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MINIMAL FINITE ELEMENT SPACES FOR 2m-TH-ORDER

PARTIAL DIFFERENTIAL EQUATIONS IN Rn

MING WANG AND JINCHAO XU

Abstract. This paper is devoted to a canonical construction of a family of
piecewise polynomials with the minimal degree capable of providing a con-
sistent approximation of Sobolev spaces Hm in Rn (with n ≥ m ≥ 1) and
also a convergent (nonconforming) finite element space for 2m-th-order ellip-
tic boundary value problems in Rn. For this class of finite element spaces, the
geometric shape is n-simplex, the shape function space consists of all polyno-
mials with a degree not greater than m, and the degrees of freedom are given
in terms of the integral averages of the normal derivatives of order m − k on
all subsimplexes with the dimension n − k for 1 ≤ k ≤ m. This sequence of
spaces has some natural inclusion properties as in the corresponding Sobolev
spaces in the continuous cases.

The finite element spaces constructed in this paper constitute the only class
of finite element spaces, whether conforming or nonconforming, that are known
and proven to be convergent for the approximation of any 2m-th-order elliptic
problems in any Rn, such that n ≥ m ≥ 1. Finite element spaces in this class
recover the nonconforming linear elements for Poisson equations (m = 1) and
the well-known Morley element for biharmonic equations (m = 2).

1. Introduction

In the study of qualitative and numerical analysis of partial differential equations
and, in general, of approximation theory, we are often interested in the approxima-
tion of functions in Sobolev spaces by piecewise polynomials (such as finite element
spaces) defined on a partition of the domain by, say, a number of simplexes.

For Sobolev space H1, it is easy to construct approximation subspaces compris-
ing piecewise polynomial subspaces of any degree (that are defined on simplicial
partitions of the underlying domain) by conforming finite element discretization
(see [10]). It turns out, though, that it is much more difficult to construct con-
forming finite element spaces, namely piecewise polynomial subspaces, of H2. The
minimal degree of conforming elements is 5 for n = 2 (the well-known Argyris
elements, see [10]) and 9 for n = 3 (see [45]). For a general Sobolev space Hm,
constructing piecewise polynomial subspaces becomes increasingly difficult as the
differential order m and/or the spatial dimension n increases.
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In order to use piecewise polynomials with a lower degree, nonconforming finite
element spaces, i.e., finite element spaces that are not necessarily subspaces of H2,
have been constructed and used in practice, such as the Morley element [21, 23, 38]
and the rectangle Morley element (see [47, 41]), the Veubake elements [36], the new
Zienkiewicz-type element [40], the Adini element [2, 20, 41], three-dimensional (or
higher) Bogner-Fox-Schmit element [41], the 12- and 15-parameter plate bending
elements (see [47]), the cubic element and incomplete cubic element given in [39].
Obviously, not all piecewise polynomial spaces are convergent finite element spaces.
In addition, certain “continuity” or consistency conditions must be imposed. Such
conditions have been widely studied in the literature; cf. [10, 11, 13, 14], [17]–
[19], [22], [24]–[34], [37, 47]. An example of these conditions is the “consistent
approximation” condition, in which, the finite element spaces have approximability
and are weakly compact (see [32]).

From both theoretical and practical viewpoints, we are particularly interested in
consistent approximation spaces for Hm consisting of piecewise polynomials with
the smallest possible degree, as denoted by dmin(m,n), in Rn.

It is easy to see that

(1.1) dmin(m,n) ≥ m, ∀m ≥ 1, n ≥ 1.

Since it is well-known that convergent linear simplicial finite elements can be easily
constructed for second-order elliptic boundary value problems in any dimension, we
have that

(1.2) dmin(m,n) = m, n ≥ m

is true for m = 1. Due to the classic Morley element [21] for biharmonic equations
for n = 2 and the results in Ruas [23], Wang and Xu [38], (1.2) is also true for
m = 2. With the new class of consistent approximation spaces to be constructed
in this paper, we can conclude that (1.2) is valid for general m ≥ 1.

A universal construction will be given in this paper for consistent approximation
spaces for Hm in Rn (with n ≥ m) consisting of piecewise polynomials of degree
m. This construction can be used as finite element spaces for the discretization of
2m-th-order elliptic boundary value problems.

Denoted by Mm
h , spaces in this class are given by piecewise polynomials with a

degree not greater than m, namely the space Pm. Degrees of freedom for Mm
h in

each element are given in terms of the integral averages of the normal derivatives
of order m − k on all subsimplexes of dimension n − k for 1 ≤ k ≤ m. The total
number of these degrees of freedom in each element amounts to the dimension of
Pm. One remarkable property of this sequence of spaces Mm

h is that it has certain
inclusion properties. The degrees of freedom are just those of the nonconforming
linear element when m = 1, which are also those of the Morley element [38] when
m = 2. That is, we recover these two nonconforming elements in a canonical way.

While the construction presented in this paper is mainly motivated by theoretical
considerations, the new element can also be applied to practical problems. The
modeling for plates in linear elasticity is a classic area wherein fourth-order partial
differential equations find their applications in two spatial dimensions. In recent
years, modeling in material science has made use of fourth-order equations (see [7,
8, 12, 15, 35]) and also sixth-order equations [5, 42, 43] in three dimensions. Elliptic
or parabolic equations of eighth or higher order are rare for practical applications;
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however, in the theory of differential geometry (see [9]), elliptic equations of order
m = n/2 in any dimension n have been used.

In addition to conforming and nonconforming finite element methods, discon-
tinuous Galerkin methods (see [3, 4]), which have been the subject of considerable
research interest in recent years, represents another type of discretization method
for 2m-th-order partial differential equations. The discontinuous Galerkin method
uses discontinuous piecewise polynomial spaces, and it imposes consistency on these
spaces by introducing certain penalty terms on the element interfaces in the dis-
crete variational forms. Thus the study of this type of method focuses exclusively
on constructing and analyzing of appropriate discrete variational forms.

The rest of the paper is organized as follows: Section 2 gives a detailed description
of our family of minimal degree finite element spaces. Section 3 discusses the
convergence and the error estimate for their application to 2m-th-order elliptic
problems. The last section offers some brief concluding remarks.

2. Nonconforming finite element spaces of minimal degree

In this section, we will construct a minimal piecewise polynomial approximation
of Hm(Ω) for Ω ⊂ Rn with n ≥ m ≥ 1.

We first introduce some basic notation. Given a nonnegative integer k and a
bounded domain G ⊂ Rn with boundary ∂G, let Hk(G), Hk

0 (G), (·, ·)k,G, ‖ · ‖k,G
and | · |k,G denote the usual Sobolev spaces, inner product, norm, and semi-norm,
respectively.

For an n dimensional multi-index α = (α1, · · · , αn), define

|α| =
n∑

i=1

αi, ∂α =
∂|α|

∂xα1
1 · · · ∂xαn

n
.

We will use α, β to denote the multi-indexes. Let ei denote the multi-index with
the i-th component 1 and the others 0. For k ≥ 1, let Ak be the set consisting of
all multi-indexes α with

∑n
i=k+1 αi = 0.

Following the description in [10], a finite element can be represented by a triple
(T, PT , DT ), with T the geometric shape of the element, PT the shape function
space, and DT the set of the degrees of freedom, such that DT is PT -unisolvent.

Let Ω be a bounded polyhedron domain of Rn. Assume that {h} is a sequence of
positive numbers and h → 0. For each h, let Th be a partition of Ω corresponding to
a finite element (T, PT , DT ), and let h be the mesh size, i.e., the maximal diameter
of the elements in Th.

For any element T ∈ Th, let hT be the diameter of the smallest ball containing
T , and let ρT be the diameter of the largest ball contained in T . Throughout the
paper, we assume that {Th} is quasi-uniform, that is,

(2.1) max
x∈T, T∈T h

hT ≤ η min
x∈T, T∈T h

ρT , ∀x ∈ Ω̄,

in which η is a positive constant independent of h.
For |α| ≤ m and vh ∈ L2(Ω) with vh|T ∈ Hm(T ) (∀T ∈ Th), we denote ∂α

h vh as
the partial derivatives of vh taken piecewise with respect to the partition Th.

For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) be the space of all
polynomials defined on B with a degree not greater than r, and let Qr(B) be the
space of all polynomials with a degree in each variable not greater than r. Define

(2.2) Pr,h = { v ∈ L2(Ω) : v|T ∈ Pr(T ), ∀T ∈ T h}.
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We will give the description of (T, PT , DT ) for our new finite element first. Then
we will show the PT -unisolvent property and give the construction and the error
estimate of the corresponding interpolation operator. Moreover, we will define the
global finite element spaces and show their basic properties, such as the approxi-
mation property and the inclusion property.

2.1. The local degrees of freedom. For our new element (T, PT , DT ), T is a
simplex and PT = Pm(T ). The set of degrees of freedom, denoted by Dm

T , will be
given next.

Given an n-simplex T with vertices ai, 1 ≤ i ≤ n + 1, let λ1, λ2, · · · , λn+1 be
the barycentric coordinates of T . For 1 ≤ k ≤ n, let FT,k be the set consisting
of all (n − k)-dimensional subsimplexes of T . For any F in FT,k, let |F | denote
its measure, and let νF,1, · · · , νF,k be its unit outer normals which are linearly
independent.

For 1 ≤ k ≤ m, any (n− k)-dimensional subsimplex F ∈ FT,k and β ∈ Ak with
|β| = m− k, define

(2.3) dT,F,β(v) =
1

|F |

∫
F

∂|β|v

∂νβ1

F,1 · · · ν
βk

F,k

, ∀v ∈ Hm(T ).

By the Sobolev embedding theorems [1], dT,F,β is a continuous linear functional on
Hm(T ). Then the set of the degrees of freedom is given by

(2.4) Dm
T = { dT,F,β : β ∈ Ak with |β| = m− k, F ∈ FT,k, 1 ≤ k ≤ m}.

That is, the degrees of freedom are the integral averages of the normal derivatives
of order m− k on all subsimplexes of dimension n− k for 1 ≤ k ≤ m.

For nonnegative integers i, j with i ≤ j set

Ci
j =

j!

i!(j − i)!
.

Then for each 1 ≤ k ≤ m, T has Cn−k+1
n+1 subsimplexes of dimension n−k. For each

(n − k)-dimensional subsomplex F , the number of all (m − k)-th-order direction

derivatives with respect to νF,1, · · · , νF,k is Cm−k
m−1 . Therefore, by the well-known

Vandermonde combinatorial identity, the number of the total degrees of freedom is
given by

m∑
k=1

Cn−k+1
n+1 Cm−k

m−1 = Cm
n+m,

which is precisely the dimension of Pm(T ).
Let J = Cm

n+m. We also number all the degrees of freedom by

dT,1, dT,2, · · · , dT,J .

Then, Dm
T = {dT,1, dT,2, · · · , dT,J}.

For 1 ≤ k ≤ m and an (n − k)-dimensional subsimplex F without aj1 , · · · , ajk
as its vertices, different choices (for k > 1) of νF,1, · · · , νF,k will lead to equivalent
degrees of freedom. The particular and convenient choices of normal directions are
as follows:

(2.5) νF,i = − ∇λji

‖∇λji‖
, 1 ≤ i ≤ k.
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Table 1. Degrees of Freedom

m \ n 1 2 3

1 � �

� �
�

�

2

�

� �

3

�

�

��

Some special cases: 1 ≤ m ≤ 3. We now offer a brief discussion regarding all
spaces that corresponding to the three lowest indices 1 ≤ m ≤ 3. The degrees
of freedom in these cases are depicted in Table 1 for m ≤ n ≤ 3. For m = 1
and n = 1, we obtain the well-known conforming linear element. This is the only
conforming element in this family of elements. For m = 1 and n ≥ 2, we obtain the
well-known nonconforming linear element. For m = 2, we recover the well-known
Morley element for n = 2 and its generalization to n ≥ 2 (see Wang and Xu [38]).
For m = 3 and n = 3, we obtain a new cubic element on a simplex that has 20
degrees of freedom.

2.2. Unisolvent property and canonical nodal interpolation. We need to
show the PT -unisolvent property of our new finite element. First, we show a crucial
property.

Lemma 2.1. Let 1 ≤ k ≤ m and F ∈ FT,k. Then for any v ∈ Hm(T ), the integrals
of all its (m− k)-th-order derivatives on F ,∫

F

∂αv, |α| = m− k,

are uniquely determined by all dT,F ′,β(v) given in (2.3) with k ≤ r ≤ m, F ′ (n−r)-
dimensional subsimplex of F , β ∈ Ar, and |β| = m− r.
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Proof. Let v ∈ Hm(T ). We prove the lemma by induction. When k = m,

1

|F |

∫
F

v = dT,F,0(v).

The lemma is obviously true.
Assume that the lemma is true for all k ∈ {i + 1, · · · ,m} with 1 ≤ i < m. We

consider the case that k = i.
Denote all (n − k − 1)-dimensional subsimplexes of the (n − k)-simplex F by

S1, S2, · · · , Sn−k+1, and the unit outer normal of Sj by n(j), viewed as the boundary
of an (n− k)-simplex in (n− k)-dimensional space. Choose orthogonal unit vectors
τF,k+1, · · · , τF,n that are tangent to F . Then

νF,1, · · · , νF,k, τF,k+1, · · · , τF,n

form a basis of Rn.
Now let |α| = m− k. If αk+1 = · · · = αn = 0, then

1

|F |

∫
F

∂m−kv

∂να1

F,1 · · · ν
αk

F,k∂τ
αk+1

F,k+1 · · · ∂τ
αn

F,n

= dT,F,β(v)

with β ∈ Ak and βj = αj , 1 ≤ j ≤ k. Otherwise, without loss of generality, let
αk+1 > 0. Green’s formula gives∫

F

∂m−kv

∂να1

F,1 · · · ν
αk

F,k∂τ
αk+1

F,k+1 · · · ∂τ
αn

F,n

=

n−k+1∑
j=1

n(j) · τF,k+1

∫
Sj

∂m−k−1v

∂να1

F,1 · · · ν
αk

F,k∂τ
αk+1−1
F,k+1 ∂τ

αk+2

F,k+2 · · · ∂τ
αn

F,n

.

By the assumption of induction, the right-hand side of the above identity can
be expressed in terms of all dT,F ′,β(v) with k < r ≤ m, F ′ (n − r)-dimensional
subsimplex of F , β ∈ Ar, and |β| = m − r. Consequently, the lemma is true for
k = i.

Lemma 2.2. For 1 ≤ i ≤ J , there exists a unique polynomial pi ∈ Pm(T ), such
that

(2.6) dT,j(pi) = δij , 1 ≤ j ≤ J,

where δij is the Kronecker delta.

Proof. As the dimension of Pm(T ) is also J , it is sufficient to show that if p ∈ Pm(T )
and

(2.7) dT,F,β(p) = 0, β ∈ Ak with |β| = m− k, F ∈ FT,k, 1 ≤ k ≤ m,

then p ≡ 0.
By Lemma 2.1 and its proof, we deduce that

(2.8)

∫
F

∂αp = 0, |α| = m− k, F ∈ FT,k, 1 ≤ k ≤ m.

By Green’s formula and (2.8), we have for all 1 ≤ k1 ≤ k2 ≤ · · · ≤ km ≤ n, that,
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∂mp

∂xk1
· · · ∂xkm

=
1

|T |

∫
T

∂mp

∂xk1
· · · ∂xkm

=
1

|T |
∑

F∈FT,1

∫
F

∂m−1p

∂xk2
· · · ∂xkm

(νF,1)k1
= 0,

where |T | is the measure of T . That is, p ∈ Pm−1(T ).
When 1 ≤ k < m and p ∈ Pm−k(T ), by (2.8), all (m− k)-th-order derivatives of

p are zero and p is in Pm−k−1(T ). Thus, p is a constant. By (2.8), we obtain that
p ≡ 0.

Lemma 2.2 shows the PT -unisolvent property of our new elements, specifically
that a polynomial p ∈ Pm(T ) is uniquely determined by dT,j(p), 1 ≤ j ≤ J .
The polynomial pi given by (2.6) is the basis function corresponding to degree
of freedom dT,i. Based on Lemma 2.2, we can define the interpolation operator
ΠT : Hm(T ) → Pm(T ) by

(2.9) ΠT v =

J∑
i=1

pidT,i(v), ∀v ∈ Hm(T ).

We would like to emphasize here that operator ΠT is well-defined for all functions
in Hm(T ).

By the interpolation theory [10], we obtain the following error estimate of the
interpolation operator.

Lemma 2.3. For s = 0, 1,

(2.10) |v −ΠT v|k,T ≤ C(η)hm+s−k
T |v|m+s,T , 0 ≤ k ≤ m+ s, ∀v ∈ Hm+s(T )

for all n-simplex T with hT ≤ ηρT . Here, C(η) is a constant that only depends on
η.

2.3. Global finite element spaces. We define our piecewise polynomial spaces
Mm

h and Mm
h0 as follows:

(1) Mm
h consists of all functions vh in Pm,h, such that for any k ∈ {1, · · · ,m},

any (n− k)-dimensional subsimplex F of any T ∈ Th and any β ∈ Ak with
|β| = m− k, dT,F,β(vh) is continuous through F .

(2) Mm
h0 consists of all functions vh in Mm

h , such that for any k ∈ {1, · · · ,m},
any (n− k)-dimensional subsimplex F of any T ∈ Th and any β ∈ Ak with
|β| = m− k, if F ⊂ ∂Ω then dT,F,β(vh) = 0.

Define an operator Πh on Hm(Ω) as follows:

(2.11) (Πhv)|T = ΠT (v|T ), ∀T ∈ T h, ∀v ∈ Hm(Ω).

By the above definition, Πhv ∈ Mm
h for any v ∈ Hm(Ω) and Πhv ∈ Mm

h0 for any
v ∈ Hm

0 (Ω).
For convenience, following [44], the symbols <∼ , >∼ and =∼ will be used in

the rest of this paper. That X1
<∼ Y1 and X2

>∼ Y2, mean that X1 ≤ c1Y1 and
c2X2 ≥ Y2 for some positive constants c1 and c2 that are independent of mesh size
h. That X3

=∼ Y3 means that X3
<∼ Y3 and X3

>∼ Y3.
We define, for w ∈ L2(Ω) with w|T ∈ Hm(T ), ∀T ∈ Th,

‖w‖2m,h =
∑
T∈Th

‖w‖2m,T , |w|2m,h =
∑
T∈Th

|w|2m,T .
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Now we consider the approximate property of Mm
h and Mm

h0.

Theorem 2.1. For any v ∈ Hm+1(Ω),

(2.12) ‖v −Πhv‖m,h
<∼ h|v|m+1,Ω,

and for any v ∈ Hm(Ω),

(2.13) lim
h→0

‖v −Πhv‖m,h = 0.

Proof. First, let v ∈ Hm+1(Ω). By Lemma 2.3, we obtain (2.12) directly.
Now let w ∈ Hm(Ω). Since Hm+1(Ω) is dense in Hm(Ω), for any ε > 0 there

exists φ ∈ Hm+1(Ω) such that

‖w − φ‖m,Ω < ε.

By (2.12), there exists h̃ > 0 such that

‖φ−Πhφ‖m,h < ε

when h < h̃. Therefore by (2.10)

‖w −Πhw‖m,h ≤ ‖w − φ‖m,h + ‖Πh(w − φ)‖m,h + ‖φ−Πhφ‖m,h
<∼ ε

when h < h̃. This leads to (2.13).

When n > 1, Mm
h is not a subspace of Hm(Ω) and Mm

h is not a subspace of
C0(Ω̄). Although functions in Mm

h are not continuous on Ω in general, they have
some weak continuity. By the definitions of Mm

h and Mm
h0, Lemma 2.1 and its proof,

the following lemma can be obtained directly.

Lemma 2.4. Let k ∈ {1, · · · ,m} and F be an (n − k)-dimensional subsimplex of
T ∈ Th. Then, for any vh ∈ Mm

h and any T ′ ∈ Th with F ⊂ T ′,

(2.14)

∫
F

∂α(vh|T ′) =

∫
F

∂α(vh|T ), |α| = m− k.

If F ⊂ ∂Ω, then for any vh ∈ Mm
h0,

(2.15)

∫
F

∂α(vh|T ) = 0, |α| = m− k.

An equivalent definition. By Lemma 2.4, we can give an equivalent definition
of Mm

h and Mm
h0: Mm

h consists of all functions vh in Pm,h, such that for any
k ∈ {1, · · · ,m}, any (n − k)-dimensional subsimplex F of any T ∈ Th and any
α with |α| = m − k, the integral of ∂α

h vh over F is continuous through F ; Mm
h0

consists of all functions vh in Mm
h such that for any k ∈ {1, · · · ,m}, any (n − k)-

dimensional subsimplex F of any T ∈ Th and any α with |α| = m− k, if F ⊂ ∂Ω,
then the integral of ∂α

h vh over F vanishes.

Lemma 2.5. Let |α| < m and F be an (n− 1)-dimensional subsimplex of T ∈ Th.
Then for any vh ∈ Mm

h , ∂α
h vh is continuous at a point on F at least. If F ⊂ ∂Ω

and vh ∈ Mm
h0, then ∂α

h vh vanishes at a point on F at least.

Proof. Let vh ∈ Mm
h and T ′ ∈ Th with F ⊂ T ′. By Lemma 2.4, there is an

(n−m+ |α|)-dimensional subsimplex F ′ of F , such that∫
F ′

∂α(vh|T ′) =

∫
F ′

∂α(vh|T ).

Then, ∂α
h vh is continuous at a point on F ′ at least.
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If F ⊂ ∂Ω and vh ∈ Mm
h0, then there is an (n−m+ |α|)-dimensional subsimplex

F ′ of F by Lemma 2.4, such that∫
F ′

∂α(vh|T ) = 0.

Thus, ∂α
h vh vanishes at a point on F ′ at least.

2.4. Inclusion properties. We will now discuss two simple inclusion properties
of our finite element spaces. First, we have the following observation.

Lemma 2.6. Given any n > m ≥ 1 and a simplex T , the set of subsimplices of T
used to define Dm

T is also used in the definition of Dm+1
T . More precisely, the degrees

of freedom for Dm+1
T can be obtained by taking the integral of one order higher than

normal derivatives of functions on the same subsimplexes used for Dm
T , plus the

integral average of the function over all the additional (n−m− 1)-subsimplexes.

To obtain a more interesting inclusion property, we define

∂Mm
h = span{∂e1

h Mm
h , ∂e2

h Mm
h , · · · , ∂en

h Mm
h }

and

∂Mm
h0 = span{∂e1Mm

h0, ∂
e2Mm

h0, · · · , ∂enMm
h0}.

Theorem 2.2. Let n ≥ m > 1, then

(2.16) ∂Mm
h = Mm−1

h , ∂Mm
h0 = Mm−1

h0 .

Proof. By the equivalent definition of Mm
h and Mm

h0, we obtain directly that

∂Mm
h ⊂ Mm−1

h , ∂Mm
h0 ⊂ Mm−1

h0 .

For any k ∈ {1, 2, · · · ,m−1}, any T ∈ Th, any (n−k)-dimensional subsimplex F
of T , and any β ∈ Ak with |β| = m− 1−k, (1) let w be the global basis function of
Mm−1

h corresponding to degree of freedom dT,F,β , and (2) let v be the global basis
function ofMm

h corresponding to degree of freedom dT,F,α with α = β+(1, 0, · · · , 0).
By these definitions, w = ν�F,1∇v. Then the theorem follows.

A note on the case m = 0. In the above construction, we made the assumption
that m ≥ 1. But we can slightly enlarge this construction to include the trivial
case m = 0, namely L2(Ω) space. Technically, we can just replace the constraint
1 ≤ k ≤ m with min(1,m) ≤ k ≤ m. In this case, the shape function space is again
Pm(T ) = P0(T ), namely the constant, and the corresponding degree of freedom is
just the volume integral on each simplex. This trivial case of the finite element
space, denoted by M0

h , can be thought of a close relative of Mm
h (m ≥ 1), but not

a direct family member in view of the properties stated in Lemma 2.6.

3. Convergence analysis for the new element

In this section, we will give the convergence analysis for the new class of finite
element methods introduced in this paper.

Let b0 be a nonnegative constant and bα be positive constants, |α| = m. Define

(3.1) a(v, w) =

∫
Ω

( ∑
|α|=m

bα∂
αv ∂αw + b0vw

)
, ∀v, w ∈ Hm(Ω).
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Let W be Hm
0 (Ω) or Hm(Ω), and let f ∈ L2(Ω). We consider the following varia-

tional problem: find u ∈ W , such that

(3.2) a(u, v) = (f, v), ∀v ∈ W.

We assume that problem (3.2) has a unique solution for any f ∈ L2(Ω).
The above variational problem corresponds to the following 2m-th-order partial

differential equation:

(3.3)
∑

|α|=m

(−1)|α|∂α(bα∂
αu) + b0u = f, in Ω.

When W = Hm
0 (Ω), the variational problem (3.2) corresponds to the homogeneous

Dirichlet boundary problem of partial differential equation (3.3) with these bound-
ary conditions:

(3.4)
∂ku

∂νk

∣∣∣
∂Ω

= 0, 0 ≤ k ≤ m− 1,

where ν = (ν1, ν2, · · · , νn)� is the unit outer normal to ∂Ω.
When W = Hm(Ω), problem (3.2) corresponds to the boundary problem of

partial differential equation (3.3) with some natural boundary conditions.
For v, w ∈ L2(Ω) so that v|T , w|T ∈ Hm(T ), ∀T ∈ Th, we define

(3.5) ah(v, w) =
∑
T∈Th

∫
T

( ∑
|α|=m

bα∂
αv ∂αw + b0vw

)
.

When W = Hm(Ω), let Uh be Mm
h ; otherwise, let Uh be Mm

h0. The noncon-
forming finite element method for problem (3.2) corresponding to the new element
given in Section 2 is to find uh ∈ Uh, such that

(3.6) ah(uh, vh) = (f, vh), ∀vh ∈ Uh.

Next, we will discuss the convergence property of solution uh of problem (3.6).

3.1. Weak continuity. Let Vh be a nonconforming finite element space to approx-
imate Hm(Ω) corresponding to Th, and let Vh0 be the corresponding subspace of
Vh to approximate Hm

0 (Ω).
We say that Vh has weak continuity (or weak discontinuity) if for any vh in Vh,

any (n− 1)-dimensional face F of T ∈ Th and any |α| < m, ∂α
h vh is continuous at

a point on F at least. Correspondingly, we say that Vh0 satisfies the weak zero-
boundary condition if for any vh in Vh0, any (n− 1)-dimensional face F of T ∈ Th
with F ⊂ ∂Ω and any |α| < m, ∂α

h vh vanishes at a point on F at least.
By Lemma 2.5, we know that Mm

h has weak continuity and that Mm
h0 satisfies

the weak zero-boundary condition.
With weak continuity, we obtain that vh is a single polynomial of a degree less

than m on whole Ω if vh ∈ Vh and |vh|m,h = 0. Moreover, vh ≡ 0 when vh ∈ Vh0

and the weak zero-boundary condition is satisfied; that is, | · |m,h is a norm of Vh0.
In this sense, the weak continuity and the weak zero-boundary condition are viewed
as necessary.

We assume in the rest of the section that a nonnegative integer t exists, such that
Vh ⊂ Pt,h for all h. We also assume that Th is a partition consisting of n-simplexes
or consisting of n-cubes with their sides parallel to some respective coordinate axes.
Following the method used in [37], we have the following lemma.
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Lemma 3.1. Let Vh have weak continuity and let Vh0 satisfy the weak zero-boundary
condition. Then, for any vh ∈ Vh and any |α| < m there exists a piecewise polyno-
mial vα ∈ H1(Ω) such that

(3.7) |∂α
h vh − vα|j,h <∼ hm−|α|−j |vh|m,h, 0 ≤ j ≤ m− |α|,

and vα can be chosen in H1
0 (Ω) when vh ∈ Vh0.

Proof. For set B ⊂ Rn, let Th(B) = {T ∈ Th : B ∩ T 
= ∅ } and Nh(B) be the
number of the elements in Th(B).

Let vh ∈ Vh, |α| < m. For T ∈ Th, denote by vTh the continuous extension of vh
from the interior of T to T . Given any (n−1)-dimensional face F of T , let us define

the jump of ∂α
h vh across F as follows: [∂α

h vh]F = ∂αvTh |F − ∂αvT
′

h |F if F = T ∩ T ′

for some other T ′ ∈ Th and [∂α
h vh]F = ∂αvTh |F if F = T ∩ ∂Ω.

First, we show that if F 
⊂ ∂Ω or vh ∈ Vh0, then

(3.8) [∂α
h vh]

2
F

<∼ h2(m−|α|)−n
∑

T ′∈Th,F⊂T ′

|vh|2m,T ′ .

By the weak continuity and the weak zero-boundary condition there exists x ∈ F
such that [∂α

h vh]F vanishes at x, this leads to

[∂α
h vh]

2
F ≤ h2 max

y∈F

[ ∂

∂τ
∂α
h vh

]2
F
(y) <∼ h2

∑
|α′|=|α|+1

max
y∈F

[
∂α′

h vh

]2
F
(y)

where τ is a unit tangent of F . Repeating the same argument, we have

[∂α
h vh]

2
F

<∼ h2(m−|α|)
∑

|α′|=m

max
y∈F

[
∂α′

h vh

]2
F
(y).

By the inverse inequality, we obtain (3.8).
Let l = m−|α| and 0 ≤ j ≤ l. If T is an n-simplex, then we take Sl,T = Pl(T ) and

Πl,T the interpolating operator corresponding to the element of n-simplex of type
(l), otherwise take Sl,T = Ql(T ) and Πl,T the interpolating operator corresponding
to the element of n-cube of type (l) (see [10], pp. 48 and 57). Let Ξl,T be the set
of nodal points of Πl,T .

Now we define vα ∈ H1(Ω) as follows: for all T ∈ Th, vα|T ∈ Sl,T and for each
x ∈ Ξl,T if x ∈ ∂Ω and vh ∈ Vh0, then vα(x) = 0, otherwise

(3.9) vα(x) =
1

Nh(x)

∑
T ′∈Th(x)

∂αvT
′

h (x).

Then vα is well-defined, and vα ∈ H1
0 (Ω) when vh ∈ Vh0.

By the interpolating theory,

(3.10) |∂α
h vh −Πl,T∂

α
h vh|j,T <∼ hm−|α|−j |vh|m,T .

Using the affine argument, we can show the following inequality:

(3.11) |p|2j,T <∼ hn−2j
∑

x∈Ξl,T

|p(x)|2, ∀p ∈ Sl,T .

Since Πl,T∂
α
h vh − vα|T ∈ Sl,T ,

(3.12) |Πl,T∂
α
h vh − vα|2j,T <∼ hn−2j

∑
x∈Ξl,T

|Πl,T ∂
αvTh (x)− vα(x)|2.
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If x ∈ Ξl,T ∩ Ω or vh 
∈ Vh0, then by (3.9) we have

|Πl,T∂
αvTh (x)− vα(x)|2 =

∣∣∣ 1

Nh(x)

∑
T ′∈Th(x)

(
∂αvTh (x)− ∂αvT

′

h (x)
)∣∣∣2.

For T ′ ∈ Th(x) and T ′ 
= T , there exist T1, · · · , TL ∈ Th(x) such that T1 = T ,

TL = T ′ and F̃j = Tj ∩ Tj+1 is a common (n− 1)-dimensional face of Tj and Tj+1,
1 ≤ j < L. By (3.8) and the fact that Nh(x) is bounded, we obtain∣∣∣∂αvTh (x)− ∂αvT

′

h (x)
∣∣∣2 <∼

L−1∑
j=1

max
y∈Fj

[∂α
h vh]

2
Fj
(y) <∼ h2(m−|α|)−n

∑
T ′∈Th(x)

|vh|2m,T ′ .

If x ∈ Ξl,T ∩ ∂Ω and vh ∈ Vh0, then we have by definition of vα,

|Πl,T∂
αvTh (x)− vα(x)|2 = |∂αvTh (x)|2 <∼ h2(m−|α|)−n

∑
T ′∈Th(x)

|vh|2m,T ′ .

From (3.12) we derive that

(3.13) |Πl,T ∂
α
h vh − vα|2j,T <∼ h2(m−|α|−j)

∑
T ′∈Th(T )

|vh|2m,T ′ .

By (3.10), (3.13) and the triangle inequality, we get

(3.14) |∂α
h vh − vα|2j,h <∼ h2(m−|α|−j)

∑
T∈Th

∑
T ′∈Th(T )

|vh|2m,T ′ .

Then (3.7) follows.

Theorem 3.1. Let Vh have weak continuity, and let Vh0 satisfy the weak zero-
boundary condition. Then, the generalized inequality of Poincaré-Friedrichs,

(3.15) ‖vh‖m,h
<∼ |vh|m,h, ∀vh ∈ Vh0,

and the generalized Poincaré inequality

(3.16) ‖vh‖2m,h
<∼ |vh|2m,h +

∑
|α|<m

(∫
Ω

∂α
h vh

)2

, ∀vh ∈ Vh,

are true.

Proof. The following inequalities are true.

‖v‖1,Ω <∼ |v|1,Ω, ∀v ∈ H1
0 (Ω),(3.17)

‖v‖21,Ω <∼ |v|21,Ω +
(∫

Ω

v
)2

, ∀v ∈ H1(Ω).(3.18)

For vh ∈ Vh0, |α| < m, let vα ∈ H1
0 (Ω) be as in (3.7). Then from (3.17) and

(3.7),

‖∂α
h vh‖20,Ω <∼ ‖∂α

h vh − vα‖20,Ω + ‖vα‖20,Ω
<∼ |vh|2m,h + |vα|21,Ω <∼ |vh|2m,h + |vh|2|α|+1,h.

Consequently,

(3.19) |vh|k,h <∼ |vh|m,h + |vh|k+1,h, 0 ≤ k < m.

This leads to (3.15).
By (3.18) and the same argument, we obtain (3.16).
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By Lemma 2.5 and Theorem 3.1, we have

Corollary 3.1. The following inequalities are true:

‖vh‖m,h
<∼ |vh|m,h, ∀vh ∈ Mm

h0,(3.20)

‖vh‖2m,h
<∼ |vh|2m,h +

∑
|α|<m

( ∫
Ω

∂α
h vh

)2

, ∀vh ∈ Mm
h .(3.21)

3.2. Consistent approximation. The first condition guaranteeing the conver-
gence property is the approximation condition. When W = Hm(Ω), let Wh be
Vh, otherwise, let Wh be Vh0. It is said that {Wh,W} satisfies the approximation
condition if

(3.22) lim
h→0

inf
vh∈Wh

‖v − vh‖m,h = 0, ∀v ∈ W.

By means of the interpolation theory (see [10]), the approximation condition can
be handled easily.

By the approximation theory, {Pr,h, H
m(Ω)} satisfies the approximation con-

dition when r ≥ m, while {Pm−1,h, H
m(Ω)} fails. Then, among the piecewise

polynomial approximations to Hm(Ω), the m-th degree is the lowest.
It is said that {Wh,W} satisfies the consistent condition if for any infinite se-

quence {vhk
} with vhk

∈ Whk
and hk → 0 as k → ∞, such that {∂α

hk
vhk

} is weakly

convergent, in L2(Ω), to vα for each multi-index α satisfying |α| ≤ m, it is always
true that v0 ∈ W and vα = ∂αv0 for all |α| ≤ m.

It is said that {Wh} is a consistent approximation of W if {Wh,W} satisfies both
the approximation condition and the consistent condition.

The bilinear form ah(·, ·) is said to be uniformly Wh-elliptic if

(3.23) ‖vh‖2m,h
<∼ ah(vh, vh), ∀vh ∈ Wh.

When ah(·, ·) is uniformly Wh-elliptic and {Wh} is a consistent approximation
of W , the corresponding nonconforming element method for problem (3.2) is con-
vergent (see [32]).

To check the consistent condition, we can use the generalized patch test proposed
in [32]. Other sufficient conditions that are easier to achieve can also be used, such
as the patch test (see [6, 16, 36, 37]), the weak patch test [37], the F-E-M test [29],
and the IPT test [46].

Theorem 3.2. Both {Mm
h , Hm(Ω)} and {Mm

h0, H
m
0 (Ω)} satisfy the approximation

condition and consistent condition.

Proof. Theorem 2.1 leads to that {Mm
h , Hm(Ω)} and {Mm

h0, H
m
0 (Ω)} satisfy the

approximation condition.
Let ϕ ∈ C∞

0 (Ω) (or C∞
0 (Rn)) and {vhk

} be an infinite sequence with vhk
∈ Mm

hk

(or Mm
hk0

) and hk → 0 as k → ∞, such that {∂α
hk
vhk

} is weakly convergent, in

L2(Ω), to vα for each multi-index α satisfying |α| ≤ m.
Now, let 1 ≤ i ≤ n and |α| < m. By Lemma 3.1, we have that for each k, a

piecewise polynomial vαk ∈ H1(Ω) (or H1
0 (Ω)) exists, such that

(3.24) |∂α
hk
vhk

− vαk|j,hk
<∼ h

m−|α|−j
k |vhk

|m,hk
, 0 ≤ j ≤ m− |α|.
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We obtain from (3.24), Green’s formula and the Schwarz inequality that∣∣∣ ∫
Ω

(ϕ∂α+ei
hk

vhk
+ ∂eiϕ∂α

hk
vhk

)
∣∣∣

=
∣∣∣ ∫

Ω

(
ϕ∂ei

hk
(∂α

hk
vhk

− vαk) + ∂eiϕ(∂α
hk
vhk

− vαk)
)∣∣∣

<∼ h
m−|α|−1
k ‖ϕ‖1,Ω|vhk

|m,hk
,

and this leads to

(3.25)

∫
Ω

(ϕvα+ei + ∂eiϕvα) = 0,

when |α| < m− 1.
Let |α| = m − 1. Given T ∈ Th and an (n − 1)-dimensional face F of T , let

P 0
F : L2(F ) → P0(F ) be the orthogonal projection. By Lemma 2.4 and Green’s

formula, we have∫
Ω

(ϕ∂α+ei
hk

vhk
+ ∂eiϕ∂α

hk
vhk

) =
∑

T∈Thk

∑
F⊂∂T

∫
F

ϕ∂α
hk
vhk

νi

=
∑

T∈Thk

∑
F⊂∂T

∫
F

(ϕ− P 0
Fϕ)(∂

α
hk
vhk

− P 0
F∂

α
hk
vhk

)νi.

By the Schwarz inequality and the interpolation theory in [10], we obtain that∣∣∣ ∫
Ω

(ϕ∂α+ei
hk

vhk
+ ∂eiϕ∂α

hk
vhk

)
∣∣∣

≤
∑

T∈Thk

∑
F⊂∂T

‖ϕ− P 0
Fϕ‖0,F ‖∂α

hk
vhk

− P 0
F∂

α
hk
vhk

‖0,F

<∼ hk

∑
T∈Thk

|ϕ|1,T |vhk
|m,T

<∼ hk|ϕ|1,Ω|vhk
|m,hk

.

Thus, (3.25) is also true when |α| = m− 1.
Consequently, vα = ∂αv0 for all |α| ≤ m and v0 ∈ Hm(Ω) (or Hm

0 (Ω)).
{Mm

h , Hm(Ω)} and {Mm
h0, H

m
0 (Ω)} satisfy the consistent condition.

By Theorem 3.2, we know that Mm
h is a consistent approximation of Hm(Ω) and

that Mm
h0 is a consistent approximation of Hm

0 (Ω).
By Corollary 3.1, Theorem 3.2 and the result given in [32], we obtain the follow-

ing theorem directly.

Theorem 3.3. For any f ∈ L2(Ω), the solution uh of problem (3.6) converges to
the solution u of problem (3.2):

lim
h→0

‖u− uh‖m,h = 0.



MINIMAL FINITE ELEMENT SPACES FOR 2m-TH-ORDER PDES IN Rn 39

3.3. Error estimate. Now, we discuss the error estimate of the nonconforming
finite element solution of problem (3.6) when W = Hm

0 (Ω) and Uh = Mm
h0. Let u

be the solution to problem (3.2) and let uh be the solution to problem (3.6).

Lemma 3.2. Let r = max{m+ 1, 2m− 1}. If u ∈ Hr(Ω) and f ∈ L2(Ω), then

(3.26) sup
0�=vh∈Mm

h0,

∣∣ah(u, vh)− (f, vh)
∣∣

‖vh‖m,h

<∼
r−m∑
k=1

hk|u|m+k,Ω + hm‖f‖0,Ω.

Proof. Let vh ∈ Mm
h0. Set f

′ = f − b0u, then

f ′ = (−1)m
∑

|α|=m

∂α(bα∂
αu),(3.27)

‖f ′‖0,Ω <∼ ‖f‖0,Ω,(3.28)

and

(3.29) ah(u, vh)− (f, vh) =
∑
T∈Th

∫
T

( ∑
|α|=m

bα∂
αu ∂αvh

)
− (f ′, vh).

Given |α| = m, it can be written as α =
∑m

i=1 ejα,i
. Set

α(k) =

k∑
i=1

ejα,i
, α′

(k) = α−
k∑

i=1

ejα,i
, 0 ≤ k ≤ m.

Define

E1 =
∑

|α|=m

∫
Ω

(
bα∂

αu ∂α
h vh + bα∂

α+α(1)u ∂
α′

(1)

h vh

)
,

and

E2 =
m−2∑
k=1

(−1)k
∑

|α|=m

bα

∫
Ω

(
∂α+α(k)u ∂

α′
(k)

h vh + ∂α+α(k+1)u ∂
α′

(k+1)

h vh

)
,

E3 =

∫
Ω

(
(−1)m−1

∑
|α|=m

bα∂
α+α(m−1)u ∂

α′
(m−1)

h vh − f ′ vh
)
,

when m > 1. Then by (3.27) and (3.29),

(3.30) ah(u, vh)− (f, vh) =

{
E1 + E2 + E3, m > 1,

E1, m = 1.

By Lemma 2.4 and Green’s formula, we have

E1 =
∑

|α|=m

bα
∑
T∈Th

∫
∂T

∂αu∂
α′

(1)

h vhνjα,1

=
∑

|α|=m

bα
∑
T∈Th

∑
F⊂∂T

∫
F

(
∂αu− P 0

F∂
αu

)(
∂
α′

(1)

h vh − P 0
F∂

α′
(1)

h vh

)
νjα,1

.
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Using the Schwarz inequality and the interpolation theory, we obtain

|E1| <∼
∑

|α|=m

∑
T∈Th

∑
F⊂∂T

‖∂αu− P 0
F∂

αu‖0,F
∥∥∥∂α′

(1)

h vh − P 0
F∂

α′
(1)

h vh

∥∥∥
0,F

<∼
∑
T∈Th

h|u|m+1,T |vh|m,T .

That is,

(3.31) |E1| <∼ h|u|m+1,Ω|vh|m,h.

When m > 1, let vβ ∈ H1
0 (Ω) be the piecewise polynomial as in (3.7) for |β| < m.

The Green formula leads to that

E2 =
m−2∑
k=1

(−1)k
∑

|α|=m

bα

∫
Ω

∂α+α(k)u ∂
ejα,k+1

h

(
∂
α′

(k+1)

h vh − vα′
(k+1)

)

+
m−2∑
k=1

(−1)k
∑

|α|=m

bα

∫
Ω

∂α+α(k+1)u
(
∂
α′

(k+1)

h vh − vα′
(k+1)

)
,

E3 =

∫
Ω

(
(−1)m−1

∑
|α|=m

bα∂
α+α(m−1)u ∂

α′
(m−1)

h (vh − v0)− f ′(vh − v0)
)
.

We have by the Schwarz inequality, the triangle inequality, (3.7) and (3.28),

(3.32) |E2|+ |E3| <∼
(
hm‖f‖0,Ω +

m−1∑
k=1

hk|u|m+k,Ω

)
|vh|m,h.

By (3.30), (3.31), and (3.32), we obtain the desired estimation.

By Corollary 3.1, Theorem 2.1, Lemma 3.2, and the well-known Strang Lemma
(see [31] or [10]), we obtain the following theorem.

Theorem 3.4. Let u be the solution to problem (3.2) with W = Hm
0 (Ω), and let

uh be the solution to problem (3.6) with Uh = Mm
h0. Then for any f ∈ L2(Ω),

(3.33) ‖u− uh‖m,h
<∼

r−m∑
k=1

hk|u|m+k,Ω + hm‖f‖0,Ω,

when u ∈ Hr(Ω) and r = max{m+ 1, 2m− 1}.
When W = Hm(Ω) and the corresponding nonconforming finite element method

is used, the same error estimates can also be obtained by similar arguments provided
that b0 > 0.

Since the approximate error of Mm
h and Mm

h0 in norm ‖ · ‖m,h is of order O(h)
only, the error estimate given by (3.33) is optimal.

4. Concluding remarks

This construction of the consistent approximation of Sobolev spaces with min-
imal degree piecewise polynomials is motivated by theoretical considerations and
an interest in applications for practical problems. In this paper, a new consistent
approximation to m-th order Sobolev spaces of n dimensions with n ≥ m ≥ 1 is
proposed in a canonical fashion, and the convergence and the error estimate for
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application to 2m-th-order elliptic problems in Rn are shown. The new class of
nonconforming elements has several attractive properties. For example, this new
class

• provides consistent approximation with minimal degree piecewise polyno-
mials;

• offers degrees of freedom that fit perfectly well;
• recovers the well-known nonconforming linear elements for m = 1 and the
Morley element for m = 2 in a canonical fashion; and

• has the inclusion property.

Though it is of great theoretical interest, this new type of finite element also
has the potential to be useful in practice. In encountering high-order partial dif-
ferential equations, we often try to transform them into a system of lower-order
equations. Such a practice is based on the position that higher-order partial dif-
ferential equations are too difficult to be efficiently discretized by finite element
or finite difference methods. One strong message this paper sends is that a direct
discretization of high-order partial differential equations is also practical. For ex-
ample, a sixth-order partial differential equation in 3 dimensions can be discretized
by a piecewise cubic polynomial that has 20 degrees of freedom on each element.
This is not very difficult to carry out in practice.
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