Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the $n$-color Rado number for the equation $x_{1}+x_{2}+ \dots +x_{k}+c =x_{k+1}$
HTML articles powered by AMS MathViewer

by S. D. Adhikari, L. Boza, S. Eliahou, J. M. Marín, M. P. Revuelta and M. I. Sanz PDF
Math. Comp. 85 (2016), 2047-2064 Request permission

Abstract:

For integers $k,n,c$ with $k,n \ge 1$, the $n$-color Rado number $R_{k}(n,c)$ is defined to be the least integer $N$, if it exists or $\infty$ otherwise, such that for every $n$-coloring of the set $\{1,2,\dots ,N\}$, there exists a monochromatic solution in that set to the equation \[ x_{1}+x_{2}+ \dots +x_{k}+c =x_{k+1}.\]

In this paper, we mostly restrict to the case $c \ge 0$, and consider two main issues regarding $R_{k}(n,c)$: is it finite or infinite, and when finite, what is its value? Very few results are known so far on either one.

On the first issue, we formulate a general conjecture, namely that $R_{k}(n,c)$ should be finite if and only if every divisor $d \le n$ of $k-1$ also divides $c$. The “only if” part of the conjecture is shown to hold, as well as the “if” part in the cases where either $k-1$ divides $c$, or $n \ge k-1$, or $k \le 7$, except for two instances to be published separately.

On the second issue, we obtain new bounds on $R_{k}(n,c)$ and determine exact formulae in several new cases, including $R_{3}(3,c)$ and $R_{4}(3,c)$. As for the case $R_{2}(3,c)$, first settled by Schaal in 1995, we provide a new shorter proof.

Finally, the problem is reformulated as a Boolean satisfiability problem, allowing the use of a SAT solver to treat some instances.

References
Similar Articles
Additional Information
  • S. D. Adhikari
  • Affiliation: Harish-Chandra Research Institute, Chhathnag Road, Jhunsi, Allahabad-211 019, India
  • MR Author ID: 23140
  • Email: adhikari@hri.res.in
  • L. Boza
  • Affiliation: Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 2, C.P. 41012 Sevilla, Spain
  • MR Author ID: 357631
  • Email: boza@us.es
  • S. Eliahou
  • Affiliation: ULCO, LMPA J. Liouville, CS 80699 – 62228 Calais Cedex, France — and — CNRS, FR 2956, France
  • MR Author ID: 216209
  • Email: eliahou@lmpa.univ-littoral.fr
  • J. M. Marín
  • Affiliation: Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain
  • MR Author ID: 772279
  • Email: jmarin@us.es
  • M. P. Revuelta
  • Affiliation: Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain
  • MR Author ID: 718653
  • Email: pastora@us.es
  • M. I. Sanz
  • Affiliation: Escuela Técnica Superior de Ingeniería de Edificación, Departamento de Matemática Aplicada I, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain
  • MR Author ID: 962033
  • Email: isanz@us.es
  • Received by editor(s): June 4, 2014
  • Received by editor(s) in revised form: December 17, 2014
  • Published electronically: September 14, 2015
  • Additional Notes: The authors acknowledge partial support from the Instituto de Matemáticas; Antonio de Castro Brzezicki de la Universidad de Sevilla during research on this work.
  • © Copyright 2015 American Mathematical Society
  • Journal: Math. Comp. 85 (2016), 2047-2064
  • MSC (2010): Primary 05A17, 11P83, 05C55, 05D10, 05-04
  • DOI: https://doi.org/10.1090/mcom3034
  • MathSciNet review: 3471118