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POLYNOMIAL EXTENSION OPERATORS. PART III

L. DEMKOWICZ, J. GOPALAKRISHNAN, AND J. SCHÖBERL

Abstract. In this concluding part of a series of papers on tetrahedral polyno-
mial extension operators, the existence of a polynomial extension operator in
the Sobolev space H(div) is proven constructively. Specifically, on any tetra-
hedron K, given a function w on the boundary ∂K that is a polynomial on
each face, the extension operator applied to w gives a vector function whose
components are polynomials of at most the same degree in the tetrahedron.
The vector function is an extension in the sense that the trace of its normal
component on the boundary ∂K coincides with w. Furthermore, the extension
operator is continuous from H−1/2(∂K) into H(div,K). The main applica-
tion of this result and the results of this series of papers is the existence of

commuting projectors with good hp-approximation properties.

1. Introduction

This is the final installment of our series of papers [11, 12] devoted to the con-
struction of polynomial extensions on any tetrahedron K. In Part I [11], we con-
structed an extension operator from H1/2(∂K) into H1(K) that preserves polyno-
mials (in the sense made precise there). In Part II [12] we extended our techniques
to develop an operator that extends appropriate tangential vector fields on ∂K into
H(curl ,K) and preserves polynomials in some sense. The current part is devoted
to the construction of an H(div)-polynomial extension operator. This operator
extends functions in H−1/2(∂K) into H(div,K) in such a way that if the function
to be extended is a polynomial on each face of K, then the extended vector function
has polynomial components of at most the same degree onK. The overall technique
employed here for constructing the extension operator is similar to the previous two
parts. However, there are some fresh ingredients that play an important role, such
as a commuting volumetric extension operator and an operator used in proving the
classical Poincaré lemma in differential geometry. To summarize this work:

(1) An H(div)-polynomial extension operator can be constructed. This is the
main result of this paper and forms the content of Theorem 7.1 below.

(2) The result of this series of papers (Parts I–III) can be succinctly represented
using the commuting diagram in (8.1), in the concluding section, §8.
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(3) The main application of the results of this series of papers is in obtain-
ing almost optimal hp approximation estimates in H(curl ) and H(div)-
conforming finite element spaces. These approximation estimates are given
in Theorem 8.1.

For the history of the polynomial extension problem and contributions by many
authors to it, we refer the reader to the introduction of Part I [11]. While there are
many works giving H1 polynomial extensions [2, 19, 15, 11], few give polynomial
extensions in H(div). To briefly highlight the closest works to the current paper,
the two-dimensional results in [1, §2.2] give an H(div)-polynomial extension on
triangles. The work of [7] gives a family of H(div) tetrahedral extension operators,
one for each polynomial degree p, with certain p-independence properties. Our
work in contrast gives one formula for a tetrahedral H(div) polynomial extension
operator that works, at once, for all polynomial degrees, and indeed for all functions
in the entire trace space of H(div).

The construction of our H(div) extension will be guided, as in the previous
cases [11, 12], by a target commutativity property. Namely, the final extension

operator Ediv
K should satisfy

(1.1) Ediv
K (curlτ v) = curl (Ecurl

K v),

for all v in the space of traces of H(curl ). Here Ecurl
K is the H(curl ) polynomial

extension operator we constructed in [12] and curlτ v denotes the surface curl of
v. The subscript τ indicates tangential components, and accordingly gradτ , curlτ ,
and divτ denote tangential gradient, curl, and divergence, on the boundaries of
suitable three-dimensional domains. For details concerning the definition of differ-
ential operators on nonsmooth manifolds, see [5, 6]. So as not to leave any sign
of ambiguity, let us clarify that if φ is a smooth function on K, and n is the unit
outward normal vector on ∂K, then

(1.2) curlτ (trcτ φ) = divτ (φ× n) = n · curlφ

on ∂K. Here trcτ denotes the tangential trace map. For smooth vector functions
φ, the action of trcτ is defined by

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K

.

In contrast, the normal trace operator is defined by

trcn φ = (φ · n)
∣∣
∂K

.

The extension Ediv
K we shall construct in this paper is a right inverse of trcn.

Additionally, our extension has a polynomial preservation property important in
finite element applications. To describe this property, let P�(D) denote the space of
polynomials of degree at most � on any subset D of a Euclidean space (so it could
be univariate or multivariate polynomials). Further, let P �(D) denote the set of
vector functions on D whose components are in P�(D). Our extension operator

Ediv
K : H−1/2(∂K) �→ H(div) is such that if w is a polynomial of degree at most p

on each of the faces of the tetrahedron K, then Ediv
K w is in P p(K). In conforming

finite element applications involving H(div,Ω), the discrete space restricted to an
elementK is often P p(K). It could also be the so-called Raviart-Thomas space [20],
defined by Rp(K) = {qp + xrp : qp ∈ P p(K), rp ∈ Pp(K)} where x = (x, y, z)t is
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the coordinate vector. Since

trcn(P p(K)) = trcn(Rp(K))

and Rp(K) ⊇ P p(K), our extension operator has polynomial preservation proper-
ties with respect to both choices, i.e.,

Ediv
K : trcn(P p(K)) �→ P p(K) as well as Ediv

K : trcn(Rp(K)) �→ Rp(K).

Hence we anticipate its utility in high order Raviart-Thomas finite elements as well
as the high order BDM method [4].

The organization of this paper is as follows. We start by establishing a stable
decomposition of the H(div) trace space into a regular part and a surface curl.
For this we need an extension of volume data with specific regularity properties.
Therefore we will first construct such volumetric extensions. These are general-
izations of well-known classical extensions [16, 21] and are therefore independently
interesting. We use them to establish the stable trace decomposition. Next, in
Section 3, we develop an H(div) extension from a plane as the first step towards
constructing an extension from the boundary of a tetrahedron. In the succeeding
sections, we develop a sequence of correction operators that will progressively help
us solve a sequence of simpler problems of increasing complexity, leading to the so-
lution of the full polynomial extension problem from ∂K. These simpler problems
are the two-face problem (Section 4), the three-face problem (Section 5) and the
four-face problem (Section 6). The main theorem is in Section 7, and we conclude
in Section 8. An appendix which collects all the proofs of technical lemmas is also
included.

2. A decomposition of the trace space

In this section, we show that the trace space of H(div) admits a decomposition
consisting of two components, one of which is regular, and the other is a surface
curl. We begin by developing a volumetric extension which we will need in proving
the existence of the decomposition. Such extensions are also interesting in their
own right.

2.1. Generalized reflections. The purpose of this subsection is to generalize an
old technique of [16] to obtain “volumetric” extensions. Volumetric extensions
do not extend traces, but rather extend functions defined on three-dimensional
domains to larger three-dimensional domains. The generalization is aimed at ob-
taining some specific regularity properties in the spaces

Hk(curl , D) = {v ∈ H(curl , D) : curlv ∈ Hk(D)},
Hk(div, D) = {v ∈ H(div, D) : div v ∈ Hk(D)},

normed in the obvious way. We begin by giving commuting generalized reflection
operators.

Proposition 2.1. Suppose D is an open bounded subset of the plane R
2 with Lip-

schitz boundary. For any � > 0, consider the three-dimensional domains S =

(0, �)×D and S̃ = (−�, �)×D. Then, for any integer k ≥ 1, there are volumetric

extension operators Ĝgrad, Ĝcurl, Ĝdiv, and Ĝ1 extending functions on S to S̃ such
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that the diagram

(2.1)

Hk(S)
grad−−−−→ Hk−1(curl , S)

curl−−−−→ Hk−1(div, S)
div−−−−→ Hk−1(S)⏐⏐�Ĝgrad

⏐⏐�Ĝcurl

⏐⏐�Ĝdiv

⏐⏐�Ĝ1

Hk(S̃)
grad−−−−→ Hk−1(curl , S̃)

curl−−−−→ Hk−1(div, S̃)
div−−−−→ Hk−1(S̃)

commutes. The operators are continuous as maps from and into the above indicated
spaces.

Proof. Let u be a function in C∞(S) and αj be real numbers to be specified shortly.
The generalized reflection operator considered in [16, Lemma 3] is

Ĝ0u (x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
u(x, y, z), if x > 0,

k∑
j=1

αj u(−x/j, y, z), if x ≤ 0.

For this proof, we need an additional operator:

Ĝ1u (x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
u(x, y, z), if x > 0,

k∑
j=1

−(
αj

j
) u(−x/j, y, z), if x ≤ 0.

Observe that if the αj ’s satisfy

(2.2)

k∑
j=1

αj
1

(−j)m
= 1,

then

(2.3) lim
x→0
x>0

∂m

∂xm
Ĝ0u(x, y, z)− lim

x→0
x<0

∂m

∂xm
Ĝ0u(x, y, z) = 0.

Considering (2.2) for m = 0, 1, . . . , k − 1 as a linear system of k equations in the
k unknowns αj , it is easy to see that there is a unique set of αj ’s that solves
it. Thus (2.3) holds for all m = 0, 1, . . . , k − 1, and consequently, by standard

arguments, Ĝ0 extends to

(2.4) Ĝ0 : Hk(S) �→ Hk(S̃)

as a continuous map. With the same choice of αi’s, we similarly also have that Ĝ1

extends to

(2.5) Ĝ1 : Hk−1(S) �→ Hk−1(S̃)

as a continuous operator.
We define the required volumetric extensions for a scalar function u and a vector

function v with components v1, v2, v3 by

Ĝgradu = Ĝ0u, Ĝcurlv =

⎛⎝Ĝ1v1
Ĝ0v2
Ĝ0v3

⎞⎠ , Ĝdivv =

⎛⎝Ĝ0v1
Ĝ1v2
Ĝ1v3

⎞⎠ .
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Using the obvious identities

(2.6) ∂x(Ĝ0u) = Ĝ1(∂xu),
∂y(Ĝiu) = Ĝi(∂yu), for i = 0 or 1,

∂z(Ĝiu) = Ĝi(∂zu), for i = 0 or 1,

we immediately verify that the above defined operators satisfy the commutativity
properties in (2.1).

To prove the continuity properties asserted in the proposition, first note that the

required continuity of Ĝ1 is already proved in (2.5). The continuity of Ĝdiv follows
from the commutativity

div Ĝdivw = Ĝ1 divw

and the continuity of Ĝ1 as follows:

‖ div Ĝdivw‖Hk−1(˜S) = ‖Ĝ1 divw‖Hk−1(˜S) ≤ C‖ divw‖Hk−1(S).

The continuity of Ĝcurl follows from

curl Ĝcurlv = Ĝdivcurlv

and the already established continuity of Ĝdiv. The continuity of Ĝgrad is the same
as in (2.4). �

It is obvious from the above proof that one can consider domains more general

than S̃. Indeed, the proof holds for any S̃ that has reflectional symmetry about
a plane. We now use this to generalize the above result to a domain around the
unit tetrahedron. Let K̂ denote the closed unit tetrahedron with vertices â0 =
(0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1). Let F̂i denote the face of K̂
opposite to âi. We want to find an operator that extends functions defined outside
K̂ into K̂ by combining reflections across the faces F̂1, F̂2, and F̂3. Of course,
mere addition of the reflections across each of these faces is insufficient because
one application of the generalized reflection across a face alters the values near the
remaining faces. We must combine the reflections more carefully.

We now do this for some specific domains we shall need later (although more
general domains can be handled equally well), which we describe first. They are

convex enlargements of K̂ defined separately for each index I in {i, ij, ijk}, where
{i, j, k} is any permutation of {1, 2, 3}. Let ãi,j = 2âj − âi and ãi,k = 2âk − âi.
Define the enlarged domains

K̃i = conv(K̂, ãi,j , ãi,k,−âi),(2.7)

K̃ij = conv(K̃i, K̃j),(2.8)

K̃ijk = conv(K̃i, K̃j , K̃k),(2.9)

where conv(· · · ) denotes the convex hull of all its arguments (see Figure 1). We

want to construct an operator extending functions on K̃I \ K̂ into K̂.

Proposition 2.2. For any integer k ≥ 1, and any I in {i, ij, ijk}, there are con-
tinuous volumetric extension operators

Ggrad : Hk(K̃I \ K̂) �−→ Hk(K̃I) (Ggradu|
˜KI\K̂ = u),

Gcurl : Hk−1(curl , K̃I \ K̂) �−→ Hk−1(curl , K̃I) (Gcurlv|
˜KI\K̂ = v),

Gdiv : Hk−1(div, K̃I \ K̂) �−→ Hk−1(div, K̃I) (Gdivw|
˜KI\K̂ = w)

satisfying the commutativity properties in (2.1).



1294 L. DEMKOWICZ, J. GOPALAKRISHNAN, AND J. SCHÖBERL

â2

â3

â1 K̂

K̃1

−â1

ã1,2

ã1,3

â2

â3

â1
K̂

K̃12

Figure 1. Illustration of the convex enlargements K̃I for I ∈ {1, 12}

Proof. Let D = {(x, y, z) : |x| + |y| + |z| ≤ 1} be the domain formed of eight
unit tetrahedra. Let D±x = {(x, y, z) ∈ D : ±x ≥ 0}, and define D±y and D±z

similarly.

Recall the extension Ĝcurl defined in the proof of Proposition 2.1. It is obtained by
generalized reflections about the yz-plane. Hence it defines an operator extending
functions on D−x into D+x. To distinguish this extension from reflections about
other faces, we now call it Gcurl

x , i.e.,

Gcurl
x v(x, y, z) =

{
v(x, y, z) if (x, y, z) ∈ K̃I and x < 0,

Ĝcurlv(x, y, z) if (x, y, z) ∈ D+x.

Similarly, we define Gcurl
y and Gcurl

z using generalized reflections across the other

faces. All these maps have continuity properties in the Hk−1(curl , ·)-norm as in
Proposition 2.1.

Consider the simplest case I = 1 first. Then D−x is contained in K̃I \ K̂ (see
Fig. 1). Hence the needed extension Gcurl is simply

(2.10) Gcurlu =

{
u, on K̃I \ K̂,

Gcurl
x Rxu on K̂,

where Rx denotes the operator restricting functions to D−x. (We will also shortly
need Ry and Rz, the restrictions to D−y and D−z, respectively.)

Next, consider the case I = 12. Then D−x ∪ D−y is contained in K̃I . The
extension Gcurl

x Rxu we considered in (2.10) must now be fixed to obtain appropriate
tangential continuity across the xz-plane. This is achieved by defining

(2.11) Gcurlu =

{
u, on K̃I \ K̂,

Gcurl
x Rxu+ Gcurl

y Ry(u− GxRxu) on K̂.

By examining the limiting values as one approaches the faces F̂1 and F̂2, we find
that this is the required extension.
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For the case I = 123, generalizing (2.10) and (2.11), it is easy to verify that

Gcurl
x v(x, y, z)=

⎧⎪⎨⎪⎩
v(x, y, z) on K̃I \K̂,

Gcurl
x Rxu+Gcurl

y Ry(u−Gcurl
x Rxu)

+Gcurl
z Rz(u−Gcurl

x Rxu−Gcurl
y Ry(u−Gcurl

x Rxu)), on K̂.

is the needed extension satisfying the claimed continuity property.
The cases of the remaining I in {i, ij} are similar. Also, the definitions of Ggrad

and Gdiv in each case is similar. The claimed commutativity properties easily follow
from Proposition 2.2. �

2.2. Regular decomposition of traces. The idea for decomposing the trace
space of H(div,K) is easy to describe. If w is in H(div,K), then the well-known
Helmholtz-Hodge decomposition (see e.g., [13] or [18, §3.7]) asserts that there is a
φ in H(curl ,K) and θ in H1(K) such that

w = curlφ+ θ.

That θ is in H1(K) follows because K is convex (see, e.g., [18, Remark 3.48]).
Furthermore, this decomposition is stable in the sense that the mappings w �→ φ
and w �→ θ are continuous maps (into their respective spaces). Taking the normal
trace, we find that

trcn w = n · curlφ+ n · θ
= curlτ (trcτ φ) + trcn θ.

Thus we have a decomposition of the trace space:

(2.12) H−1/2(∂K) = curlτ (X
−1/2(∂K)) + trcn(H

1(K)),

where X−1/2(∂K) is the range of trcτ , i.e., X
−1/2(∂K) = trcτ (H(curl ,K)). The

results of [5] provide a characterization of X−1/2(∂K) as a subspace of H−1/2(∂K),
but we will not need it.

Next, we need to speak of traces that weakly vanish on a subset S ⊆ ∂K. Let
〈·, ·〉 denote the duality pairing between H−1/2(∂K) and H1/2(∂K). Suppose S has
positive boundary measure. Define

H1
0,S(K) = {ψ ∈ H1(K) : trcψ|S = 0},

H0,S(curl ) = {φ ∈ H(curl ) : 〈n×ψ, trcτ φ〉 = 0

∀ψ with components inH1
0,∂K\S(K)},

H0,S(div) = {w ∈ H(div) : 〈ψ,n ·w〉 = 0 for all ψ ∈ H1
0,∂K\S(K)}.

Of interest to us are cases when S is composed of one or more faces of K.
We adopt the notations in the previous parts [11, 12] for faces and vertices

of K; e.g., a0,a1,a2,a3 denote the vertices of K, and Fi denote the face of K
opposite to ai. So, we consider the situation when S is one of Fi, Fij = Fi ∪Fj , or
Fijk = Fi ∪ Fj ∪ Fk. Here and elsewhere the indices i, j, k, l are a permutation of
0,1,2,3.
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For all subscripts I in the set {i, ij, ijk}, define the following ranges of the trace
maps:

H
1/2
0,I (∂K) = trc H1

0,FI
(K),

X
−1/2
0,I (∂K) = trcτ H0,FI

(curl ),

H
−1/2
0,I (∂K) = trcn H0,FI

(div).

We will often omit the argument ∂K when the space consists of functions defined
on the whole boundary ∂K. All these spaces are normed by quotient norms, e.g.,

(2.13) ‖ν‖
H

−1/2
0,I (∂K)

= inf
trcn(w)=ν

‖w‖H(div),

where the infimum runs over all w in H0,FI
(div) such that trcn w = ν. The

space H
1/2
0,I (∂K) and its restrictions to faces H

1/2
0,I (Fl) featured in Part I [11]. The

space X
−1/2
0,I (∂K) was important in Part II [12], where we also precisely defined

the notion of its restrictions to a face Fl, denoted there by X
−1/2
0,I (Fl). In fact,

the restriction from ∂K to a face Fl is a continuous map, on entire X−1/2(∂K)
(see [12, eq. (2.5)]). We denote this map by Rl, as in Part II [12]. In the current

paper, we will need restrictions of functions in H−1/2(∂K) and H
−1/2
0,I (∂K) to Fl,

where the restriction operation is defined using the decomposition (2.12) and Rl as
follows. Decomposing any g in H−1/2(∂K) using (2.12) as g = curlτ φ + θ with φ

in X−1/2(∂K) and θ in trcn(H
1(K)), define

(2.14) Rlg = curlτ (Rlφ) + θ|Fl
.

We use this to define

(2.15) H
−1/2
0,I (Fl) = Rl(H

−1/2
0,I (∂K)).

Also, let

(2.16) H−1/2(Fl) = Rl(H
−1/2(∂K)).

Remark 2.1. For a planar domain F , the dual space of H
1/2
0 (F ) ≡ {u ∈ H1/2(F ) :

the extension by zero of u to R
2 is in H1/2(R2)} is often denoted by H−1/2(F ).

We have used the same notation for the space in (2.16), because it indeed coincides

with the dual of H
1/2
0 (Fl). This follows from well-known characterizations of the

dual. For instance, a result in [6, p. 43] shows that functions in the dual of H
1/2
0 (Fl)

have continuous extensions into H−1/2(∂K).

The following theorem gives the stable decompositions we will need in the anal-
ysis of polynomial extensions.

Theorem 2.1. The spaces H
−1/2
0,I (Fl) and H−1/2(Fl) admit the stable decomposi-

tions

H
−1/2
0,I (Fl) = curlτ X

−1/2
0,I (Fl) +H

1/2
0,I (Fl),(2.17)

H−1/2(Fl) = curlτ X
−1/2(Fl) +H1/2(Fl),(2.18)

for all indices I in {i, ij, ijk}.
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Proof. Decomposition (2.18) immediately follows by applying the restriction oper-
ator to (2.12). Hence, we only need to prove the first decomposition. Moreover, it

suffices to prove it for the “reference tetrahedron” K̂ introduced earlier, with the in-

dex l = 0 and {i, j, k} a permutation of {1, 2, 3}. Let K̃I be as defined in (2.7)–(2.9)

and let F̃I denote the face of K̃I containing F̂0.

Given ν in H
−1/2
0,I (F̂0), there is a w in H0,FI

(div, K̂) such that

Rl trcn(w) = ν, and

‖w‖H(div) ≤ C‖ν‖
H

−1/2
0,I (F̂0)

.(2.19)

Let w̃ denote the trivial extension of w from K̂ to K̃I , i.e., w̃ vanishes on K̃I \ K̂
and equals w on K̂. It is easy to verify that w̃ is in H(div, K̃I).

We decompose w̃ by the Helmholtz-Hodge decomposition [13, 18], applied on

the convex domain K̃I , to get

(2.20) w̃ = curlφ+ θ

where φ is in H(curl , K̃I) and θ is in H1(K̃I). Now, since w̃ vanishes on K̃I \ K̂,

curlφ
∣∣

˜KI\K̂ = −θ|
˜KI\K̂ ∈ H1(K̃I \ K̂).

Hence φ is in H1(curl , K̃I \ K̂). Applying the volumetric extension of Proposi-

tion 2.2 with k = 1, we obtain an extension φ′ of φ from K̃I \ K̂ to all K̃I with the

property that curlφ′ is in H1(K̃I). Thus

(2.21) w̃ = curlφ′′ + θ′′

where φ′′ = φ−φ′ and θ′′ = curlφ′ + θ. Clearly, φ′′ is in H(curl , K̃I) and θ′′ is

in H1(K̃I). Moreover, both φ′′ and θ′′ vanish on K̃I \ K̂.
Finally, applying the normal trace operator to (2.21) we obtain

trcn w̃ = curlτ trcτ φ
′′ + trcn θ

′′.

Observe that since all components of θ′′ vanish on K̃I \ K̂,

(trcn θ
′′)
∣∣

˜FI,l
∈ H1/2(F̃I) and supp( (trcn θ

′′)
∣∣

˜FI
) ⊆ F̂0.

Hence ϑ ≡ trcn θ
′′|F̂0

is in H
1/2
0,I (F̂0). Similarly, since φ′′ vanishes on K̃I \ K̂, the

restriction of the tangential trace trcτ φ
′′ to F̂0, denoted by ϕ, is in X

−1/2
0,I (F̂0).

Hence

ν = Rl trcn(w) = curlτ ϕ+ ϑ

is the required decomposition. Its stability follows from the continuity of all the in-
termediate steps, including the stability of the decomposition (2.20), the continuity
of the volumetric extension φ �→ φ′ (Proposition 2.2), the continuity of the lifting
in (2.19), and the continuity of the trace maps. �

3. Primary extension operator

By “primary extensions” we mean, as in Parts I and II [11, 12], extensions of data
specified on a planar surface. The construction of such extensions forms the first
step in designing polynomial extensions of data from piecewise planar manifolds
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like the boundary of a tetrahedron. Define the primary extension for the H(div)
case by

(3.1) Edivw (x, y, z) = 2

∫ 1

0

∫ 1−t

0

⎛⎝ s
t
−1

⎞⎠w(x+ sz, y + tz) ds dt,

for all smooth functions w(x, y).
We will now rewrite this expression using the affine coordinates of the tetrahe-

dron. This will help generalize the expression to yield an extension from any face
of a general tetrahedron. Let λi denote the affine (or barycentric) coordinates of a
general tetrahedron K. As in Parts I and II [11, 12], for any permutation {i, j, k, l}
of {0, 1, 2, 3}, we define the subtriangle

Tl(ri, rj , rk) = {x ∈ Fl : λFl

� (x) ≥ r� for � = i, j, and k},

where λFl
m ≡ λm|Fl

(for m = i, j, or k) are the barycentric coordinates of the face
Fl. Now consider the expression in (3.1) as an extension into the “reference tetra-

hedron” K̂ with vertices â0 = (0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1)

from the face F̂3 opposite to â3. Transforming (3.1) by the variable change x′ =
x+ sz, y′ = y + tz and using barycentric coordinates, we have

Edivw (x, y, z) =
2

z2

∫ x+z

x

∫ x+y+z−x′

y

⎛⎝(x′ − x)/z
(y′ − y)/z

−1

⎞⎠w(x′, y′) dx′ dy′

=
1

|F̂3|λ2
3

∫∫
T3(λ0,λ1,λ2)

⎛⎝ λ̃1

λ̃2

−1

⎞⎠w(s) ds.

Here and elsewhere, while λ� denotes the barycentric coordinates of the tetrahe-

dron under consideration, the symbol λ̃� denotes a barycentric coordinate of the
region of integration under consideration. The subtriangles that form our regions
of integration are always considered as having their node enumeration inherited

from the parent triangle. So, in the above formula, {λ̃0, λ̃1, λ̃2} are the barycentric
coordinates of T3(λ0, λ1, λ2). Now observe that the vector part of the integrand
can be rewritten as⎛⎝ λ̃1

λ̃2

−1

⎞⎠ = λ̃1(gradλ2 × gradλ3) + λ̃2(gradλ3 × gradλ1)− (gradλ1 × gradλ2)

=

2∑
i=0

−λ̃i(gradλi�1 × gradλi�2),

where � denotes addition mod 3. The last identity was obtained by expressing
gradλ3 in terms of the gradients of λ0, λ1, and λ2.

Motivated by the above rearrangement, we define the primary extension into a
general tetrahedron K from one of its faces, say Fl, using affine coordinates. Unlike
the H1 and H(curl ) cases, we now need to track orientation. Let ai,aj ,ak,al be
the vertices of K where, as usual, {i, j, k, l} is a permutation of {0, 1, 2, 3}. We say
that “(i, j, k) is positively oriented with respect to l” if the vertices ai, aj , and ak,
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in that order, form a counterclockwise enumeration of the vertices of the face Fl,
when looking from the vertex al (see Figure 2). Define

(3.2) Ediv
l w =

1

|Fl|λ2
l

∫∫
Tl(λi,λj ,λk)

−
∑

σ∈S(l)

λ̃σ1
(gradλσ2

× gradλσ3
)w(s) ds.

Here, for any index l, we denote by S(l) the set of (three) cyclic permutations
of the remaining three indices i, j, k ordered so that they are positively oriented
with respect to l. The above sum thus runs over all such cyclic permutations σ in
S(l). In the summand, the three components of σ are denoted by σ1, σ2, σ3. The
symmetries are clearly evident from (3.2): The region of integration T (λi, λj , λk) is
unchanged with respect to even or odd permutations of i, j, k, while the integrand
is antisymmetric under odd permutations of i, j, k. Note that when K = K̂, l = 3,
and (i, j, k) = (0, 1, 2), the expression in (3.2) coincides with that in (3.1). The

properties of the operator Ediv
l are collected in the next theorem.

Theorem 3.1 (Primary extension). The operator Ediv
l has the following properties:

(1) curl (Ecurl
l v) = Ediv

l (curlτ v) for all v in X−1/2(Fl).

(2) Ediv
l is a continuous map from H1/2(Fl) into H1(K).

(3) Ediv
l is a continuous map from H−1/2(Fl) into H(div).

(4) The tangential trace of Ediv
l w on Fl equals w for all in H−1/2(Fl).

(5) If w is in Pp(Fl), then Ediv
l w is in P p(K).

Proof. Proof of (1): Let v(x, y) = (v1, v2)
t be a smooth function on the reference

tetrahedron K̂. Recalling the expression for Ecurl on K̂ from [12], namely

Ecurlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0

⎛⎝1 0
0 1
s t

⎞⎠v(x+ sz, y + tz) ds dt

and computing its curl, we have

curl (Ecurlv) = 2

∫ 1

0

∫ 1−t

0

curl

⎛⎝1 0
0 1
s t

⎞⎠v(x+ sz, y + tz) ds dt

= 2

∫ 1

0

∫ 1−t

0

⎛⎝s(∂2v1 − ∂1v2)(x+ sz, y + tz)
t(∂2v1 − ∂1v2)(x+ sz, y + tz)
(∂1v2 − ∂2v1)(x+ sz, y + tz)

⎞⎠ ds dt.

Since curlτ v = ∂2v1−∂1v2 on the z = 0 face (see (1.2)), the above expression equals

Ediv(curlτ v). Thus, by mapping, the commutativity property curl (Ecurlv) =

Ediv(curlτ v) holds for all smooth functions on any tetrahedronK. To complete this
proof by a density argument, first note that since D(K̄) is dense in H(curl ,K),
smooth functions are dense in the space of traces of H(curl ). Thus, for any v in

X−1/2(Fl), taking an approximating sequence of smooth functions vn,

‖Ediv(curlτ vn)‖H(div)=‖curl (Ecurlvn)‖H(div), by commutativity for smooth vn,

=‖curl (Ecurlvn)‖L2(K)

≤C‖vn‖X−1/2(Fl)
, by [12, Theorem 3.1],

we find that the operator Ediv extends continuously to all curlτ X
−1/2(Fl) and the

commutativity property holds there.
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Proof of (2): This is a direct consequence of [12, Lemma 3.1] applied to each
component of the extension.

Proof of (3): This follows from item (2) and commutativity. Indeed, given any w
in H−1/2(Fl), decomposing it by Theorem 2.1 as w = curlτ v+θ with θ in H1/2(Fl)

and v in X−1/2(Fl) we have

‖Ediv
l w‖H(div) = ‖Ediv

l (curlτ v + θ)‖H(div)

= ‖curl (Ecurlv) + Ediv
l θ‖H(div), by item (1),

≤ ‖v‖X−1/2(Fl)
+ ‖Ediv

l θ‖H(div), by [12, Theorem 3.1],

≤ ‖v‖X−1/2(Fl)
+ ‖θ‖H1/2(Fl), by item (2),

≤ C‖w‖H−1/2(Fl), by Theorem 2.1.

Proof of (4): On the reference element, setting z = 0 in (3.1), it is obvious that

trcn(E
divw) = w

for all smooth functions w. The general statement follows by mapping and density
of smooth functions [13] in H(div).

Proof of (5): Since polynomial spaces are invariant under affine transformations,
it suffices to prove the statement for the extension on the reference tetrahedron
given in (3.1). If w is in Pp(Fl), then (c0 + c1s+ c2t)w(s(x + z), t(x + z)) is a
polynomial of degree at most p in x, y and z. Clearly, after the integration in (3.1),
which is over s and t, we continue to have a polynomial of degree at most p in
x, y, z. �

Remark 3.1. We had considered the operator Ediv previously in [11, Appendix B]
in order to present a technique of norm estimation using the Fourier transform (the
expression there can be brought to (3.1) by a change of variable). In particular,
item (3) of Theorem 3.1 can also be proved using such techniques.

4. Face corrections

Consider the normal trace of a function in H0,Fi
(div) on the union of Fi and one

other face, say Fl ∪ Fi. The extension of such a trace must have vanishing normal
component on Fi. Hence before we solve the full extension problem from ∂K, it

is natural to consider the following two-face problem: Given w in H
−1/2
0,i (Fl) on

Fl (which by definition is the normal trace on Fl of some function in H0,Fi
(div)),

construct a polynomial extension of w from Fl into K such that the normal trace
of the extension vanishes on Fi.

Our approach to solve the two-face problem is by constructing a “face correction”
operator. Suppose w is a smooth function defined on the x-y face (denoted by F̂3,

or just F̂ ) of the reference tetrahedron K̂. We first extend it into K̂ by the primary

extension to obtain Edivw. We need an extension that has zero normal trace on the
y-z face (F̂1). To this end, we develop a face correction operator Ediv

F̂1
that does not

alter the normal trace on F̂ but is such that Edivw − Ediv
F̂1

w has the zero normal
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trace on F̂1. Define
(4.1)

Ediv
F̂1

w (x, y, z) =
1

x+ z

∫ 1

0

∫ 1−t

0

⎛⎝2sz + (1− s)x
−t(x+ z)
(1− 3s)z

⎞⎠w(s(x+ z), t(x+ z) + y) ds dt.

We will comment on the derivation of this formula later (Remark 4.1). For com-
parison, let us note here the corresponding operator from Part II [12], simplified:

Ecurl
F̂1

v (x, y, z) =
2z

x+ z

∫ 1

0

∫ 1−t

0

⎛⎝s t
0 1
s t

⎞⎠v(s(x+ z), y + t(x+ z)) ds dt

+
1

x+ z

⎛⎝−z
0
x

⎞⎠∫ 1

0

∫ 1−t

0

(
1− s
−t

)
· v(s(x+ z), y + t(x+ z)) ds dt

=
1

x+ z

∫ 1

0

∫ 1−t

0

⎛⎝ (3s− 1)z 3zt
0 2z

2zs+ x(1− s) 2zt− xt

⎞⎠v(s(x+ z), y + t(x+ z)) ds dt.

(4.2)

Before we discuss the properties of Ediv
F̂1

w, it will be convenient to state its

generalization to any tetrahedron K using affine coordinates. To arrive at the
generalization, let us rewrite (4.1) using the change of variable x′ = s(x+ z), y′ =
t(x+ z) + y as

Ediv
F̂1

w =
1

(x+ z)3

∫ x+z

0

∫ x+y+z−x′

y

Θ w(x′, y′) dy′ dx′,

where Θ ≡ Θ(x′, y′, x, y, z) is the vector kernel in (4.1) rewritten in the new vari-
ables. Let (λ0, λ1, λ2, λ3) be the affine coordinates of (x, y, z). Observe that the

region of integration above can be expressed as T3(0, λ0, λ2). Let λ̃0, λ̃1, λ̃2 denote
the affine coordinates of the integration region T3(0, λ0, λ2) considered with its node

enumeration inherited from F̂3. Then, simplifying Θ,

Θ = −2sz

⎛⎝−1
0
1

⎞⎠− t(x+ z)

⎛⎝0
1
0

⎞⎠− (s− 1)

⎛⎝x
0
z

⎞⎠
= 2λ̃1λ3(gradλ0 × gradλ2)− λ̃2(λ1 + λ3)(gradλ3 × gradλ1)

− (λ̃1 − 1)
(
λ1(gradλ2 × gradλ3)− λ3(gradλ1 × gradλ2)

)
= 2λ̃1λ3(gradλ0 × gradλ2)− λ̃2(λ1 + λ3)(gradλ3 × gradλ1)

+ (λ̃0 + λ̃2)gradλ2 × (λ1 gradλ3 − λ3 gradλ1)

= 2λ̃1λ3(gradλ0 × gradλ2) + (λ̃0 gradλ2)× (λ1 gradλ3 − λ3 gradλ1)

− λ̃2

(
− λ1(gradλ3 × gradλ0) + λ3(gradλ1 × gradλ0)

)
= 2λ̃1λ3(gradλ0 × gradλ2)− (λ̃2 gradλ0 − λ̃0 gradλ2)

× (λ1 gradλ3 − λ3 gradλ1).

This motivates the definition below of the operator Ediv
Fi,l generalizing Ediv

F̂1
.
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Returning to the two-face problem on Fi ∪ Fl of the general tetrahedron K
mentioned in the beginning of this section, suppose w is a given smooth function
on Fl. Define the face correction by
(4.3)

Ediv
Fi,lw = (gradλk × gradλj)

λl

|Fl| (λi + λl)3

∫∫
Tl(0,λj ,λk)

λ̃i(s)w(s) ds

− (λl gradλi − λi gradλl)

2|Fl| (λi + λl)3
×

∫∫
Tl(0,λj ,λk)

(λ̃j gradλk − λ̃k gradλj)w(s) ds

for any indices (i, j, k) that are positively oriented with respect to l (in the sense
defined in the previous section). Note that the above expression is antisymmetric
under transpositions of any two of the indices i, j, k. For negatively oriented (i, j, k),
the face correction is defined to be the above expression with opposite sign. From
the discussion in the previous paragraph, it is clear that the expression in (4.3)

coincides with (4.1) when K = K̂, (i, l) = (1, 3), and (j, k) = (0, 2). The bound-
edness of this map is stated in the next lemma. The proof of all lemmas are in
Appendix A.

Lemma 4.1. Ediv
Fi,l extends to a continuous linear operator from H

1/2
0,i (Fl) into

H(div).

Before we solve the two-face problem, let us note the corresponding face correc-
tion operators for the H1 and H(curl ) cases from Parts I and II [11, 12]:

E
grad
Fi,l

u =
λl

|Fl|(λi + λl)3

∫∫
Tl(0,λj ,λk)

u(s) ds,(4.4)

Ecurl
Fi,lv =

λi gradλl − λl gradλi

2|Fl| (λi + λl)3

∫∫
Tl(0,λj ,λk)

Div ds(4.5)

+
λl

|Fl| (λi + λl)3

∑
m∈{j,k}

gradλm

∫∫
Tl(0,λj ,λk)

Dmv ds.

In conformance with the notations used throughout, Egrad

F̂1
u and Ecurl

F̂1
v are the ex-

pressions obtained from (4.4) and (4.5), resp., for the specific case of the reference

tetrahedron K̂.
With the help of the H(div)-face correction operator, we can now give an ex-

tension operator that solves the two-face problem. It is defined by

(4.6) Ediv
i,l w = Ediv

l w − Ediv
Fi,lw.

Recall that the corresponding extension for the H(curl ) case is Ecurl
i,l w = Ecurl

l w−
Ecurl
Fi,lw, as defined in [12]. There is a commutativity property involving Ecurl

i,l and

Ediv
i,l . In order to prove it, we will borrow a homotopy operator from differential

geometry [3] (typically used in proving the Poincaré lemma), defined by

(4.7) Kav = (x− a)⊥
∫ 1

0

t v(t(x− a) + a) dt, where

(
x
y

)⊥
=

(
y
−x

)
.
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Here v(x, y) is a smooth function defined on F̂ and a is any point in F̂ or ∂F̂ .
The utility of such operators in the context of high order finite elements is already
known [9, 14, 17]. In particular, it is well known that the identity,

(4.8) curlτ (Kaw) = w,

holds for smooth functions w, and by density for a larger class of functions [14]. In
other words, Ka is a right inverse of curlτ .

Remark 4.1. In fact, we used Ka in the (omitted) derivation of the expression
for the face correction (4.1). This is in contrast to the H(curl ) case [12], where

we were able to derive the face correction Ecurl
F̂1

motivated by the commutativity
property

Ecurl
F̂1

(gradτ u) = grad(Egrad

F̂1
u).

The idea there was to guess the form of Ecurl
F̂1

by just computing the right-hand

side (since we already knew E
grad

F̂1
) and expressing it in terms of gradτ u alone.

For the H(div) case, we wanted to do the same, again motivated by the target
commutativity property,

(4.9) Ediv
F̂1

(curlτ v) = curl (Ecurl
F̂1

v).

However, our attempts at this similar elementary approach in the H(div) case
succumbed to the savagery of the calculations required, hence the entrance of Ka.
Observe that, with the help of Ka, if (4.9) holds, then because of (4.8), we may
guess that

Ediv
F̂1

w = curlEcurl
F̂1

Kaw.

Therefore, a simplification of the right-hand side above would reveal an expression
for Ediv

F̂1
w. This is how we derived the expression in (4.1). These simplifications are

tedious and we do not display them here, but some of them reappear disguised in
the proof of the commutativity property in the next proposition.

The next proposition collects and proves all the properties of Ediv
i,l that we shall

need. We will use the following lemma in the proof of the proposition. The proof
of the lemma is in Appendix A.

Lemma 4.2. Suppose fxyz(s, t) is a smooth function of s, t, x, y, and z that is
homogeneous of degree −1, i.e.,

fxyz
(s
r
,
t

r

)
=

1

r
fxyz(s, t).



1304 L. DEMKOWICZ, J. GOPALAKRISHNAN, AND J. SCHÖBERL

Then for all smooth functions w(s, t), we have the following two identities:∫ 1

0

∫∫
F̂

fxyz(s, t)w(rs(x+ z), rt(x+ z) + y) r ds dt dr(4.10)

=

∫∫
F̂

1− s− t

s+ t
fxyz(s, t) w(s(x+ z), t(x+ z) + y) ds dt,

∫ 1

0

∫∫
F̂

fxyz(s, t)w(rs(x+ y + z), rt(x+ y + z)) r ds dt dr(4.11)

=

∫∫
F̂

1− s− t

s+ t
fxyz(s, t) w(s(x+ y + z), t(x+ y + z)) ds dt.

Proposition 4.1. The following statements hold for Ediv
i,l :

(1) Commutativity: Ediv
i,l curlτ v = curl (Ecurl

i,l v) for all v ∈ X
−1/2
0,i (Fl).

(2) Continuity: Ediv
i,l is a continuous operator from H

−1/2
0,i (Fl) into H(div).

(3) Extension property: For all v in X
−1/2
0,i (Fl),

Ri trcn(E
div
i,l w) = 0 and Rl trcn(E

div
i,l w) = w,

where R� is the restriction to F� defined previously (2.14)–(2.15).

(4) Polynomial preservation: If w is in Pp(Fl), then Ediv
i,l w is in P p(K).

Proof. Proof of (1): Because of the commutativity property for the primary exten-
sion established in Theorem 3.1, it suffices to prove that

(4.12) Ediv
Fi,l(curlτ v) = curl (Ecurl

Fi,lv), for all v ∈ X
−1/2
0,i (Fl),

for the operators Ediv
Fi,l and Ecurl

Fi,l defined in (4.3) and (4.5), resp. Let v be in

X
−1/2
0,i (Fl). Using the stable trace decomposition of [12, Theorem 2.1], there is a ϕ

in H
1/2
0,i (Fl) and ψ in H

1/2
0,i (Fl) such that

(4.13) v = gradτ ϕ+ψ.

In [12, Proposition 4.1], we proved that

(4.14) Ecurl
Fi,l(gradτ ϕ) = grad(Egrad

Fi,l
ϕ), for all ϕ ∈ H

1/2
0,i (Fl),

where E
grad
Fi,l

is as in (4.4). Hence, substituting (4.13) into (4.12), we find that the

proof of (4.12) will be finished if we prove that

(4.15) Ediv
Fi,l(curlτ ψ) = curl (Ecurl

Fi,lψ), for all ψ ∈ H
1/2
0,i (Fl).

In fact, by density, we only need to prove the above identity for all infinitely differ-
entiable ψ on Fl that vanish on a neighborhood of the edge Ejk connecting vertices
aj and ak.

Moving to the reference tetrahedron K̂, let ψ be a smooth function on F̂ that
vanishes in a neighborhood of the y-axis. Then w = curlτ ψ also vanishes in the
same neighborhood. We need to prove that

(4.16) Ediv
F̂1

w = curl (Ecurl
F̂1

ψ),
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where Ecurl
F̂1

is the H(curl )-face correction given in (4.2).

We first make the observation that in order to prove (4.16) it is enough to prove
that

(4.17) Ediv
F̂1

w = curl (Ecurl
F̂1

Kaw)

holds for all points a = (0, β, 0) on the y-axis with 0 ≤ β ≤ 1. This is because

curlτ (ψ −Kaw) = curlτ ψ − curlτ Kaw = 0

by (4.8), which implies that there is a φ such that gradτ φ = ψ−Kaw. Moreover,
since a is on the y-axis, from the definition of Ka in (4.7), it is clear that the
tangential component ψ − Kaw vanishes on the y-axis. Hence φ can be chosen
such that it vanishes on the y-axis. Consequently, once we have proven (4.17), we
have

Ediv
F̂1

curlτ ψ = curl (Ecurl
F̂1

Kaw)

= curl (Ecurl
F̂1

(ψ − gradτ φ))

= curl (Ecurl
F̂1

ψ)− curl (gradE
grad

F̂1
φ) by (4.14)

= curl (Ecurl
F̂1

ψ),

and (4.16) follows.
Therefore, let us now prove that (4.17) holds. Setting a = (α, β) in the x-y plane

and calculating using (4.2), we have

Ecurl
F̂

K(α,β)w =
1

x+ z

∫∫
F̂

⎛⎝ (3s− 1)z 3zt
0 2z

2zs+ x(1− s) 2zt− xt

⎞⎠∫ 1

0

(
y + t(x+ z)− β
−s(x+ z) + α

)
r

w(r(s(x+ z)− α) + α, r(y + t(x+ z)− β) + β) dr ds dt.

Putting α = 0 and simplifying, we have

(4.18)

Ecurl
F̂

K(0,β)w =
1

x+ z

∫∫
F̂

∫ 1

0

(
(y − β)p+ (x+ z)q

)
w̃β(x, y, z, r, s, t) r dr ds dt,

where w̃β(x, y, z, r, s, t) = w(rs(x+ z), r(y + t(x+ z)− β) + β),

p =

⎛⎝ (3s− 1)z
0

x(1− s) + 2zs

⎞⎠ , q =

⎛⎝ −zt
−2sz
xt

⎞⎠ .

Next, we must compute the curl of the right-hand side of (4.18):
(4.19)

curlEcurl
F̂

K(0,β)w

=

∫∫
F̂

∫ 1

0

(
(y − β)

(
(curlp)w̃β + p× grad(w̃β)

x+ z
− p× w̃β grad(

1

x+ z
)

)

+
w̃β

x+ z

⎛⎝x(1 + s) + 4zs
−zt(x+ z)
−z(3s− 1)

⎞⎠− q × grad(w̃β)

)
r dr ds dt,
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where the gradient is with respect to x, y, and z. This gradient can be expressed
alternately (by the chain rule) in terms of s and t derivatives as

(4.20) grad w̃β =
1

x+ z

⎛⎝s t
0 1
s t

⎞⎠(
∂sw(rs(x+ z), r(y + t(x+ z)− β) + β)
∂tw(rs(x+ z), r(y + t(x+ z)− β) + β)

)
.

We substitute (4.20) in (4.19). We do not display the resulting lengthy expression,
but let us denote it by f(x, y, z, β), i.e.,

f(x, y, z, β) ≡ [curlEcurl
F̂

K(0,β)w](x, y, z).

Before proceeding with further simplifications of f , let us make an observation.
If β′ �= β is another number in [0, 1], then

(4.21) f(x, y, z, β) = f(x, y, z, β′).

This is because by (4.8), curlτ (K(0,β)w−K(0,β′)w) = 0, so we know that K(0,β)w−
K(0,β′)w = gradτ φ

′ for some φ′ that vanishes along the y-axis. Then, a conse-
quence of (4.14) is that

curl
(
Ecurl
F̂1

(K(0,β)w −K(0,β′)w)
)
= curl

(
Ecurl
F̂1

gradτ φ
′)

= curl (gradE
grad

F̂1
φ) = 0,

or in other words, (4.21) holds.
By virtue of (4.21), in order to prove that (4.17) holds for all a = (0, β), it

suffices to show that (4.17) holds with some choice of β that makes simplifications
convenient. We will select β = y (carefully noting that we must substitute β = y
only after the derivatives in the definition of f have been computed). Then, a
number of terms in (4.19) with y−β as a factor vanish. After some simplifications,
setting w̃ ≡ (w̃β)|β=y ≡ w(rs(x+ z), rt(x+ z) + y), we have

f =

∫∫
F̂

∫ 1

0

rw̃

x+ z

⎛⎝x(1 + s) + 4zs
−zt(x+ z)
−z(3s− 1)

⎞⎠
−

⎛⎝ −2zs2 −(2zs+ x)t
(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt

⎞⎠ r(gradst w̃)

x+ z
dr ds dt.

The last term above, when integrated by parts on F̂ , equals∫ 1

0

∫∫
F̂

−rw̃

x+ z

⎛⎝−6zs− x
3t(x+ z)
6zs− z

⎞⎠ dr ds dt

+

∫ 1

0

∫
∂F̂

rw̃

x+ z

⎛⎝ −2zs2 −(2zs+ x)t
(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt

⎞⎠νF̂ dμ dr,

where νF̂ is the outward unit normal on the boundary of F̂ in the x-y plane. Let us

denote the last term involving the integral over the boundary of F̂ by g. This term
can be split into three terms, each involving an integral over one of the three edges
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of F̂ . But only the contribution from the hypotenuse Ĥ survives. This surviving
integral can be transformed via a change of variable as follows:

g =

∫ 1

0

∫
Ĥ

rw̃

x+ z

⎛⎝ −2zs2 −(2zs+ x)t
(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt

⎞⎠(
1
1

)
dμ dr,

=

∫ 1

0

∫ 1

0

⎛⎝−2zμ− x(1− μ)
(x+ z)(1− μ)
2zμ− z(1− μ)

⎞⎠ w̃ r dμ dr

=

∫ 1

0

∫ r

0

⎛⎝−2zs′ − x(r − s′)
(x+ z)(r − s′)
2zs′ − z(r − s′)

⎞⎠ w̃
ds′

r
dr (s′ = rμ)

=

∫ 1

0

∫ 1−t

0

1

(s+ t)(x+ z)

⎛⎝−2sz − tx
t(x+ z)
(2s− t)z

⎞⎠ w̃ ds dt (s = s′, t = r − s′).

Substituting this back into the expression for f , we notice that it now only re-
mains to simplify the triple integrals to double integrals. This is achieved through
Lemma 4.2.

Applying Lemma 4.2 to each component of the triple integrals, we find that the
simplification of f(x, y, z, β) with β = y now reads as

f =
−1

x+ z

∫ 1

0

∫ 1−t

0

1− s− t

s+ t

⎛⎝s(x− 2z)
t(x+ z)
3zs

⎞⎠w(s(x+ z), t(x+ z) + y)

+
1

s+ t

⎛⎝−2sz − tx
t(x+ z)
(2s− t)z

⎞⎠w(s(x+ z), t(x+ z) + y) ds dt.

Combining the terms above, we obtain the expression for the face correction in (4.1),

i.e., f = Ediv
F̂1

w. Summarizing, we have thus proved (4.17), from which (4.16)

follows, which in turn proves the required commutativity property.

Proof of (2): To prove the continuity, first decompose any w in H
−1/2
0,i (Fl) using

Theorem 2.1 as

w = curlτ v + θ

for some v in X
−1/2
0,i (Fl) and θ in H

1/2
0,i (Fl). Then,

‖Ediv
i,l w‖H(div) = ‖curl (Ecurl

i,l v) + Ediv
i,l θ‖H(div), by commutativity,

≤ C

(
‖v‖

X
−1/2
0,i (Fl)

+ ‖θ‖
H

1/2
0,i (Fl)

)
, by [12, Prop. 4.1] and Lemma 4.1,

≤ C‖w‖
H

−1/2
0,i (Fl)

, by Theorem 2.1.

Proof of (3): First, consider the expression for the primary extension in affine
coordinates, namely (3.2). When calculating its normal component on Fi, since ni

is parallel to gradλi, among the three summands involving cyclic permutations of
(i, j, k), only one survives. Furthermore, since λi = 0 on face Fi we have

trcn(E
div
l )

∣∣
Fi

=
1

|Fl|λ2
l

∫∫
Tl(0,λj ,λk)

−ni · λ̃i (gradλj × gradλk)w(s) ds.(4.22)
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Next, observe that in the expression for the face correction (4.3), setting λi = 0 we
have

trcn(E
div
Fi,lw)

∣∣
Fi

= ni · (gradλk × gradλj)
1

|Fl|λ2
l

∫∫
Tl(0,λj ,λk)

λ̃i(s)w(s) ds.(4.23)

Note that the term involving the Whitney form λi gradλl−λl gradλi in (4.3) does
not contribute above as its cross product with ni is zero on Fi. Subtracting (4.23)
from (4.22) we obtain

Ri trcn(E
div
i,l w) = 0.

The second assertion on the normal trace on Fl is also easy to see using the affine
coordinate expression (4.3). On the face Fl, since λl = 0, the first term in (4.3) drops
off. The second also vanishes when calculating normal trace as nl × (λi gradλl −
λl gradλi) = 0 on Fl. In other words,

trcn(E
div
Fi,l)

∣∣
Fl

= 0.

Hence, by Theorem 3.1(4), we have Rl trcn(E
div
i,l w) = w.

Proof of (4): It is enough to prove the polynomial preservation property on the

reference element. Hence let w(x, y) be in Pp(F̂ ). We already know that Edivw is

in Pp(Kr) by Theorem 3.1. Hence we only need to prove that Ediv
F̂1

w is in Pp(K̂).

We proceed considering three cases:
Case of constants: If w(x, y) is a constant κ, then by (4.1),

Ediv
F̂1

w (x, y, z) =
κ

x+ z

∫ 1

0

∫ 1−t

0

⎛⎝2sz + (1− s)x
−t(x+ z)
(1− 3s)z

⎞⎠ ds dt =
κ

x+ z

⎛⎝ (x+ z)/3
−(x+ z)/6

0

⎞⎠ ,

which is a constant vector.
Case of one variable dependence: Suppose p > 0 and w(x, y) = qp(y) for some

polynomial qp in one variable y. Writing

qp(y) =

p∑
n=0

cny
n,

and using the binomial expansion, we find that there is a polynomial rp−1(y, z) of
degree at most p− 1 such that

qp(y + tη) =

p∑
n=0

cn(y + tz)n =

p∑
n=0

cn
(
yn + (n− 1)yn−1(tη) + . . .

)
= qp(y) + (tη) rp−1(y, tη),

or, in other words,

w(s(x+ z), y + t(x+ z)) = qp(y) + t(x+ z) rp−1(y, t(x+ z)).
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Observing that qp(y) is a quantity independent of the integration variables s and
t, we find that

Ediv
F̂1

w (x, y, z) = qp(y)E
div
F̂1

(1)

+
1

x+ z

∫ 1

0

∫ 1−t

0

⎛⎝2sz + (1− s)x
−t(x+ z)
(1− 3s)z

⎞⎠ t(x+ z) rp−1(y, t(x+ z)).

Canceling the common factor x+ z from the last integral, we conclude that it gives
a polynomial of degree at most p in x, y, and z. The first term on the right-hand
side is a constant by the previous case. Hence Ediv

F̂1
w is in Pp(K̂).

The general case: Any w in Pp(F̂ ) can be rewritten as

w(x, y) = qp(y) + xvp−1(x, y)

for some polynomial qp(y) of degree at most p in y and some vp−1 ∈ Pp−1(F̂ ). Then

Ediv
F̂1

w = Ediv
F̂1

(qp(y)) + Ediv
F̂1

(xvp−1(x, y)).

Referring to (4.1), we find that the last term is an integral whose integrand has
a factor s(x + z) which cancels with the denominator x + z in (4.1). Hence after
integration with respect to s and t, it gives a polynomial of degree at most p in
x, y and z. The first term, namely Ediv

F̂1
qp, is also in Pp(K̂) because of the previous

case. �

5. Edge corrections

In the previous section we saw how to solve the two-face problem. This section
is devoted to constructing an extension operator that solves the three-face problem,
which is the next intermediate step towards solving the total extension problem.
To describe the three-face problem, consider a polynomial r on K whose normal
trace w ≡ trcn(r) is zero on two faces Fi ∪ Fj . Given the values of w on a third

face Fl, the three-face problem is to find a extension (Ediv
ij,lw) of w into K which is

a polynomial of degree not more than r and whose normal trace coincides with w
on Fi ∪ Fj ∪ Fl. Of course, the extension operator must also extend continuously
to the appropriate infinite dimensional Sobolev space.

We will solve the three-face problem using an edge correction operator. On the
reference element K̂, the edge correction operator is
(5.1)

Ediv
Ê

w(x, y, z)

=

∫ 1

0

∫ 1−t

0

⎛⎝ 2x(s− 1) + 3xt− ys− zs
−xt+ 2y(t− 1) + 3ys− zt

z(3(s+ t)− 2)

⎞⎠ w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

Here Ê ≡ Ê03 denotes the edge of K̂ along the z-axis. This expression is derived
using Ka and the target commutativity property curl (Ecurl

Ê
v) = Ediv

Ê
(curlτ v) as

motivation (where Ecurl
Ê

is the H(curl )-edge correction operator defined in [12]).
As in previous sections, we now generalize this edge correction to an operator on

any tetrahedron K using affine coordinates. To rewrite (5.1) using the barycentric

coordinates λi of (x, y, z) with respect to K̂, we first observe that the region of
integration can be transformed into Tl(0, 0, λ0) by the variable change x′ = s(x +
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y+ z), y′ = t(x+ y+ z). Furthermore, denoting the kernel by Φ, we can rewrite it

using the barycentric coordinates λ̃0, λ̃1, λ̃2 of the subtriangle Tl(0, 0, λi) as

Φ ≡

⎛⎝ 2x(s− 1) + 3xt− ys− zs
−xt+ 2y(t− 1) + 3ys− zt

z(3(s+ t)− 2)

⎞⎠
=

(
2λ1(1− λ̃1) + (λ2 + λ3)λ̃1 − 3λ1λ̃2

)
gradλ3 × gradλ2

+
(
(λ1 + λ3)λ̃2 + (2λ2(1− λ̃2)− 3λ2λ̃1)

)
gradλ1 × gradλ3

+ λ3(2− 3(λ̃1 + λ̃2))gradλ2 × gradλ1.

Either by manipulating the above expression in affine coordinates, or by direct
verification, we can show that

Φ = (λ2 gradλ1 − λ1 gradλ2)× (λ̃0 gradλ3)

− (λ3 gradλ1 − λ1 gradλ3)× (λ̃2 gradλ0 + λ̃0 gradλ2)

+ (λ3 gradλ2 − λ2 gradλ3)× (λ̃1 gradλ0 + λ̃0 gradλ1).

As a result, we obtain the following general edge correction operator for the edge Eil

connecting vertices ai and al of a general tetrahedron K when the indices (i, j, k)
are, as before, positively oriented with respect to l:
(5.2)

Ediv
Eil,l

w =
λk gradλj − λj gradλk

2|Fl|(1− λi)3
×

∫∫
Tl(0,0,λi)

(λ̃i gradλl) w(s) ds

− λl gradλj − λj gradλl

2|Fl|(1− λi)3
×

∫∫
Tl(0,0,λi)

(λ̃k gradλi + λ̃i gradλk) w(s) ds

+
λl gradλk − λk gradλl

2|Fl|(1− λi)3
×

∫∫
Tl(0,0,λi)

(λ̃j gradλi + λ̃i gradλj) w(s) ds.

For negatively oriented indices, the correction operator is defined with the sign
reversed. For comparison, here are the corresponding operators from Parts I
and II [11, 12]:

E
grad
Eil,l

u =
λl

|Fl|(1− λi)3

∫∫
Tl(0,0,λi)

u(s) ds(5.3)

Ecurl
Eil,l

v =
∑

m∈{j,k}

λm gradλl − λl gradλm

2|Fl| (1− λi)3

∫∫
Tl(0,0,λi)

Dmv ds(5.4)

+
λl gradλi

|Fl| (1− λi)3

∫∫
Tl(0,0,λi)

Div ds.

The expressions for E
grad

Ê
u and Ecurl

Ê
v on the reference tetrahedron K̂ can be ob-

tained by substituting the barycentric coordinates of K̂ in the above expressions.
With the H(div)-edge correction operator, we can provide the solution for the

three-face problem through the following extension operator:

(5.5) Ediv
ij,l = Ediv

l − Ediv
Fi,l − Ediv

Fj ,l + Ediv
Ekl,l

.
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As in the case of the face correction, to analyze the continuity of this operator,
we must first establish a continuity property in a positive order Sobolev space, as
stated in the next lemma (proved in Appendix A).

Lemma 5.1. Ediv
ij,l is a continuous operator from H

1/2
0,ij(Fl) into H(div).

That Ediv
ij,l indeed solves the three-face problem is the result of the next proposi-

tion.

Proposition 5.1. The following holds for the above defined Ediv
ij,l:

(1) Commutativity: Ediv
ij,l(curlτ v) = curl (Ecurl

ij,l v) for all v ∈ X
−1/2
0,ij (Fl).

(2) Continuity: Ediv
ij,l extends to a continuous operator from H

−1/2
0,ij (Fl) into

H(div).

(3) Extension property: For all w ∈ H
−1/2
0,ij (Fl),

Ri trcn(E
div
ij,lw) = 0, Rj trcn(E

div
ij,lw) = 0, Rl trcn(E

curl
ij,l w) = w.

(4) Polynomial preservation: If w is in Pp(Fl), then Ediv
ji,lw is in P p(K).

Proof. Proof of (1): As in the beginning of the proof of Proposition 4.1(1), we first
use (i) the commutativity properties of the primary extension (Theorem 3.1(1))
and the face correction (Proposition 4.1(1)), (ii) the commutativity property

Ecurl
Fi,l(gradτ ϕ) = grad(Egrad

Fi,l
ϕ) for all ϕ ∈ H

1/2
0,ij(Fl),

proven in [12, Proposition 4.1], and (iii) the stable decomposition

v = gradτ ϕ+ψ, with ϕ ∈ H
1/2
0,ij(Fl), ψ ∈ H

1/2
0,ij(Fl),

proved in [12, Theorem 2.1], to conclude that it is enough to prove that Ediv
Fi,l satisfies

(5.6) Ediv
Ekl,l

(curlτ ψ) = curl (Ecurl
Ekl,l

ψ)

for all smooth ψ that vanishes in a neighborhood of the edges Eik and Ejk.
We shall again use Ka, now with a set to the origin. Moving to the reference

tetrahedron, we make the second observation that it is enough to prove that

(5.7) Ediv
Ê

w = curlEcurl
Ê

K(0,0)w

for all smooth w that vanish in a neighborhood of the x and y-axes. That (5.7) im-
plies (5.6) is proved by the same type of argument as in the proof of Proposition 4.1
(see (4.17)) so we do not repeat. Let us now prove (5.7).

The expression for Ecurl
Ê

, obtained either by transforming (5.4) to K̂, or by
simplifying [12, eq. (5.1)], is

Ecurl
Ê

v (x, y, z) =
1

x+ y + z

∫∫
F̂⎛⎝ (3s− 1)z 3zt

3zs z(3t− 1)
x(1− s)− ys+ 2zs −xt+ y(1− t) + 2zt

⎞⎠v(s(x+ y + z), t(x+ y + z)) ds dt.

Setting v = K(0,0)w and simplifying, we have

Ecurl
Ê

K(0,0)w =

∫∫
F̂

∫ 1

0

⎛⎝ −tz
sz

xt− ys

⎞⎠w(rs(x+ y + z), rt(x+ y + z)) r dr ds dt.
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We must now compute the curl of this expression. Let p = (−tz, sz, xt− ys)t and
w̃(s, t) ≡ w(rs(x+ y + z), rt(x+ y + z)). Then using

curl (w̃p) = w̃ curlp− p× grad w̃

and transforming the x, y, z-derivatives to s, t derivatives via

gradw(rs(x+ y + z), rt(x+ y + z)) =
1

x+ y + z

⎛⎝s t
s t
s t

⎞⎠gradst w̃(s, t),

(where gradst w̃ is a column vector with the s and t derivatives of w̃ as its two
components) we find that

curlEcurl
Ê

K(0,0)w =

∫∫
F̂

∫ 1

0

(
− p× grad w̃ + w̃ curlp

)
r dr ds dt

=

∫∫
F̂

∫ 1

0

⎛⎝(xt− ys− zs) s (xt− ys− zs) t
(ys− xt− zt) s (ys− xt− zt) t

z (s+ t) s z (s+ t) t

⎞⎠ r gradst w̃

x+ y + z
dr ds dt

−
∫∫
F̂

∫ 1

0

⎛⎝2s
2t
0

⎞⎠ w̃ r ds dt dr.

Integrating by parts the first term on the right-hand side above, we get

curlEcurl
Ê

K(0,0)w

=

∫ 1

0

∫
∂F̂

⎛⎝(xt− ys− zs) s (xt− ys− zs) t
(ys− xt− zt) s (ys− xt− zt) t

z (s+ t) s z (s+ t) t

⎞⎠νF̂ (μ)
r w̃

x+ y + z
dμ dr

+

∫ 1

0

∫∫
F̂

⎛⎝ys− xt+ zs
xt− ys+ zt
−z(s+ t)

⎞⎠ 3r w̃

x+ y + z
ds dt dr −

∫ 1

0

∫∫
F̂

⎛⎝2s
2t
0

⎞⎠ w̃ r ds dt dr.

In the integral over the boundary ∂F̂ , only the part along the hypotenuse survives.
We then use a variable change and transform this surviving integral as in the proof
of Proposition 4.1(1). We also combine the last two integrals into one. Thus,

curlEcurl
Ê

K(0,0)w =

∫ 1

0

∫∫
F̂

⎛⎝−x(3t+ 2s) + ys+ zs
xt− y(3s+ 2t) + zt

−3 z(s+ t)

⎞⎠ r w̃

x+ y + z
ds dt dr

+

∫∫
F̂

⎛⎝ xt− ys− zs
−xt+ ys− zt

z(s+ t)

⎞⎠ w(s(x+ y + z), t(x+ y + z))

(s+ t)(x+ y + z)
ds dt



EXTENSION OPERATORS 1313

Finally, we apply Lemma 4.2 to simplify the triple integral into a double integral
by homogeneity. The result is

curlEcurl
Ê

K(0,0)w

=

∫∫
F̂

(1− s− t

s+ t

)⎛⎝−x(3t+ 2s) + ys+ zs
xt− y(3s+ 2t) + zt

−3 z(s+ t)

⎞⎠ w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt

+

∫∫
F̂

1

s+ t

⎛⎝ xt− ys− zs
−xt+ ys− zt

z(s+ t)

⎞⎠ w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

=

∫∫
F̂

−1

s+ t

⎛⎝(s+ t)
(
2x(1− s)− 3xt+ ys+ zs

)
(s+ t)

(
xt+ 2y(1− t)− 3ys+ zt

)
z(s+ t)(2− 3(s+ t))

⎞⎠w(s(x+y+z), t(x+y+z))

x+y+z
ds dt,

which is the same as Ediv
Ê

w. This proves (5.7) and consequently the required com-
mutativity property.

Proof of (2): The idea is the same as that of the proof of the commutativity of

the two-face extension. We decompose any w in H
−1/2
0,ij (Fl) using Theorem 2.1 as

w = curlτ v + θ for some v in X
−1/2
0,ji (Fl) and θ in H

1/2
0,ij(Fl). Then,

‖Ediv
ij,lw‖H(div) = ‖curl (Ecurl

ij,l v) + Ediv
ij,lθ‖H(div), by commutativity,

≤ C

(
‖v‖

X
−1/2
0,ij (Fl)

+ ‖θ‖
H

1/2
0,ij(Fl)

)
, by [12, Prop. 5.1] and Lemma 5.1,

≤ C‖w‖
H

−1/2
0,ij (Fl)

, by Theorem 2.1.

Proof of (3): To prove that

(5.8) Ri trcn(E
div
ij,lw) = 0,

we consider the expression for the edge correction Ediv
Ekl,l

. This expression can be
obtained from (5.2) either by a cyclic permutation of (i, j, k) (preserving the positive
orientation) or by interchanging i and k in (5.2) and then switching signs:
(5.9)

Ediv
Ekl,l

w =− λi gradλj − λj gradλi

2|Fl|(1− λk)3
×

∫∫
Tl(0,0,λk)

(λ̃k gradλl) w(s) ds

+
λl gradλj − λj gradλl

2|Fl|(1− λk)3
×

∫∫
Tl(0,0,λk)

(λ̃i gradλk + λ̃k gradλi) w(s) ds

− λl gradλi − λi gradλl

2|Fl|(1− λk)3
×

∫∫
Tl(0,0,λk)

(λ̃j gradλk + λ̃k gradλj) w(s) ds
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Also note that from (4.3), by transposition of i, j followed by a change of sign, we
have

(5.10)

Ediv
Fj ,lw =− (gradλk × gradλi)

λl

|Fl|(λi + λl)3

∫∫
Tl(0,λi,λk)

λ̃j(s)w(s) ds

+
(λl gradλj − λj gradλl)

2|Fl|(λj + λl)3

×
∫∫

Tl(0,λi,λk)

(λ̃i gradλk − λ̃k gradλi)w(s) ds.

If ni is the outward unit normal on the face Fi, then since

λi = 0, λi + λj = 1− λk, and ni × (λi gradλm − λm gradλi)
∣∣
Fi

= 0,

we find from (5.9) and (5.10) that

trcn(E
div
Ekl,l

w)
∣∣
Fi

= ni ·
λl gradλj − λj gradλl

2|Fl|(1− λk)3

×
∫∫

Tl(0,0,λk)

(λ̃i gradλk + λ̃k gradλi) w(s) ds

= trcn(E
div
Fj ,lw)

∣∣
Fi

This together with the extension properties of the two-face extension operator
(Proposition 4.1(3)) proves (5.8).

To prove the next identity, namely Rj trcn(E
div
ij,lw) = 0, we use the same type of

arguments to get

trcn(E
div
Ekl,l

w)
∣∣
Fj

= −nj ·
λl gradλi − λi gradλl

2|Fl|(1− λk)3

×
∫∫

Tl(0,0,λk)

(λ̃j gradλk + λ̃k gradλj) w(s) ds

= trcn(E
div
Fi,l)

∣∣
Fj
, by (4.3).

The identity follows by using Proposition 4.1(3) again.

To prove the last identity Rl trcn(E
div
ij,lw) = w, we only need to observe that the

face corrections, written out in (5.10) and (4.3), and the edge correction in (5.9) have
vanishing normal components on Fl. The identity then follows from the extension
property of the primary extension as given in Theorem 3.1(4).

Proof of (4): Any w in Pp(F̂ ) can be expressed as κ + xup−1 + yvp−1 for some
constant κ and some polynomials up−1 and vp−1 of degree at most p− 1,

Ediv
Ê

w = Ediv
Ê

κ+ Ediv
Ê

(xup−1) + Ediv
Ê

(yvp−1).
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l

i

k j

Figure 2. Positively oriented cycles of indices

The last two terms give polynomials because the denominator x+ y + z in (5.1) is
canceled out by a factor of either s(x + y + z) or t(x + y + z). For the remaining

term Ediv
Ê

κ, we have

Ediv
Ê

κ (x, y, z) =
κ

x+ y + z

∫ 1

0

∫ 1−t

0

⎛⎝2x(1− s)− 3xt+ ys+ zs
xt+ 2y(1− t)− 3ys+ zt

z(2− 3(s+ t))

⎞⎠ ds dt

=
κ

x+ y + z

⎛⎝(x+ y + z)/6
(x+ y + z)/6

0

⎞⎠ ,

which is a constant vector. Hence the result follows. �

6. Vertex corrections

In this section, as the last intermediate step towards solving the tetrahedral
H(div) polynomial extension problem, we consider the four-face problem: Given
a polynomial w of zero mean on any face Fl, find an extending polynomial whose
normal traces on all other faces are zero. As in the previous cases, the exten-
sion should not increase the degree and must be extendable continuously to the

appropriate Sobolev space of traces, namely the trace space H
−1/2
0,ijk (Fl). Roughly

speaking, a function w in H
−1/2
0,ijk (Fl) is the normal trace on Fl of a function in

H(div) which has zero normal traces on the remaining faces. When solving the
four-face problem, we are seeking an extension operator that extends such w to
a function that continues to have vanishing normal trace on the remaining three
faces.

To solve the four-face problem, we need a vertex correction operator. Define the
vertex correction for l-th vertex by

(6.1) Ediv
Vl

w =
∑

m∈{i,j,k}

∑
σ∈S(m)

λσ1
(gradλσ2

× gradλσ3
)

|Fl|

∫∫
Fl

λ̃m(s)w(s) ds.



1316 L. DEMKOWICZ, J. GOPALAKRISHNAN, AND J. SCHÖBERL

To compare with the H1 and H(curl ) vertex correction operators, their expres-
sions recalled from [11, 12] are

E
grad
Vl

u =
λl

|Fl|

∫∫
Fl

u(s) ds,(6.2)

Ecurl
Vl

v =
∑

m∈{i,j,k}

(λm gradλl − λl gradλm)

2|Fl|

∫∫
Fl

Dmv ds.(6.3)

The extension that solves the four-face problem can now be given by

(6.4) Ediv
ijk,lv = Ediv

l v − Ediv
Vl

v −
∑

m∈{i,j,k}

(
Ediv
Fm,lv − Ediv

Eml,l
v
)
,

where, as usual, we have assumed that (i, j, k) is positively oriented with respect
to l.

Proposition 6.1. The operator Ediv
ijk,l satisfies the following:

(1) Commutativity: Ediv
ijk,l(curlτ v) = curl (Ecurl

ijk,lv) for all v ∈ X
−1/2
0,ijk (Fl).

(2) Continuity: Ediv
ijk,l is a continuous map from H

−1/2
0,ijk (Fl) into H(div).

(3) Extension property: For all w ∈ H
−1/2
0,ijk (Fl), we have

Rl trcn(E
div
ijk,lw) = w,

Ri trcn(E
div
ijk,lw) = Rj trcn(E

div
ijk,lw) = Rk trcn(E

div
ijk,lw) = 0.

(4) Polynomial preservation: Suppose w is in Pp(Fl), then Ediv
ijk,lw is in Pp(K).

Proof. Proof of (1): First, we observe that it is enough to prove that for the oper-
ators defined in (6.1) and (6.3), we have

(6.5) Ediv
Vl

(curlτ ψ) = curl (Ecurl
Vl

ψ)

for all smooth ψ that is compactly supported in Fl. This follows by the same type
of arguments detailed in the beginning of the proof of Proposition 4.1(1). The only
differences now are that we should use the commutativity and stable decomposition
properties appropriate for this case, namely, the commutativity property

Ecurl
Vl

(gradτ ϕ) = grad(Egrad
Vl

ϕ), for all ϕ ∈ H
1/2
0,ijk(Fl),

proven in [12, eq. (6.3)], and the stable decomposition

v = gradτ ϕ+ψ, with ϕ ∈ H
1/2
0,ijk(Fl), ψ ∈ H

1/2
0,ijk(Fl),

proven in [12, Theorem 2.1].

To prove (6.5), it will be convenient to go to the reference tetrahedron K̂. Setting
l = 3 and (i, j, k) = (1, 2, 0) in (6.1), we find the expression for the vertex correction

on K̂ corresponding to the vertex â3 ≡ V̂ . Simplifications are facilitated by the
identity

(6.6) x− â1 =
∑

σ∈S(1)

−λσ1
(gradλσ2

× gradλσ3
), for all x ∈ K̂.
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Using also two other similar identities associated to vertices â0 and â2, we have

Ediv
V̂

w (x, y, z)

= 2

∫ 1

0

∫ 1−s

0

(
− s

⎛⎝x− 1
y
z

⎞⎠− t

⎛⎝ x
y − 1
z

⎞⎠−

⎛⎝x
y
z

⎞⎠ (1− s− t)

)
w(s) ds(6.7)

= 2

∫ 1

0

∫ 1−s

0

⎛⎝s− x
t− y
−z

⎞⎠w(s, t) ds dt.

Simplifying the expression (6.3) for the particular case of K̂ and computing its curl,

curl (Ecurl
V̂

ψ) = curl

∫∫
F̂

⎛⎝ −z 0
0 −z

x− z y − t

⎞⎠ψ ds dt (by the expression in [12])

= 2

∫∫
F̂

⎛⎝ ψ2

−ψ1

0

⎞⎠ ds dt (where (ψ1, ψ2)
t ≡ ψ)

= 2

∫∫
F̂

⎛⎝−s ∂sψ2

t ∂tψ1

0

⎞⎠ ds dt by integration by parts)

= 2

∫∫
F̂

⎛⎝s (∂tψ1 − ∂sψ2)
t (∂tψ1 − ∂sψ2)

0

⎞⎠ ds dt

(because ψ1 and ψ2 are zero on ∂F̂ ).

Note that curlτ ψ has zero mean on Fl. This is simply because curlτ ψ = n ·curlw
for some smooth function w on K whose normal trace on Fijk vanishes, and curlw
is divergence free. Hence,

curl (Ecurl
V̂

ψ) = 2

∫∫
F̂

⎛⎝s− x
t− y
−z

⎞⎠ curlτ ψ ds dt as the mean of curlτ ψ is 0

= Ediv
V̂

(curlτ ψ) by (6.7).

This proves the commutativity property.
Proof of (2): The continuity of the vertex correction operator from the positive

order Sobolev space H
1/2
0,ijk(Fl) into H(div) is obvious. Hence, decomposing any

given w in H
−1/2
0,ijk (Fl) by Theorem 2.1 as w = curlτ v + ϑ for some v in X

−1/2
0,ijk (Fl)

and ϑ in H
1/2
0,ijk(Fl), we have

‖Ediv
ijk,lw‖H(div) = ‖curl (Ediv

ijk,lv) + Ediv
ijk,lϑ‖H(div), by commutativity

≤ C
(
‖v‖

X
−1/2
0,ijk (Fl)

+ ‖ϑ‖
H

1/2
0,ijk(Fl)

)
, by [12],

≤ C‖w‖
H

−1/2
0,ijk (Fl)

, by the decomposition’s stability.

Proof of (3): First, note that all the correction operators in (6.4) have zero
normal trace on Fl. This follows from Propositions 4.1 and 5.1 for the face and
edge correction. The vertex correction also has zero normal trace. This is most
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easily seen from (6.7), recalling the fact that all w in H
−1/2
0,ijk (Fl) have zero mean.

Hence the nonzero trace contribution comes from the primary extension, i.e.,

Rl trcn(E
div
ijk,lw) = Rl trcn(E

div
l w) = w

by Theorem 3.1.
Next, consider the trace on face Fi. Rewriting (6.4) as

(6.8) Ediv
ijk,lw = Ediv

i,l w−(Ediv
Fj ,lw−Ediv

Ekl,l
w)−(Ediv

Fk,l
w−Ediv

Ejl,l
w)+(Ediv

Eil,l
w−Ediv

Vl
w),

observe that the first three terms on the right-hand side have vanishing normal
traces on Fi. Indeed,

trcn(E
div
i,l w)

∣∣
Fl

= 0, by Proposition 4.1(3), and

trcn(E
div
Ekl,l

w − Ediv
Fj ,l

w)|Fi
= trcn(E

div
i,l w − Ediv

j,l w)|Fi
= 0,

by Propositions 4.1(3) and 5.1(3),

and similarly for the third term. For the fourth term in (6.8), let us first calculate
the normal trace of the edge correction on Fi by substituting λi = 0 in (5.2). We can
omit terms orthogonal to gradλi as the outward normal ni is parallel to gradλi.
Thus,

trcn(E
div
Eil,l

w)|Fi
= ni ·

(
λk gradλj × gradλl − λj gradλk × gradλl

− λl gradλj × gradλk + λj gradλl × gradλk

+ λl gradλk×gradλj−λk gradλl×gradλj

) 1

2|Fl|

∫∫
Fl

λ̃iw ds

= 2ni ·
∑

σ∈S(i)

λσ1
(gradλσ2

×gradλσ3
)

1

2|Fl|

∫∫
Fl

λ̃i w ds.

Now, consider the summands in (6.1). The normal component on Fi of the sum-
mands for m = j, k vanish (this may be readily seen using an identity like (6.6),
which also holds on any tetrahedron, with a minor modification). Hence the sum
reduces to simply the m = i summand, so

trcn(E
div
Eil,l

w)|Fi
= trcn(E

div
Vl

w)|Fi
.

This proves that

(6.9) Ri trcn(E
div
ijk,lw) = 0.

Since Ediv
ijk,lw is unchanged under a cyclic permutation of (i, j, k), we conclude

that (6.9) implies that Rj trcn(E
div
ijk,lw) and Rk trcn(E

div
ijk,lw) also vanish.

Proof of (4): For the p = 0 case, note that the only constant polynomial in

H
−1/2
0,ijk (Fl) is zero. In this case, Ediv

ijk,lw is obviously zero. The result is obvious also
for p > 0, because the vertex correction is always linear. �

7. The main result

Now we are in a position to construct an H(div)-polynomial extension that
extends traces given on the whole boundary of a general tetrahedron.
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Let w be any function in the trace space of H(div) on ∂K, i.e., w ∈ H−1/2(∂K).
We construct the extension as in the H1 and H(curl ) cases [11, 12]. Define

Vi = Ediv
i w,

Vj = Ediv
i,j wj , where wj = Rj(w − trcn Vi),

Vk = Ediv
ij,kwk, where wk = Rk(w − trcn Vi − trcn Vj),

Vl = Ediv
ijk,lwl, where wl = Rl(w − trcn Vi − trcn Vj − trcn Vk).

Here Ri is the restriction to face Fi defined earlier (see (2.14)), and the exten-

sions Ediv
i , Ediv

i,j , E
div
ij,k, and Ecurl

ijk,l are as exhibited in (3.2), (4.6), (5.5), and (6.4),
respectively. The total extension operator is then defined by

(7.1) Ediv
K w = Vi + Vj + Vk + Vl.

With the help of the previously established results and the one additional lemma
below, we can prove the required properties of this operator.

Lemma 7.1. The functions wj, wk, and wl defined above satisfy

‖wj‖H−1/2
0,i (Fj)

≤ C‖w‖H−1/2(∂K),

‖wk‖H−1/2
0,ij (Fk)

≤ C‖w‖H−1/2(∂K),

‖wl‖H−1/2
0,ijk (Fl)

≤ C‖w‖H−1/2(∂K).

Theorem 7.1. The operator Ediv
K in (7.1) has the following properties:

(1) Continuity: Ediv
K is a continuous operator from H−1/2(∂K) into H(div).

(2) Commutativity: curl (Ecurl
K v) = Ediv

K (curlτ v) for all tangential traces v of

H(curl )-functions, i.e., for all v in X−1/2(∂K).

(3) Extension property: The normal trace trcn(E
div
K w) coincides with w, for

all w in H−1/2(∂K).
(4) Polynomial preservation: If w is a function on ∂K such that on each face

w|Fi
is in Pp(Fi), then the extension Ediv

K w is in P p(K). In addition, if

the mean of w on ∂K is zero, then the extension Ediv
K w is a divergence free

polynomial in P p(K).

Proof. The proof follows by combining the previous results.
Proof of (1): The proof of continuity follows by combining the continuity of

v �→ wm for m = j, k, l (Lemma 7.1), the continuity of the primary extension

(Theorem 3.1), and the continuity of the intermediate extension operators Ecurl
i,j

(Proposition 4.1), Ecurl
ij,k (Proposition 5.1) and Ecurl

ijk,l (Proposition 6.1).
Proof of (2): The proof of the commutativity property similarly follows because

each of the intermediate operators satisfy commutativity properties, by Proposi-
tions 4.1, 5.1, and 6.1.

Proof of (3): This follows from the extension properties of the primary, the
two-face, the three-face, and the four-face extensions.

Proof of (4): The polynomial preservation property is obvious from the previ-
ously established polynomial preservation properties of all the intermediate exten-
sions. In addition, if w has zero mean, then w = trcn(r) for some divergence free
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function r. There is a vector potential ψ such that r = curlψ. Hence

divEdiv
K w = divEdiv

K (n · r) = divEdiv
K (n · curlψ)

= divEdiv
K (curlτ (trcτ ψ))

= div curl (Ecurl
K trcτ ψ) = 0,

hence the last assertion of the theorem. �

8. Conclusion to this series

8.1. The main result of this series. Combining the results of this paper with
those of the previous two parts [11, 12], we conclude that we have constructed

continuous polynomial extension operators E
grad
K , Ecurl

K , Ediv
K on a tetrahedron K

such that the following diagram commutes:

(8.1)

H1/2(∂K)
gradτ−−−−→ X−1/2(∂K)

curlτ−−−−→ H−1/2(∂K)⏐⏐�E
grad
K

⏐⏐�Ecurl
K

⏐⏐�Ediv
K

H1(K)
grad−−−−→ H(curl )

curl−−−−→ H(div).

These extension operators are distinguished by their polynomial preservation prop-

erty, namely, when E
grad
K (Ecurl

K , Ediv
K , resp.) is applied to the trace (tangential trace,

normal trace, resp.) of a polynomial (vector polynomial, resp.) on K, then the re-
sulting extension is also a polynomial (vector polynomial, resp.) of at most the
same degree.

8.2. Application to hp approximation. An immediate application of the exis-
tence of polynomial extension operators is in hp approximation theory. Suppose
a polyhedral domain Ω is partitioned into tetrahedra to obtain a geometrically
conforming finite element mesh T. Let pK ≥ 1 denote the polynomial degree asso-
ciated to a mesh element K. The standard hp finite element subspaces of H1(K),
H(curl ,K) and H(div,K) are:

Whp = {w ∈ H1(Ω) : w|K ∈ PpK
(K) ∀ mesh elements K ∈ T},

Qhp = {q ∈ H(curl ,Ω) : q|K ∈ P pK
(K) ∀ mesh elements K ∈ T},

V hp = {v ∈ H(div,Ω) : v|K ∈ P pK
(K) ∀ mesh elements K ∈ T}.

Let ρK denote the diameter of the largest ball contained in K and let hK denote the
length of the longest edge of K. We assume that the mesh is “shape regular”, i.e.,
there is a fixed positive constant γ such that maxK∈T hK/ρK < γ for all meshes
under consideration.

Projectors into Whp,Qhp, and V hp have been constructed and analyzed in [10],

under the conjecture that polynomial extension operators E
grad
K , Ecurl

K , and Ediv
K

exist (see [10, Conjecture 1]). Since this series of papers proved the existence of

E
grad
K , Ecurl

K , and Ediv
K , we can apply the analysis of [10]. Accordingly, there exists

projectors from the slightly smoother spaces

Hr(curl ,Ω) = {q ∈ Hr(Ω) : curl q ∈ Hr(Ω)},
Hr(div,Ω) = {v ∈ Hr(Ω) : div q ∈ Hr(Ω)};
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namely,

Πgrad : H1+r(Ω) �−→ Whp (r > 1/2),

Πcurl : H
r(curl ,Ω) �−→ Qhp (r > 1/2),

Πdiv : Hr(div,Ω) �−→ V hp (r > 0)

such that the following diagram commutes:

H1+r(Ω)
grad−−−−→ Hr(curl ,Ω)

curl−−−−→ Hr(div,Ω)⏐⏐�Πgrad

⏐⏐�Πcurl

⏐⏐�Πdiv

Whp
grad−−−−→ Qhp

curl−−−−→ V hp.

Their approximation estimates are in the following theorem. Let p̃K denote the
minimum of pK and pK′ for all elements K ′ sharing an edge or a face with K.
Similarly, let p̂K denote the minimum of pK and pK′ for all elements K ′ sharing a
face with K. Let lñ p = ln(max(p, 2)).

Theorem 8.1. There is a C > 0 independent of the polynomial degrees {pK} and
the element sizes {hK} (but depending on the shape regularity constant γ) such that
on any mesh element K,

‖w −Πgradw‖L2(K) + hK‖grad(w −Πgradw)‖L2(K) ≤ C
lñ(p̃K)2

(p̃K)r
hr+1
K |w|Hr+1(K),

‖q −Πcurlq‖L2(K) + hK‖curl (q −Πcurlq)‖L2(K) ≤ C
lñ(p̃K)

(p̃K)r
hr+1
K |q|Hr+1(K),

for all 1/2 < r ≤ p̃K . In the H(div)-case, we have, for all 0 < r ≤ p̂K ,

‖v −Πdivv‖L2(K) + hK‖ div(v −Πdivv)‖L2(K) ≤ C
lñ(p̂K)

(p̂K)r
hr+1
K |v|Hr+1(K).

Proof. Since [10, Conjecture 1] is verified by our results in this series of papers, we
can apply [10, Corollaries 1 and 2] (or more precisely, the corrected version of these

results in the review paper [8, Theorem 5.3]) on the reference tetrahedron K̂. The
inequalities of the theorem then follow by scaling arguments, mapping functions
between K and K̂ using covariant or contravariant mappings as appropriate. �

Appendix A. Proofs of the lemmas

We prove all the lemmas stated in the previous sections, in the order in which
they appeared. We will need to use the continuity of certain operators discussed
in [11]. Keeping the same notation as in [11], recall the definitions:

Aθ
3u (y, z) = 2

∫ 1

0

∫ 1−s

0

θ(s, t) u(sz, y + tz) dt ds,(A.1)

Bθ
2u (z) = 2

∫ 1

0

∫ 1−s

0

θ(s, t)u(sz, tz) dt ds,(A.2)

Jθφ (x, y, z) = θ(x, y, z)φ(y, x+ z),(A.3)

Lθψ (x, y, z) = θ(x, y, z)ψ(x+ y + z).(A.4)
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Proof of Lemma 4.1. First, we investigate the continuity of the face correction,
using its expression (4.1) for the reference tetrahedron. We find that it can be
rewritten in terms of the above operators as follows:

(A.5) Ediv
F̂1

w =

⎛⎝Jβ2
◦Aθ11

3 w + Jβ1
◦Aθ12

3 w

Jβ0
◦Aθ21

3 w

Jβ1
◦Aθ31

3 w

⎞⎠
where

θ11 = s, θ12 =
1− s

2
, β0 = 1, β1 =

x

x+ z
,

θ21 = − t

2
, θ31 =

1− 3s

2
, β2 =

z

x+ z
.

Now we use the continuity properties of Jβ and Aθ
3 proved in [11]. Specifically,

since all the βi’s are in L∞(K̂), by [11, Lemma A.3],

Jβi
: L2

z(F̂1) �−→ L2(K̂)

is continuous. Additionally, computing the gradient of Jβi
(as already done in [12,

Appendix A]), and applying [11, Lemma A.3] to each component, we find that

(A.6) Jβi
: L2

1/z(F̂1) ∩H1
z (F̂1) �−→ H1(K̂)

is continuous. By [11, Lemma A.1],

(A.7) Aθmn
3 : L2

1/x(F̂3) �−→ L2
1/z(F̂1) ∩H1

z (F̂1)

is continuous. Combining the continuity of the maps in (A.6) and (A.7), we get

that each of the composite operators in (A.5) of the form Jβm
◦ Aθij

3 is continuous

from L2
1/x(F̂3) into H1(K̂). Transferring the result to a general tetrahedron, we

conclude that the operator

(A.8) Ediv
Fi,l : L2

1/λi
(Fl) �−→ H1(K)

is continuous. By Theorem 3.1(2) we know that

(A.9) Ediv
l : H1/2(Fl) �−→ H1(K)

is continuous. Since H
1/2
0,i (Fl) = H1/2(Fl) ∩ L1/λi

(Fl), we obtain the continuity

stated in the lemma by combining (A.8) and (A.9). �

Proof of Lemma 4.2. We only prove the first identity (4.10) of the lemma, as the
proof of the second identity is similar. We begin from the left-hand side of (4.10),
applying the variable change s′ = rs, t′ = rt. Let w̃ = w(rs(x+ z), rt(x+ z)+ y) =
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w(s′(x+ z), t′(x+ z) + y). Then∫ 1

0

∫∫
F̂

fxyz(s, t) w̃ r ds dt dr =

∫ 1

0

∫ r

0

∫ r−s′

0

fxyz
(s′
r
,
t′

r

)
w̃

dt′ ds′

r
dr

=

∫ 1

0

∫ r

0

∫ r−s′

0

1

r2
fxyz

(
s′, t′) w̃ dt′ ds′ dr (by homogeneity)

=

∫ 1

0

d

dr
(−1

r
)

∫ r

0

∫ r−s′

0

fxyz(s
′, t′) w̃ dt′ ds′ dr

=

∫ 1

0

1

r

∂

∂r

∫ r

0

∫ r−s′

0

fxyz(s
′, t′) w̃ dt′ ds′ dr (by integration by parts)

−
∫ 1

0

∫ 1−s′

0

fxyz(s
′, t′) w̃ dt′ ds′ + lim

r→0

1

r

∫ r

0

∫ r−s′

0

fxyz(s
′, t′) w̃ dt′ ds′.(A.10)

Since fw̃ is a bounded (smooth) function, we immediately see that the last limit
is zero. Carrying the r derivative inside the integral in the first term above and
simplifying,∫ 1

0

1

r

∂

∂r

∫ r

0

∫ r−s′

0

fxyz(s
′, t′) w̃ dt′ ds′ dr

=

∫ 1

0

1

r

∫ r

0

fxyz(s
′, r − s′)w(s′(x+ z), (r − s′)(x+ z) + y) ds′ dr

=

∫∫
F̂

fxyz(s, t)

s+ t
w(s(x+ z), t(x+ z) + y) ds dt,

where in the last step we have use the variable change s = s′, t = r − s′. Using
these in (A.10) we have∫ 1

0

1

r

∂

∂r

∫ r

0

∫ r−s′

0

fxyz(s
′, t′) w̃ dt′ ds′ dr

=

∫∫
F̂

fxyz(s, t)

s+ t
w(s(x+ z), t(x+ z) + y) ds dt

−
∫∫
F̂

fxyz(s, t)w(s(x+ z), t(x+ z) + y) ds dt,

thus finishing the proof of (4.10). �

Proof of Lemma 5.1. Let us rewrite the edge correction operator using the op-
erators Lβ and Bθ

2 of (A.2) and (A.4):

(A.11) Ediv
Ê

=

⎛⎝Lβ1
◦Bθ11

2 + Lβ2
◦Bθ12

2 + Lβ3
◦Bθ13

2

Lβ1
◦Bθ21

2 + Lβ2
◦Bθ22

2 + Lβ3
◦Bθ23

2

Lβ3
◦Bθ31

⎞⎠ ,
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where

θ11 = s− 1 +
3t

2
, θ12 = −s

2
= θ13, β1 =

x

x+ y + z
, β2 =

y

x+ y + z
,

θ21 = − t

2
= θ23, θ31 =

3

2
(s+ t)− 1, β3 =

z

x+ y + z
.

By [11, Lemma A.4] applied to Lβm
(·) and the components of gradLβm

(·) (see [12,
Appendix A] where this is explicitly done), we find that

(A.12) Lβm
: L2(Ê) ∩H1

z2(Ê) �−→ H1(K̂)

is continuous. For the operators B
θij
2 , we have by [11, Lemma A.2],

Bθmn
2 : L2

1/x(F̂3) ∩ L2
1/y(F̂3) �−→ L2(Ê03) ∩H1

z2(Ê03)

is continuous. Therefore, referring to (A.11), we conclude that Ediv
Ê

: L2
1/x(F̂ ) ∩

L2
1/y(F̂ ) �→ H1(K̂) is continuous. In other words, on a general tetrahedron,

(A.13) Ediv
Ekl,l

: L2
1/λi

(Fl) ∩ L2
1/λj

(Fl) �−→ H1(K)

is continuous.
To complete the proof, the stated continuity of Ecurl

ij,l = Ecurl
l −Ecurl

Fi,l−Ecurl
Fj ,l+Ecurl

Ekl,l

now follows from (A.13), the continuity of the face corrections (Lemma 4.1) and
the continuity of the primary extension (Theorem 3.1(2)). �

Proof of Lemma 7.1. There is a function vw in H(div) which satisfies

(A.14) trcn(vw) = w and ‖vw‖H(div) ≤ C‖w‖H−1/2(∂K).

Let us prove the first estimate of the lemma. By the definition of H
−1/2
0,i (Fl) as

in (2.15), the restriction operatorRj is continuous fromH
−1/2
0,i (∂K) ontoH

−1/2
0,i (Fl).

Hence

‖wj‖H−1/2
0,i (Fl)

= ‖Rj(w − trcn Vi)‖H−1/2
0,i (Fl)

≤ C‖w − trcn Vi‖H−1/2
0,i (∂K)

= C inf
trcn(v)=w−trcn(Vi)

‖v‖H(div) by (2.13),

where the infimum runs over all v inH0,Fi
(div,K) such that trcn(v) = w−trcn(Vi).

Since vw − Vi is in H0,Fi
(div,K),

‖wj‖H−1/2
0,i (Fl)

≤ C‖vw − Vi‖H(div)(A.15)

≤ C‖w‖H−1/2(∂K) + ‖Ediv
i w‖H(div) by (A.14)

≤ C‖w‖H−1/2(∂K) by Theorem 3.1.

To prove the next estimate, we use similar arguments as above. In this case, we
get, instead of (A.15), that

‖wk‖H−1/2
0,ij (Fk)

≤ C‖vw − Vi − Vj‖H(div)

because vw −Vi −Vj is in H0,Fi∪Fj
(div,K). The estimate is then proved as in the

previous case. The third estimate is also similarly proved. �
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