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ADAPTIVE MESH RECONSTRUCTION FOR HYPERBOLIC

CONSERVATION LAWS WITH TOTAL VARIATION BOUND

NIKOLAOS SFAKIANAKIS

Abstract. We consider 3-point numerical schemes, that resolve scalar con-
servation laws, that are oscillatory either to their dispersive or anti-diffusive
nature. The spatial discretization is performed over non-uniform adaptively
redefined meshes. We provide a model for studying the evolution of the ex-
tremes of the oscillations. We prove that proper mesh reconstruction is able
to control the oscillations; we provide bounds for the Total Variation (TV) of

the numerical solution. We, moreover, prove under more strict assumptions
that the increase of the TV, due to the oscillatory behavior of the numerical
schemes, decreases with time; hence proving that the overall scheme is TV
Increase-Decreasing (TVI-D). We finally provide numerical evidence support-
ing the analytical results that exhibit the stabilization properties of the mesh
adaptation technique.

1. Outline

Mesh adaptation techniques have been employed by several authors in the past.
It is worth noting the seminal works [DD87, For88, HH83, Luc85, Luc86, TT03],
where several properties of mesh adaptation were studied. It was noticed in [AKM01,
AMT04, AMS10, Sfa09] that proper use of non-uniform adaptively redefined meshes
is capable of taming oscillations; hence improving the stability properties of the nu-
merical schemes.

To study the stabilization properties of mesh adaptation techniques we analyze
the effect they have, on the oscillations that oscillatory/unstable numerical schemes
produce. The setting is the one-dimensional scalar Riemann problem: ut+f(u)x =
0, x ∈ [a, b], with the flux function f being smooth and convex. For initial conditions
we consider the single jump u0(x) = X[0,x0](x) with x, x0 ∈ (0, 1).

We discretize spatially over a non-uniform adaptively redefined mesh. The mesh
adaptation and the time evolution of the numerical solution are combined into the
Main Adaptive Scheme:

Definition 1.1 (Main Adaptive Scheme (MAS)). Given, at time step n, the mesh
Mn

x = {a = xn
1 < · · · < xn

N = b} and the approximations Un = {un
1 , . . . , u

n
N}, the

steps of the (MAS) are:

1. (Mesh Reconstruction). Construct new mesh: Mn+1
x = {a = xn+1

1 < · · · <
xn+1
N = b}.

2. (Solution Update). Use the old mesh Mn
x the approximations Un and the

new mesh Mn+1
x :
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2a. to construct a piecewise linear function V n(x) such that V n|Mn
x
= Un

and,
2b. define the updated approximations Ûn = {ûn

i , . . . , û
n
N} as Ûn =

V n|Mn+1
x

.

3. (Time Evolution). Use the new mesh Mn+1
x , the new approximations

Ûn and the numerical scheme to march in time and compute Un+1 =
{un+1

1 , . . . , un+1
N }.

The main objective of this work is to place conditions on the steps of MAS such
that the resulting numerical solutions are TV stable even when oscillatory numer-
ical schemes are used for the time evolution (Step 3). More specifically, we prove
that proper non-uniform meshes are able to tame the TV increase due to oscilla-
tions; furthermore, we prove that in some cases the TV increase due to oscillation
decreases with time, hence yielding a Total Variation Increase Diminishing (TVID)
scheme.

In section 2 of this work we list and explain the requirements that we place
on the MAS. In section 3, we discuss the creation and propagation of oscillations
at the level of extremes. We present a model for the extremes that takes into
account the steps of MAS. Based then on the model we prove the TV result of
this work Theorem 3.1. In section 4 we discuss the Main Adaptive Scheme (MAS)
in more detail. We analyse the way non-uniform meshes are constructed and how
the numerical solution is updated over the new mesh. We discuss the numerical
implementation of the MAS and present some graphs depicting its basic properties.
In section 5 we discuss the numerical implementation of the requirements introduced
in section 2. In section 6 we perform numerical tests, where we consider known
oscillatory numerical schemes and prove that these schemes satisfy the requirements
introduced in section 2. We provide comparative numerical results between uniform
and non-uniform mesh cases, where we observe the stabilization properties of the
the mesh reconstruction.

2. Requirements

In this section we present the requirements that we place on the steps of MAS.
For the Solution Update (Step 2), we perform interpolation over piecewise linear
functions and for the Time Evolution (Step 3) we use oscillatory Finite Differ-
ence schemes. The proper setting for dealing with Finite Volume schemes with a
conservative reconstruction will be presented separately.

Let Mn
x = {xn

i , i = 1, . . . , N} be the initial mesh, Un = {un
1 , . . . , u

n
N} the initial

approximations at the time step n, and let Mn+1
x = {xn+1

j , j = 1, . . . , N}, Ûn =

{ûn
1 , . . . , û

n
N} be the new mesh and updated approximations yielding from Steps 1

and 2 of the MAS.
The discussion that will take place and the proofs that will be presented are

valid for every numerical scheme that satisfies the Evolution requirement :

Requirement 1 (Evolution requirement). There exists a constant C > 0 indepen-
dent of the time step n and the node i such that:

(1) |un+1
i − ûn

i | ≤ Cmax
{
|ûn

i+1 − ûn
i |, |ûn

i − ûn
i−1|

}
.

Remark 1. In the examples addressed in section 6, we see that the constant C is
an increasing function of the CFL condition. For every scheme we use, we prove
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xn
i

xn
i + (1− λ)Δxn

i xn
i+1 − (1− λ)Δxn

i

xn
i+1xn+1

j

Figure 1. The λ-rule states that the new node xn+1
j ∈ [xn

i , x
n
i+1],

and avoids the old node xn
i (respectively xn

i+1), where the ap-
proximate solution might exhibit an extreme, in the sense that
xn
i +(1−λ)Δxn

i ≤ xn+1
j (respectively xn+1

j ≤ xn
i+1 − (1−λ)Δxn

i ),
where Δxn

i = xn
i+1 − xn

i .

this requirement and also compute the dependence of the constant C to the CFL
condition.

We move on to the second requirement, which is placed on the mesh reconstruc-
tion procedure (Step 1). We first start with a definition.

Definition 2.1. We say that the approximate solution Un = {un
i , i = 1, . . . , N}

defined over the mesh Mn
x = {xn

i , i = 1, . . . , N} exhibits a local extreme at the
node xn

i if un
i > un

i−1, u
n
i+1 (local maximum) or un

i < un
i−1, u

n
i+1 (local minimum).

Requirement 2 (Mesh requirement: λ-rule). There exists a constant 0 < λ < 1
independent of n and i such that, if xn+1

j ∈ [xn
i , x

n
i+1] and Un exhibits a local

extreme at the node i (resp. i+ 1), then

(2) xn+1
j −xn

i > (1−λ)(xn
i+1−xn

i )
(
resp. xn

i+1−xn+1
j > (1−λ)(xn

i+1−xn
i )
)
.

Remark 2. The meaning of the λ-rule requirement (2), is that the new nodes xn+1
j

avoid the places of the old extremes xn
i (or xn

i+1) by at least 1−λ of the respective
interval (xn

i , x
n
i+1).

The λ-rule requirement is placed on the mesh reconstruction but also affects the
values of piecewise linear functions. The following remark discusses their relation.

Remark 3 (λ-rule effect for piecewise linears and interpolation). We assume that
u(x) is a piecewise linear function that oscillates as depicted in Figure 2. We
assume, moreover, that the new nodes respect the λ-rule requirement (2) at the
extremes in the respective subintervals and that y = υ is a horizontal line that
separates the extremes.

Accordingly, xn+1
j−1 ∈ [xn

i−1, x
n
i ] and by the λ-rule requirement we get:

xn
i − xn+1

j−1

xn
i − xn

i−1

≤ λ.

The linearity and monotonicity of u in [xn
i−1, x

n
i ] recast the previous into:

u(xn+1
j−1 )− u(xn

i ) ≤ λ(u(xn
i−1)− u(xn

i )).

Since 0 < λ < 1 and u(xn
i ) < υ the previous reads:

u(xn+1
j−1 ) ≤ λu(xn

i−1) + (1− λ)u(xn
i ) ≤ λu(xn

i−1) + (1− λ)υ
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u(xn+1
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u(xn+1
j )

u(xn+1
j+1 )

u(xn
i+1)

Figure 2. This figure depicts the application of the λ-rule in the
case of a piecewise linear function. The places of the new nodes
are depicted along with the old extremes.

or
u(xn+1

j−1 )− υ ≤ λ(u(xn
i−1)− υ).

Passing to the third requirement, we first note that the overall phenomenon
consists of two major steps, the mesh reconstruction (Step 1) and the time evolution
(Step 3). We need to study these steps both separately and together. For the
separate analysis the requirements (1) and (2) are sufficient, but for the joined
analysis one more requirement is needed. This is due to the fact that (Step 1)
cannot be analyzed with classical methods (such as the modified equation of the
scheme) since it takes place between two consequent time steps, i.e., the mesh
reconstruction is not related to the time evolution of the numerical scheme.

The merging of these steps is quantified in the Coupling requirement, and con-
stitutes the major contribution of this work:

Requirement 3 (Coupling requirement). The constants C of the evolution re-
quirement (1) and λ of the λ-rule requirement (2) are connected via the following
relation:

(3) λ+ 3λC < 1.

3. Time step analysis

In this section we discuss the appearance and evolution of local extremes. We
devise recursive, with respect to the time step n, relations regarding the evolution
of the extremes. We present and prove the theoretical results of this work; these
include bounds on the extremes, bounds on the TV increase due to oscillations,
moreover, we prove that in some cases the TV increase, decreases with time steps
n.

3.1. Recursive relations. The discussion regarding the creation and evolution of
the extremes is performed in a per time step manner. In every time step we discuss
their temporal evolution and their spatial modification.

In the description that follows we split every step into two sub-steps. The first
sub-step is the time evolution which is due to the numerical scheme and is governed
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û0i−1 û0i

û0i+1

Figure 3. This is the initial condition. In this configuration we
set â1 = |û0

i − û0
i+1|

by the evolution requirement (1), and the second sub-step is the spatial modification
which is due to the mesh relocation and the solution update procedure and is
governed by the λ-rule requirement (2) and the coupling requirement (3).

1st step. We refer to Figure 3 for a graphical description of the initial configuration.
The first nodal point, û0

i , located at the top of the shock, that is, will evolve
according to the evolution requirement (1):

|u1
i − û0

i | ≤ Cmax
{
|û0

i − û0
i−1|, |û0

i − û0
i+1|

}
.

We consider jump initial conditions; hence |û0
i−û0

i−1| = 0 and |û0
i−û0

i+1| ≤ TV (u0).

We denote â1 = |û0
i − û0

i+1|, and a1 = Câ1, so the evolution requirement (1) reads:

|u1
i − û0

i | ≤ Cmax{|û0
i − û0

i−1|, |û0
i − û0

i+1|} ≤ C|û0
i − û0

i+1| = Câ1 = a1.

To introduce the notation, we set E
1/2
1 to be the maximum magnitude of this

extreme:

E
1/2
1 = |u1

i − û0
i | = a1.

We refer to Figure 4 for a graphical description. We then perform the mesh recon-
struction step and because of the λ-rule requirement (2) (see also Remark 3) the
new extreme will be of magnitude bounded by

E1
1 = λa1,

where full superscript 1 is used since the relocation has taken place.

Remark 4. (Ek
m Notation) We denote by E

k+1/2
m (half superscript) the bound on

the magnitude of the mth extreme at the kth time step after time evolution and
before the mesh reconstruction procedure. We denote by Ek+1

m (full superscript)
the bound on the magnitude of mth extreme at the end of the kth time step, that
is after the time evolution and the mesh reconstruction procedure.

2nd step. We refer Figure 4 for the situation at the end of the 1st step, where we
had one extreme of magnitude bounded by E1

1 = λa1. Due to the time evolution
we expect the 1st extreme to evolve to a new value and also the creation of a 2nd
extreme at the left side of the 1st extreme. We will study each extreme separately.
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Figure 4. The situation at the head of the shock at the end of the
1-st time step. Only one extreme exists and is of magnitude E1

1 .
The numerical solution before the remeshing procedure is depicted
with the continuous line, and the new nodes that occur after the
remeshing procedure are depicted with points.

1st Extreme. The evolution requirement (1) dictates that this extreme shall
evolve as:

|u1+1/2
i − û1

i | ≤ Cmax
{
|û1

i − û1
i−1|, |û1

i − û1
i+1|

}
.

From the previous time step we have that |û1
i −û1

i−1| ≤ E1
1 and |û1

i −û1
i+1| ≤

2E1
1 + â2. To justify the second inequality we return at the end of the time

step k = 1 and notice that the node i+ 1 is placed along the shock, which
is, by symmetry, of variation at most E1

1 + TV (u0) +E1
1 . So the evolution

requirement (1) for the 1st Extreme reads:

|u1+1/2
i − û1

i | ≤ C(2E1
1 + â2) = 2CE1

1 + a2,

where we have defined a2 = Câ2. Now, if we set υ to be the level from
which we measure the magnitudes of the extremes (in this case the top of
the shock), the previous bound reads:

|(u1+1/2
i − υ)− (u1

i − υ)| ≤ 2CE1
1 + a2.

By setting E
1+1/2
1 = u

1+1/2
i − υ and since E1

1 = u1
i − υ we deduce that the

magnitude of the 1st extreme will be bounded as:

E
1+1/2
1 ≤ E1

1 + 2CE1
1 + a2.

Now the relocation procedure takes place, and due of the λ-rule requirement
(2), the magnitude of the 1st extreme will be bounded by

E2
1 = λ(E1

1 + 2CE1
1 + a2).

2nd Extreme. The evolution requirement (1) dictates that this extreme shall
evolve as:

|u1+1/2
i−1 − û1

i−1| ≤ Cmax
{
|û1

i−1 − û1
i−2|, |û1

i−1 − û1
i |
}
.

From the previous time step we know that |û1
i−1−û1

i−2| = 0 and |û1
i−1−û1

i | ≤
E1

1 . So the evolution requirement (1) recasts for the 2nd extreme,

|u1+1/2
i−1 − û1

i−1| ≤ CE1
1 ,
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Figure 5. The resulting situation at the end of the 2nd time step.
Two extremes of magnitudes E2

1 and E2
2 exist in this time step.

The numerical solution before the remeshing procedure is depicted
with the continuous line, and the new nodes that occur after the
remeshing procedure are depicted with points.

or by noting that u1
i−1 = υ is the level from which we measure the magni-

tudes of the extremes, the previous bound recasts into

E
1+1/2
2 ≤ CE1

1 .

Now the relocation procedure takes place and the λ-rule requirement (2)
dictates that the magnitude of the 2nd extreme at the end of this step shall
be bounded by

E2
2 = λCE1

1 .

So at the end of the 2nd step the bounds on the existing extremes are as follows:

E2
1 = λ(E1

1 + 2CE1
1 + a2), E2

2 = λCE1
1 .

The situation at the end of this step is depicted in Figure (5).
3rd step. At the end of the previous step we had two extremes with magnitudes
bounded by E2

1 and E2
2 ; see Figure (5). In this step we expect them to evolve

to new values E3
1 and E3

2 , we also expect a new extreme to appear, namely E3
3 .

Arguing as previously, at the end of the 3rd step the bounds on the magnitudes of
the extremes are (see Figure (6)):

E3
1 = λ(E2

1 + 2CE2
1 + a3) = λ3(1 + 2C)2a1 + λ2(1 + 2C)a2 + λa3,

E3
2 = λ(E2

2 + C(E2
2 + E2

1)) = λ32C(1 + 2C)a1 + λ2Ca2,

E3
3 = λCE2

2 = λ3C2a1.

For completeness we define the increases ai. The variation of the shock consists
of: a) the oscillatory part on the top, with magnitude at most Ek

1 , b) the main part,
with variation TV (u0), and c) the oscillatory part at the foot, with magnitude at
most Ek

1 .

Definition 3.1 (ai increases). Let ûk
i be the value at the top of the shock. We

define

âk =
(
|ûk

i − ûk
i+1| − 2Ek

1

)
+
,

where the subscript + denotes the positive part. Moreover, we define ak = Câk.
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Figure 6. The resulting situation at the end of the 3rd time step.
Three extremes of magnitude E3

1 , E
3
2 , E

3
3 exist in this time step.

By definition, âk describes the possibly more that 2Ek
1 distance |ûk

i −ûk
i+1|. That

is, if |ûk
i − ûk

i+1| < 2Ek
1 , then âk = 0; hence ak = 0.

kth step. We generalize the previous discussion for the kth time step and note
that recursive relations for the extreme m ≤ k are given by

(4)

{
Ek

m = λ
(
Ek−1

m + C · (Ek−1
m + Ek−1

m−1)
)
, for m > 1 ,

Ek
1 = λ

(
Ek−1

1 + 2C · Ek−1
1 + ak

)
, for m = 1 .

It is evident, from the second equation that we add at least 2CEk−1
1 in the

increase of the 1st extreme. This increases the magnitude of the 1st extreme but
at the same time simplifies the presentation and the route of the proof.

In analysing these recursive relations, we see that for the evolution of the extreme
m, from Ek−1

m to Ek
m, we take into account the neighbouring extreme in the right

hand side, Ek−1
m−1. To justify this choice, we easily prove by induction that the

bounds Ek
m on the magnitudes of the extremes constitute a decreasing sequence

with respect to m = 1, . . . for every step k, i.e.:

Lemma 3.1. For every step k the magnitudes of the bounds given by (4) are in a
decreasing order with respect to m.

3.2. Extremes. In this paragraph we solve the recursive relation (4), for every
extreme m and we provide uniform, with respect to the time step k, bounds on the
magnitude of the extremes.

Lemma 3.2 (Magnitude of the 1st extreme). The magnitude of the first extreme
in the kth time step is bounded by

(5) Ek
1 ≤ λ

k∑
j=1

λk−j(1 + 2C)k−jaj
l=k−j
= λ

k−1∑
l=0

λl(1 + 2C)lak−l.
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Proof. By induction. For the induction initiation and hypothesis we have:

E1
1 ≤ λa1 = λ

1∑
j=1

λ1−j(1 + 2C)1−jaj ,

Ek
1 ≤ λ

k−1∑
l=0

λl(1 + 2C)lak−l.

For the induction step, the evolution relations (4) yield:

Ek+1
1 ≤ λ

(
Ek

1 + 2CEk
1 + ak+1

)
≤ λ

⎛
⎝(1 + 2C)λ

k∑
j=1

λk−j(1 + 2C)k−jaj + ak+1

⎞
⎠

≤ λ

⎛
⎝ k∑

j=1

λk+1−j(1 + 2C)k+1−jaj + λk+1−(k+1)(1 + 2C)k+1−(k+1)ak+1

⎞
⎠

≤ λ
k+1∑
j=1

λk+1−j(1 + 2C)k+1−jaj . �

Lemma 3.3 (Magnitude of the 2nd extreme). The magnitude of the second extreme
in the kth time step is bounded by

Ek
2 ≤ λ2C

k−1∑
j=1

(
k − j

k − j − 1

)
λk−j−1(1 + 2C)k−j−1aj

l=k−j
= λ2C

k−1∑
l=1

(
l

l − 1

)
λl−1(1 + 2C)l−1ak−l.(6)

Proof. By induction. From (4), (5), (6) we get that

E2
2 ≤ λ2Ca1 = λ2C

2−1∑
j=1

(
2− j

2− j − 1

)
λ2−j−1(1 + 2C)2−j−1aj ,

Ek
2 ≤ λ2C

k−1∑
j=1

(
k − j

k − j − 1

)
λk−j−1(1 + 2C)k−j−1aj

and for the induction step we have

Ek+1
2 = λ

(
Ek

2 + C(Ek
2 + Ek

1 )
)

≤ λ

(
λ2C(1+C)

k−1∑
l=1

(
l

l − 1

)
λl−1(1+2C)l−1ak−l+λC

k−1∑
l=0

λl(1+2C)lak−l

)
.

Where in the last step we use the induction hypothesis. Now, since 1+C ≤ 1+2C
the bound recasts as:

Ek+1
2 ≤ λ

(
λC

k−1∑
l=1

(
l

l − 1

)
λl(1 + 2C)lak−l + λC

k−1∑
l=0

λl(1 + 2C)lak−l

)
.
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or, after algebraic manipulations,

Ek+1
2 ≤ λ2C

k−1∑
l=0

(
l + 1

l

)
λl(1 + 2C)lak−l,

and by setting μ = l + 1 we get

Ek+1
2 ≤ λ2C

(k+1)−1∑
μ=1

(
μ

μ− 1

)
λμ−1(1 + 2C)μ−1ak+1−μ. �

Lemma 3.4 (Magnitude of the mth extreme). The magnitude of the mth extreme
in the kth time step is bounded by

Ek
m ≤ λmCm−1

k−1∑
j=1

(
k − j

k − j −m+ 1

)
λk−j−m+1(1 + 2C)k−j−m+1aj

l=k−j
= λmCm−1

k−1∑
l=m−1

(
l

l −m+ 1

)
λl−m+1(1 + 2C)l−m+1ak−l.(7)

Proof. The proof is the same as in the 2nd extreme and is omitted. �

We note that the bounds on the magnitudes of the extremes, i.e., (7), depend
on the time step k. We next provide bounds for these magnitudes, uniformly with
respect to k.

Lemma 3.5 (Uniform, with respect to the time step k, bound on the extremes).
If there exists a constant M > 0 such that ai ≤ CM for every i ∈ N and if
λ + 2λC < 1, then every extreme m is uniformly, with respect to the time step k,
bounded as

(8) Ek
m ≤ M

(
λC

1− λ− 2λC

)m

.

Proof. At the kth time step, the magnitude of the mth extreme, m ≤ k, is given
by (7):

Ek
m ≤ λmCm−1

k−1∑
l=m−1

(
l

l −m+ 1

)
λl−m+1(1 + 2C)l−m+1ak−l,

or, since ai ≤ CM ,

Ek
m ≤ λmCmM

k−1∑
l=m−1

(
l

l −m+ 1

)
λl−m+1(1 + 2C)l−m+1

ν=l−m+1
= λmCmM

k−m∑
ν=0

(
ν +m− 1

ν

)
λν(1 + 2C)ν .

All the terms in the sum are positive; hence the right-hand side is increasing with
k, and can be bounded for k = ∞ as:

Ek
m ≤ λmCmM

∞∑
ν=0

(
ν +m− 1

ν

)
λν(1+2C)ν=λmCmM

∞∑
ν=0

(
ν +m− 1

ν

)
(λ+2λC)ν .
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We recall that
∑∞

ν=0

(
ν+m−1

ν

)
tν = 1

(1−t)m , for |t| < 1 and since λ+2λC < 1 we get

Ek
m ≤ λmCmM

1

(1− λ− 2λC)m
= M

(
λC

1− λ− 2λC

)m

.

Which proves the assertion of the lemma. �

Remark 5. If, moreover, we assume λ + 3λC < 1, instead of λ + 2λC < 1, then
{Ek

m} decreases to 0 with respect to m since λC
1−λ−2λC < 1, i.e.,

0 ≤ Ek
m ≤ M

(
λC

1− λ− 2λC

)m
m→∞−→ 0.

3.3. Variation. In the next theorem we prove that in addition to the magnitude
of each extreme separately, also the sum of the extremes is bounded with respect
to the time step k. This provides with a bound on the total variation increase.

Theorem 3.1 (Total variation increase bound). We assume that requirement (1)
and requirement (2) are satisfied for λ such that λ + 3λC < 1. Moreover, we
assume that ai ≤ CM , for every i = 1, . . . ,∞. Then the sum of the magnitudes of
the extremes is uniformly bounded, with respect to the time step k, as follows:

k∑
m=1

Ek
m ≤ M

1− λ− 2λC

1− λ− 3λC
.

Moreover, the total variation increase due to the oscillations is bounded:

(9) TVI ≤ 2M
1− λ− 2λC

1− λ− 3λC
.

Proof. At the end of the kth step we have k extremes Ek
1 , . . . , E

k
k . The sum, with

respect to m, of their magnitudes can be bounded as

k∑
m=1

Ek
m

(8)
≤ M

k∑
m=1

(
λC

1− λ− 2λC

)m

≤ M
∞∑

m=1

(
λC

1− λ− 2λC

)m

≤ M
1− λ− 2λC

1− λ− 3λC
,

where the second inequality and the equality are valid since λ+ 3λC < 1.
The variation of the oscillatory part, is bounded by twice the magnitude of the

extremes, i.e.,

TVI ≤ 2M

∞∑
m=1

(
λC

1− λ− 2λC

)m

≤ 2M
1− λ− 2λC

1− λ− 3λC
. �

3.4. Variation-revisited. We now follow a different approach that will provide
further insight of the pollution process and with a sharper bound on the Total
Variation Increase. In this approach we compute the contributions of the increase
terms ai, i = 1, . . . in each one of the extremes Ek

m separately. We subsequently
add these contributions with respect to ai.

a1 contribution. The contribution of a1 in the kth step at the mth extreme

is given by (7) and reads: λmCm−1
(
k−1
k−m

)
λk(1 + 2C)k−m. Summing these
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contributions with respect to m we end up with the total contribution of
a1 in the kth time step:

Ika1
=

k∑
m=1

λmCm−1

(
k − 1

k −m

)
λk−m(1 + 2C)k−ma1

ν=k−m
= λk

k−1∑
ν=0

(
k − 1

ν

)
Ck−1−ν(1 + 2C)νa1

= λk(1 + 3C)k−1a1 = λ(λ+ 3λC)k−1a1.

am contribution. Similarly, the total contribution of am in the kth step
reads:

Ikam
= λ(λ+ 3λC)k−mam.

We can now compute the total contribution (of all ai’s) in the kth time step:

(10) Iktot =
k∑

m=1

Ikam
= λ

k∑
m=1

(λ+ 3λC)k−mam.

Corollary 3.1 (Result 1). If there exists M > 0 such that ai ≤ CM for every
i ∈ N and if λ+ 2λC < 1, then the total contribution in the kth time step reads:

(11) TVI ≤ 2λC

1− (λ+ 3λC)
M.

Proof. Since the increase factors ai are uniformly bounded as ai ≤ CM , their total
contribution, given by (10), reads:

Iktot ≤ λCM

k∑
m=1

(λ+ 3λC)k−m n=k−m
= = λCM

k−1∑
n=0

(λ+ 3λC)n

= λCM
1− (λ+ 3λC)k

1− (λ+ 3λC)

k→∞−→ λC

1− (λ+ 3λC)
;

hence I∞tot = limk→∞ Iktot is uniformly, with respect to k, bounded. Consequently,
the total variation increase due to oscillations is bounded

TVI≤2 · I∞tot≤
2λC

1− (λ+ 3λC)
M. �

Corollary 3.2 (Result 2). If ai, i ∈ N is bounded as ai ≤ CTV(u0), then (11)
reads:

TVI ≤ 2λC

1− (λ+ 3λC)
TV(u0).

Corollary 3.3 (Result 3). If, moreover,
∑∞

i=0 ai = A < ∞, the total variation
increase due to oscillations diminishes with respect to the time step k.

Proof. We note that the infinite sums
∑∞

i=0(λ+3λC)i,
∑∞

i=0 ai converge. Moreover,
the sum

∞∑
k=1

Iktot =
∞∑
k=1

⎛
⎝λ

k∑
j=1

(λ+ 3λC)k−jaj

⎞
⎠ = λ

∞∑
k=1

⎛
⎝ k∑

j=1

(λ+ 3λC)k−jaj

⎞
⎠ ,

is the sum of the terms of the Cauchy product of the sums
∑∞

i=1 ai and
∑∞

i=1(λ+
3λC)i. So, the sum

∑∞
k=1 I

k
tot < ∞ also converges; hence I∞tot = limk→∞ Iktot =

0. �
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Comparison of the two bounds. We have devised two different bounds con-
cerning the Total Variation Increase due to oscillations. The first was immediate
summation of the bounds Ek

m of the magnitudes of the extremes and resulted in
the bound (9):

B1 = 2M
1− λ− 2λC

1− λ− 3λC
.

The second one came by investigating the contributions of the increase factors ai
and resulted in the bound (11):

B2 =
2λC

1− λ− 3λC
M.

We easily see that B2

B1
< 1 for λ + 3λC < 1, and that B2

B1
< 1

2 for λ + 4λC < 1,
which means that with a careful selection of the respect factor λ, the bounds on
the increase of the variation in the second approach are improved compared to the
first approach.

4. Main Adaptive Scheme (MAS)

Moving mesh methods have been employed by several authors in the literature.
We refer to [TT03, DZ10, HR10] and the references therein for a thorough presen-
tation of different mathematical approaches and numerical implementations.

For the purpose of this work we shall follow the procedure as studied in [AKM01,
AMT04, AD06, Arv08, AMS10, Sfa09], where the relocation of the nodes, while
keeping their number, is done by studying the “geometric information” of the nu-
merical solution. The basic idea is simple:

“in areas where the numerical solution is smoother/flatter we need
fewer nodes where, in contrary, in areas where the numerical solu-
tion is less smooth/flat more nodes are in order”

We start by recalling the Definition 1.1 of MAS and we note that the mesh recon-
struction procedure (Step 1) of MAS is performed in each time step. The key point
in this procedure is the way that we measure the “geometric information” of the
numerical solution. This is accomplished by using two auxiliary functions: the first
one—estimator function—measures the geometric information of the numerical so-
lution, while the second one—monitor function—redistributes the nodes according
to the information measured by the estimator function. Examples of estimator
functions are the arclength estimator, the gradient estimator and the curvature
estimator. Throughout this work we shall use the curvature estimator.

The curvature estimator function. We consider a smooth function U and define
KU (x) the function that measures the curvature of U :

KU (x) =
|U ′′(x)|

(1 + (U ′(x))2)3/2
.

Analogously we define the discrete estimator function to compute the curvature of
a discrete function

Kdscr
i =

2
xn
i+1−xn

i−1

∣∣∣un
i −un

i−1

xn
i −xn

i−1
− un

i+1−un
i

xn
i+1−xn

i

∣∣∣((
1 +

(
un
i −un

i−1

xn
i −xn

i−1

)2
)(

1 +
(

un
i+1−un

i

xn
i+1−xn

i

)2
)(

1 +
(

un
i+1−un

i−1

xn
i+1−xn

i−1

)2
))1/2

,
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where Mn
x = {xn

i , i = 1, . . . , N} and Un = {un
i , i = 1, . . . , N} are the non-uniform

mesh, and the approximate solution at time step n.
By performing a point-by-point evaluation of this discrete estimator, results in

a finite sequence that contains the measured information of every node (xn
i , u

n
i ).

That is,
Kdscr

U =
{
(xn

1 ,K
dscr
1 ), . . . , (xn

N ,Kdscr
N )

}
.

Remark 6. In areas where the numerical solution is flat, Kdscr
i = 0; hence no

information is extracted. To avoid such a case we select an ε > 0 and set Kdscr
i =

max{Kdscr
i , ε} for every i. A typical value would be ε ≈ 10−14 with similar results

for larger—but still small—values of ε (cf. [AD06], [Arv08]).

Remark 7. In the initial condition of a Riemann problem all the nodes (except
for the 2 nodes at the top and bottom of the discontinuity) attain the minimum
information Kdscr

i = ε. The other two nodes attain a very large amount of in-
formation. This abrupt change of information yields a non-smooth non-uniform
mesh. To avoid such abrupt information change we use a constant pw > 0 and set
Kdscr

i = (Kdscr
i )pw for every i. This results in a smoother transition of consequent

discrete estimator values, a typically value of pw ≈ 0.9.

Finally, these points, i.e.,
{
(xn

1 ,K
dscr
1 ), . . . , (xn

N ,Kdscr
N )

}
are interpolated by a

continuous piecewise linear function IKdscr .

The monitor function. We first evaluate the monitor function in every old node
xn
i and then we construct the continuous monitor function by linear interpolation

of the discrete monitor values. We integrate the piecewise linear function IKdscr to
find the value of the discrete monitor function in every node xn

i ,

M
xn
i

un =

∫ xn
i

0

Iun(x)dx.

This results in a new sequence,{
(xn

i ,M
xn
i

un ), i = 0, · · · , N)
}
.

This sequence is positive and strictly increasing since Kdscr
i > 0 for every i =

0, . . . , N .
Finally, we interpolate over the values of this sequence by a piecewise linear

functionMUn(x), which is continuous, positive and strictly increasing and so attains
it maximum at the right end M(1). In Figure 7 we present a typical case of an
estimator and a monitor function.

Mesh reconstruction. In this step we define a new set of nodes, i.e., {xn+1
i , i =

0, . . . , N} with xn+1
0 = 0 that equi-distribute the total information of the monitor

function. This is accomplished by solving, recursively and with respect to xn+1
i+1 ,

the system:{
xn+1
0 = 0,

MUn(xn+1
i+1 )−MUn(xn+1

i ) = 1
NMUn(1),

i = 0, . . . , N − 1.

It is easily seen that the complexity of this procedure is O(N), due to the piecewise
linearity of MUn(x). In Figure 8 one can see the affect that the node relocation
procedure has on initial condition.
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Figure 7. A typical estimator (first line) and the corresponding
monitor function (second line) depicted along side with the re-
spective numerical solution. The graphs on the right are focused
version of the ones on the left.

Figure 8. We see in this graph the result of the relocation pro-
cedure. The density of the nodes is higher around the area of
interest of the numerical solution. We also notice that there are
nodes placed along the slope of the shock.

For more details on the implementation of the MAS we refer to [AKM01, AMT04,
AD06, Arv08, Sfa09].
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Figure 9. A typical evolution of the maximum and the average
Aj , j ∈ Inj with respect to the time steps n (horizontal axis). In
the left graph we present the full range of their evolution, while the
right graph is a focused version of the left one where one can more
clearly see that the value 1 is an upper bound for the maxj∈In

j
Aj ,

the same is true for the average Aj , j ∈ Inj .

5. Computational considerations

In this section we discuss the numerical implementation of the coupling require-
ment (3). We start by defining Inj to be the set of indices of the nodes xn+1

j that are
placed, after the mesh reconstruction step, “close” to a position of a local extreme
of Un, that is,

Inj ={j | xn+1
j ∈ [xn

i , x
n
i+1) for some i and Un exhibits local extreme at xn

i or xn
i+1}.

For every j ∈ Inj , U
n exhibits a local extreme either at xn

i or xn
i+1, so we set

Aj =
xn
i+1 − xn+1

j

xn
i+1 − xn

i

(1 + 3C),

or, respectively,

Aj =
xn+1
j − xn

i

xn
i+1 − xn

i

(1 + 3C),

where the constant C is related to the numerical scheme under discussion. With
this notation the coupling requirement reads for the discrete case as:

max
j∈In

j

Aj < 1.

To impose numerically this requirement we check, for every j ∈ Inj , whether

Aj ≥ 1, and if so, we correct accordingly the position of the node xn+1
j . More

specifically, if the local extreme is at the node xn
i we set

xn+1
j := xn+1

j + ε(xn+1
j − xn

i ),

where 0 < ε < 1, with a typical value of ε = 0.2.
Similarly, we treat the case where a local extreme is at the node xn

i+1. We refer
to Figure 9 for a typical graph of the maximum and the average Aj , j ∈ Inj with
respect to time step n.
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6. Numerical tests

The numerical schemes that we shall discuss are oscillatory, either due to their
dispersive or to their anti-diffusive nature. Here we shall only state their descrip-
tion for non-uniform meshes and prove that they satisfy the evolution requirement
(1). We refer to [Sfa09] for more details on the derivation the properties and im-
plementation of theses schemes.

We shall deal with the linear transport and the inviscid Burgers equations:

ut + ux = 0, x ∈ [0, 1],

ut +

(
u2

2

)
x

= 0, x ∈ [0, 1],

both with jump initial conditions u0(x) = X[0,1/2](x), x ∈ [0, 1].

6.1. Richtmyer 2-step Lax-Wendroff. In this approach we consider the non-
uniform cell centered discretization of the domain in cells

Ci = (xn
i−1/2, x

n
i+1/2) with |Cn

i | = hn
i .

The mesh Mn
x = {xn

i , i ∈ Z} consists of the middle points,

xn
i =

xn
i+1/2 + xn

i−1/2

2
hence xn

i − xn
i−1 =

hn
i + hn

i−1

2
.

For this description of the grid we propose the following numerical scheme as the
generalisation on non-uniform meshes of the Richtmyer 2-step Lax-Wendorff nu-
merical scheme,

u∗
i+1/2 =

hn+1
i+1

hn+1
i + hn+1

i+1

ûn
i +

hn+1
i

hn+1
i + hn+1

i+1

ûn
i+1 −

Δt

hn+1
i + hn+1

i+1

(f(ûn
i+1)− f(ûn

i )),

un+1
i = un

i − Δt

hi

(
f(u∗

i+1/2)− f(û∗
i−1/2)

)
or

un+1
i = ûn

i − Δt

hn+1
i

(
Fi+1/2 − Fi−1/2

)
,

with

Fi+1/2 = f(u∗
i+1/2) = f

(
hn+1
i+1

hn+1
i + hn+1

i+1

ûn
i +

hn+1
i

hn+1
i + hn+1

i+1

ûn
i+1

− Δt

hn+1
i + hn+1

i+1

(f(ûn
i+1)− f(ûn

i ))

)
.

It is straightforward to check that this scheme reduces to the usual Richtmyer 2-step
Lax-Wendroff scheme when the mesh is uniform.
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We bound

|un+1
i − un

i | ≤
Δt

hi

∣∣∣f(u∗
i+1/2)− f(u∗

i−1/2)
∣∣∣ ≤ Δt

hi
max |f ′||u∗

i+1/2 − u∗
i−1/2|

≤ CFL|u∗
i+1/2 − u∗

i−1/2|

and

|u∗
i+1/2 − u∗

i−1/2| =
∣∣∣∣ hn+1

i+1

hn+1
i + hn+1

i+1

ûn
i +

hn+1
i

hn+1
i + hn+1

i+1

ûn
i+1

− Δt

hn+1
i + hn+1

i+1

(
f(ûn

i+1)− f(ûn
i )
)

− hn+1
i

hn+1
i−1 + hn+1

i

ûn
i−1 −

hn+1
i−1

hn+1
i−1 + hn+1

i

ûn
i

+
Δt

hn+1
i−1 + hn+1

i

(
f(ûn

i )− f(ûn
i−1)

) ∣∣∣∣,

by setting
hn+1
i+1

hn+1
i +hn+1

i+1

= μ1 and
hn+1
i

hn+1
i−1 +hn+1

i

= μ2 the previous recasts into:

|u∗
i+1/2 − u∗

i−1/2| =
∣∣∣∣μ1û

n
i + (1− μ1)û

n
i+1 −

Δt

hn+1
i + hn+1

i+1

(
f(ûn

i+1)− f(ûn
i )
)

− μ2û
n
i−1 − (1− μ2)û

n
i +

Δt

hn+1
i−1 + hn+1

i

(
f(ûn

i )− f(ûn
i−1)

) ∣∣∣∣
≤ μ1|ûn

i − ûn
i+1|+ μ2|ûn

i − ûn
i−1|+ |ûn

i+1 − ûn
i |

+
Δt

2minhn+1
i

max |f ′||ûn
i+1 − ûn

i |+
Δt

2minhn+1
i

max |f ′||ûn
i − ûn

i−1|

≤ (1 + μ1 + μ2 +CFL)max
{
|ûn

i−1 − ûn
i |, |ûn

i − ûn
i+1|

}
≤ (3 + CFL)max

{
|ûn

i−1 − ûn
i |, |ûn

i − ûn
i+1|

}
.

where the last inequality is valid since 0 < μ1, μ2 ≤ 1. So the overall bound reads,

|un+1
i − ûn

i | ≤ CFL(3 + CFL)max
{
|ûn

i+1 − ûn
i |, |ûn

i − ûn
i−1|

}
.

The constant C in this case is chosen to be C = CFL(3+CFL), for this choice the
evolution requirement is satisfied. We refer to Figures 10 and 11 for comparative
graphs between the uniform and non-uniform mesh case for the Richtmyer 2-step
Lax-Wendroff scheme.
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Figure 10. Inviscid Burgers equation using the Richtmyer 2-step
Lax-Wendroff over uniform and non-uniform meshes. One time
step per column, full and focused domain per row. The uniform
mesh case exhibits oscillations due to the dispersive nature of the
numerical scheme where as the non-uniform mesh case is clean.

6.2. MacCormack. For the same description of the grid as in Section 6.1 we study
the following scheme as a non-uniform mesh generalization of the MacCormack
scheme,

u∗
i = ûn

i − 2Δt

hn+1
i + hn+1

i+1

(f(ûn
i+1)− f(ûn

i )),

u∗∗
i = u∗

i −
2Δt

hi−1 + hi
(f(u∗

i )− f(u∗
i−1)),

un+1
i =

ûn
i + u∗∗

i

2
.

We rewrite the scheme in the following form, for f∗
i = f(u∗

i ) and fi = f(ûn
i )

un+1
i =

ûn
i

2
+

u∗
i − 2Δt

hi−1+hi
(f∗

i − f∗
i−1)

2

=
ûn
i

2
+

ûn
i − 2Δt

hn+1
i +hn+1

i+1

(fi+1 − fi)− 2Δt
hn+1
i−1 +hn+1

i

(f∗
i − f∗

i−1)

2

= ûn
i − Δt

hn+1
i + hn+1

i+1

(fi+1 − fi)−
Δt

hn+1
i−1 + hn+1

i

(f∗
i − f∗

i−1).
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Figure 11. Transport equation with velocity a = 1, using the
Richtmyer 2-step Lax-Wendroff. Again, oscillations appear in the
uniform mesh case, whereas the non-uniform one is clean.

To prove the evolution requirement (1) for this scheme we need to bound

|un+1
i − ûn

i | =
∣∣∣∣∣− Δt

hn+1
i + hn+1

i+1

(fi+1 − fi)−
Δt

hn+1
i−1 + hn+1

i

(f∗
i − f∗

i−1)

∣∣∣∣∣
≤ CFL

2

(
|ûn

i+1 − ûn
i |+ |u∗

i − u∗
i−1|

)
≤ CFL

2

(
|ûn

i+1 − ûn
i |+ |ûn

i − ûn
i−1|+CFL|ûn

i − ûn
i−1|+CFL|ûn

i+1 − ûn
i |
)

≤ CFL(1 + CFL)max
{
|ûn

i+1 − ûn
i |, |ûn

i − ûn
i−1|

}
.

So, the constant C in this case is chosen to be C = CFL(1+CFL) and for this choice
the Evolution Requirement is satisfied. We refer to Figure 12 for a comparison graph
between the uniform and non-uniform mesh case for the MacCormack scheme.

6.3. Unstable Centered—FTCS. In this approach we consider the non-uniform
mesh

Mn
x = {xn

i , i ∈ Z} with hn
i = xn

i − xn
i−1.

The middle points xn
i−1/2 =

xn
i−1+xn

i

2 define a partition of the domain in cells,

Cn
i = (xn

i−1/2, x
n
i+1/2) with |Cn

i | =
hn
i + hn

i+1

2
.

For this description of the grid we discuss the known to be unstable Forward in
Time Centered in Space (FTCS) scheme. The instability of this scheme and the
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Figure 12. Transport equation with velocity a = 1, using
the MacCormack scheme over uniform and non-uniform meshes.
Again, oscillations are apparent in the uniform mesh case, due to
the dispersive nature of the scheme, whereas the non-uniform is
clean.

oscillations that it presents are due to its anti-diffusive nature

un+1
i = ûn

i − Δt

hn+1
i + hn+1

i+1

(
f(ûn

i+1)− f(ûn
i−1)

)
.

This scheme can be written in conservative form as follows:

un+1
i = ûn

i − 2Δt

hn+1
i + hn+1

i+1

(Fn
i+1/2 − Fn

i−1/2),

with

Fn
i+1/2 =

f(ûn
i ) + f(ûn

i+1)

2
.

We deduce easily that

|un+1
i − ûn

i | ≤
Δt

2minhn+1
i

max |f ′||ûn
i+1 − ûn

i−1| ≤
CFL

2

(
|ûn

i+1 − ûn
i |+ |ûn

i − ûn
i−1|

)
≤ CFLmax

{
|ûn

i+1 − ûn
i |, |ûn

i − ûn
i−1|

}
.

The constant C in this case is chosen to be C = CFL, for this choice the Evolution
requirement is satisfied. We refer to Figure 13 for a comparison graph between the
uniform and non-uniform mesh case for the FTCS scheme.
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Figure 13. Inviscid Burgers equation, using the unstable FTCS.
The oscillations in the uniform case are due to the anti-diffusive
nature of the numerical scheme. The non-uniform mesh case is
clean.

7. Conclusions

In this work we have investigated the creation and evolution of oscillations that
numerical solutions present over non-uniform, adaptively redefined meshes. The
mesh reconstruction is driven by the geometry of the numerical solution itself and
the solution update is performed by interpolation over piecewise linear functions.
The numerical schemes we consider are 3-point non-uniform versions of oscillatory
numerical schemes. The overall process is driven by the Main Adaptive Scheme
(MAS).

We prove under specific assumptions/requirements on a) the mesh reconstruc-
tion, b) the solution update over the new mesh, and c) the numerical schemes that
the numerical solution is of Bounded Total Variation; furthermore, under more
strict assumptions, we prove that the increase of the Total Variation decreases with
time. We provide numerical tests that exhibit the stabilization properties of the
MAS and support the analytical results of this work.
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