satisfies the outgoing radiation condition.

Here δy is the Dirac mass at y and ∂/∂ν denotes the normal derivative on the
boundary ∂D. Throughout this paper, for a function u defined on R

d \ ∂D, we
denote

∂u

∂ν

∣∣∣
±
(x) := lim

t→0+
〈∇u(x± tν(x)), ν(x)〉, x ∈ ∂D,

if the limits exist. The notation u|± is understood likewise.
Suppose that we have coincident transmitter and receiver arrays {y1, . . . , yN} of

N elements, used to detect the target. In the presence of the target the scattered
field induced on the ith receiving element, yi, from the scattering of an incident
wave generated at yj can be expressed as follows:

(4) Aij := (uyj
− Uyj

)(yi), i, j = 1, . . . , N.

The problem we consider in this paper is to image the target D from the MSR
matrix A of entries Aij .

3. Asymptotic expansions

Suppose that the anomaly D is parameterized by (1). The purpose of this section
is to review the multipolar asymptotic expansions for the scattered field in terms
of the reference permittivity, the location, and the shape of the target D. This
expansion describes the perturbation of the solution caused by the presence of D.
We begin by reviewing the notions of high-order polarization tensors and frequency-
dependent polarization tensors. It is worth emphasizing that the regime where our
asymptotic results and reconstruction procedures hold is when the characteristic
size of the target is smaller than the wavelength Λ := 2π/k0 and much smaller than
the distance d between the target and the array. If the target is of size comparable
to the wavelength (say half of the wavelength), then the distance d should be much
larger than Λ. However, if δ is much smaller than Λ, then d could be comparable
to λ.
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3.1. High-order PTs and FDPTs. Since D = δB+ z, we consider the following
problem after scaling. For a multi-index α with |α| ≥ 0, let vα be the solution to

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv + (k0δ)
2v = 0 in R

d \B,

Δv + (kδ)2v = 0 in B,

v
∣∣
+
− v

∣∣
− = −xα on ∂B,

1

μ0

∂v

∂ν

∣∣
+
− 1

μ

∂v

∂ν

∣∣
− = − 1

μ0

∂xα

∂ν
on ∂B,

v satisfies the outgoing radiation condition.

Then vα can be represented using the single layer potentials as

(6) vα(x) =

{
Sk0δ
B [ψα](x), x ∈ R

d \B,

Skδ
B [φα](x), x ∈ B,

for some potentials ψα and φα belonging to L2(∂B). In fact, they are unique
solutions to the system of integral equations

(7)

⎧⎨
⎩

Skδ
B [φα]− Sk0δ

B [ψα] = xα,

1

μ

∂

∂ν
Skδ
B [φα]

∣∣
− − 1

μ0

∂

∂ν
Sk0δ
B [ψα]

∣∣
+

=
1

μ0

∂xα

∂ν
,

on ∂B.

The single layer potential Sk0δ
B is defined by

Sk0δ
B [φ](x) :=

∫
∂B

Γk0δ(x, y)φ(y)dσ(y), x ∈ R
d \B.

Similarly, we define Skδ
B .

Now let Γ be the fundamental solution to −Δ in R
d,

Γ(x) :=

⎧⎪⎨
⎪⎩

1

4π|x| , d = 3,

− 1

2π
log |x|, d = 2,

for |x| �= 0, and let S(0)
B be the single-layer potential associated with Γ.

Definition 3.1. The (usual) high-order polarization tensor (PT) associated with
B and the contrast μ0/μ, Mαβ = Mαβ(B, μ0/μ), is defined for multi-indices α and
β by

Mαβ :=

∫
∂B

ψ(0)
α (w)wβ dσ(w),

where ⎧⎨
⎩

S(0)
B [φ

(0)
α ]− S(0)

B [ψ
(0)
α ] = xα,

1

μ

∂

∂ν
S(0)
B [φ(0)

α ]
∣∣
− − 1

μ0

∂

∂ν
S(0)
B [ψ(0)

α ]
∣∣
+

=
1

μ0

∂xα

∂ν
,

on ∂B.

The high-order PTs have been extensively studied in [6, 8].
We now introduce the notion of frequency dependent polarization tensors.
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Definition 3.2. With the solution (φα, ψα) to (7), we define Wαβ = Wαβ(B, μ0

μ ,

k0δ, kδ) for multi-indices α and β by

(8) Wαβ =

∫
∂B

ψα(w)w
β dσ(w).

We call Wαβ the frequency dependent polarization tensor (FDPT).

For ease of notation, we sometimes use the notation Wαβ(B) when the focus is
only on the variation of B. It is worth emphasizing that Wαβ depends not only on
B but also k0, k, and δ and μ0/μ.

The following proposition from [6, 7] shows the limiting behavior of Wαβ as
δ → 0 and makes the connection between Wαβ and Mαβ .

Proposition 3.3. The FDPT Wαβ has the following asymptotic behavior as δ → 0:
If |α| ≥ 1 and |β| ≥ 1, then

(9) Wαβ(B,
μ0

μ
, k0δ, kδ) → Mαβ(B,

μ0

μ
) as δ → 0.

The proof of Proposition 3.3 is more involved in two dimensions than in three
dimensions because of the logarithmic singularity of the Green function [7]. Note
also that if |α| = 0 or |β| = 0, then the asymptotics of Wαβ can be found in [6, 7].
For example, in three dimensions, we have

W(0,0,0),(0,0,0)(B,
μ0

μ
, k0δ, kδ) = −δ2ω2εμ0|B|+O(δ3),(10)

Wα,(0,0,0)(B,
μ0

μ
, k0δ, kδ) = O(δ2), |α| = 1,(11)

W(0,0,0),β(B,
μ0

μ
, k0δ, kδ) = O(δ2), |β| = 1.(12)

Similar approximations can be proved in the two-dimensional case. Note that in
both the two- and three-dimensional cases, Wαβ = O(δ2) for |α|+ |β| ≤ 1. On the
other hand, the following asymptotic holds in two and three dimensions:

(13) Wαβ(B,
μ0

μ
, k0δ, kδ) = −δ2ω2ε0μ0|B|+O(δ4) for |α| = 2 and β = 0.

See [7].

3.2. Multipolar asymptotic expansions. Let uy be the solution to (3) and let
Uy be the solution in the absence of the target, i.e., Uy(x) = Γk0(x−y). Multipolar
asymptotic expansions, as δ → 0, of the perturbation uy − Uy may be described
most conveniently using the notion of the FDPTs. In fact, the following multipolar
expansion of the perturbation due to the presence of D = δB + z was obtained in
[6, (12.10)]:

(14) (uy−Uy)(x) = δd−2
n+1∑
p=0

δp
∑

|α|+|β|=p

1

α!β!
Wαβ∂

α
z Γ

k0(z, y)∂β
z Γ

k0(x, z)+O(δn+d).

The asymptotic formula (14) holds for x away from z. It is a multipolar expansion
of the scattered field in the presence of D. We emphasize again that Wαβ depends
on δ. Indeed, the leading-order term in (14) is of order δd since Wαβ = O(δ2) for
|α|+ |β| ≤ 1 and all the higher-order Wαβ are bounded from Proposition 3.3.

As will be shown later, keeping this dependency in Wαβ is convenient from an
imaging point of view. We also emphasize that (14) holds not only for Uy(x) =
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Γk0(x, y) but also for any solution U to the Helmholtz equation satisfying the ra-
diation condition by replacing Γk0(z, y) on the right-hand side of the equality with
U(z).

Combining (9), (10), (11), and (12), together with (13), we can recover from
(14) the leading-order term of the scattered field that was obtained in [21] (see also
[6, 13]):

u(x)− U(x) =− δd
[
ω2μ0(ε− ε0)|B|U(z)Γk0(x, z) +M∇U(z) · ∇zΓ

k0(x, z)

]
+O(δd+1) ,

(15)

where M = (Mα,β)|α|=|β|=1 is the polarization tensor (PT) associated with B and
the ratio μ0/μ. Note that (15) is a dipolar approximation.

The asymptotic formulas (9)-(13) show that using Wαβ for |α|, |β| = 0, 1, and
W(2,0),(0,0), one can approximately reconstruct the volume, the equivalent ellipse,
and the electric permittivity of the target. In fact, (13) yields an approximation of
|D| = δ2|B|, and then (10) yields ε. The formula (9) for |α| = |β| = 1 yields the
polarization tensor, and hence the equivalent ellipse of the target. It is timely to
mention that the location of D can be reconstructed using the method developed
in [3]. We may go even further to separate out the information on μ0/μ since we
have information on both |D| and the polarization tensor. So, this paper mostly
concentrates on how to recover Wαβ from the MSR matrix and how to obtain finer
details of the target shape and improved information on μ0/μ using higher-order
Wαβ .

3.3. Multistatic response matrix. In this subsection we analyze the structure
of the MSR matrix, using the multipolar expansion (14). We first rewrite (14) as
follows:

(uy − Uy)(x) = δd−2 W(0,0),(0,0)Γ
k0(z, y)Γk0(x, z)

+ δd−2 · δ
∑

|α|+|β|=1

Wαβ∂
α
z Γ

k0(z, y)∂β
z Γ

k0(x, z)

+ δd−2
n+1∑
p=2

δp
∑

|α|+|β|=p

1

α!β!
Wαβ∂

α
z Γ

k0(z, y)∂β
z Γ

k0(x, z)

+ O(δn+d).(16)

The first two terms in (16) are the sum of point source and dipolar approximations
of the target while the third term gives a multipolar approximation of the target
written in terms of higher-order derivatives of the Green function.

Recall now that we have coincident transmitter and receiver arrays {y1, . . . , yN}
of N elements, used to detect the target located at z. In the presence of the target
the scattered field induced on the i-th receiving element from the scattering of an
incident wave generated at yj can be approximated using the multipolar expansion
(16). The following proposition holds.

Proposition 3.4. We have

(17) (uyj
− Uyj

)(yi) = G(yi, z)WG(yj , z)T +O(δn+d),
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where T denotes the transpose, G(yi, z) is a row vector of size 1
2 (n + 1)(n + 2) in

dimension two and 1
6 (n+ 1)(n+ 2)(n+ 3) in the three-dimensional case, which is

given by

(18) G(yi, z) =
( 1

α!
∂α
z Γ

k0(yi, z)
)
|α|≤n

,

and W is defined by

(19) W = (Wαβ)|α|,|β|≤n =
(
δd−2+|α|+|β|Wαβ

)
|α|,|β|≤n

.

If δ is small, then higher-order terms can be neglected. In this case, the analysis
of the MSR matrix reduces to the classical one which is based on a dipolar approx-
imation. As δ is increasing, more and more multipolar terms should be included in
formula (16) in order to well approximate the response of the target. We also em-
phasize that in the approximation (17) there are some terms which do not appear
in (16). But these terms are all of order O(δn+d), and hence do not play a role in
the approximation.

In view of (18), the signal space of the MSR matrix becomes richer. The set
of singular vectors consists of the Green function and its high derivatives on the
array. Then, in order to locate the target, exactly the same estimator constructed
in [3, 4] can be used. This estimator peaks at the location of the target. However,
the significant singular values are perturbed, even those associated to the dipolar
approximation. The difference between those based on a point approximation and
those based on a multipolar approximation (high-order approximation) are mea-
sured in terms of the difference between the polarization tensor M and the new
quantities Wαβ for |α|, |β| = 0, 1. Indeed, when δ is increasing, new significant sin-
gular values can emerge. Those are related to higher-order multipolar terms. They
can be expressed in terms of Wαβ for |α| or |β| ≥ 2. These new singular values,
which are intermediate between the larger ones and zero, contain some informa-
tion on the target and give better approximation of its shape and electromagnetic
parameters. In this connection, see [15, 1].

4. Reconstruction procedures

In this section, we focus on the two-dimensional case. Our procedures can be in
principle extended to three dimensions.

It is known that the polarization tensor contains a mixture of geometric informa-
tion and material parameters [6]. It is then impossible to reconstruct separately the
volume and the material parameters of a target from the dipolar approximation. In
other terms, it is impossible to extract such information from the first significant
singular values of the MSR matrix.

However, as we have seen in subsection 3.2, if we recover high-order FDPTs,
Wαβ , we are able to determine the volume of the target, and hence it is possible
to separate the information on the material property from geometric information.
In this section we present reconstruction procedures. We begin by recalling how
to reconstruct the location of the target. We then determine the electromagnetic
parameters and the equivalent ellipse. The final procedure adapts an optimal con-
trol approach to obtain shape details of the target that are finer than its equivalent
ellipse.
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4.1. Location. Location search is based on a MUSIC-type algorithm which has
been used in various contexts; see, for example, [3, 12, 2, 10].

Let A = (Aij) denote the MSR matrix defined by (4). We compute the singular
value decomposition (SVD) of A. Let λ1 ≥ λ2 ≥ · · · be the singular values of A,
and let up and vp be the corresponding left and right singular vectors, respectively.
Then A has the spectral decomposition

(20) A =
∑

λpup ⊗ vp.

Using the first m singular vectors, we define an orthogonal projector Pm on
span{u1, · · · , um} as Pm =

∑m
p=1 up⊗up. We then define a minimization functional

Lm(z) for z in the search domain Ω by

(21) Lm(z) :=

∑
|α|≤1

‖(I − Pm)(∂α
z Γ

k0(·, z))‖L2(∂Ω)

∑
|α|≤1

‖Pm(∂α
z Γ

k0(·, z))‖L2(∂Ω)

.

We try to find a minimizer z� of the functional,

Lm(z�) = min
z∈Ω

Lm(z).

In the simulations, m = 6 seems to be an adequate value.

4.2. Size and permittivity. Once the location of the target is recovered, the
matrix W in (19) can be recovered from the MSR matrix A. In fact, if we denote
by z� the recovered location of the target, then we can find W by solving

(22) Aij ≈ G(yi, z�)WG(yj , z�)T ,
where G(yi, z�) is given by (18). This is a system of N ×N linear equations with
[ 12 (n + 1)(n + 2)]2 (the number of entries of W) unknowns in two dimensions.
Hence it can be solved in general if we take N sufficiently large. We solve (22) in
the minimum residual sense. In actual simulation we only use an N ×m submatrix
of A where m = 1

2 (n + 1)(n + 2), which amounts to using N transmitters and m
receivers.

In view of (10) and (13), the size |D| and the electrical permittivity ε of the
target can be estimated as follows:

(23) |D| = 1

ω2ε0μ0
|W(2,0),(0,0)|

and

(24) ε =
|W(0,0),(0,0)|
μ0ω2|D| .

We emphasize that the estimations in (23) and (24) hold regardless of the shape of
the target since the leading-order terms in (10) and (13) are shape independent.

4.3. Equivalent ellipse and permeability. We now describe a procedure to
obtain the equivalent ellipse representing the shape of the target using Wαβ for
|α| = |β| = 1. To this end we need to review the explicit form of the polarization
tensor M(E, κ) = (Mij) associated with an ellipse E and material contrast κ.
We also review a method to recover the ellipse and κ from its PT (and the size).
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See [16] or [6] for the details. Here we use the identifications M11 = M(0,1),(0,1),
M12 = M(0,1),(1,0), etc.

Let E′ be an ellipse with semi-major axis of length a and semi-minor axis of
length b, whose focal line is on either the x1- or the x2-axis, and let E = RE′

where R =

(
cos θ − sin θ
sin θ cos θ

)
, the rotation by the angle θ. Let M and M ′ be the

polarization tensors of E and E′, respectively. Then M ′ takes the form

(25) M ′ = (κ− 1)|E′|

⎛
⎜⎝

a+ b

a+ κb
0

0
a+ b

b+ κa

⎞
⎟⎠ ,

and M is given by

(26) M = RM ′RT .

In view of (25) and (26), the parameters θ and κ can be recovered as follows:

M12 +M21

M22 −M11
tan 2θ, −π

4
< θ ≤ π

4
,(27)

κ =
|E|(M ′

11 +M ′
22) +M ′

22M
′
11

M ′
22M

′
11 − |D|(M ′

22 +M ′
11)

,(28)

and for a and b, one should solve

(29)
a

b
=

M ′
22 −M ′

11κ

M ′
11 −M ′

22κ
and abπ = |E|.

Let

W(1) = (Wij)i,j=1,2 := (Wαβ)|α|=|β|=1.

Then by (9) we have

(30) W(1) ≈ δ2M(B,
μ0

μ
) = M(D,

μ0

μ
).

Taking formulas (27), (28), and (29) into account, we may recover θ, κ, and a, b
from W(1) in the following manner.

[Equivalent Ellipse Reconstruction Procedure]

Step 1. If both |W11 −W22| and |W21 +W12| are smaller than a given tolerance τ ,
then we assume that the target is a disk.

Step 2. Determine the angle of rotation θ by solving

(31)
W12 +W21

W22 −W11
tan 2θ, −π

4
< θ ≤ π

4
.

Step 3. Using the angle θ, find W ′
(1) by solving,

(32) W ′
(1) = R(−θ)W(1)R(−θ)T ,

where R(−θ) is the rotation by −θ.
Step 4. Using |D| found in (23), compute μ by

(33)
μ0

μ
=

|D|(W ′
11 +W ′

22) +W ′
22W ′

11

W ′
22W ′

11 − |D|(W ′
22 +M ′

11)
.
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Step 5. Compute the lengths of semi-major and minor axis, a and b, by solving

(34)
a

b
=

W ′
22 −W ′

11
μ0

μ

W ′
11 −W ′

22
μ0

μ

and abπ = |D|.

The equivalent ellipse and estimated permeability in this subsection already pro-
vide good information on the shape and permeability of the target. The equivalent
ellipse will play the role of a good initial guess for the iterative scheme in the next
subsection to find finer geometric features of shape using higher-order Wαβ .

It is worth emphasizing that we are able to separate the permeability contrast
μ0/μ from |D| thanks to the extra information provided by W(2,0),(0,0). It is well-
known that it is impossible to separate μ0/μ from |D| by only using (Wαβ)|α|=|β|=1.
See [6].

4.4. Fine shape details. So far we reconstructed the electromagnetic parameters
ε, μ, and the equivalent ellipse. We now reconstruct fine details of the shape of the
target using higher-order FDPTs.

Suppose that we have the measured Wmeas = (Wmeas
αβ ) at our disposal. Let

Wαβ(D) be the FDPT associated with the domain D while the electromagnetic
parameters ε and μ are fixed. Then, by minimizing over D a discrepancy functional
between Wαβ(D) and Wmeas

αβ for |α| + |β| ≤ K, we can reconstruct fine details of
the shape of the target, which we denote by Dtarget. It is worth mentioning that
Wmeas

αβ ’s are FDPTs associated to Dtarget.
In order to minimize the discrepancy functional we should compute the shape

derivative of Wαβ(D). Instead of doing this, we use the asymptotic formula for the
PT Mαβ(D) under small deformations of the shape of D.

Let D be a bounded domain and Dη be an η-perturbation of D, where η is a
small parameter, such that

∂Dη :=
{
xη = x+ ηh(x)ν(x) | x ∈ ∂D, h ∈ C1(∂D)

}
,

where ν is the unit outward normal to ∂D.
Let us now suppose that aα and bβ are constants such that H(x) :=

∑
α aαx

α

and F (x) :=
∑

β bβx
β are harmonic polynomials. Let κ = μ0/μ and let u and v be,

respectively, the solutions to

(35)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δu = 0, in D ∪ (R2\D),

u|+ − u|− = 0, on ∂D,

∂u

∂ν

∣∣∣
+
− κ

∂u

∂ν

∣∣∣
−
= 0, on ∂D,

(u−H)(x) = O(|x|−1) as |x| → ∞

and

(36)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δv = 0, in D ∪ (R2\D),

κv|+ − v|− = 0, on ∂D,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−
= 0, on ∂D,

(v − F )(x) = O(|x|−1) as |x| → ∞.

The following asymptotic formula was obtained in [9].
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Proposition 4.1. We have

(37)

∑
α,β

aαbβMαβ(Dη, κ)−
∑
α,β

aαbβMαβ(D,κ)

= η(κ− 1)

∫
∂D

h(x)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(η2).

In view of (9), we now have the following approximation formula which holds for
η much smaller than δ.

Corollary 4.2. For η � δ, we have

(38)

∑
α,β

aαbβWαβ(Dη)−
∑
α,β

aαbβWαβ(D)

≈ η

(
μ0

μ
− 1

)∫
∂D

h(x)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x).

We now define the functional Jε,μ to be minimized by

(39) Jε,μ(D) :=
∑

1≤|α|+|β|≤K

∣∣∣∣∑
α,β

aαbβWαβ(D)−
∑
α,β

aαbβWmeas
αβ

∣∣∣∣
2

,

where the first sum is over various aα and bβ such that H =
∑

aαx
α and F =∑

bβx
β are homogeneous harmonic polynomials. Let

φHF (x) = (k − 1)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
,

where u and v are solutions to (35) and (36), respectively. The approximate formula
(38) shows the following.

Proposition 4.3. The shape derivative of Jε,μ(D) is approximately given by

(40) 〈dSJε,μ(D), h〉L2(∂D) ≈
∑

1≤|α|+|β|≤K

δHF 〈φHF , h〉L2(∂D),

where

δHF =
∑
α,β

aαbβWαβ(D)−
∑
α,β

aαbβWmeas
αβ .

As in [9], we can make the optimization procedure recursively by increasing K
to refine the shape reconstruction. At each step, the initial guess for the shape is
the result of the previous one. The equivalent ellipse in subsection 4.3 provides a
good initial guess to start with.

[Generalization of the Recursive Shape Reconstruction Procedure of [9]]

Step 1. As an initial guess, choose εe, μe and De that we reconstruct in the equiv-
alent ellipse reconstruction procedure.

Step 2. Start with K = 3 and minimize Jε,μ(D) using the expression (40) of its
shape derivative dSJε,μ(D). Use the equivalent ellipse as an initial guess.

Step 3. Increase K and find Dupdated using the result Dgiven of the previous step
as an initial guess.
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Step 4. Repeat Step 3, until one of two stop criterions holds,

||h||∂Dgiven
≤ htol,(41)

||Wαβ(Dgiven)−Wmeas
αβ ||K ≤ ||Wαβ(Dupdated)−Wmeas

αβ ||K(42)

where

||Wαβ ||K :=
∑

1≤|α|+|β|≤K

∣∣∣∣∑
α,β

aαbβWαβ

∣∣∣∣
2

.

However, in this paper we propose a new recursive optimization algorithm. In-
stead of making the recursion on the order K of the used FDPTs, we fix, in Step 3,
K equal to the maximum of |α|+|β| corresponding to the measured Wmeas

αβ . We set
Dgiven to be the initial guess and η to be a fixed small parameter. Assuming that
the target is a small deformation of the reconstructed initial guess, we can reduce
by using (37) the minimization of Jε,μ(D) to that of (recursively) minimizing over
h the functional

(43)

J (K)(h) :=
∑

1≤|α|,|β|≤K

∣∣∣∣∑
α,β

aαbβWαβ(Dgiven)−
∑
α,β

aαbβWmeas
αβ

−η(κ− 1)

∫
∂Dgiven

h(x)

[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−
+

1

k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x)

∣∣∣∣
2

,

where h belongs to classes of more and more oscillating basis functions on ∂Dgiven.

5. Numerical experiments

We now present the results of numerical experiments to validate the method
proposed in this paper. The results are of two kinds: one for the reconstruction
of equivalent ellipses and electromagnetic parameters, and the second for the opti-
mization procedure to reconstruct fine shape details. We begin with a few words
on the forward solver.

5.1. Convergence of the forward solver. In order to collect the data, we solve
the direct problem (3) using the single layer potential as follows:

(44) u(x) =

{
U(x) + Sk0

D [ψ](x), x ∈ R
2 \D,

Sk
D[ϕ](x), x ∈ D,

where ψ and ϕ satisfy the following relations:

(45)

⎧⎨
⎩

Sk
D[ϕ]− Sk0

D [ψ] = U,

1

μ

∂

∂ν
Sk
D[ϕ]

∣∣
− − 1

μ0

∂

∂ν
Sk0

D [ψ]
∣∣
+

=
1

μ0

∂U

∂ν
,

on ∂D.

A generalized minimum residual (GMRES) method has been used to solve the
system of the integral equations (45) and the single layer potential has been nu-
merically evaluated using the high-order numerical quadrature rule with M equally
spaced discretization points along ∂Ω and ∂D. Here Ω is a domain on the boundary
of which the transducers are located. In other words, we collect the MSR matrix
on ∂Ω.

In all the numerical experiments in this section, we assume that Ω =]− 1, 1[×]−
1, 1[ and the operating frequency ω = 0.1.

In Figure 1, the inclusion D is with semi-axes lengths 0.1 and 0.05 and an-
gle of orientation θ = 25 degrees. The electromagnetic parameters are given by
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Figure 1. Convergence error of the forward solver with 30-300
discretization points for the domain with ellipse-shaped target.
The solid line represents the relative convergence error of (u −
U)|∂Ω.

(μ0, ε0) = (4, 1), (μ, ε) = (121, 25). Note that throughout this section all the angles
are measured in degrees. Figure 1 shows the relative convergence error of the for-
ward solver for the computation of (u−U)(x) on x ∈ ∂Ω. We compute coarse grid
solutions with M = 30-300 equi-spaced points on ∂Ω and compare them with the
corresponding forward solution on the finer grid with M = 600.

In the reconstruction procedures, we set the order of accuracy of the direct code
to be fifth in order to achieve around six digits of accuracy with M = 160.

5.2. Accuracy of the computed polarization tensor. In this subsection, we
check the computational accuracy of the W , which is reconstructed from the MSR
matrix by solving (22). It is worth mentioning that we do not use full MSR matrix.
We only use its submatrix to be able to solve (22). We compare W (obtained
from the MSR matrix) with the (exact) tensor Wd given by (8) for the numerically
computed forward solution of (45). The target is of elliptic shape. Figure 2 shows
the relative difference, ∑

|α|,|β|≤2 |Wαβ −Wd
αβ |2∑

|α|,|β|≤2 |Wd
αβ |2

as a function of the size of the ellipse.
The larger the size of the target, the bigger the difference, which is quite natural.

The straight line on the right-hand-side of the log-log plot indicates that the as-
ymptotic truncation error is about second-order, O(δ2). The error gets larger again
when the target becomes extremely small, say δ < 10−3. It is caused by the forward
numerical solver which could not provide adequate precision with given number of
discretization points. We set the discretization points M = 160 for our simulations,
which gives about 3 digits of accuracy for W in the range of 10−4 < δ < 10−1.
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Figure 2. The comparison of W and Wd. The plots show the
relative difference for an ellipse-shaped target.

5.3. Electromagnetic parameters and the equivalent ellipse. In this sub-
section, we present computational results for reconstruction of electromagnetic pa-
rameters and the equivalent ellipses of targets of various shape using the methods
proposed in Subsections 4.2 and 4.3. We emphasize that the electromagnetic pa-
rameters, μ and ε, are unknown in advance. First, Figure 3 shows the reconstructed
equivalent ellipses and μ and ε for a single target of elliptic shape.

Figure 4 summarizes the computed results for a target of general shape. It
demonstrates that the reconstruction algorithm works pretty well even for targets
of general shapes.

5.4. Fine shape details. In this subsection we test the optimization algorithm in
Subsection 4.4 to find fine details of the shape of the target. We set μ and ε to
be the values found by the equivalent ellipse reconstruction method, and use the
equivalent ellipse as an initial guess. With them, we find a better approximation
of the shape of the target.

For reconstructing the shape deformation, we take h of the form

h(θ) := a0 +

s∑
	=1

(ac	 cos(�θ) + as	 sin(�θ)),

where ac	 and as	 are constants to be found by minimizing (43). In the following
examples, we refine the domain by increasing the order s of h while fixing the order
K of the FDPT Wαβ to be 7, |α| + |β| ≤ K = 7. Then Step 2 in subsection 4.4
becomes s = 1, K = 7 and Step 3 becomes s = s+ 1, K = 7.

Figure 5 shows the computational results of a single inclusion with (μ, ε) =
(36, 25) in the homogeneous background (μ0, ε0) = (4, 1) material. The leftmost
figures show an initial guess from ellipse reconstruction algorithm which gives initial
shape and material parameter (μe, εe) = (35.3163, 25.1867). The remaining figures
show the result when s becomes 3, 5, and 6. The algorithm stops at the step s = 5
since the difference of Wα,β(Dupdated) − Wmeas

α,β for s = 6 is larger than that for
s = 5.
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0.2

0.4

0.6

0.8

1

actual data computed data
z (0.4500, 0.2000) (0.4508, 0.2005)
δ 0.0500 0.0488, 0.0498
θ - -32.4909
μ 64 80.2815
ε 25 25.9793

actual data computed data
z (-0.1000, -0.5000) (-0.1086, -0.5126)
δ 0.2000, 0.0500 0.2089, 0.0500
θ 60 60.1418
μ 121 102.2785
ε 36 32.1234

Figure 3. Reconstructed ellipses for disk or ellipse shaped tar-
gets marked with dashed-dotted curves. The solid ellipse are
reconstructed equivalent ellipses. The two values of computed
delta are the axes lengths of the reconstructed ellipse. We take
(μ0, ε0) = (4, 1), (9, 6) in the first and second plots, respectively.

Figure 6 again shows the computational results of a single star-shaped inclusion
with (μ, ε) = (121, 25) in the background (μ0, ε0) = (4, 1) material. The initial
ellipse shape with (μe, εe) = (122.8574, 25.5167) is given in the leftmost figures.
The remaining figures show the result when s becomes 3, 4, and 5. The algorithm
stops at step s = 4 since the updated boundary distance h is pretty small and no
further updates are made after s > 4.

Figure 7 shows the final reconstructed results for three different targets of various
shapes. We emphasize that we fixed K to be 7 and increase the order s of h from
1 to sstop until we reach a termination condition (Step 4 of the reconstruction
algorithm in subsection 4.4).

Figure 8 shows the computational results for multiple inclusions with (μ, ε) =
(36, 25) and (μ0, ε0) = (4, 1). The initial guess is the equivalent ellipse with
(μe, εe) = (36.2370, 25.0150) and (μe, εe) = (34.4308, 24.9802).

The example in Figure 9 demonstrates the stability of our reconstruction proce-
dure in the case of a moderate noise. The configuration and the material parameters
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are exactly as in Figure 5. However, as shown in Figure 10, the most resolved re-
constructions become instable as the amount of noise increases. There is a trade-off
between the resolution and the stability.
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z (0.0567, -0.4009) (0.0565, -0.4020)

δ - 0.0458, 0.0648

θ - 35.2369
μ 36 48.3027
ε 25 25.0300

Figure 4. Reconstructed ellipses for a non-ellipse shaped target
marked with dashed-dotted curves. The solid ellipse are recon-
structed equivalent ellipse. We take (μ0, ε0) = (4, 1).
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Figure 5. Computed shape for a general shaped target marked
with dashed-dotted curves. The solid lines are computed increasing
the order s of h. Bottom figures are 6.67 times zoom-ups of the
corresponding results.
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Figure 6. Computed shape for a second general shaped target
marked with dashed-dotted curves. The solid lines are computed
increasing the order s of h. Bottom figures are 6.67 times zoom-ups
of the corresponding results.
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Figure 7. Computed shapes for three general shaped targets
marked with dashed-dotted curves. The solid ellipse are computed
by the optimization algorithm after iterating s from 1 to sstop. We
take (μ0, ε0) = (4, 1) in all the plots. Bottom figures are 6.67 times
zoom-ups of the corresponding results.
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Figure 8. Reconstructions of multiple inclusions.
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Figure 9. Reconstructions with 5% additive noise.
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Figure 10. Reconstructions with 10% additive noise.

6. Conclusion

In this paper we have presented for the first time efficient algorithms to recon-
struct from MSR measurements both electromagnetic parameters and fine shape
details of a target of size smaller than the wavelength. Although, the characteristic
size of the target is assumed to be smaller than the operating wavelength, a super-
resolved reconstruction of the shape of the target can be achieved provided a high
signal-to-noise ration in the measured data. It is expected that our approach in this
paper would lead to reconstruction of elastic targets as well. Another interesting
extension would be the use of MSR measurements at multiple frequencies. This
would be the subject of a forthcoming work. We will also attempt to precisely
quantify the resolution and the stability of the proposed algorithms in terms of the
signal-to-noise ratio MSR measurements.
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