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HODGE DECOMPOSITION FOR DIVERGENCE-FREE

VECTOR FIELDS AND

TWO-DIMENSIONAL MAXWELL’S EQUATIONS

S. C. BRENNER, J. CUI, Z. NAN, AND L.-Y. SUNG

Abstract. We propose a new numerical approach for two-dimensional
Maxwell’s equations that is based on the Hodge decomposition for divergence-
free vector fields. In this approach an approximate solution for Maxwell’s
equations can be obtained by solving standard second order scalar elliptic
boundary value problems. This new approach is illustrated by a P1 finite
element method.

1. Introduction

Let Ω be a (connected) bounded polygonal domain in R
2, f ∈ [L2(Ω)]

2, and μ, ε
be positive functions in C1(Ω̄). Consider the problem of finding u ∈ H0(curl; Ω) ∩
H(div0; Ω; ε) such that

(1.1) (μ−1∇×u,∇× v) +α(εu,v) = (f ,v) ∀v ∈ H0(curl; Ω)∩H(div0; Ω; ε),

where (·, ·) denotes the L2 inner product, and the spaces H0(curl; Ω) and
H(div0; Ω; ε) are defined as follows:

H(curl; Ω) =
{
v =

[
v1
v2

]
∈ [L2(Ω)]

2 : ∇× v =
∂v2
∂x1

− ∂v1
∂x2

∈ L2(Ω)
}
,

H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on ∂Ω},

where n is the outward pointing unit normal along ∂Ω,

H(div; Ω) =
{
v =

[
v1
v2

]
∈ [L2(Ω)]

2 : ∇ · v =
∂v1
∂x1

+
∂v2
∂x2

∈ L2(Ω)
}
,

H(div0; Ω) = {v ∈ H(div; Ω) : ∇ · v = 0},

and

H(div0; Ω; ε) =
{
v ∈ [L2(Ω)]

2 : εv ∈ H(div0; Ω)
}
.
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Remark 1.1. H(div0; Ω; 1) is identical with H(div0; Ω). H(div0; Ω; ε) is the orthog-
onal complement of ∇H1

0 (Ω) in [L2(Ω; ε)]
2, which is the space of square integrable

vector fields equipped with the weighted inner product

(v,w)L2(Ω;ε) =

∫
Ω

ε(v ·w)dx.

The problem (1.1) is related to the time-harmonic Maxwell’s equations for α ≤ 0
and the time-domain Maxwell’s equations for α > 0 (cf. [16, 19, 10, 6, 7, 8]), where
μ and ε are, respectively, the permeability and permittivity. We assume that (1.1)
is uniquely solvable, i.e., −α is not a Maxwell eigenvalue. In particular, we assume
α �= 0 when Ω is not simply connected.

In this paper we develop a new numerical approach to (1.1) using the Hodge
decomposition of u. In this approach an approximation of u can be obtained by
solving standard second order scalar elliptic boundary value problems.

More precisely, we use the Hodge decomposition for H(div0; Ω; ε) to write

(1.2) u = ε−1∇× φ+
m∑
j=1

cj∇ϕj ,

where φ ∈ H1(Ω) satisfies (φ, 1) = 0,

∇× φ =

⎡
⎢⎢⎣

∂φ

∂x2

− ∂φ

∂x1

⎤
⎥⎥⎦ ,

the nonnegative integer m is the Betti number for Ω (m = 0 if Ω is simply con-
nected), and the functions ϕ1, . . . , ϕm are defined as follows.

Let the outer boundary of Ω be denoted by Γ0 and the m components of the
inner boundary be denoted by Γ1, . . . ,Γm. Then the functions ϕj are determined
by

(ε∇ϕj ,∇v) = 0 ∀ v ∈ H1
0 (Ω),(1.3a)

ϕj

∣∣
Γ0

= 0,(1.3b)

ϕj

∣∣
Γk

= δjk =

{
1 j = k,

0 j �= k,
for 1 ≤ k ≤ m.(1.3c)

We will show that the function φ in (1.2) is determined by

(1.4) (∇× φ, ε−1∇× ψ) = (μξ, ψ) ∀ψ ∈ H1(Ω)

and the constraint

(1.5) (φ, 1) = 0,

where the function ξ = μ−1∇× u ∈ H1(Ω) is determined by

(1.6) (∇× ξ, ε−1∇× ψ) + α(μξ, ψ) = (f , ε−1∇× ψ) ∀ψ ∈ H1(Ω)

when α �= 0, and by (1.6) together with the constraint

(1.7) (μξ, 1) = 0

when Ω is simply connected and α = 0.
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Note that α �= 0 when m ≥ 1 since 0 is a Maxwell eigenvalue for domains that
are not simply connected. In this case we will show that the coefficients cj in (1.2)
are determined by the symmetric positive-definite system

(1.8)

m∑
j=1

(ε∇ϕj ,∇ϕk)cj =
1

α
(f ,∇ϕk) for 1 ≤ k ≤ m.

We can therefore solve (1.1) by the following procedure.

(1) Compute a numerical approximation ξ̃ of ξ by solving (1.6) when α �= 0,
and by solving (1.6) with the constraint (1.7) when Ω is simply connected
and α = 0.

(2) Compute a numerical approximation φ̃ of φ by solving (1.4) under the

constraint (1.5), where ξ is replaced by ξ̃.
(3) Compute numerical approximations ϕ̃1, . . . , ϕ̃m of ϕ1, . . . , ϕm by solving

the boundary value problems in (1.3).
(4) Compute numerical approximations c̃1, . . . , c̃m of c1, . . . , cm by solving (1.8),

where ϕ1, . . . , ϕm are replaced by ϕ̃1, . . . , ϕ̃m.
(5) The numerical approximation ũ for u is given by

ũ = ε−1∇× φ̃+

m∑
j=1

c̃j∇ϕ̃j .

Remark 1.2. The function ξ̃ computed in Step (1) provides an approximation for
μ−1∇× u.

Remark 1.3. Since the functions ϕj depend only on the domain Ω, Step (3) can be
carried out once Ω is given. Hence the solution of (1.1) is essentially reduced to
the solution of the two elliptic boundary value problems in Steps (1)–(2).

Remark 1.4. The equations (1.4) and (1.6) can be rewritten as

(∇φ, ε−1∇ψ) = (μξ, ψ) ∀ψ ∈ H1(Ω),

(∇ξ, ε−1∇ψ) + α(μξ, ψ) = (f , ε−1∇× ψ) ∀ψ ∈ H1(Ω).

Hence the boundary value problems for φ and ξ are Neumann problems for the
Laplace operator.

Remark 1.5. The Hodge decomposition has also been applied to other electromag-
netic problems [2, 3, 5].

Since the boundary value problems in Steps (1)–(3) are standard second order
scalar elliptic boundary value problems, they can be solved by many methods. For
simplicity, we will demonstrate this new numerical approach by a P1 finite element
method.

The rest of the paper is organized as follows. We first provide detailed justifi-
cations of the new approach in Sections 2 and 3. Then in Section 4 we discuss a
numerical method for (1.1) based on P1 finite elements. We end with some con-
cluding remarks in Section 5.

For convenience in later sections we state here two useful facts concerning
H(curl; Ω) and H(div; Ω). The first is that (cf. [14, Theorems 2.11 and 2.12])
(1.9)
v ∈ H(curl; Ω) belongs to H0(curl; Ω) iff (∇×v, ψ) = (v,∇×ψ) ∀ψ ∈ H1(Ω).
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The second is that (cf. [14, Theorem 2.5]) the normal trace n · v ∈ H−1/2(∂Ω)
is well defined for v ∈ H(div; Ω). Moreover, we have

(1.10) (v,∇ζ) + (∇ · v, ζ) =
∫
∂Ω

ζ n · v ds ∀v ∈ H(div; Ω), ζ ∈ H1(Ω).

2. Hodge decomposition

Discussions of Hodge decompositions for three-dimensional vector fields can be
found, for example, in [4, 19]. To make the present article more self-contained we
provide here a derivation of the Hodge decomposition for two-dimensional vector
fields and justify equations (1.4) and (1.8).

Recall that Γ0 is the outer boundary of Ω and Γ1, . . . ,Γm are the components of
the inner boundary of Ω. The following result (cf. [14, Theorem 3.1]) is crucial for
the derivation of the Hodge decomposition.

Lemma 2.1. Let w ∈ [L2(Ω)]
2. There exists φ ∈ H1(Ω) such that

w = ∇× φ

if and only if w ∈ H(div0; Ω) and∫
Γj

w · n ds = 0 for 0 ≤ j ≤ m.

Let H(Ω; ε) be the space of ε-harmonic functions spanned by the functions
ϕ1, . . . , ϕm defined in (1.3). Note that, by the elliptic regularity theory on non-
smooth domains (cf. [15, 13, 20]), there exists τ ∈ (1/2, 1] such that ϕj ∈ H1+τ (Ω)
for 1 ≤ j ≤ m.

Lemma 2.2. Let ϕ ∈ H(Ω; ε). Then

(2.1)

∫
Γj

ε
∂ϕ

∂n
ds = 0 for 1 ≤ j ≤ m

if and only if ϕ = 0.

Proof. Let ϕ =
∑m

j=1 bjϕj satisfy (2.1). It follows from (1.3) that

(ε∇ϕ,∇ϕ) =

m∑
j=1

∫
Γj

ε
∂ϕ

∂n
ϕ ds =

m∑
j=1

bj

∫
Γj

ε
∂ϕ

∂n
ds = 0,

which implies ϕ = 0 since ϕ vanishes on the outer boundary Γ0. �

Lemma 2.3. Given any v ∈ H(div0; Ω; ε), there exist a unique φ ∈ H1(Ω) and m
unique real numbers c1, . . . , cm such that (φ, 1) = 0 and

(2.2) v = ε−1∇× φ+
m∑
j=1

cj∇ϕj .

Proof. It follows from Lemma 2.2 that the map

ϕ −→

⎡
⎢⎣
∫
Γ1

ε(∂ϕ/∂n) ds
...∫

Γm
ε(∂ϕ/∂n) ds

⎤
⎥⎦
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is an isomorphism from H(Ω; ε) into R
m. Therefore, there exist unique constants

c1, . . . , cm such that

(2.3)

∫
Γk

ε
(
v −

m∑
j=1

cj∇ϕj

)
· n ds = 0 for 1 ≤ k ≤ m.

Since εv ∈ H(div0; Ω) by the definition of H(div0; Ω; ε) and ε∇ϕj ∈ H(div0; Ω)
by construction (cf. (1.3a)), we can apply (1.10) with ζ = 1 to obtain∫

∂Ω

ε
(
v −

m∑
j=1

cj∇ϕj

)
· n ds = 0,

which together with (2.3) implies

(2.4)

∫
Γ0

ε
(
v −

m∑
j=1

cj∇ϕj

)
· n ds = 0.

It then follows from Lemma 2.1 and (2.3)–(2.4) that

ε
(
v −

m∑
j=1

cj∇ϕj

)
= ∇× φ

for some φ∈H1(Ω), which of course can be chosen to satisfy the constraint (φ, 1)=0.
The uniqueness of the decomposition (2.2) follows from the fact (cf. Lemma 2.1)

that (2.3) must hold for any such decomposition, which implies that the coefficients
c1, . . . , cm are unique. The uniqueness of φ then follows immediately. �

We need the following lemma for the derivation of (1.4) and (1.8).

Lemma 2.4. Let ζ ∈ H1(Ω) such that the trace of ζ on Γj is a constant γj for
0 ≤ j ≤ m. Then we have

(2.5) (∇× ψ,∇ζ) = 0 ∀ψ ∈ H1(Ω).

Proof. From Lemma 2.1, we have∫
Γj

n · (∇× ψ) ds = 0 for 0 ≤ j ≤ m,

which together with (1.10) (where v is taken to be ∇× ψ) implies

(∇× ψ,∇ζ) =
m∑
j=0

∫
Γj

ζ n · (∇× ψ) ds =
m∑
j=0

γj

∫
Γj

n · (∇× ψ) ds = 0. �
Note that (1.9) (with v = ∇ζ) and (2.5) imply that ∇ζ ∈ H0(curl; Ω) for any

ζ satisfying the assumptions of Lemma 2.4. The following corollary is therefore
immediate.

Corollary 2.5. We have ∇H1
0 (Ω) ⊂ H0(curl; Ω) and ∇H(Ω; ε) ⊂ H0(curl; Ω) ∩

H(div0; Ω; ε).

Remark 2.6. Because of Corollary 2.5, the decomposition (2.2) can be viewed as a
decomposition in H0(curl; Ω) ∩ H(div0; Ω; ε) if v ∈ H0(curl; Ω) ∩ H(div0; Ω; ε). In
this case φ has higher regularity and ∂φ/∂n = 0 on ∂Ω.

Remark 2.7. There are other decompositions of H0(curl; Ω) ∩H(div0; Ω) that can
be exploited for the purpose of preconditioning H(curl; Ω) conforming methods
[22, 17].
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We can now use (1.2), (1.9) and Lemma 2.4 to justify (1.4) as follows. Let
ψ ∈ H1(Ω) be arbitrary. We have

(∇× φ, ε−1∇× ψ) =
(
∇× φ+ ε

m∑
j=1

cj∇ϕj , ε
−1∇× ψ

)

= (εu, ε−1∇× ψ) = (u,∇× ψ) = (∇× u, ψ) = (μξ, ψ).

To justify (1.8) when m ≥ 1, we take v = ∇ϕk in (1.1) (cf. Corollary 2.5) and
replace u by the Hodge decomposition (1.2). We arrive at the equation

α
(
∇× φ+ ε

m∑
j=1

cj∇ϕj ,∇ϕk

)
= (f ,∇ϕk) for 1 ≤ k ≤ m,

which together with Lemma 2.4 implies (1.8).
Finally, we observe that the bilinear form (ϕ, 
) → (ε∇ϕ,∇
) is symmetric

positive-definite on H(Ω; ε), because (ε∇ϕ,∇ϕ) = 0 implies ϕ = 0 since ϕ vanishes
on the outer boundary Γ0 of Ω. Hence the system (1.8) is symmetric positive-
definite.

3. Equation for ξ = μ−1∇× u

In this section we derive the equation (1.6). We begin with the strong form of
(1.1).

Lemma 3.1. The solution u of (1.1) satisfies

(3.1) ∇× (μ−1∇× u) + α(εu) = εQ(ε−1f)

in the sense of distributions, where Q : [L2(Ω; ε)]
2 −→ H(div0; Ω; ε) is the orthogo-

nal projection.

Proof. Let ζ ∈ [C∞
c (Ω)]2 be a C∞ vector field with compact support in Ω. We

have ζ ∈ H0(curl; Ω), Qζ ∈ H(div0; Ω; ε) and ζ −Qζ = ∇H1
0 (Ω) (cf. Remark 1.1).

Since ∇H1
0 (Ω) ⊂ H0(curl; Ω) (cf. Corollary 2.5), we have ζ −Qζ ∈ H0(curl; Ω)

and hence Qζ = ζ − (ζ −Qζ) ∈ H0(curl; Ω). It follows that

(3.2) Qζ ∈ H0(curl; Ω) ∩H(div0; Ω; ε).

Furthermore, from ∇×
(
∇H1

0 (Ω)
)
= {0} and u ∈ H(div0; Ω; ε), we have

(3.3) ∇× (ζ −Qζ) = 0 = (u, ζ −Qζ)L2(Ω;ε) = (εu, ζ −Qζ).

Using (1.1), (3.2) and (3.3), we can complete the proof of the lemma as follows:

(μ−1∇× u,∇× ζ)+α(εu, ζ)=
(
μ−1∇× u,∇× (Qζ + (ζ −Qζ)

)

+ α
(
εu, Qζ + (ζ −Qζ)

)

= (μ−1∇× u,∇×Qζ) + α(εu, Qζ)

= (f , Qζ) = (ε−1f , Qζ)L2(Ω;ε) =
(
Q(ε−1f), ζ

)
L2(Ω;ε)

=
(
εQ(ε−1f), ζ). �

As a corollary, we have ξ = μ−1∇× u ∈ H1(Ω) and

(3.4) ∇× ξ + αεu = ε(Qε−1f).
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Let ψ ∈ H1(Ω) be arbitrary. We have (cf. Lemma 2.1) ε−1∇×ψ ∈ H(div0; Ω; ε),
which together with (1.9) and (3.4) implies that

(f , ε−1∇× ψ) = (ε−1f , ε−1∇× ψ)L2(Ω;ε)

=
(
Q(ε−1f), ε−1∇× ψ

)
L2(Ω;ε)

=
(
εQ(ε−1f), ε−1∇× ψ

)
=

(
∇× ξ + α(εu), ε−1∇× ψ

)
=(∇× ξ, ε−1∇× ψ)+α(∇× u, ψ) = (∇× ξ, ε−1∇× ψ) + α(μξ, ψ),

i.e., equation (1.6) is valid. The constraint (1.7) follows immediately from (1.9).
Next, we turn to a relation between the solvability of (1.1) and the solvability of

(1.6) that will guarantee the well-posedness of (1.6) under the condition that −α
( �= 0) is not a Maxwell eigenvalue. Note that a discussion on the relation between
the Maxwell eigenvalues and Laplace eigenvalues can also be found in [12].

Lemma 3.2. For α �= 0, the problem (1.1) is uniquely solvable if and only if the
problem (1.6) is uniquely solvable.

Proof. Let α be nonzero. Since H1(Ω) is compactly embedded in L2(Ω) by the
Rellich-Kondrachov theorem [1] and H0(curl; Ω) ∩ H(div0; Ω; ε) is compactly em-
bedded in [L2(Ω)]

2 by a result of Weber [25], we can apply the Fredholm alternative
to consider only the homogeneous equation corresponding to (1.1)

(3.5) (μ−1∇×w,∇× v) + α(εw,v) = 0 ∀v ∈ H0(curl; Ω) ∩H(div0; Ω),

and the homogeneous equation corresponding to (1.6)

(3.6) (∇× η, ε−1∇× ψ) + α(μη, ψ) = 0 ∀ψ ∈ H1(Ω).

We will show that (3.5) has a nontrivial solution w ∈ H0(curl; Ω)∩H(div0; Ω; ε) if
and only if (3.6) has a nontrivial solution η ∈ H1(Ω).

Suppose there exists a nontrivial w ∈ H0(curl; Ω) ∩ H(div0; Ω; ε) that satisfies
(3.5) and η = μ−1∇×w. Then η ∈ H1(Ω) and (3.6) holds as a special case of (1.6)
where f = 0. Moreover, it follows from the Poincaré-Friedrichs inequality (cf. [19,
Corollary 4.8])

‖w‖L2(Ω) ≤ CΩ,ε‖∇ ×w‖L2(Ω) = CΩ,ε‖μη‖L2(Ω)

that η �= 0.
Suppose there exists a nontrivial η ∈ H1(Ω) that satisfies (3.6). Since α �= 0, we

deduce from (3.6) that (μη, 1) = 0. Hence we can write (cf. [14, Corollary 2.4])

(3.7) μη = ∇×w

for some w ∈ H0(curl; Ω)∩H(div0; Ω; ε). Indeed, we can take w = ε−1∇×ρ, where
ρ ∈ H1(Ω) is defined by the Neumann problem

(ε−1∇× ρ,∇× ψ) = (μη, ψ) ∀ψ ∈ H1(Ω),(3.8a)

(ρ, 1) = 0.(3.8b)

Then (3.7) follows from (3.8a) and w ∈ H(div0; Ω; ε) by Lemma 2.1. Since (3.8a)
can be written as

(w,∇× ψ) = (∇×w, ψ) ∀ψ ∈ H1(Ω),

we also havew∈H0(curl; Ω) by (1.9). It follows thatw ∈ H0(curl; Ω)∩H(div0; Ω; ε).



650 S. C. BRENNER, J. CUI, Z. NAN, AND L.-Y. SUNG

Clearly, w is nontrivial. To see that it satisfies (3.5), we take an arbitrary
v ∈ H0(curl; Ω)∩H(div0; Ω; ε) and write its Hodge decomposition (cf. Lemma 2.3)
as

(3.9) v = ε−1∇× φ+∇ϕ,

where φ ∈ H1(Ω) and ϕ ∈ H(Ω; ε). Note that, by Lemma 2.4, we have

(3.10) (∇× η,∇ϕ) = 0 and (εw,∇ϕ) = (∇× ρ,∇ϕ) = 0.

It follows from (1.9), (3.6), (3.7), (3.9) and (3.10) that

(μ−1∇×w,∇× v) = (η,∇× v) = (∇× η,v)

= (∇× η, ε−1∇× φ+∇ϕ)

=
(
∇× η, ε−1∇× φ)

= −α(μη, φ)

= −α(∇×w, φ)

= −α(w,∇× φ)

= −α(εw, ε−1∇× φ+∇ϕ) = −α(εw,v),

i.e., w satisfies (3.5). �

4. A P1 finite element method

Let Th be a quasi-uniform simplicial triangulation of Ω with mesh size h and let
Vh ⊂ H1(Ω) be the P1 finite element space associated with Th.

For α �= 0, the P1 finite element method for (1.6) is to find ξh ∈ Vh such that

(4.1) (∇× ξh, ε
−1∇× v) + α(μξh, v) = (f , ε−1∇× v) ∀ v ∈ Vh.

For α > 0, the problem (4.1) is symmetric positive-definite and hence well-posed.
It is also well-posed for α < 0 provided −α is not a Maxwell eigenvalue and h is
sufficiently small (cf. Lemma 4.2 below).

Note that (4.1) implies

(4.2) (μξh, 1) = 0.

When Ω is simply connected and α = 0, ξh ∈ Vh is determined by (4.1) together
with the constraint (4.2). It is a well-posed problem because of the Poincaré-
Friedrichs inequality (cf. [21])

(4.3) ‖v‖L2(Ω) ≤ C
(
|(μv, 1)|+ ‖∇ × v‖L2(Ω)

)
∀ v ∈ H1(Ω).

From here on we use C (with or without subscript) to denote a generic positive
constant independent of h, but which can depend on μ, ε and α.

The P1 finite element approximation φh ∈ Vh of φ (cf. (1.4)) is then determined
by

(∇× φh, ε
−1∇× v) = (μξh, v) ∀ v ∈ Vh,(4.4a)

(φh, 1) = 0.(4.4b)

The problem (4.4) is well-posed because of (4.2) and (4.3).
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In the case where m ≥ 1 (i.e., Ω is not simply connected), the P1 finite element
approximation ϕj,h ∈ Vh for the ε-harmonic function ϕj in the Hodge decomposition
(1.2) is determined by the following problem (cf. (1.3)):

(ε∇ϕj,h,∇v) = 0 ∀ v ∈ V̊h,(4.5a)

ϕj,h

∣∣
Γ0

= 0,(4.5b)

ϕj,h

∣∣
Γk

= δjk =

{
1 j = k,

0 j �= k,
for 1 ≤ k ≤ m,(4.5c)

where V̊h = Vh ∩ H1
0 (Ω) is the P1 finite element space whose members vanish on

∂Ω.
Since the bilinear form

(ϕh, 
h) → (ε∇ϕh,∇
h)

is symmetric positive-definite on 〈ϕ1,h, . . . , ϕm,h〉, we can compute c1,h, . . . , cm,h by
solving the symmetric positive-definite system

(4.6)
m∑
j=1

(ε∇ϕj,h,∇ϕk,h)cj,h =
1

α
(f ,∇ϕk,h) for 1 ≤ k ≤ m.

(Recall that α is assumed to be nonzero when Ω is not simply connected.)
Finally, we approximate u by the piecewise constant vector field uh defined by

(4.7) uh = ε−1∇× φh +
m∑
j=1

cj,h∇ϕj,h.

Since (4.1), (4.4) and (4.5) only involve standard second order scalar elliptic
problems, the P1 finite element method can be analyzed by standard techniques.
Below is a brief error analysis where we provide details only for results that are less
standard. The main theorem (Theorem 4.9) is established under the assumption
that f ∈ [L2(Ω)]

2. But we will also remark on various improvements on the rate of
convergence under the stronger assumption that f is piecewise smooth.

Let the index β be defined by

(4.8) β = min
(
1, min

1≤�≤L

π

ω�

)
,

where ω1, ω2, . . . , ωL are the interior angles at the corners of Ω. Note that β = 1 if
Ω is convex.

The following estimate for the solution of (1.3) can be derived from the sin-
gular function representations of these solutions (cf. [15, 13, 20]) and standard
interpolation error estimates [11, 9]:

(4.9) ‖ϕj −Πhϕj‖L2(Ω) + h|ϕj −Πhϕj |H1(Ω) ≤ Ch1+β,

where Πh is the nodal interpolation operator for the P1 finite element.
Similarly, for the solution ζ of the Laplace equation with homogeneous Neumann

boundary condition, we have

(4.10) ‖ζ −Πhζ‖L2(Ω) + h|ζ −Πhζ|H1(Ω) ≤ Ch1+β‖g‖L2(Ω),

where g is the right-hand side function.
We begin by comparing ξh and ξ = μ−1∇× u. The following result is obtained

by using (1.6), (4.1), (4.10) and a standard duality argument.
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Lemma 4.1. For α > 0 (general Ω) and α = 0 (simply connected Ω), we have

(4.11) ‖ξ − ξh‖L2(Ω) ≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω).

In the case where α < 0, the following result is obtained by using the approach
of Schatz [23], where the required well-posedness of the continuous problem (1.6)
is guaranteed by Lemma 3.2.

Lemma 4.2. The discrete problem (4.1) is well-posed for α < 0, provided −α is
not a Maxwell eigenvalue and h is sufficiently small. Under these conditions the
estimate (4.11) remains valid.

Under the assumption that f ∈ [L2(Ω)]
2, we have the following stability estimate

from the well-posedness of the continuous problem:

(4.12) ‖ξ‖H1(Ω) ≤ C‖f‖L2(Ω),

which together with (4.11) immediately implies the following corollary.

Corollary 4.3. Under the conditions in Lemmas 4.1 and 4.2, we have

(4.13) ‖ξ − ξh‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

Remark 4.4. If f is a piecewise smooth vector field, then it follows from integration
by parts and the trace theorem that∣∣(f , ε−1∇× v)

∣∣ ≤ Cδ‖v‖H(1/2)+δ(Ω) ∀ v ∈ H1(Ω),

where δ > 0 is arbitrary. Hence we have ξ ∈ H(3/2)−δ(Ω) by elliptic regularity and
it follows from (4.11) that the estimate (4.13) can be improved to

(4.14) ‖ξ − ξh‖L2(Ω) ≤ Cδh
β+(1/2)−δ.

Next, we compare φh and φ.

Lemma 4.5. For h sufficiently small, we have
(4.15)

‖∇ × (φ− φh)‖L2(Ω) ≤ C
(
hβ inf

v∈Vh

‖∇ × (ξ − v)‖L2(Ω) + inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω)

)
.

Proof. Since (μξ, 1) = 0, we can define φ̃h ∈ Vh to be the unique solution of

(∇× φ̃h, ε
−1∇× v) = (μξ, v) ∀ v ∈ Vh,(4.16a)

(φ̃h, 1) = 0.(4.16b)

It follows from (4.4) and (4.16) that

(4.17)
(
∇× (φ̃h − φh), ε

−1∇× v
)
=

(
μ(ξ − ξh), v

)
∀v ∈ Vh,

and (φh − φ̃h, 1) = 0. We then obtain, by (4.3), (4.11) and (4.17),

‖ε− 1
2∇× (φ̃h − φh)‖2L2(Ω) =

(
μ(ξ − ξh), φ̃h − φh

)
≤ C‖ξ − ξh‖L2(Ω)‖φ̃h − φh‖L2(Ω)

≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω)‖∇ × (φ̃h − φh)‖L2(Ω),

which implies

(4.18) ‖∇ × (φ̃h − φh)‖L2(Ω) ≤ Chβ inf
v∈Vh

‖∇ × (ξ − v)‖L2(Ω).
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Comparing (1.4) and (4.16a), we have the Galerkin relation(
∇× (φ− φ̃h), ε

−1∇× v) = 0 ∀ v ∈ Vh,

which implies

(4.19) ‖ε− 1
2∇× (φ− φ̃h)‖L2(Ω) = inf

v∈Vh

‖ε− 1
2∇× (φ− v)‖L2(Ω).

The estimate (4.15) follows from (4.18) and (4.19). �

Note that (1.4), (1.5) and (4.10) imply

(4.20) inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω) ≤ ‖∇× (φ−Πhφ)‖L2(Ω) ≤ Chβ‖ξ‖L2(Ω).

Hence, under the assumption that f ∈ [L2(Ω)]
2, we can use (4.12), (4.15) and

(4.20) to obtain the following bound:

(4.21) ‖∇ × (φ− φh)‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

The next result follows from a standard argument using (4.9) and Galerkin or-
thogonality.

Lemma 4.6. We have, for 1 ≤ j ≤ m,

(4.22) |ϕj − ϕj,h|H1(Ω) ≤ Chβ.

Next we compare cj,h and cj . First we observe that (4.22) implies

(4.23)
∣∣(f ,∇ϕj)− (f ,∇ϕj,h)

∣∣ ≤ Chβ‖f‖L2(Ω) for 1 ≤ j ≤ m.

Furthermore, since ϕi − ϕi,h ∈ H1
0 (Ω) for 1 ≤ i ≤ m, (1.3a) implies

(ε∇ϕi,∇ϕj)− (ε∇ϕi,h,∇ϕj,h) =
(
ε(∇ϕi−∇ϕi,h),∇ϕj,h−∇ϕj

)
for 1 ≤ i, j ≤ m,

and hence, in view of (4.22),

(4.24)
∣∣(ε∇ϕi,∇ϕj)− (ε∇ϕi,h,∇ϕj,h)

∣∣ ≤ Ch2β for 1 ≤ i, j ≤ m.

Lemma 4.7. For h sufficiently small, we have

(4.25) |cj − cj,h| ≤ Chβ‖f‖L2(Ω) for 1 ≤ j ≤ m.

Proof. We can write (1.8) and (4.6) as

Ac = b and Ahch = bh,

where c ∈ R
m (resp. ch ∈ R

m) is the vector whose j-th component is cj (resp.
cj,h), A ∈ R

m×m (resp. Ah ∈ R
m×m) is the matrix whose (i, j)-th component is

(ε∇ϕj ,∇ϕi) (resp. (ε∇ϕj,h,∇ϕi,h)), and b ∈ R
m (resp. bh ∈ R

m) is the vector
whose j-th component is α−1(f ,∇ϕj) (resp. α

−1(f ,∇ϕj,h)).
Note that

(4.26) ‖b‖∞ ≤ |α|−1
(

max
1≤j≤m

‖∇ϕj‖L2(Ω)

)
‖f‖L2(Ω) ≤ C‖f‖L2(Ω),

and the estimates (4.23)–(4.24) are translated into

(4.27) ‖b− bh‖∞ ≤ Chβ‖f‖L2(Ω) and ‖A−Ah‖∞ ≤ Ch2β.

The estimate (4.25) follows from the identity

c− ch = A−1b−A−1
h bh = A−1(b− bh) +A−1(Ah −A)A−1

h

(
(bh − b) + b

)
and (4.26)–(4.27). �
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Remark 4.8. In the case where f is piecewise smooth, it follows from integration
by parts and the trace theorem that∣∣(f ,∇ϕj)− (f ,∇ϕj,h)

∣∣ ≤ Cδ‖ϕj − ϕj,h‖H(1/2)+δ(Ω)

for any δ > 0, and by a duality argument, we have

‖ϕj − ϕj,h‖H(1/2)+δ(Ω) ≤ Cδh
(1/2)−δ|ϕj − ϕj,h|H1(Ω).

Hence the estimate (4.23) can be improved to∣∣(f ,∇ϕj)− (f ,∇ϕj,h)
∣∣ ≤ Cδh

β+(1/2)−δ,

and we can replace (4.25) by

(4.28) |cj − cj,h| ≤ Cδh
β+(1/2)−δ for 1 ≤ j ≤ m.

We can now compare uh and u by putting all the estimates together.

Theorem 4.9. For h sufficiently small, we have

(4.29) ‖u− uh‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

Proof. First we observe that the solutions c1, . . . , cm of (1.8) satisfy

(4.30) |cj | ≤ C‖f‖L2(Ω) for 1 ≤ j ≤ m.

Second we have, from (1.2) and (4.7),

‖u− uh‖L2(Ω) ≤ C|φ− φh|H1(Ω) +

m∑
j=1

|cjϕj − cj,hϕj,h|H1(Ω)

≤ C|φ− φh|H1(Ω) +
m∑
j=1

(
|cj − cj,h| |ϕj |H1(Ω) + |cj,h| |ϕj − ϕj,h|H1(Ω)

)
(4.31)

≤ C|φ− φh|H1(Ω) +

m∑
j=1

|cj − cj,h|
(
|ϕj |H1(Ω) + |ϕj − ϕj,h|H1(Ω)

)

+

m∑
j=1

|cj | |ϕj − ϕj,h|H1(Ω).

The estimate (4.29) follows from (4.21), (4.22), (4.25), (4.30) and (4.31). �

Remark 4.10. In the case where cj = 0 = cj,h for 1 ≤ j ≤ m, it follows from (4.15)
and (4.31) that

‖u− uh‖L2(Ω) ≤ C
[
hβ inf

v∈Vh

‖∇ × (ξ − v)‖L2(Ω) + inf
v∈Vh

‖∇ × (φ− v)‖L2(Ω)

]
.

Finally, we present the results of several numerical tests that illustrate the per-
formance of the P1 finite element method. We take μ = ε = 1 in the tests. All the
computations are performed on uniform grids consisting of isosceles right-angled
triangles whose horizontal and vertical edges have length h.
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Table 4.1. Results for (1.1) on the L-shaped domain with exact
solution given by (4.32)

h
‖∇×u−ξh‖L2

‖f‖L2
Order h

‖u−uh‖L2
‖f‖L2

Order

α = −1

1/8 3.57E−02 1.43 1/8 3.19E−02 1.41

1/16 1.32E−02 1.43 1/16 1.23E−02 1.38

1/32 4.98E−03 1.41 1/32 5.03E−03 1.28

1/64 1.90E−03 1.39 1/64 2.26E−03 1.15

1/128 7.37E−04 1.37 1/128 1.13E−03 0.99

1/256 2.87E−04 1.36 1/256 6.17E−04 0.87

α = 0

1/8 1.12E−02 1.44 1/8 1.35E−02 1.29

1/16 4.24E−03 1.41 1/64 6.13E−03 1.14

1/32 1.63E−03 1.38 1/32 3.07E−03 0.99

1/64 6.36E−04 1.36 1/64 1.66E−03 0.89

1/128 2.50E−04 1.35 1/128 9.46E−04 0.81

1/256 9.86E−05 1.34 1/256 5.58E−04 0.76

α = 1

1/8 6.77E−03 1.39 1/8 1.06E−02 1.14

1/16 2.63E−03 1.36 1/16 5.27E−03 1.01

1/32 1.04E−03 1.34 1/32 2.80E−03 0.91

1/64 4.14E−04 1.33 1/64 1.56E−03 0.84

1/128 1.65E−04 1.33 1/128 9.06E−04 0.79

1/256 6.57E−05 1.32 1/256 5.38E−04 0.75

In the first set of experiments, we examine the convergence behavior of the
numerical scheme on the L-shaped domain (−1, 1)2 \ [0, 1]2. The exact solution is
chosen to be

(4.32) u = ∇×
(
r2/3 cos

(2
3
θ − π

3

)
φ(x)

)
,

where (r, θ) are the polar coordinates at the origin and φ(x) = (1− x2
1)

2(1− x2
2)

2.
It has the correct Maxwell singularity at the reentrant corner. We solve (1.1) for
α = −1, 0 and 1, with f = ∇ × (∇ × u) − αu ∈ H(div0; Ω). The results are
tabulated in Table 4.1.

Note that the convergence of uh to u is approaching the order of β = 2/3
predicted by Theorem 4.9. On the other hand, since ξ = ∇×u behaves like r2/3 at
the origin, the order of convergence for ξh according to (4.11) is (2/3)+(2/3) = 4/3,
which agrees with the observed order of convergence.

The second set of experiments is performed for the doubly connected domain

Ω = (0, 4)2 \ [1, 3]2.

In this case the solution u of (1.1) can be written as

(4.33) u = ∇× φ+ c∇ϕ,
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Table 4.2. Results for (1.1) on the doubly connected domain with
exact solution given by (4.34)

h
‖∇×u−ξh‖L2

‖f‖L2
Order |ch|

‖u−uh‖L2
‖f‖L2

Order

α = −1

1/8 3.71E−03 2.01 7.93E−17 1.13E−03 1.05

1/16 9.26E−04 2.00 1.36E−16 5.61E−03 1.01

1/32 2.31E−04 2.00 1.49E−16 2.80E−03 1.00

1/64 5.78E−05 2.00 7.69E−16 1.39E−03 1.00

1/128 1.44E−05 2.00 7.43E−16 6.99E−04 1.00

α = 1

1/8 1.69E−03 1.98 9.25E−16 9.50E−03 1.00

1/16 4.25E−04 1.99 1.11E−15 4.75E−03 1.00

1/32 1.06E−04 2.00 1.35E−15 2.38E−03 1.00

1/64 2.66E−05 2.00 3.27E−15 1.19E−03 1.00

1/128 6.64E−06 2.00 4.96E−15 5.94E−04 1.00

where c is a constant and the harmonic function ϕ satisfies the boundary conditions

ϕ
∣∣
Γ0

= 0 and ϕ
∣∣
Γ1

= 1.

Here Γ0 (resp. Γ1) is the boundary of (0, 4)2 (resp. (1, 3)2). First, we take the
exact solution to be

(4.34) u =

⎡
⎣x2(1− x2)(3− x2)(4− x2)

x1(1− x1)(3− x1)(4− x1)

⎤
⎦

and solve (1.1) for α = −1 and 1, with f = ∇× (∇× u)− αu ∈ H(div0; Ω). The
numerical results are presented in Table 4.2.

Note that in this case u is the curl of a quintic polynomial and hence c = 0 in
(4.33). In fact, since f is also the curl of a polynomial, we have (f ,∇ϕh) = 0 by
Lemma 2.4, and it is observed that ch = 0 up to machine error.

According to Remark 4.10, the order of convergence for uh is 1 (since ξ and φ are
smooth), which is observed. The order of convergence for ξh is found to be 2, which
is better than the order of β + 1 = 5/3 predicted by (4.11). This is likely due to
the effects of superconvergence [24, 18] since we use uniform meshes in computing
ξh and the exact solution ξ is smooth.

Finally, we take the right-hand side of (1.1) to be the piecewise smooth vector
field

f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 + x1

0

]
if x1 < x2 and 3 < x1 < 4,

[
0

1 + x2

]
otherwise.

(4.35)

The numerical results are presented in Table 4.3 for α = −1 and 1.
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Table 4.3. Results for (1.1) on the doubly connected domain with
right-hand side given by (4.35)

h
‖∇×u−ξh‖L2

‖f‖L2
Order ch Order

‖u−uh‖L2
‖f‖L2

Order

α = −1

1/4 1.72E−01 1.26 0.763918 1.05 2.68E−01 1.00

1/8 5.28E−02 1.70 0.765285 0.87 1.28E−01 1.06

1/16 1.49E−02 1.83 0.765991 0.95 6.93E−02 0.89

1/32 4.29E−03 1.80 0.766332 1.05 4.04E−02 0.78

1/64 1.13E−03 1.69 0.766489 1.12 2.42E−02 0.73

α = 1

1/4 1.03E−02 1.33 -0.763918 1.05 8.60E−02 0.71

1/8 4.04E−03 1.35 -0.765285 0.87 5.30E−02 0.70

1/16 1.58E−03 1.35 -0.765991 0.95 3.29E−02 0.69

1/32 6.21E−04 1.35 -0.766332 1.05 2.05E−02 0.68

1/64 2.44E−04 1.34 -0.766489 1.12 1.28E−02 0.67

The observed orders of convergence are consistent with the theoretical results.
In particular, the order of convergence for ch matches the estimate (4.28) with
β = 2/3, and the order of convergence for uh is 2/3 for α = 1 and approaching 2/3
for α = −1, which agrees with the estimate (4.29). The order of convergence for ξh
in both cases is higher than the order predicted by (4.14). This is probably due to
the fact that the mesh size h is not small enough and the asymptotic behavior has
not been reached.

5. Concluding remarks

The new numerical approach for two-dimensional Maxwell’s equations intro-
duced in this paper only involves solving standard second order scalar elliptic
boundary value problems. We have demonstrated its performance using a P1 finite
element method on quasi-uniform triangulations. There are of course many other
possibilities, such as finite element methods on graded meshes that can recover
O(h) convergence even on nonconvex domains, adaptive methods, multigrid meth-
ods and domain decomposition methods. The application of these methods to (1.1)
and the related Maxwell eigenproblem will be carried out elsewhere.

We can also apply the Hodge decomposition to study Maxwell’s equations in
three dimensions. In this case both ξ = ∇ × u and the potential φ in the Hodge
decomposition are vector fields. Therefore, the Hodge decomposition does not
reduce the problem to scalar elliptic boundary value problems. However, there
may still be some advantages of solving the systems for ξ and φ instead of the
original system for u. This will be further explored.
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