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LOCAL POINTWISE A POSTERIORI GRADIENT ERROR

BOUNDS FOR THE STOKES EQUATIONS

ALAN DEMLOW AND STIG LARSSON

Abstract. We consider the standard Taylor-Hood finite element method for
the stationary Stokes system on polyhedral domains. We prove local a pos-
teriori error estimates for the maximum error in the gradient of the velocity
field. Because the gradient of the velocity field blows up near reentrant corners
and edges, such local error control is necessary when pointwise control of the
gradient error is desirable. Computational examples confirm the utility of our
estimates in adaptive codes.

1. Introduction

We consider finite element methods for the stationary Stokes equations

−Δu+∇p = f , in Ω,

∇ · u = g, in Ω,

u = 0, on ∂Ω.

(1.1)

Here we assume that Ω ⊂ R
n, n = 2, 3, is a polygonal (n = 2) or polyhedral

(n = 3) domain with Lipschitz boundary. Many of our main arguments also ex-
tend to polyhedral domains with non-Lipschitz boundaries such as cracks, but we
assume Lipschitz domains for simplicity; see Remark 4 below. We assume that
f ∈ (L∞(Ω))n and g ∈ W 1

q (Ω) for some q > n; in some of our results we assume

further restrictions on g when n = 3. Finally, we also require that
∫
Ω
g dx = 0 in

order to ensure existence and
∫
Ω
pdx = 0 in order to ensure uniqueness of solutions.

With

V = (H1
0 (Ω))

n, X = L2(Ω),

we introduce the bilinear form

L((u, p), (v, λ)) = a(u,v) + b(v, p)− b(u, λ),(1.2)

where

a(u,v) =

∫
Ω

n∑
i,j=1

∂ui

∂xj

∂vi

∂xj
dx, b(v, p) = −

∫
Ω

(∇ · v)pdx.(1.3)
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626 A. DEMLOW AND S. LARSSON

Writing also

(f ,v) =

∫
Ω

n∑
i,j=1

fivi dx, (g, λ) =

∫
Ω

gλ dx,

we obtain the weak formulation of (1.1): find (u, p) ∈ V ×X such that

L((u, p), (v, λ)) = (f ,v) + (g, λ) ∀(v, λ) ∈ V ×X.

Let {Th} be a regular family of triangulations of Ω, generated for example by an
adaptive bisection algorithm. We assume that Vh ⊂ V and Xh ⊂ X are standard
Taylor-Hood finite element spaces corresponding to a mesh Th; properties are given
below. The finite element method for (1.1) is: find (uh, ph) ∈ Vh ×Xh such that

L((uh, ph), (vh, λh)) = (f ,vh) + (g, λh) ∀(vh, λh) ∈ Vh ×Xh.(1.4)

We enforce
∫
Ω
ph dx = 0 in order to ensure uniqueness.

Our goal in this paper is to prove local a posteriori error estimates for ∇(u−uh)
in the maximum norm. More precisely, let D ⊂ Ω be a given target subdomain.
We seek a posteriori control of

‖∇(u− uh)‖L∞(D) = sup
x∈D

max
i,j

|Di(uj − uh,j)(x)|

along with the related quantity ‖p− ph‖L∞(D).
In order to motivate our results, we briefly describe the Ph.D. thesis [Sve06] by

E. D. Svensson. It considers the problem of computationally characterizing mixing
in incompressible flows. Let Ω ⊂ R

n, n = 2, 3, be an open set containing a fluid.
The motion v : [0,∞)× Ω → Ω of the fluid is described by the system

(1.5)
∂v(t, x)

∂t
= u(v(t, x)), t > 0; v(0, x) = x,

of ordinary differential equations. Here x ∈ Ω is the starting point of the particle
path and u is the velocity field obtained by solving (1.1). In order to solve (1.5)
computationally, Svensson discretized both (1.5) and (1.1) by the finite element
method. In order to control the error in approximating (1.5), it is necessary to
control ‖u−uh‖L∞(Ω). Such bounds can be found for arbitrary polyhedral domains

in R
2 or R3 in [SL06].

Svensson also developed a shadowing error estimate for (1.5), that is, an estimate
for the distance between the computed path and a true path not necessarily having
the same starting point. This estimate involves a linearization of (1.5), which
in turn requires pointwise error bounds for ∇(u − uh). Global pointwise gradient
bounds for the case when Ω is convex can be found in [SL06]. However, (1.5) is often
naturally formulated in nonconvex domains, and ∇u is generally not bounded near
reentrant corners and edges of ∂Ω. For this application, it is sufficient to provide a
posteriori control of ‖∇(u− uh)‖L∞(D) on regions D ⊂ Ω not abutting nonconvex
parts of ∂Ω. In this work we employ techniques developed in [Dem07] in the context
of Poisson’s problem in order to provide local pointwise gradient error control for
the Stokes system. We note that while [Dem07] provides a roadmap for the current
work, our proofs here also involve significant technical challenges not present in
scalar elliptic problems.

More precisely, let D ⊂ Ω with D lying a distance d > 0 from any reentrant
vertex (when n = 2, 3) or edge (when n = 3) of ∂Ω. We assume for simplicity that
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d ≤ 1. Let Dd = {x ∈ Ω : dist(D, x) < d}. We define the W 1
∞-type residual error

indicator

η1,∞(T ) = hT ‖f +Δuh −∇ph‖L∞(T )

+ ‖�∇uh�‖L∞(∂T ) + ‖g −∇ · uh‖L∞(T ), T ∈ Th.
Here �∇uh� is the jump in the (componentwise) normal derivative of uh across the
element boundary ∂T and hT = diam(T ). Also, let h = minT∈Th

hT . Finally, let
TDd

= {T ∈ Th : T ∩Dd �= ∅}. We use the standard norms ‖·‖Lp(D), ‖·‖Wm
p (D) and

seminorms |·|Wm
p (D), |·|C1,β(D). Our first main result is then the following.

Theorem 1. Let ρ ≤ c0 min{d, h} for a sufficiently small constant c0, and assume
that (u, p) ∈ C1,β(Bρ)×C0,β(Bρ) for some β ∈ (0, 1). Assume also that the Green’s
functions estimates of Lemma 10 below for convex polyhedral domains hold. Under
the above assumptions, we then have

‖∇(u− uh)‖L∞(D) + ‖p− ph‖L∞(D)

≤ C
[
ln

d

ρ
max

T∈TDd

hT

hT + dist(T,D)
η1,∞(T )

+
1

d

(
‖u− uh‖L∞(Ω) + max

T∈Th

hT η1,∞(T )
)
+ ρβ

(
|u|C1,β(Bρ)

+ |p|C0,β(Bρ)

)]
.

(1.6)

Here Bρ = Bρ(x0) ⊂ Dd is a ball of radius ρ centered at a point where the maximum
error is attained.

The above estimate consists of a local residual term, a regularization penalty ,
and a global pollution term. The local residual term maxT∈TDd

hT

hT+dist(T,D)η1,∞(T )

measures local error contributions from a neighborhood of the target region D.
Since hT

hT+dist(T,D) = 1 when T ∩D �= ∅, error contributions from D are measured

by the W 1
∞-type residual indicator η1,∞. Error contributions from elements in-

tersecting Dd but not touching D are measured by the term hT

hT+dist(T,D)η1,∞(T ).

The strength of this contribution decays smoothly from η1,∞(T ) to hT

d η1,∞(T ) as
hT +dist(T,D) increases from hT to O(d). The extra factor hT present in the latter
error indicator significantly deemphasizes these contributions as the mesh is refined
and, in particular, effectively measures the error contribution from these regions in
L∞ instead of W 1

∞.
The pollution term C 1

d

(
‖u−uh‖L∞(Ω) +maxT∈Th

hT η1,∞(T )
)
measures the in-

fluence of global solution properties on the local solution quality. Following [SL06],
it can be bounded a posteriori, as indicated in the corollary below.

The regularization penalty Cρβ
(
|u|C1,β(Bρ)

+ |p|C0,β(Bρ)

)
is due to technicalities

associated with bounding maximum norms and, in particular, to regularization of
the Green’s function in our arguments. BecauseD is away from reentrant corners, it
should be expected that (u, p) ∈ C1,β(Bρ)×C0,β(Bρ) for some β ∈ (0, 1). Following
this observation, we use local Hölder regularity estimates in order to control the
regularization penalty by data in the corollary below. However, the results available
in the literature restrict our choice of the compressibility g somewhat in the case
n = 3, though the incompressible case g = 0 is always allowed. After obtaining
local regularity bounds, we make use of our ability to choose ρ arbitrarily small in
order to obtain a final, completely a posteriori bound.

Note finally that we assume the validity of certain Green’s function estimates in
Theorem 1 because the precise estimates that we need are not quite available in
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the literature in the case n = 2. The needed estimates have been published in the
case n = 3 and almost certainly hold as well for n = 2; see the discussion following
Lemma 10.

Corollary 2. Let the Green’s functions estimates of Lemma 10 below for convex
polyhedral domains hold. In the spatial dimension n = 3 assume also that the
incompressiblity g in (1.1) is 0 in a neighborhood of all edges of Ω lying within a
distance d of D. Define

F (f , g, d) = ‖f‖Lq(Ω) + |g|W 1
q (Ω) + d−2

(
‖f‖W−1

q (Ω) + ‖g‖Lq(Ω)

)
,

E = max
T∈TDd

hT

hT + dist(T,D)
η1,∞(T ),

β = 1− n

q
, ρ̃ = min(d, h, (E/F (f , g, d))1/β).

Then there exists q > n sufficiently close to n and depending on Ω and Dd such
that the following dichotomy holds.

If E = 0, then

‖∇(u− uh)‖L∞(D) + ‖p− ph‖L∞(D) ≤ C
(
ln

1

h

)αn 1

d
max
T∈Th

hT η1,∞(T ).(1.7)

If E �= 0, then

‖∇(u− uh)‖L∞(D)+‖p− ph‖L∞(D)

≤ C
(
1 + ln

d

ρ̃

)
E + C

(
ln

1

h

)αn 1

d
max
T∈Th

hT η1,∞(T ).
(1.8)

Here α2 = 2 and α3 = 4/3.

Because we expect convergence to be faster in L∞ than inW 1
∞, the pollution term

in (1.8) is of higher order when viewed from the perspective of a priori convergence
rates. Adaptive algorithms based on (1.8) can correspondingly be expected to
generate coarser meshes in Ω \Dd than in Dd.

The logarithmic factor ln d/ρ̃ in (1.8) above is nonstandard, so we briefly remark
on it. When (E/F )1/β < h, the logarithmic factor will depend on E and on d,
but not on the meshsize h. In the standard literature on maximum norm error
estimates such logarithmic factors depend only on the (minimum) meshsize. In the

typical case where E ≥ Chk, the possible presence of E does not change the essential
nature of the logarithmic factor at all. Only in the exceptional case E � hk does
the nature of the log factor become nonstandard. The presence of the computable
estimator E in the logarithmic factor allows us to obtain a completely a posteriori
bound.

We finally give a brief discussion of related literature. Local a priori error es-
timates for the Stokes equation are developed in [HXZL08] and used to justify a
local parallel finite element algorithm. Global W 1

∞ a priori error estimates for the
Stokes system on convex polygonal and polyhedral domains can be found in the re-
cent papers [GNS04], [GNS05], and [GL10]; we also refer to these works for a more
comprehensive overview of previous literature on maximum norm a priori analysis
for the Stokes problem.

As mentioned above, [SL06] contains global a posteriori error estimates in the
maximum norm for the Stokes equation. Local a posteriori estimates for maximum
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gradient errors for Poisson’s problem are proved in [Dem07]; related global maxi-
mum gradient error estimators are developed in [Dem06]. In both of these works,
the regularization penalty in (1.6) was essentially assumed a priori to be small. Our
treatment here is entirely a posteriori, so in this regard we obtain sharper results
than have previously been available even for Poisson’s problem.

An outline of the paper is as follows. In Section 2 we give several preliminary
definitions. In Section 3 we use a duality argument in order to represent the local
pointwise gradient error, and in Section 4 we complete the proof of Theorem 1
by proving a number of regularity estimates. In Section 5 we prove Corollary 2.
Finally, in Section 6 we present a computational example.

2. Preliminaries

2.1. Finite element spaces and interpolants. We employ the standard Taylor-
Hood finite element spaces. Let Vh be the continuous piecewise polynomials of
degree k and let Xh be the continuous piecewise polynomials of degree k−1, k ≥ 2.
With this definition, existence of solutions to (1.4) is well known to hold, as well as
uniqueness, so long as

∫
Ω
ph dx = 0 is enforced.

We also assume the existence of interpolation operators Ih : V → Vh, Jh : X →
Xh such that, for 1 ≤ p ≤ ∞,

‖Ihv − v‖W j
p (T ) ≤ Chm−j

T |v|Wm
p (PT ), j = 0, 1, m = 1, 2,(2.1)

‖Jhp− p‖Lp(T ) ≤ Chm
T |p|Wm

p (PT ), m = 0, 1.(2.2)

These are standard properties of interpolants of Clément or Scott-Zhang type. Also,
PT is the patch of elements touching T , with a corresponding hierarchy of neighbor
patches of a simplex T ∈ Th defined by:

PT =
⋃

{S ∈ Th : S̄ ∩ T̄ �= ∅},

P ′
T =

⋃
{S ∈ Th : S̄ ∩ P̄T �= ∅},

P ′′
T =

⋃
{S ∈ Th : S̄ ∩ P̄ ′

T �= ∅}, etc.

We finally note that Ih and Jh may be defined so that, if v ∈ (H1
0 (Dd))

n and
q ∈ L2(Ω) is supported in Dd, then Ihv and Jhq have support in TDd

.

2.2. Reference domains. Our proofs involve carrying out duality arguments over
subdomains B of Ω. To describe these we recall that the target domain D is a fixed
distance away from reentrant corners or edges but may touch the remaining parts
of ∂Ω. We fix a point x0 ∈ D where the maximum error over D is attained; see
§3.1. When dist(x0, ∂Ω) ≥ d we can choose our subdomain B to be a square or cube
with diameter d centered at x0. When x0 is close to ∂Ω we must carefully control
the size and shape of these subdomains in order to ensure that regularity constants
appearing in our estimates are uniformly bounded. We thus define reference do-
mains to which we may map portions of Ω lying near ∂Ω. A similar approach was
used in [Dem07], and we refer to §2.2 of that work for more detail. In particular,

it is shown there that there exists a set {B̃1, ..., B̃M} of reference domains of unit
diameter, each of which is a convex polyhedron, with the following properties.

There exists a constant d0 ≤ 1 depending on Ω such that whenever d ≤ d0, the
following hold: Assume that x0 ∈ Ω with dist(x0, e) ≥ d for all reentrant corners or
edges e of ∂Ω. Then there exist constants c1 > 0 and 0 < c2 ≤ 1, independent of
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x0, and a subdomain B of Ω such that x0 ∈ B, dist(x0, ∂B \ ∂Ω) ≥ c1d, and such

that for some 1 ≤ i ≤ M there is an affine bijection Ai : B̃i → B, where Ai consists
only of translation and scaling by cd for some c2 ≤ c ≤ 1.

c1d

Dd

x0

D

B

d

Figure 1. Diagram indicating relative positions of Ω, D (shaded),
Dd (with dashed boundary), and the reference domain B (a square
with fine dashed boundary). In this case the unit reference domain

B̃ would be a unit square.

c 1d

c1d/2

x0

D

B

Figure 2. Blowup of B, showing x0, Bc1d/2(x0) (darker shaded
disc), and Bc1d(x0) (lightly shaded disc). Bd/2 is defined as
the connected component containing x0 of the intersection of
Bc1d/2(x0) with Ω.

We will also use a cut-off function ω. With x0 and c1 as above, let ω ∈
C∞

0 (Bc1d(x0)) satisfy

ω ≡ 1 on Bc1d/2(x0).(2.3)
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Here Br(x) denotes the open ball with radius r and center x. If Bc1d(x0) ∩ Ω is
not connected, then we assume that ω ≡ 0 on any component of Bc1d(x0) ∩ Ω not
containing x0. Note that ω = 0 on ∂B \ ∂Ω and that ω may be defined so that

‖ω‖W j
∞(B) ≤ Cjd

−j , j = 0, 1, 2, . . . .(2.4)

In summary, D is the “target” domain for error control, while Dd is a larger
“cut-off” domain with cut-off parameter d. Because we cannot control the shape
of D and Dd and attendant regularity constants, we also define reference domains
B ⊂ Dd which has one of a finite number of pre-defined polygonal shapes and
which may be obtained essentially by scaling a reference domain by d. Finally,
Bc1d(x0) is the support of the cut-off function ω which will play an essential role
in our arguments. See Figure 1 and Figure 2 for a visual representation of these
definitions.

2.3. A posteriori estimates in L∞. We quote a result from [SL06].

Lemma 3. Assume that Ω is a polyhedral domain in R
n, n = 2, 3. Then

‖u− uh‖L∞(Ω) ≤ C
(
ln

1

h

)αn

max
T∈Th

hT η1,∞(T ).(2.5)

Here α2 = 2 and α3 = 4/3.

Remark 4. The arguments of [SL06] and ours below are valid for polyhedral domains
with Lipschitz boundary, which excludes crack domains and other non-Lipschitz
polyhedra. However, similar estimates for Poisson’s problem can also be obtained
for polyhedral domains such as crack domains that do not have Lipschitz boundaries
(cf. [DG10]), and it is likely that the same is true for the Stokes system. The reason
for this difference is that certain relevant regularity estimates for the Stokes system
are only available in the literature for Lipschitz domains. Our numerical examples
are carried out on a two-dimensional domain with a crack.

3. Error representation

In this section we represent ‖∇(u−uh)‖L∞(D) and ‖ph − p‖L∞(D) by employing
a regularized Green’s function.

3.1. Pointwise pressure and velocity gradient errors. Let

eu = uh − u, ep = ph − p.

Our goal is to simultaneously bound ‖∇eu‖L∞(D) and ‖ep‖L∞(D). We begin by

selecting x0 ∈ D and i, j so that

sup
x∈D

(
max
k,l

|Dkeul(x)|+ |ep(x)|
)
= |Dieuj(x0)|+ |ep(x0)|

= |Dieu(x0) · kj |+ |ep(x0)|.
Here kj denotes the j-th basis vector. Making the definition ‖∇eu‖L∞(D) =
supx∈D maxk,l |Dkeul(x)|, we see that ‖∇eu‖L∞(D) + ‖ep‖L∞(D) is bounded up
to a factor two by the above expression.

We shall express the above errors by means of an approximate “delta function”
at x0: Dieu(x0) · kj ≈ (Dieu · kj , δ) = (Dieu, δkj) and ep(x0) ≈ (ep, δ). In order
to do so, we select a simplex Tx0

∈ Th such that

x0 ∈ Tx0
.
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Furthermore, we define a regularized “delta function” δ corresponding to the point
x0 (cf. [SW95]). Following §2.3 of [Dem07], we let ρ be as in Theorem 1 and fix a
shape-regular simplex T0 of diameter ρ such that x0 ∈ T0 ⊂ Tx0

; see Figure 3. More
precisely, T0 should satisfy the same regularity assumption as the simplices in the
mesh family {Th}. Then δ ∈ C∞

0 (T0) may be defined so that for any polynomial P
of degree at most k − 1 (where k is the polynomial degree of Vh),

P (x0) =

∫
T0

δP dx,

‖δ‖W j
p (T0)

≤ Cρ−j−n(1− 1
p ), 1 ≤ p ≤ ∞, j = 0, 1.(3.1)

Following precisely the arguments in Proposition 2.3 of [Dem07], we obtain the
following.

Lemma 5. Assume that (u, p) ∈ C1,β(T0)×C0,β(T0) for some β ∈ (0, 1) and that
(vh, qh) ∈ Vh ×Xh. Then

|Di(uj − vhj)(x0)|+ |p(x0)− qh(x0)| ≤ |(Di(uj − vhj), δ)± (p− qh, δ)|
+ Cρβ

(
|u|C1,β(T0)

+ |p|C0,β(T0)

)
.

(3.2)

Here the sign of ±(p− qh, δ) is chosen to match the sign of (Di(uj − vhj), δ).

Employing (3.2), we obtain the following error representation.

Lemma 6. Under the assumptions of Theorem 1 we have

‖∇eu‖L∞(D) + ‖ep‖L∞(D) ≤ 2|(Dieu, δkj)± (ep, δ)|
+ Cρβ

(
|u|C1,β(Bρ)

+ |p|C0,β(Bρ)

)
,

(3.3)

where as above the sign of ±(ep, δ) is chosen to match the sign of (Dieu, δkj).

x0
T0

Tx0

Figure 3. Left: Triangulated domain Ω with D indicated (shaded
area) and x0 and Tx0

labeled. Right: Blowup of Tx0
with x0 indi-

cated (dot) and T0 labeled.
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3.2. Localization. As above, we let d be the distance from the target subdomain
D to the nearest reentrant edge or vertex in ∂Ω. Let x0 ∈ D be a point where the
maximum error is attained and choose the subdomain B and the cut-off function
ω as in §2.2. As in Theorem 1 we assume that ρ ≤ c0d for c0 sufficiently small.
Hence, we may achieve ω ≡ 1 on supp(δ) and supp(δ) ⊂ T0 ⊂ B, so that the main
term in (3.3) becomes

(Dieu, δkj)− (ep, δ) = −(eu, Diδkj)− (ep, δ) = −(ωeu, Diδkj)− (ωep, δ).(3.4)

For the sake of notational simplicity we assumed here that the sign in front of (ep, δ)
is −; the actual sign has no effect on our arguments below. We additionally let δB
be a smooth function satisfying

∫
B
(δ−δB) dx = 0; a precise definition will be made

in §4.2 below. We introduce a localized adjoint problem: find (v, q) ∈ VB × XB

with
∫
B
q dx = 0 such that

LB((w, λ), (v, q)) = (w, Diδkj) + (λ, δ − δB) ∀(w, λ) ∈ VB ×XB,(3.5)

where the form LB is defined as in (1.2)–(1.3) but with integrals extending only
over B and VB ×XB = (H1

0 (B))n × L2(B). The strong form is:

−Δv −∇q = Diδkj , in B,

−∇ · v = δ − δB, in B,

v = 0, on ∂B.

We extend v by zero outside of B. Note that ωeu ∈ VB because ω = 0 on ∂B \ ∂Ω
(since dist(x0, ∂B \ ∂Ω) ≥ c1d) and eu = 0 on ∂Ω.

3.3. Duality argument. We choose (w, λ) = (ωeu, ωep) ∈ VB ×XB in (3.5), use
(3.4), and recall that v = 0 outside B. Thus,

−(Dieu, δkj) + (ep, δ) = (ωeu, Diδkj) + (ωep, δ − δB) + (ωep, δB)

= LB((ωeu, ωep), (v, q)) + (ep, ωδB)

= a(ωeu,v) + b(v, ωep)− b(ωeu, q) + (ep, ωδB).

(3.6)

Writing a(u,v) =
∫
Ω
ui,jvi,j dx, performing elementary manipulations, and inte-

grating by parts yields

a(ωeu,v) =

∫
Ω

[ωeui,jvi,j + euiω,jvi,j ] dx

=

∫
Ω

[eui,j(ωv)i,j − eui,jω,jvi + euiω,jvi,j ] dx

= a(eu, ωv) +

∫
Ω

[eui(ω,jvi),j + euiω,jvi,j ] dx

= a(eu, ωv) +

∫
Ω

[euiviω,jj + 2euiω,jvi,j ] dx

= a(eu, ωv) + (eu,vΔω + 2∇v∇ω).

(3.7)

Similarly,

b(v, ωep)− b(ωeu, q) = −(∇ · v, ωep) + (∇ · (ωeu), q)
= −(∇ · (ωv), ep) + (v · ∇ω, ep) + (∇ω · eu, q) + (∇ · eu, ωq)
= b(ωv, ep)− b(eu, ωq) + (v · ∇ω, ep) + (eu, q∇ω).
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Therefore, (3.6) can be written

−(Dieu, δkj) + (ep, δ) = L((eu, ep), (ωv, ωq)) + (ep, ωδB + v · ∇ω)

+ (eu,vΔω + 2∇v∇ω + q∇ω).

Setting Bd/2 = Bc1d/2(x0)∩B, recalling from (2.3) that ω ≡ 1 and thus ∇ω ≡ 0

on Bd/2, and recalling from (2.4) that |Dkω)| ≤ Cd−k, we conclude that

|(Dieu, δkj)− (ep, δ)| ≤ |L((eu, ep), (ωv, ωq))|+ |(ep, ωδB + v · ∇ω)|
+ Cd−1‖eu‖L∞(B)

(
d−1‖v‖L1(B\Bd/2) + ‖∇v‖L1(B\Bd/2) + ‖q‖L1(B\Bd/2)

)
.

(3.8)

We now consider the term |L((eu, ep), (ωv, ωq))|. Galerkin orthogonality implies

L((eu, ep), (ωv, ωq)) = L((eu, ep), (ωv − Ih(ωv), ωq − Jh(ωq))).(3.9)

Recalling that supp(ωv − Ih(ωv)) ⊂ TDd
and employing standard techniques for

proving residual error estimates (cf. [Dem07] for similar computations), we next
compute

|L((eu, ep), (ωv− Ih(ωv), ωq − Jh(ωq))|

≤ C
∑

T∈TDd

η1,∞(T )
(
h−1
T ‖ωv − Ih(ωv)‖L1(T )

+ ‖∇(ωv − Ih(ωv))‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
≤ C max

T∈TDd

hT

hT + dist(T,D)
η1,∞(T )

×
∑

T∈TDd

hT + dist(T, Tx0
)

hT

(
h−1
T ‖ωv − Ih(ωv)‖L1(T )

+ ‖∇(ωv − Ih(ωv))‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
.

(3.10)

Here we used that hT +dist(T, Tx0
) ≥ C(hT +dist(T,D)), so that hT

hT+dist(T,Tx0
) ≤

C hT

hT+dist(T,D) .

Recall that we assume ρ ≤ c0h. We choose c0 so small that B2ρ(x0) ∩ Ω ⊂ P ′
Tx0

and then apply the interpolation estimates (2.1) and (2.2) to the terms in (3.10)
as follows. Recall that x0 ∈ Tx0

. For T ∈ P ′′
Tx0

we apply (2.1) with m = 1

and (2.2) with m = 0, while for all other T ∈ TDd
we use m = 2 and m = 1,

respectively. We also note that hT + dist(T, Tx0
) � hT for T ∈ P ′′

Tx0
and that

hT + dist(T, Tx0
) � dist(x, x0) for x ∈ T ∈ TDd

\ P ′
Tx0

.

More precisely, let

I(T ) =
hT + dist(T, Tx0

)

hT

(
h−1
T ‖ωv − Ih(ωv)‖L1(T )

+ ‖∇(ωv − Ih(ωv))‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
.

When bounding
∑

T∈TDd
I(T ) in (3.10), we have for the terms with T ∈ P ′′

Tx0∑
T∈P ′′

Tx0

I(T ) ≤ C
∑

T∈P ′′
Tx0

(
‖∇(ωv)‖L1(PT ) + ‖ωq‖L1(PT )

)
≤ C

(
d−1‖v‖L1(P ′′′

Tx0
) + ‖∇v‖L1(P ′′′

Tx0
) + ‖q‖L1(P ′′′

Tx0
)

)
.
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For the terms with T �∈ P ′′
Tx0

, we first note that for T with T ∩ (∂B \ ∂Ω) �= ∅, v /∈
W 2

1 (T ) since ∂B may cut through the interior of T , but we do have ωv ∈ W 2
1 (T ).

We then use B2ρ(x0) ⊂ P ′
Tx0

, (2.4), |x− x0| ≤ d for all x ∈ B, the scaled Poincaré

inequality ‖v‖L1(B) ≤ Cd‖∇v‖L1(B), and that ωv, ωq vanish outside B to obtain∑
T �∈P ′′

Tx0

I(T ) ≤ C
∑

T �∈P ′′
Tx0

(
hT + dist(T, Tx0

)
)(
‖D2(ωv)‖L1(PT ) + ‖∇(ωq)‖L1(PT )

)
≤ C

∫
TDd

\P ′
Tx0

|x− x0|
[
|ω|(|∇q|+ |D2v|) + |∇ω|(|q|+ |∇v|) + |Δω||v|

]
dx,

≤ C(‖q‖L1(B) + ‖∇v‖L1(B) + d−1‖v‖L1(B))

+ C

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx

≤ C(‖q‖L1(B) + ‖∇v‖L1(B)) + C

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx.

Collecting the previous two inequalities while again applying a scaled Poincaré
inequality, we obtain∑

T∈TDd

I(T ) ≤ C
(
‖∇v‖L1(B) + ‖q‖L1(B)

+

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx

)
.

(3.11)

Collecting the previous results, we obtain the following error representation.

Lemma 7. Under the assumptions of Theorem 1 we have

‖∇eu‖L∞(D) + ‖ep‖L∞(D) ≤ C max
T∈TDd

hT

hT + dist(T,D)
η1,∞(T )

×
(
‖v‖W 1

1 (B) + ‖q‖L1(B) +

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx

)
+ Cd−1‖eu‖L∞(B)

(
d−1‖v‖L1(B\Bd/2) + ‖∇v‖L1(B\Bd/2) + ‖q‖L1(B\Bd/2)

)
+ |(ep, ωδB + v · ∇ω)|+ Cρβ

(
|u|C1,β(Bρ)

+ |p|C0,β(Bρ)

)
.

Proof. We collect (3.11) into (3.10) and subsequently into (3.9) and (3.8). Com-
bining the result with (3.3) completes the proof. �

3.4. Regularity estimates. The estimates contained in the following two lemmas
compose the remainder of the proof of Theorem 1. The proof of these estimates is
carried out in §4. We remind the reader that Bd/2 = Bc1d/2(x0) ∩B; see (2.3).

Lemma 8. Let (v, q) ∈ VB ×XB be the solution of (3.5). Then

‖v‖W 1
1 (B) + ‖q‖L1(B) ≤ C ln

d

ρ
,(3.12)

d−1‖v‖L1(B\Bd/2) + ‖∇v‖L1(B\Bd/2) + ‖q‖L1(B\Bd/2) ≤ C,(3.13) ∫
B\B2ρ(x0)

|x− x0|
(
|∇q(x)|+ |D2v(x)|

)
dx ≤ C ln

d

ρ
.(3.14)
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In the next lemma we provide a computable bound for the term |(ep, ωδB+v·∇ω)|
in Lemma 7.

Lemma 9. Let v, q, and p be as above. Then

|(ep, ωδB + v · ∇ω)| ≤ C
1

d
max
T∈Th

hT η1,∞(T ).(3.15)

4. Regularity estimates

In this section we prove Lemma 8 and Lemma 9. First we collect some basic
regularity results and properties of the Green’s function for Stokes’ problem from
the literature and then use them to analyze regularized Green’s functions.

4.1. Regularity and Green’s matrix estimates for the Stokes system on
convex polyhedral domains. We begin by stating a standard regularity result.
Let B̃ = B̃i be one of the unit reference domains B̃i defined in §2.2. Assume that
(ṽ, q̃) ∈ VB̃ ×XB̃ solves the adjoint problem

LB̃((w, λ), (ṽ, q̃)) = (w, f̃)B̃ + (λ, g̃)B̃ ∀(w, λ) ∈ VB̃ ×XB̃,(4.1)

where f̃ ∈ (H−1(B̃))n and g̃ ∈ XB̃/R. Then

‖ṽ‖H1
0 (B̃) + ‖q̃‖L2(B̃) ≤ C(‖f̃‖H−1(B̃) + ‖g̃‖L2(B̃)).(4.2)

Since B̃ is convex, we also have (cf. [MR07])

‖ṽ‖H2(B̃) + ‖q̃‖H1(B̃) ≤ C(‖f̃‖L2(B̃) + ‖g̃‖H1(B̃)).(4.3)

As normally stated in the literature, the above estimates require that
∫
B̃
q̃ dx̃ = 0,

but we modify this assumption slightly so that we can employ properties of Green’s
function for convex polyhedral domains from [MR10, p. 555] and the following. We

let φ ∈ C∞
0 (B̃) with

∫
B̃
φ dx̃ = 1. We then require that

∫
B̃
q̃φdx̃ = 0. Because C∞

0

is dense in L2(B̃), we may for any given ε > 0 choose φ so that ‖|B̃|−1−φ‖L2(B̃) ≤ ε.

By choosing ε sufficiently small (ε = 1
2 will suffice), we easily see that then (4.2)

and (4.3) hold also for q̃ satisfying
∫
B̃
q̃φ dx̃ = 0 instead of the usual

∫
B̃
q̃ dx̃ = 0.

In what follows we take φ to be a fixed function that is sufficiently close to |B̃|−1

in Lr(B̃) for a sufficiently large (but fixed and finite) range of values of r.
Next we state results for the Green’s matrix for the adjoint problem (4.1).

Lemma 10. Assume that B̃ ⊂ R
n, n = 2, 3, is a convex polyhedral domain and let

(ṽ, q̃) be the solution of (4.1). There exists {Glj(x̃, ξ̃)}1≤l,j≤n+1, (x̃, ξ̃) ∈ B̃ × B̃,

such that for x̃ ∈ B̃ and 1 ≤ l ≤ n,

ṽl(x̃) =

∫
B̃

n∑
j=1

Glj(x̃, ξ̃)f̃j(ξ̃) dξ̃ +

∫
B̃

Gl,n+1(x̃, ξ̃)g̃(ξ̃) dξ̃,

q̃(x̃) =

∫
B̃

n∑
j=1

Gn+1,j(x̃, ξ̃)f̃j(ξ̃) dξ̃ +

∫
B̃

Gn+1,n+1(x̃, ξ̃)g̃(ξ̃) dξ̃.

(4.4)

Moreover, there is a constant C such that, for δl,n+1+ |α| ≤ 1 and δn+1,j + |β| ≤ 1,

|Dα
x̃D

β

ξ̃
Glj(x̃, ξ̃)| ≤

{
C|x̃− ξ̃|−κ, if κ > 0,

C ln |x̃− ξ̃|, if κ = 0,
(4.5)



LOCAL A POSTERIORI BOUNDS FOR THE STOKES EQUATIONS 637

where δl,j is Kronecker’s delta and

κ = n+ δl,n+1 + |α|+ δn+1,j + |β| − 2.

In addition,

Glj(x̃, ξ̃) = Gjl(ξ̃, x̃), x̃, ξ̃ ∈ B̃, 1 ≤ l, j ≤ n+ 1,(4.6)

and when φ is chosen as above,∫
B̃

Gn+1,j(x̃, ξ̃)φ(x̃) dx̃ = 0, ξ̃ ∈ B̃, 1 ≤ j ≤ n+ 1.(4.7)

In the case of three space dimensions, these estimates can be found in [Ros10a]
and [MR10]; cf. [MR05]. In the case n = 2, Lemma 10 does not appear directly in
the literature to our knowledge. In the case of Poisson’s problem, a similar estimate
for n = 2 is found in [Fro93] for generic convex domains. [NP94] contains Green’s
function estimates for elliptic scalar equations of order 2m on (polygonal) cones in
two space dimensions. The correct asymptotics for convex polygonal domains may
be derived from these estimates (cf. [Ros10b]), and the authors also state that “The
passage to the case of elliptic systems entails only some notational complications.”
We shall thus also assume the results of Lemma 10 in the two-dimensional case.

Note that the constants C in (4.2), (4.3), and (4.5) do not depend on the choice

of the reference domain B̃ = B̃i, since B̃i lies in the finite set {B̃1, ..., B̃M}.
We finally remark that we only employ (4.5) with κ = n and κ = n − 1. The

logarithmic estimate occurring when κ = 0 is thus not used here; we only include
it for the sake of completeness.

Remark 11. An alternative to using Green’s function estimates is to employ W 1
q -

type regularity estimates as q ↓ 1. This was the approach taken in [SL06] for
proving gradient estimates for the Stokes system in the global maximum norm on
convex polyhedral domains. The disadvantage of this approach is that it requires
an unnatural restriction on the maximum interior dihedral angle when n = 3. The
a priori estimates of [GNS04], [GNS05] suffer from the same restriction, which was
subsequently overcome in [GL10] by the use of sharp Green’s function estimates.
We similarly avoid this restriction by employing sharp Green’s function estimates.
Note also that the techniques we employ here could be easily used to extend the
global W 1

∞ a posteriori estimates of [SL06] to include convex polyhedral domains
with no restriction on the maximum interior dihedral angle. In the context of
Poisson’s problem, we refer to [Dem06] for a posteriori estimates and to [GLRS09]
for a priori estimates which similarly use sharp Green’s function estimates to obtain
pointwise gradient bounds on any convex polyhedral domain.

In two space dimensions, the use of Lq-type regularity estimates leads to optimal
results with respect to domain geometry and thus provides a reasonable alternative
to using Green’s functions. The techniques of [SL06] could be extended to prove
local error estimates for n = 2 as well.

4.2. Transformation to a reference domain. We now map B to a reference
domain B̃ by translating and scaling B̃ by a factor cd for some c2 ≤ c ≤ 1 as in
§2.2. Let (v, q) be the solution of (3.5). With slight abuse of notation, we assume

c = 1 and define ṽ(x̃) = d−1v(dx̃), q̃(x̃) = q(dx̃), and δ̃(x̃) = δ(dx̃). Note that δ̃
has radius of support ρ/d, since δ has radius of support ρ. We also have

LB̃((w, λ), (ṽ, q̃)) = (w, Dx̃i
δ̃kj) + (λ, δ̃ − δ̃B) ∀(w, λ) ∈ VB̃ ×XB̃;(4.8)
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recall that the maximum error is attained at x0 in the i-th derivative of the j-th
component of eu.

Here we also make precise our definition of δB: we let δ̃B(x̃) = φ(x̃)
∫
B̃
δ̃(ỹ) dỹ

and define δB correspondingly as δB(x) = δ̃B(x/d). Since
∫
B̃
φ(x̃) dx̃ = 1, we then

have
∫
B̃
(δ̃ − δ̃B) dx̃ = 0 as required. In addition, because φ is a fixed smooth

function on B̃ and by a change of variables ‖δ̃‖L1(B̃) ≤ Cd−n‖δ‖L1(B) ≤ Cd−n, we

have the estimate

‖δB‖L2(B) + d‖∇δB‖L2(B) ≤ Cdn/2‖δ̃B‖H1(B̃) ≤ Cd−n/2,(4.9)

where C depends only on B̃ (and thus ultimately only on Ω).

4.3. Proof of Lemma 8. We can now prove regularity estimates for the localized
adjoint problem (3.5).

Proof of (3.12). We begin by bounding ‖v‖W 1
1 (B) + ‖q‖L1(B). Letting x̃0 ∈ B̃ be

the image of x0 ∈ B, we first compute

‖v‖W 1
1 (B) + ‖q‖L1(B) ≤ Cdn

(
‖ṽ‖W 1

1 (B̃) + ‖q̃‖L1(B̃)

)
≤ Cdn

(
‖ṽ‖W 1

1 (B2ρ/d(x̃0)) + ‖q̃‖L1(B2ρ/d(x̃0))

+ ‖ṽ‖W 1
1 (B̃\B2ρ/d(x̃0))

+ ‖q̃‖L1(B̃\B2ρ/d(x̃0))

)
.

(4.10)

Using (4.2) with f̃ = Dx̃i
δ̃kj , g̃ = δ̃ − δ̃B, (3.1), and (4.9), we next find that

dn
(
‖ṽ‖W 1

1 (B2ρ/d(x̃0)) + ‖q̃‖L1(B2ρ/d(x̃0))

)
≤ Cdn

(ρ
d

)n/2(
‖ṽ‖H1(B2ρ/d(x̃0)) + ‖q̃‖L2(B2ρ/d(x̃0))

)
≤ C(ρd)n/2

(
‖ṽ‖H1

0 (B̃) + ‖q̃‖L2(B̃)

)
≤ C(ρd)n/2(‖δ̃‖L2(B̃) + ‖δ̃ − δ̃B‖L2(B̃))

≤ Cρn/2(‖δ‖L2(B) + ‖δB‖L2(B)) ≤ C.

(4.11)

Employing (4.4) and (4.5), and also using (4.7) while recalling that δ̃B is a constant

multiple of φ, we have for x̃ ∈ B̃ \B2ρ/d(x̃0), that

Dx̃k
ṽl(x̃) = Dx̃k

(∫
B̃

Glj(x̃, ξ̃)Dξ̃i
δ̃(ξ̃) dξ̃ +

∫
B̃

Gl,n+1(x̃, ξ̃)(δ̃ − δ̃B)(ξ̃) dξ̃
)

= Dx̃k

(∫
B̃

Glj(x̃, ξ̃)Dξ̃i
δ̃(ξ̃) dξ̃ +

∫
B̃

Gl,n+1(x̃, ξ̃)δ̃(ξ̃) dξ̃
)

=

∫
Bρ/d(x̃0)

δ̃(ξ̃)
(
−D2

x̃k ξ̃i
Glj(x̃, ξ̃) dξ̃ +Dx̃k

Gl,n+1(x̃, ξ̃)
)
dξ̃

≤ ‖δ̃‖L1(B̃)

∥∥∥|D2
x̃k ξ̃i

Glj(x̃, ·)|+ |Dx̃k
Gl,n+1(x̃, ·)|

∥∥∥
L∞(Bρ/d(x̃0))

≤ Cd−n‖δ‖L1(B) sup
ξ̃∈Bρ/d(x̃0)

|x̃− ξ̃|−n ≤ Cd−n|x̃− x̃0|−n.

(4.12)

For the term D2
x̃k ξ̃i

Glj(x̃, ·) we used that 1 ≤ l, j ≤ n, |α| = |β| = 1, so that (4.5)

applies with κ = n. For the term Dx̃k
Gl,n+1(x̃, ·) we used that |α| = 1 and |β| = 0,
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l ≤ n, and j = n+1, so that again κ = n. We also used |x̃− x̃0| ≤ |x̃− ξ̃|+ |ξ̃− x̃0| ≤
|x̃− ξ̃|+ ρ/d ≤ 2|x̃− ξ̃|. Similarly,

q̃(x̃) ≤ Cd−n|x̃− x̃0|−n(4.13)

and

ṽ(x̃) ≤ Cd−n|x̃− x̃0|1−n.(4.14)

Thus, setting r = |x̃− x̃0| and transforming to polar coordinates leads to

dn
(
‖ṽ‖W 1

1 (B̃\B2ρ/d(x̃0))
+ ‖q̃‖L1(B̃\B2ρ/d(x̃0))

)

≤ Cdnd−n

∫ diam(B̃)

2ρ/d

rn−1r−n dr ≤ C ln
d

ρ
.

(4.15)

Collecting (4.15) and (4.11) into (4.10) completes the proof of (3.12).

Proof of (3.13). We first complete the calculation for the term ‖∇v‖W 1
1 (B\Bd/2),

recalling that Bd/2 = Bc1d/2(x0) ∩ B; see (2.3). We set c1 = 1 for simplicity.

Transforming to B̃ and using Hölder’s inequality, we have

‖∇v‖W 1
1 (B\Bd/2)

≤ Cdn‖∇ṽ‖W 1
1 (B̃\B1/2(x̃0))

≤ Cdn‖∇ṽ‖W 1
∞(B̃\B1/2(x̃0))

.

Note that since ρ ≤ c0d for c0 sufficiently small (here c0 = 1
4 suffices), we have

B̃ \ B1/2(x̃0) ∩ B2ρ/d(x̃0) = ∅. Thus by (4.12), we have |∇ṽ(x̃)| ≤ Cd−n for

x̃ ∈ B̃ \B1/2(x̃0), which when inserted into the previous equation yields

‖∇v‖W 1
1 (B\Bd/2) ≤ C,

as desired. The bounds for d−1‖v‖L1(B\Bd/2) and ‖q‖L1(B\Bd/2) similarly employ

(4.13) and (4.14). Thus (3.13) is proved.

Proof of (3.14). Let d0 = 3
2
ρ
d and dj = 2j ρ

d , j ≥ 1. Also, let Ωj = {x̃ ∈ B̃ : dj < |x̃−
x̃0| ≤ dj+1}, j ≥ 0 and Ω′

j = Ωj−1 ∪Ωj ∪Ωj+1; note that B̃ \B2ρ/d(x̃0) =
⋃J

j=1Ωj

with J ≈ ln d
ρ . Finally, we let ωj be a smooth cut-off function which is 1 on Ωj , 0

outside of Ωj−1 ∪ Ωj ∪ Ωj+1, and which satisfies ‖Dlωj‖L∞(B̃) ≤ Cd−l
j , l = 0, 1, 2.

Transforming to B̃, we then have∫
B\B2ρ(x0)

|x− x0|
(
|∇q(x)|+ |D2v(x)|

)
dx

≤ Cdn
∫
B̃\B2ρ/d(x̃0)

|x̃− x̃0|
(
|∇q̃(x̃)|+ |D2ṽ(x̃)|

)
dx̃

≤ Cdn
J∑

j=1

d
n/2+1
j

(
‖∇q̃‖L2(Ωj) + ‖D2ṽ‖L2(Ωj)

)

≤ Cdn
J∑

j=1

d
n/2+1
j

(
‖∇(ωj q̃)‖L2(B̃) + ‖D2(ωj ṽ)‖L2(B̃)

)
.

We apply (4.3) with ṽ replaced by ωj ṽ and q̃ by ωj q̃. Then

f̃ = −Δ(ωj ṽ)−∇(ωj q̃) = −ṽΔωj − 2∇ṽ∇ωj − q̃∇ωj ,

since ωj(−Δṽ −∇q̃) = 0. Also,

g̃ = −∇ · (ωj ṽ) = −ωj∇ · ṽ − ṽ · ∇ωj = −ωj(δ̃ − δ̃B)− ṽ · ∇ωj = ωj δ̃B − ṽ · ∇ωj ,
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since supp(δ̃) ⊂ Bρ/d(x̃0) and ωj and δ̃ thus have disjoint supports. Also, integra-

tion by parts yields
∫
B̃
g̃ dx̃ =

∫
B̃
ωj ṽ · ∇1 dx̃ = 0, since ṽ = 0 on ∂B̃. Employing

(4.3), bounds for the derivatives of ωj , and Hölder’s inequality then yields

Cdn
J∑

j=1

d
n/2+1
j

(
‖∇(ωj q̃)‖L2(B̃) + ‖D2(ωj ṽ)‖L2(B̃)

)

≤ Cdn
J∑

j=1

d
n/2+1
j

(
‖ṽΔωj‖L2(B̃) + 2‖∇ṽ∇ωj‖L2(B̃)

+ ‖q̃∇ωj‖L2(B̃) + ‖ṽ · ∇ωj‖H1(B̃) + ‖ωj δ̃B‖H1(B̃)

)
≤ Cdn

J∑
j=1

dnj

(
d−1
j ‖ṽ‖L∞(Ω′

j)
+ ‖∇ṽ‖L∞(Ω′

j)
+ ‖q̃‖L∞(Ω′

j)

)

+ Cdn
J∑

j=1

d
n/2+1
j

(
‖∇δ̃B‖L2(Ω′

j)
+ d−1

j ‖δ̃B‖L2(Ω′
j)

)
.

Inequalities (4.12), (4.13), and (4.14) then yield

Cdn
J∑

j=1

dnj

(
d−1
j ‖ṽ‖L∞(Ω′

j)
+ ‖∇ṽ‖L∞(Ω′

j)
+ ‖q̃‖L∞(Ω′

j)

)

≤ Cdn
J∑

j=1

d−n
(
dn−1
j d1−n

j + dnj d
−n
j

)
≤ CJ ≤ C ln

d

ρ
.

Employing (4.9) and the fact that
∑J

j=1 d
n/2
j is a geometric series with uniformly

bounded largest term and is thus uniformly bounded, we also have

dn
J∑

j=1

d
n/2+1
j

(
‖∇δ̃B‖L2(Ω′

j)
+ d−1

j ‖δ̃B‖L2(Ω′
j)

)
≤ Cdn

J∑
j=1

d
n/2
j d−n ≤ C.

Collecting the previous statements completes the proof of (3.14) and thus also of
Lemma 8.

4.4. Regularity estimates for the Stokes system on general polyhedral
domains. In order to bound the pollution error term |(ep, ωδB+v ·∇ω)| in Lemma
7 and thereby prove Lemma 9, we will carry out a second duality argument, but
this time over the original domain Ω. Our estimates employ Lp regularity results
for such dual problems, which we state now along with further similar estimates
that we will use later in our development.

In the following two lemmas, we assume that (z, λ) ∈ V ×X solve

L((w, q), (z, λ)) = (w, f̃) + (q, g̃) ∀(w, q) ∈ V ×X,(4.16)

where we assume that
∫
Ω
g̃(x) dx = 0. Other assumptions about f̃ and g̃ will be

made below. These lemmas are found in essentially the form below in [SL06],
Theorem 1.1, Theorem 1.3, and Remark 1.2 and summarize results from [BS95],
[KMR01], and [MR07].
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Lemma 12. Let Ω ⊂ R
n, n = 2, 3, be a bounded Lipschitz domain. There exists

ε > 0 such that if 3+ε
2+ε < q < 3 + ε, f̃ ∈ W−1

q (Ω)n, and g̃ ∈ Lq(Ω) with
∫
Ω
g̃ dx = 0,

then there is a unique solution (z, λ) ∈ W 1,q
0 (Ω)n × Lq(Ω)/R to (4.16). Moreover,

‖z‖W 1
q (Ω) + ‖λ‖Lq(Ω)/R ≤ C(‖f̃‖W−1

q (Ω) + ‖g̃‖Lq(Ω)).(4.17)

Lemma 13. Let Ω ⊂ R
n, n = 2, 3, be a polyhedral domain and let 1 < q ≤ 4/3.

Suppose f̃ ∈ Lq(Ω)
n and g̃ ∈ W q

1 (Ω)
n with

∫
Ω
g̃ dx = 0. Then the unique weak

solution (z, λ) to (4.16) satisfies

‖z‖W 2
q (Ω) + ‖λ‖W 1

q (Ω) ≤ C(‖f̃‖Lq(Ω) + |g̃|W 1
q (Ω)).(4.18)

Assume in addition that n = 2 and that Ω is convex. Then (4.18) holds for some
q > 2 with q sufficiently close to 2, depending on the maximum interior angle of Ω.

4.5. Proof of Lemma 9. We use a duality argument to bound the term |(ep, ωδB+

v · ∇ω)| and thus prove Lemma 9. Let f̃ = 0, M = 1
|Ω|

∫
Ω
(ωδB + v · ∇ω) dx, and

g̃ = ωδB+v·∇ω−M . Noting that
∫
ω
ep dx = 0, we have (ep, ωδB+v·∇ω) = (ep, g̃).

Let (z, λ) ∈ V ×X solve

L((w, q), (z, λ)) = (q, g̃) ∀(w, q) ∈ V ×X.(4.19)

In strong form, we thus have −Δz−∇λ = 0, −∇ · z = g̃. Then we have

(ep, ωδB + v · ∇ω) = L((eu, ep), (z, λ)).(4.20)

Standard manipulations for proving residual-type error estimates then yield

L((eu, ep), (z, λ)) ≤ C
(
max
T∈Th

hTη1,∞(T)

)(
|z|W2

1(Ω) + |λ|W1
1(Ω)

)
.(4.21)

We now bound |z|W 2
1 (Ω)+ |λ|W 1

1 (Ω). Recalling from §2.2 that ω ∈ C∞
0 (Bc1d(x0)),

we let BKd = BKc1d(x0) for K > 0 and note that

|z|W 2
1 (Ω) + |λ|W 1

1 (Ω)

≤ |z|W 2
1 (B4d) + |λ|W 1

1 (B4d) + |z|W 2
1 (Ω\B4d) + |λ|W 1

1 (Ω\B4d).
(4.22)

Fixing q0 with 4
3 ≥ q0 > 1, recalling that |Djω| ≤ Cd−j , recalling that ω ≡ 1 on

Bd/2, and finally applying Hölder’s inequality, we compute that

|z|W 2
1 (B4d) + |λ|W 1

1 (B4d) ≤ Cdn(1−1/q0)
(
|z|W 2

q0
(B4d) + |λ|W 1

q0
(B4d)

)
≤ Cdn(1−1/q0)‖∇g̃‖Lq0

(Ω)

≤ Cdn(1−1/q0)‖∇(ωδB + v · ∇ω)‖Lq0
(Ω)

≤ C
(
dn−2‖v‖L∞(Bd\Bd/2) + dn−1‖∇v‖L∞(Bd\Bd/2)

+ dn/2‖∇(ωδB)‖L2(B)

)
≤ C

(
dn−2‖v‖L∞(Bd\Bd/2) + dn−1‖∇v‖L∞(Bd\Bd/2)

+ dn/2−1‖δB‖L2(B) + dn/2‖∇δB‖L2(B)

)
.

(4.23)
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Next, we let dj = (4c1d)2
j−1, j ≥ 0, and Ωj = {x ∈ Ω : dj ≤ |x − x0| ≤ dj+1},

j ≥ 0. We then let Ω′
j = {x ∈ Ω : dj−1 ≤ |x − x0| ≤ dj+2, and let ωj be a smooth

cut-off function which is 1 on Ωj , 0 outside of Ω′
j , and which satisfies ‖Dkωj‖ ≤

Cd−k
j , k ≥ 0. Recall that −Δz−∇λ = 0 and note that the support of ωj does not

overlap with the support of ωδB + v · ∇ω for j ≥ 0. Thus −Δ(ωjz) − ∇(ωjλ) =
−2∇ωj∇z− zΔωj − λ∇ωj , and −∇ · (ωjz) = −ωj∇ · z− z∇ωj = −ωjM − z∇ωj .

Choosing J to be the smallest integer so that dj ≥ diam(Ω) (so that J ≈
log2

diam(Ω)
d ), we apply Hölder’s inequality and (4.18) with q0 as above to compute

that for q2 ≥ q1 ≥ q0

|z|W 2
1 (Ω\B4d) + |λ|W 1

1 (Ω\B4d) ≤
J∑

j=1

(
|ωjz|W 2

1 (Ω
′
j)
+ |ωjλ|W 1

1 (Ω
′
j)

)
≤

J∑
j=1

d
n(1−1/q0)
j

(
‖2∇ωj∇z+ zΔωj + λ∇ωj‖Lq0

(Ω)

+ ‖∇(ωjM + z∇ωj)‖Lq0
(Ω)

)
≤

J∑
j=1

d
n(1−1/q0)
j

(
d−2
j ‖z‖Lq0

(Ω′
j)
+ d−1

j ‖∇z‖Lq0
(Ω′

j)
+ d−1

j ‖λ‖Lq0
(Ω′

j)

)

+

J∑
j=1

dn−1
j |M |

≤
(
‖∇z‖Lq1

(Ω) + ‖λ‖Lq1
(Ω)

) J∑
j=1

d
−1+n(1−1/q1)
j

+ ‖z‖Lq2
(Ω)

J∑
j=1

d
−2+n(1−1/q2)
j + |M |.

(4.24)

In the next-to-last inequality we have used the fact thatM is a constant to compute

d
n(1−1/q0)
j ‖∇(ωjM)‖Lq0

(Ω) ≤ Cdn−1
j and in the last inequality we have noted that∑J

j=1 d
n−1
j is a uniformly bounded geometric sum.

We next choose q1 = 3−μ
2 , where μ is fixed and sufficiently small so that q1 > 3+ε

2+ε

with ε as in Lemma 12. Noting that q1 < n for n = 2, 3, we choose q2 = nq1
n−q1

.

Noting that −2 + (1 − 1/q2) = −1 + (1 − 1/q1) and using the Sobolev inquality
‖z‖Lq2

(Ω) ≤ C‖∇z‖Lq1
(Ω), we have

‖z‖Lq2
(Ω)

J∑
j=1

d
−2+n(1−1/q2)
j ≤ C‖∇z‖Lq1

(Ω)

J∑
j=1

d
−1+n(1−1/q1)
j .(4.25)

Note in addition that |M | ≤ ‖ωδB + v · ∇ω‖Lq1
(Ω). Inserting this inequality and

(4.25) into (4.24) while employing the regularity result (4.17) and finally employing
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Hölder’s inequality yields

|z|W 2
1 (Ω\B4d) + |λ|W 1

1 (Ω\B4d)

≤
(
‖∇z‖Lq1

(Ω) + ‖λ‖Lq1
(Ω)

) J∑
j=1

d
−1+n(1−1/q1)
j + |M |

≤ C‖g̃‖Lq1
(Ω)

J∑
j=1

d
−1+n(1−1/q1)
j + |M |

≤ C
(
‖ωδB + v · ∇ω‖Lq1

(Ω)

) J∑
j=1

d
−1+n(1−1/q1)
j

≤ C
(
d−1‖v‖Lq1

(B\Bd/2) + ‖ωδB‖Lq1
(B)

) J∑
j=1

d
−1+n(1−1/q1)
j

≤ C
(
d−1+n/q1‖v‖L∞(B\Bd/2) + dn/q1−n/2‖ωδB‖L2(B)

) J∑
j=1

d
−1+n(1−1/q1)
j .

(4.26)

Collecting (4.26) and (4.23) into (4.22) then yields that for q1 = 3−μ
2 ,

|z|W 2
1 (Ω) + |λ|W 1

1 (Ω)

≤ C
(
dn−2 + d−1+n/q1

J∑
j=1

d
−1+n(1−1/q1)
j

)
‖v‖L∞(B\Bd/2)

+ C
(
dn/q1−n/2

J∑
j=1

d
−1+n(1−1/q1)
j + dn/2−1

)
‖δB‖L2(B)

+ Cdn−1‖∇v‖L∞(Bd\Bd/2) + Cdn/2‖∇δB‖L2(Bd).

(4.27)

We easily compute from the change of variables v(dx̃) = dṽ and from (4.12), (4.14)
that d−1‖v‖L∞(B\Bd/2)+‖∇v‖L∞(Bd\Bd/2) ≤ Cd−n. Inserting this inequality along

with (4.9) into (4.27) yields

|z|W 2
1 (Ω) + |λ|W 1

1 (Ω) ≤ C
(
d−1 + dn/q1−n

J∑
j=1

d
−1+n(1−1/q1)
j

)

= Cd−1
(
1 + d1−n+n/q1

J∑
j=1

d
−1+n(1−1/q1)
j

)

= Cd−1
(
1 +

J∑
j=1

( d

dj

)1−n+n/q1)
.

(4.28)

We now recall that q1 = 3−μ
2 , so that for n = 2, 3 we have 1− n+ n/q1 > 0. Since

d
dj

∼ 2−j , the above sum is thus bounded by a constant, and we finally have

|z|W 2
1 (Ω) + |λ|W 1

1 (Ω) ≤ Cd−1.
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5. Proof of Corollary 2: Regularity of (u, p) and removal

of the regularization penalty

In this section we state precise local regularity results for the solution (u, p) on
D and use them to reabsorb the “regularization penalty” |u|C1,β(Bρ)

+ |p|C0,β(Bρ)
.

5.1. Global regularity on convex polyhedral domains. Before proving local
regularity estimates, we first state global regularity estimates on convex polyhedral
domains. In space dimension n = 2, we are able to use W 2

q × W 1
q regularity for

q > 2 along with a Sobolev imbedding in order to obtain C1,β × C0,β regularity.
This approach fails in three space dimensions, since W 2

q imbeds into C1,β only if

q > 3 but obtaining W 2
q ×W 2

q regularity for q > 3 on convex polyhedral domains

requires that all edge opening angles be less than 3π
4 . Instead we state Schauder

estimates directly. These estimates hold for any convex polyhedral domain, but
require that the compressibility g be 0 on a neighborhood of all edges of ∂Ω. We
are unaware of similar two-dimensional Schauder estimates in the literature, thus
the necessity of using different regularity results depending on space dimension.

Lemma 14. Assume that B̃ is a convex polygonal or polyhedral domain in R
n,

n = 2, 3. Let (ũ, p̃) ∈ VB̃ × XB̃ solve LB̃((ũ, p̃), (ṽ, λ̃)) = (f̃ , ṽ) + (λ̃, g̃) for all

(ṽ, λ̃) ∈ VB̃ × XB̃. Assume that
∫
B̃
g̃ dx = 0 and, in addition, that g̃ = 0 on a

neighborhood of all edges of ∂B̃ when n = 3. Then for q > n, sufficiently close to
n (depending on the maximum edge opening angle of B̃), and β = 1− n

q ,

(5.1) ‖ũ‖
C1,β(B̃)

+ ‖p̃‖
C0,β(B̃)

≤ C(‖f̃‖Lq(B̃) + ‖g̃‖W 1
q (B̃)).

Proof. First we let n = 2. Using the Sobolev imbeddings Wm+1
q (Ω) ↪→ Cm,β(B̃)

(m = 0, 1, β = 1− n
q ; cf. Lemma 5.17 of [Ada75]) and then a W 2

q ×W 1
q regularity

estimate with q > 2 but sufficiently close to 2 as in Lemma 13, we obtain

(5.2)
‖ũ‖

C1,β(B̃)
+ ‖p̃‖

C0,β(B̃)
≤ C(‖ũ‖W 2

q (B̃) + ‖p̃‖W 1
q (B̃))

≤ C(‖f̃‖Lq(B̃) + ‖g̃‖W 1
q (B̃)).

In the case n = 3, it is stated in [MR06], §6.4, that if (f̃ , g̃) ∈ [C−1,β(B̃)]3 ×
C0,β(B̃) with β > 0 sufficiently small, then (ũ, p̃) ∈ [C1,β(B̃)]3 × C0,β(B̃). When
combined with Fredholm properties of the associated operators (cf. [MR10]), this
statement implies the regularity estimate

(5.3) ‖ũ‖
[C1,β(B̃)]3

+ ‖p̃‖
C0,β(B̃)

≤ C(‖f̃‖
[C−1,β(B̃)]3

+ ‖g̃‖
C0,β(B̃)

).

Here f̃ ∈ [C−1,β(B̃)]3 if f̃ = f (0)+
∑3

j=1 ∂xj
f (j), where f (j) ∈ [C0,β(B̃)]3, j = 0, ..., 3.

That is, f̃ is a linear combination of distributional derivatives of C0,β functions;
cf. equation (71) of [MR06]. The corresponding C−1,β norm is given by the infimum

over all such representations of f̃ of the quantity
∑3

j=0 ‖f (j)‖C0,β(B̃)
(cf. [Ama00],

§2). We choose β so that (5.3) holds and then let q = n
1−β .

The last step in the proof is to use the natural Sobolev imbedding Lq(B̃) ↪→
C−1,β(B̃), which completes the proof when combined with (5.3). Negative-order
Sobolev spaces are not entirely common in the literature, however, and we are
unaware of a direct reference to this imbedding and so establish its validity as
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follows. Note first that for β �∈ N, C−1,β(Rn) is equivalent to the Besov space
B−1+β

∞,∞ (Rn) (cf. (3.5) of [Ama00]), which in turn satisfies the embedding Lq(R
n) ↪→

B−1+β
∞,∞ (Rn) (cf. [RS96], Theorem on p. 31, equation (2)). Extending f̃ boundedly

to R
3 in [Lq]

3 and employing these relationships in turn completes the proof. �

5.2. Local regularity. We prove a regularity bound for |u|C1,β(Bρ)
+ |p|C0,β(Bρ)

.

As previously let B ⊂ Ω be the local scaled reference domain containing x0, let B̃
be the corresponding fixed unit reference domain, and let ω be the cut-off function

about x0. Denote by ω̃u and ω̃p the natural transformations of ωu and ωp to B̃,
that is, ω̃u(x̃) = d−1u(dx̃)ω(dx̃) and ω̃p(x̃) = ω(dx̃)p(dx̃). Also, ũ(x̃) = d−1u(dx̃)

and p̃(x̃) = p(dx̃). Then −Δũ(x̃) + ∇p̃(x̃) = df(dx̃), and ∇ · ũ(x̃) = g(dx̃) in B̃.
Also, the assumption that ω ≡ 1 on Bc1d/2(x0) and ρ ≤ c0d for c0 sufficiently small
implies that ω ≡ 1 on Bρ. Employing Lemma 14 with q and β = 1 − q

n chosen as
above and performing elementary manipulations yields

|u|C1,β(Bρ)
+ |p|C0,β(Bρ)

≤ Cd−β
(
|ũω|

C1,β( ˜B)
+ |ω̃p|

C0,β( ˜B)

)
≤ Cd−β

(
‖ −Δ(ω̃u) +∇(ω̃p)‖Lq(B̃) + ‖∇ · (ω̃u)‖W 1

q (B̃)

)
≤ Cd−β−n/q

(
d‖f‖Lq(B) + ‖∇u‖Lq(B) + d−1‖u‖Lq(B) + ‖p‖Lq(B)

+ ‖g‖Lq(B) + d‖∇g‖Lq(B)

)
= Cd−1

(
d‖f‖Lq(B) + ‖∇u‖Lq(B) + d−1‖u‖Lq(B) + ‖p‖Lq(B)

+ ‖g‖Lq(B) + d‖∇g‖Lq(B)

)
= C

(
‖f‖Lq(B) + ‖∇g‖Lq(B) + d−1‖g‖Lq(B) + d−1‖∇u‖Lq(B)

+ d−1‖p‖Lq(B) + d−2‖u‖Lq(B)

)
.

(5.4)

Assuming, without loss of generality, that q > n is chosen so that the W 1
q × Lq

regularity estimate of Lemma 12 applies, we finally employ the regularity estimate
(4.17) on the whole domain Ω in order to obtain the following lemma.

Lemma 15. Let Bρ be as in Theorem 1 and B as above and let f and g satisfy the
assumptions in Corollary 2. Then for q > n, sufficiently close to n, and β = 1− n

q ,

the solution of (1.1) satisfies

|u|C1,β(Bρ)
+ |p|C0,β(Bρ)

≤ C(‖f‖Lq(B) + ‖g‖W 1
q (B) + d−2‖f‖W−1

q (Ω) + d−2‖g‖Lq(Ω)).
(5.5)

Remark 16. It is possible to sharpen (5.5) slightly by following Corollary 1.4 of
[SL06]. In particular, it is possible to bound d−2‖u‖Lq(Ω) by d−2(‖f‖W−2

q̃ (Ω) +

‖g‖(W 1
p̃ (Ω)/R)′) for some q̃ sufficiently large, where 1

q̃ + 1
p̃ = 1 and (W 1

p̃ (Ω)/R)
′ is

the dual space to W 1
q̃ (Ω)/R. Using such an argument allows us multiply factors of

‖f‖W−1
q (Ω) + ‖g‖Lq(Ω) by d−1 instead of d−2 in our final result. This makes little

difference in the end, since dependence on d is only logarithmic, so we do not pursue
this line of argument.



646 A. DEMLOW AND S. LARSSON

5.3. Proof of Corollary 2. Let F (f , g, d) and E be as in Corollary 2. Assume
first that E = 0. Then we may let ρ → 0 in Theorem 1, since the factor ln d

ρ is not

present. Combining the result with Lemma 3 yields (1.7).
If E �= 0, then we let ρ = ρ̃ = min(c0d, c0h, (E/F (f , g, d))1/β) in Theorem 1.

Hence ρβ ≤ E/F (f , g, d). Employing this inequality along with (5.5) yields

ρβ(|u|C1,β(Dρ)
+ |p|C0,β(Dρ)

) ≤ CE .(5.6)

Inserting (5.6) into (1.6) along with (2.5) completes the proof of (1.8), and thus of
Corollary 2.

6. Computational example

6.1. Algorithm. In our tests we employ the standard adaptive finite element al-
gorithm given by

solve → estimate → mark → refine.

Given D, d, and Dd as above, we let

η(T ) =

⎧⎪⎨⎪⎩
hT

hT + dist(T,D)
η1,∞(T ), T ∩Dd �= ∅,

hT

d
η1,∞(T ), T ∩Dd = ∅.

(6.1)

We employ a maximum strategy in the “mark” step of the algorithm. More precisely,
we mark an element T ∈ Th for refinement if

η(T ) ≥ 0.5 max
T ′∈Th

η(T ′).

Note that greater efficiency can at times be obtained by calibrating constants more
carefully in (6.1), i.e., by weighting residual contributions hT

d η1,∞(T ) from elements
T ∈ Th \ TDd

by a different constant than residual contributions from elements in
TDd

. Fine-tuning the algorithm in this fashion does not affect rates of convergence
and is explored more thoroughly in [Dem07], so we do not consider it further here.

We use the polynomial degree k = 2 in our tests. The computations were carried
out using the finite element toolbox ALBERTA (cf. [SS05]).

6.2. Test function and subdomain. Let

w(x) =

⎧⎪⎨⎪⎩
1 + 384(x− 1)(x− 0.5)5 − 64(x− 0.5)6, x ≥ 0.5,

1, 0 ≤ x < 0.5,

w(−x), x < 0.

Note that w ∈ W 3
∞(R). Letting (r, φ) be polar coordinates, we also define

γ(r, θ) = r1.5
(
3 sin(θ/2)− sin(3θ/2)

)
.

Finally, we let

u1(x, y) =
∂

∂y

(
w(x)w(y)γ(r(x, y), θ(x, y))

)
,

u2(x, y) =− ∂

∂x

(
w(x)w(y)γ(r(x, y), θ(x, y))

)
,

and

u(x, y) = (u1(x, y), u2(x, y)).



LOCAL A POSTERIORI BOUNDS FOR THE STOKES EQUATIONS 647

Then u satisfies homogenous Dirichlet boundary conditions on ∂Ω and also satisfies
∇ · u = 0 in Ω. Finally, we let

p(r, θ) = −6r−0.5 cos(θ/2).

Then −Δu+∇p = 0 for r < 0.5. For r > 0.5, we set f = −Δu+∇p. Note that the
most singular part of u behaves like r0.5, so u ∈ H3/2−ε(Ω) for any ε > 0. Also, ∇u
is not bounded near the origin, but u is in fact smooth (infinitely differentiable) on
any open subset of Ω not abutting the origin.

Figure 4. Target error ‖∇(u − uh)‖L∞(D), error estimator
maxT∈Th

η(T ), and pollution error ‖u− uh‖L∞(Ω).

D

Dd

Figure 5. Initial mesh with D = B1/4(−1, 1) and Dd =
B√

2(−1, 1) outlined (left). Computational mesh with 28974 de-
grees of freedom (right).
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6.3. Results. In Figure 4 we display a logarithmic error plot showing optimal-order
decrease of the target error quantity ‖∇(u − uh)‖L∞(D). Note that the pollution
error ‖u− uh‖L∞(Ω) only decreases at the same rate as ‖∇(u− uh)‖L∞(D), which
is suboptimal for the L∞ norm but sufficient to maintain optimality for the target
error quantity. In Figure 5 we display a computational mesh having 28974 degrees
of freedom. Note that the heaviest refinement occurs in the lower left hand corner
in the target subdomain D and also near the singularity at the origin (crack tip).
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