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AN HDG METHOD FOR LINEAR ELASTICITY

WITH STRONG SYMMETRIC STRESSES

WEIFENG QIU, JIGUANG SHEN, AND KE SHI

Abstract. This paper presents a new hybridizable discontinuous Galerkin
(HDG) method for linear elasticity on general polyhedral meshes, based on a
strong symmetric stress formulation. The key feature of this new HDG method
is the use of a special form of the numerical trace of the stresses, which makes
the error analysis different from the projection-based error analyzes used for
most other HDG methods. For arbitrary polyhedral elements, we approximate
the stress by using polynomials of degree k ≥ 1 and the displacement by using
polynomials of degree k+1. In contrast, to approximate the numerical trace of
the displacement on the faces, we use polynomials of degree k only. This allows
for a very efficient implementation of the method, since the numerical trace of
the displacement is the only globally-coupled unknown, but does not degrade
the convergence properties of the method. Indeed, we prove optimal orders of
convergence for both the stresses and displacements on the elements. In the

almost incompressible case, we show the error of the stress is also optimal
in the standard L2-norm. These optimal results are possible thanks to a
special superconvergence property of the numerical traces of the displacement,
and thanks to the use of the crucial elementwise Korn’s inequality. Several
numerical results are presented to support our theoretical findings in the end.

1. Introduction

In this paper, we introduce a new hybridizable discontinuous Galerkin (HDG)
method for the system of linear elasticity:

Aσ − ε(u) = 0 in Ω ⊂ R
3,(1.1a)

∇ · σ = f in Ω,(1.1b)

u = g on ∂Ω.(1.1c)

Here, the displacement is denoted by the vector field u : Ω → R
3. The strain

tensor is represented by ε(u) := 1
2 (∇u+ (∇u)�). The stress tensor is represented

by σ : Ω → S, where S denotes the set of all symmetric matrices in R
3×3. The

compliance tensorA is assumed to be a bounded, symmetric, positive definite tensor
over S. The body force f lies in L2(Ω), the displacement of the boundary g is a

function in H1/2(∂Ω) and Ω is a polyhedral domain.
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In general, there are two approaches to design mixed finite element methods
for linear elasticity. The first approach is to enforce the symmetry of the stress
tensor weakly ([4,5,11,17,25,28,32,33,36]). In this category, is included the HDG
method considered in [22]. The other approach is to exactly enforce the symmetry
of the approximate stresses. The methods considered in [1–3,7,8,21,26,30,35,37,38]
belong to the second category, and so does the contribution of this paper. In general,
the methods in the first category are easier to implement. On the other hand, the
methods in the second category preserve the balance of angular momentum strongly
and have less degrees of freedom. Next, we compare our HDG method with several
methods of the second category.

In [21], an LDG method using strongly symmetric stresses (for isotropic linear
elasticity) was introduced and proved to yield convergence properties that remain
unchanged when the material becomes incompressible; simplexes and polynomial
approximations or degree k in all variables were used. However, as all LDG methods
for second-order elliptic problems, although the displacement converges with order
k+1, the strain and pressure converge suboptimally with order k. Also, the method
cannot be hybridized. Stress finite elements satisfying both strong symmetry and
H(div)-conformity are introduced in [1, 2]. The main drawback of these methods
is that they have too many degrees of freedom of stress elements and hybridization
is not available for them (see detailed description in [28]). In [3, 7, 8, 26, 30, 35,
37, 38], non-conforming methods using symmetric stress elements are introduced.
But, methods in [3, 7, 8, 30, 37, 38] use low order finite element spaces only (most
of them are restricted to rectangular or cubical meshes except [3, 7]). In [26], a
family of simplicial elements (one for each k ≥ 1) are developed in both two and
three dimensions. (The degrees of freedom of Pk+1(S,K) were studied in [26]
and then used to design the projection operator Π(div,S) in [27]). However, the
convergence rate of stress is suboptimal. The first HDG method for linear and
nonlinear elasticity was introduced in [34, 35]; see also the related HDG method
proposed in [39]. These methods also use simplexes and polynomial approximations
of degree k in all variables. For general polyhedral elements, this method was
recently analyzed in [23] where it was shown that the method converges optimally
in the displacement with order k+ 1, but with the suboptimal order of k+ 1/2 for
the pressure and the stress. For k = 1, these orders of convergence were numerically
shown to be sharp for triangular elements. In this paper, we prove that by enriching
the local stress space to be polynomials of degree no more than k+1, and by using
a modified numerical trace, we are able to obtain optimal order of convergence for
all unknowns. In addition, this analysis is valid for general polyhedral meshes. To
the best of our knowledge, this is so far the only result which has optimal accuracy
with general polyhedral triangulations for linear elasticity problems.

Like many hybrid methods, our HDG method provides approximation to stress
and displacement in each element and trace of displacement along interfaces of
meshes. In general, the corresponding finite element spaces are V h,W h,Mh, which
are defined to be

V h = {v ∈ L2(Ω) : v|K ∈ V (K) ∀ K ∈ Th},
W h = {ω ∈ L2(Ω) : ω|K ∈ W (K) ∀ K ∈ Th},
Mh = {μ ∈ L2(Eh) : μ|F ∈ M (F ) ∀ F ∈ Eh}.
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Here Th denotes a triangulation of the domain Ω and Eh is the set of all faces F of
all elements K ∈ Th. The spaces V (K),W (K),M(F ) are called the local spaces
which are defined on each element/face. In Table 1 we list several choices of local
spaces for different methods. In this paper, our choice of the local spaces is defined
as:

V (K) = P k(S,K), W (K) = P k+1(K), M (F ) = P k(F ).

Here, the space of vector-valued functions defined on D whose entries are polynomi-
als of total degree k is denoted by P k(D) (k ≥ 1). Similarly, P k(S,K) denotes the
space of symmetric-valued functions defined on K whose entries are polynomials of
total degree k. In addition, our method allows Th to be any conforming polyhedral
triangulation of Ω.

Note the fact that the only globally-coupled degrees of freedom are those of
the numerical trace of displacement along Eh, renders the method efficiently im-
plementable. However, the fact that the polynomial degree of the approximate
numerical traces of the displacement is one less than that of the approximate dis-
placement inside the elements, might cause a degradation in the approximation
properties of the displacement. However, this unpleasant situation is avoided alto-
gether by taking a special form of the numerical trace of the stresses inspired on
the choice taken in [29] in the framework of diffusion problems. This choice allows
for a special superconvergence of part of the numerical traces of the stresses which,
in turn, guarantees that, for k ≥ 1, the L2-order of convergence for the stress is
k + 1 and that of the displacement k + 2. So, we obtain optimal convergence for
both stress and displacement for general polyhedral elements. Let us mention that
the approach of error analysis of our HDG method is different from the traditional
projection-based error analysis in [19, 20, 22] in three aspects. First, here, we use
simple L2-projections, not the numerical trace-tailored projections typically used
for the analysis of other HDG methods. Second, we take the stabilization parame-
ter to be of order 1/h instead of of order one. And finally, we use an elementwise
Korn’s inequality (Lemma 4.1) to deal with the symmetry of the stresses.

We notice that mixed methods in [17,25] and HDG methods in [22] also achieve
optimal convergence for stress and superconvergence for displacement by post pro-
cessing. However, there are two disadvantages regarding implementation. First,
these methods enforce the stress symmetry weakly, which means that they have
a much larger space for the stress. In additon, these methods usually need to
add matrix bubble functions (δV in [17]) into their stress elements in order to
obtain optimal approximations. In fact, the construction of such bubbles on gen-
eral polyhedral elements is still an open problem. In contrast, our method avoids
using matrix bubble functions but only uses simple polynomial spaces of degree
k, k + 1. In Table 1, we compare methods which use Mh for approximating the
trace of displacement ûh on Eh. There, u�

h is a post-processed numerical solution
of displacement.

The remainder of this paper is organized as follows. In Section 2, we introduce
our HDG method and present our a priori error estimates. In Section 3, we give
a characterization of the HDG method and show the global matrix is symmetric
and positive definite. In Section 4, we give the elementwise Korn’s inequality in
Lemma 4.1, then provide a detailed proof of the a priori error estimates. In Section
5, we present several numerical examples in order to illustrate and test our method.
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Table 1. Orders of convergence for methods for which ûh ∈
M (F ) = P k(F ), k ≥ 1, and K is a tetrahedron.

method V (K) W (K) ‖σ − σh‖Th
‖ u− uh‖Th

‖u− u�
h‖Th

AFW[5] P k(R
3×3,K) P k−1(K) k k -

CGG[17] RTk(K) + δV P k(K) k + 1 k + 1 k + 2
GG[25] P k(R

3×3,K) + δV P k−1(K) k + 1 k k + 1
CS[22] P k(R

3×3,K) + δV P k(K) k + 1 k + 1 k + 2
GG[26] P k+1(S,K) P k(K) k k + 1 -
HDG-S P k(S,K) P k+1(K) k + 1 k + 2 -

2. Main results

In this section we first present the method in details and then show the main
results for the error estimates.

2.1. The HDG formulation with strong symmetry. Let us begin by intro-
ducing some notation and conventions. We adapt to our setting the notation used
in [20]. Let Th denote a conforming triangulation of Ω made of shape-regular poly-
hedral elements K. We recall that ∂Th := {∂K : K ∈ Th}, and Eh denotes the
set of all faces F of all elements. We denote by F(K) the set of all faces F of the
element K. We also use the standard notation to denote scalar, vector and tensor
spaces. Thus, if D(K) denotes a space of scalar-valued functions defined on K,
the corresponding space of vector-valued functions is D(K) := [D(K)]d and the
corresponding space of matrix-valued functions is D(K) := [D(K)]d×d. Finally,
D(S,K) denotes the symmetric subspace of D(K).

The methods we consider seek an approximation (σh,uh, ûh) to the exact so-
lution (σ,u,u|Eh

) in the finite dimensional space V h ×W h ×Mh ⊂ L2(S,Ω) ×
L2(Ω)× L2(Eh) given by

V h = {v ∈ L2(S,Ω) : v|K ∈ P k(S,K) ∀ K ∈ Th},(2.1a)

W h = {ω ∈ L2(Ω) : ω|K ∈ P k+1(K) ∀ K ∈ Th},(2.1b)

Mh = {μ ∈ L2(Eh) : μ|F ∈ P k(F ) ∀ F ∈ Eh}.(2.1c)

Here Pk(D) denotes the standard space of polynomials of degree no more than k
on D. Here we require k ≥ 1.

The numerical approximation (σh,uh, ûh) can now be defined as the solution of
the following system:

(Aσh , v)Th
+ (uh , ∇ · v)Th

− 〈ûh , vn〉∂Th
= 0,(2.2a)

(σh , ∇ω)Th
− 〈σ̂hn , ω〉∂Th

= −(f , ω)Th
,(2.2b)

〈σ̂hn , μ〉∂Th\∂Ω = 0,(2.2c)

〈ûh , μ〉∂Ω = 〈g , μ〉∂Ω,(2.2d)

for all (v,ω,μ) ∈ V h ×W h ×Mh, where

σ̂hn = σhn− τ (PMuh − ûh) on ∂Th.(2.2e)
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In fact, in Christoph Lehrenfeld’s thesis, the author defines the numerical flux in
this way for diffusion problems (see Remark 1.2.4 in [29]). This method was then an-
alyzed for diffusion recently in [31]. Here, PM denotes the standard L2-orthogonal
projection from L2(Eh) onto Mh. We write (η , ζ)Th

:=
∑n

i,j=1(ηi,j
, ζ

i,j
)Th

,

(η , ζ)Th
:=

∑n
i=1(ηi , ζi)Th

, and (η , ζ)Th
:=

∑
K∈Th

(η, ζ)K , where (η, ζ)D denotes

the integral of ηζ over D ⊂ R
n. Similarly, we write 〈η , ζ〉∂Th

:=
∑n

i=1〈ηi , ζi〉∂Th

and 〈η , ζ〉∂Th
:=

∑
K∈Th

〈η , ζ〉∂K , where 〈η , ζ〉D denotes the integral of ηζ over

D ⊂ R
n−1.

The parameter τ in (2.2e) is called the stabilization parameter. In this paper,
we assume it is a fixed positive number on all faces. It is worth mentioning that
the numerical trace (2.2e) is defined slightly different from the usual HDG setting;
see [20]. Namely, in the definition, we use PMuh instead of uh. Indeed, this is
a crucial modification in order to get the error estimate. An intuitive explanation
is that we want to preserve the strong continuity of the flux across the interfaces.
Without the projection PM , by (2.2c) the normal component of σ̂h is only weakly
continuous across the interfaces.

2.2. A priori error estimates. To state our main result, we need to introduce
some notation. We define

‖v‖L2(A,Ω) =
√
(Av,v)Ω, ∀v ∈ L2(S,Ω).

We use ‖ · ‖s,D, | · |s,D to denote the usual norm and seminorm on the Sobolev
space Hs(D). We discard the first index s if s = 0. A differential operator with
a subindex h means it is defined on each element K ∈ Th. Similarly, the norm
‖ · ‖s,Th

is the discrete norm defined as ‖ · ‖s,Th
:=

∑
K∈Th

‖ · ‖s,K . Finally, we need

an elliptic regularity assumption stated as follows. Let (φ,ψ) ∈ H2(Ω) × H1(Ω)
be the solution of the adjoint problem:

Aψ − ε(φ) = 0 in Ω,(2.3a)

∇ ·ψ = eu in Ω,(2.3b)

φ = 0 on ∂Ω.(2.3c)

We assume the solution (φ,ψ) has the following elliptic regularity property:

(2.4) ‖ψ‖1,Ω + ‖φ‖2,Ω ≤ Creg‖eu‖Ω,

The assumption holds in the case of planar elasticity with scalar coefficients on a
convex domain; see [9].

We are now ready to state our main result.

Theorem 2.1. If the meshes are quasi-uniform and τ = O( 1h ), then we have

(2.5) ‖σ − σh‖L2(A,Ω) ≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω),

for all 1 ≤ s ≤ k + 1. Moreover, if the elliptic regularity property (2.4) holds, then
we have

(2.6) ‖u− uh‖Ω ≤ Chs+1(‖u‖s+1,Ω + ‖σ‖s,Ω),

for all 1 ≤ s ≤ k+1. Here the constant C depends on the upper bound of compliance
tensor A but it is independent of the mesh size h.
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This result shows that the numerical errors for both unknowns (u,σ) are optimal.
In addition, since the only globally-coupled unknown, ûh, stays in P k(Eh), the
order of convergence for the displacement remains optimal only because of a key
superconvergence property; see the remark right after Corollary 4.2. In addition,
we restrict our result on quasi-uniform meshes to make the proof simple and clear.
This result holds for shape-regular meshes also.

2.3. Numerical approximation for nearly incompressible materials. Here,
we consider the numerical approximation of stress for isotropic nearly incompress-
ible materials.

We define isotropic materials to be those whose compliance tensor satisfies the
following Assumption 2.1.

Assumption 2.1.

(2.7) Aτ = PDτD + PT
tr(τ )

3
I3, where τD = τ − tr(τ )

3
I3,

for any τ in R
3×3, and PD and PT are two positive constants. An isotropic material

is nearly incompressible if PT is close to zero.

Theorem 2.2. If the material is isotropic (whose compliance tensor satisfies As-
sumption 2.1), PT is positive, the boundary data g = 0, the meshes are quasi-
uniform and τ = O( 1h ), then we have

(2.8) ‖σ − σh‖L2(Ω) ≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω),

for all 1 ≤ s ≤ k + 1. Here, the constant C is independent of P−1
T .

This result shows that the HDG method (2.2) is locking-free for nearly incom-
pressible materials. We emphasize that the convergence rate of stress for nearly
incompressible materials is one order higher than [5, 26] with the same finite ele-
ment space for numerical trace of displacement.

3. A characterization of the HDG method

In this section we show how to eliminate elementwise the unknowns σh and
uh from the equations (2.2) and rewrite the original system solely in terms of the
unknown ûh; see also [35]. Via this elimination, we do not have to deal with the
large indefinite linear system generated by (2.2), but with the inversion of a sparser
symmetric positive definite matrix of remarkably smaller size.

3.1. The local problems. The result on the above mentioned elimination can be
described using additional “local” operators defined as follows:

On each element K, for any λ ∈ Mh|∂K , we denote (Qλ,Uλ) ∈ V (K)×W (K)
to be the unique solution of the local problem:

(AQλ,v)K + (Uλ,∇ · v)K = 〈λ,v · n〉∂K ,(3.1a)

−(∇ ·Qλ,ω)K + 〈τPMUλ,ω〉∂K = 〈τλ,ω〉∂K ,(3.1b)

for all (v,ω) ∈ V (K)×W (K).
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On each element K, we also denote (Q
S
λ,USλ) ∈ V (K) × W (K) to be the

unique solution of the local problem:

(AQ
S
f ,v)K + (USf ,∇ · v)K = 0,(3.2a)

−(∇ ·Q
S
f ,ω)K + 〈τPMUSf ,ω〉∂K = −(f ,ω)K ,(3.2b)

for all (v,ω) ∈ V (K)×W (K).
It is easy to show the two local problems are well-posed. In addition, due to the

linearity of the global system (2.2), the numerical solution (σh,uh, ûh) satisfies

(3.3) σh = Qûh +Q
S
f , uh = Uûh +USf .

3.2. The global problem. For the sake of simplicity, we assume the boundary
data g = 0. Then, the HDG method (2.2) is to find (σh,uh, ûh) ∈ V h×W h×M0

h

satisfying

(Aσh , v)Th
+ (uh , ∇ · v)Th

− 〈ûh , vn〉∂Th
= 0,(3.4a)

−(∇ · σh , ω)Th
+ 〈τ (PMuh − ûh) , ω〉∂Th

= −(f , ω)Th
,(3.4b)

〈σhn− τ (PMuh − ûh) , μ〉∂Th\∂Ω = 0,(3.4c)

for all (v,ω,μ) ∈ V h ×W h ×M0
h, where M0

h = {μ ∈ Mh : μ|∂Ω = 0}.
Combining (3.4c) with (3.3), we have that for all μ ∈ M0

h,

(3.5) 〈(Qûh)n− τ (PMUûh − ûh),μ〉∂Th
= 〈(Q

S
f)n− τPMUSf ,μ〉∂Th

.

Up to now we can see that we only need to solve the reduced global linear system
(3.5) first, then recover (σh,uh) by (3.3) element by element. Next we show that
the global system (3.5) is in fact symmetric positive definite.

3.3. A characterization of the approximate solution. The above results sug-
gest the following characterization of the numerical solution of the HDG method.

Theorem 3.1. The numerical solution of the HDG method (2.2) satisfies

σh = Qûh +Q
S
f , uh = Uûh +USf .

If we assume the boundary data g = 0, then ûh ∈ M0
h is the solution of

(3.6) ah(ûh,μ) = 〈(Q
S
f)n− τPMUSf ,μ〉∂Th

, ∀μ ∈ M0
h,

where

ah(ûh,μ) = (AQûh,Qμ)Th
+ 〈τ (PMUûh − ûh),PMUμ− μ〉∂Th

.

In addition, the bilinear operator ah(λ,λ) is positive definite.

Proof. In order to show (3.6) is true, we only need to show that for all λ,μ ∈ M0
h,

then

ah(λ,μ) = 〈(Qλ)n− τ (PMUλ− λ),μ〉∂Th
.
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According to (3.1), we have

(AQm,v)Th
+ (Um,∇ · v)Th

= 〈m,v · n〉∂Th
,(3.7a)

(∇ ·Qm,ω)Th
= 〈τ (PMUm−m),ω〉∂Th

,(3.7b)

for all (v,ω) ∈ V h ×W h, m ∈ M0
h. Then, we have

〈(Qλ)n− τ (PMUλ− λ),μ〉∂Th

=〈μ, (Qλ)n〉∂Th
− 〈τ (PMUλ− λ),μ〉∂Th

=(AQμ,Qλ)Th
+ (Uμ,∇ ·Qλ)Th

− 〈τ (PMUλ− λ),μ〉∂Th
by (3.7a)

=(AQμ,Qλ)Th
+ (∇ ·Qλ,Uμ)Th

− 〈τ (PMUλ− λ),μ〉∂Th

=(AQμ,Qλ)Th
+ 〈τ (PMUλ− λ),Uμ− μ〉∂Th

by (3.7b)

=(AQμ,Qλ)Th
+ 〈τ (PMUλ− λ),PMUμ− μ〉∂Th

=ah(λ,μ).

So, we can conclude that (3.6) holds. We end the proof by showing the bilinear
operator ah(·, ·) is positive definite.

If ah(λ,λ) = 0 for some λ ∈ M0
h, from the previous result we have

Qλ = 0, PMUλ− λ|∂Th
= 0.

We apply integration by parts on (3.1a), we have

〈ε(Uλ) , v〉∂K = 0, ∀v ∈ V (K).

This implies that ε(Uλ)|K = 0 for all K ∈ Th. So, for any K ∈ Th, there are
aK , bK ∈ R

3 such that Uλ|K = aK ×x+bK . Since k ≥ 1, we have PMUλ = Uλ.
Combining this result with the fact that PMUλ−λ|∂Th

= 0 and λ|∂Ω = 0, we can
conclude that Uλ ∈ C0(Ω) and Uλ|∂Ω = 0.

Finally, let us consider two adjacent elements K1,K2 with the interface F =
K̄1 ∩ K̄2. In addition, we assume that on Ki, Uλ can be expressed as

Uλ = ai × x+ bi, i = 1, 2.

We claim that a1 = a2 and b1 = b2. This fact can be shown by considering the
continuity of the function on the interface F . We omit the detailed proof since it
only involves elementary linear algebra.

From this result we conclude that there exist a, b ∈ R
3 such that Uλ = a×x+b

in Ω. By the fact that Uλ|∂Ω = 0, we can conclude that Uλ = 0, hence λ = 0.
This completes the proof. �

Remark 3.2. In Theorem 3.1, we assume the boundary data g = 0. Actually, if g
is not zero, we can still obtain the same linear system as ah in Theorem 3.1 by the
same treatment of boundary data in [16].

4. Error analysis

In this section we provide detailed proofs for our a priori error estimates — The-
orem 2.1 and Theorem 2.2. We use the elementwise Korn’s inequality (Lemma 4.1),
which is novel and crucial in error analysis. We useΠV ,ΠW to denote the standard

L2-orthogonal projection onto V h,W h, respectively. In addition, we denote

eσ = ΠV σ − σh, eu = ΠWu− uh, eû = PMu− ûh.
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In the analysis, we are going to use the following classical results:

‖u−ΠWu‖Ω ≤ Chs‖u‖s,Ω 0 ≤ s ≤ k + 2,(4.1a)

‖σ −ΠV σ‖Ω ≤ Cht‖σ‖t,Ω 0 ≤ t ≤ k + 1,(4.1b)

‖u− PMu‖Eh
≤ Chs− 1

2 ‖u‖s,Ω, 1 ≤ s ≤ k + 1,(4.1c)

‖u−ΠWu‖∂K ≤ Chs− 1
2 ‖u‖s,K , 1 ≤ s ≤ k + 2,(4.1d)

‖σn−ΠV σn‖∂K ≤ Cht− 1
2 ‖σ‖t,K , 1 ≤ t ≤ k + 1,(4.1e)

‖v‖∂K ≤ Ch− 1
2 ‖v‖K , ∀ v ∈ P s(K),(4.1f)

‖σn− PM (σn)‖∂K ≤ Cht− 1
2 ‖σ‖t,K , 1 ≤ t ≤ k + 1.(4.1g)

The above results are due to standard approximation theory of polynomials, trace
inequality.

Let εh denote the discrete symmetric gradient operator, such that for any K ∈
Th, εh|K = ε|K . It is well known (see Theorem 2.2 in [14]) that the kernel of the
operator εh(·) is:

ker εh = Υh := {Λ ∈ L2(Ω), Λ|K = BKx+ bK , BK ∈ A, bK ∈ R
3,K ∈ Th}.

Here, A denotes the set of all anti-symmetric matrices in R
3×3.

In the analysis, we need the following elementwise Korn’s inequality:

Lemma 4.1. Let K ∈ Th be a generic element with size hK and Υ(K) := Υh|K .
Then for any function v ∈ W (K), we have

inf
Λ∈Υ(K)

‖∇(v +Λ)‖K ≤ C‖ε(v)‖K ,

Here C is independent of the size hK . In addition, if K is a tetrahedron, the above
inequality holds for any v ∈ H1(K).

Proof. Let K̂ denote the reference tetrahedron element and v ∈ H1(K). The

mapping from K̂ to K is x = AK x̂+ cK where AK is a non-singular matrix and
cK ∈ R

3.
We define v̂, which is the pull back of v on K̂, by

A−�
K v̂(x̂) = v(x) ∀x̂ ∈ K̂.

So, we have

∇v(x) = ∇(A−�
K v̂)(x) = A−�

K (∇v̂)(x).

The last equality above is due to the fact that every component of A−�
K is constant.

It is easy to see that

(∇v̂)(x) = ∇̂v̂(x̂)A−1
K .

So, we have

A−�
K ∇̂v̂(x̂)A−1

K = ∇v(x).
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By taking the symmetric part of both sides of the above equation, we have

A−�
K ε̂v̂(x̂)A−1

K = εv(x).(4.2)

According to Theorem 2.3 in [14], the following inequality holds:

inf
̂Λ∈Υ( ̂K)

‖v̂ + Λ̂‖1, ̂K ≤ C‖ε̂(v̂)‖0, ̂K .

So, there is Λ̂ = B
̂K x̂+ b

̂K with B
̂K ∈ A and b

̂K ∈ R
3, such that

‖∇̂(v̂ + Λ̂)‖0, ̂K ≤ C‖ε̂(v̂)‖0, ̂K .(4.3)

We define

Λ(x) = A−�
K Λ̂(x̂) ∀x ∈ K.

It is easy to see that

∇Λ = A−�
K ∇̂Λ̂A−1

K = A−�
K B

̂KA−1
K ∈ A.

So, Λ ∈ Υ(K). Then, by standard scaling argument with (4.2), (4.3) and the shape
regularity of the meshes, we can conclude that the proof for arbitrary tetrahedron
element is complete.

Now, we consider the case of arbitrary shape regular element K, which can be
hexahedron, prism or pyramid. Let v = (v1, v2, v3)

� ∈ W h|K . It is well known
that for any 1 ≤ i, j, k ≤ 3,

∂j(∂kvi) = ∂j(εik(v)) + ∂k(εij(v))− ∂i(εjk(v)).

Here, εik(v) = (ε(v))ik. Consequently, we have

‖∇(∂jvi − ∂ivj)‖0,K ≤ C‖∇ε(v)‖0,K ≤ Ch−1
K ‖ε(v)‖0,K .

We define an anti-symmetric matrix BK by

(BK)ij =
1

2|K|

∫
K

(∂jvi − ∂ivj)dx 1 ≤ i, j ≤ 3.

We take Λ = BKx, which is obviously in Υ(K). Then, we have∫
K

(∇(v −Λ)− ε(v)) dx =

∫
K

(∇v − ε(v)) dx−BK

∫
K

1 dx = 0.

By the Poincaré inequality, we have

‖∇(v −Λ)− ε(v)‖0,K ≤ ChK

∑
1≤i,j≤3

‖∇(∂jvi − ∂ivj)‖0,K ≤ C‖ε(v)‖0,K .

We immediately have that

‖∇(v −Λ)‖0,K ≤ C‖ε(v)‖0,K .

This completes the proof. �
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Step 1 (The error equation). We first present the error equation for the analysis.

Lemma 4.2. Let (u,σ), (uh,σh, ûh) solve (1.1) and (2.2), respectively, then we
have

(Aeσ , v)Th
+ (eu , ∇ · v)Th

− 〈eû , vn〉∂Th
= (A(ΠV σ − σ) , v)Th

,(4.4a)

(eσ , ∇ω)Th
− 〈σn− σ̂hn , ω〉∂Th

= 0,(4.4b)

〈σn− σ̂hn , μ〉∂Th\∂Ω = 0,(4.4c)

〈eû , μ〉∂Ω = 0,(4.4d)

for all (v,ω,μ) ∈ V h ×W h ×Mh.

Proof. We notice that the exact solution (u,σ,u|Eh
) also satisfies the equation

(2.2). Hence, after simple algebraic manipulations, we get that

(AΠV σ , v)Th
+ (ΠWu , ∇ · v)Th

− 〈PMu , vn〉∂Th

= −(A(σ −ΠV σ) , v)Th
+ 〈u− PMu , vn〉∂Th

− (u−ΠWu , ∇ · v)Th
,

(ΠV σ , ∇ω)Th
− 〈σn , ω〉∂Th

= −(f , ω)Th
−(σ −ΠV σ , ∇ω)Th

〈σn , μ〉∂Th\∂Ω = 0,

〈PMu , μ〉∂Ω = −〈u− PMu , μ〉∂Ω,

for all (v,w,μ) ∈ V h×W h×Mh. Notice that the local spaces satisfy the following
inclusion property:

∇ · V (K) ⊂ W (K), ε(W (K)) ⊂ V (K), V (K)n|F ⊂ M (F ).

Hence by the property of the L2-projection, the above system can be simplified as:

(AΠV σ , v)Th
+ (ΠWu , ∇ · v)Th

− 〈PMu , vn〉∂Th
= −(A(σ −ΠV σ) , v)Th

,

(ΠV σ , ∇ω)Th
− 〈σn , ω〉∂Th

= −(f , ω)Th
,

〈σn , μ〉∂Th\∂Ω = 0,

〈PMu , μ〉∂Ω = 0,

for all (v,w,μ) ∈ V h×W h×Mh. Here we applied the fact that (σ−ΠV σ , ∇ω)Th

= (σ −ΠV σ , ε(ω))Th
= 0. If we now subtract the equations (2.2), we obtain the

result. This completes the proof. �

Step 2 (Estimate of eσ). We are now ready to obtain our first estimate.

Proposition 4.1. We have

(Aeσ , eσ)Th
+〈τ (PMeu−eû) , PMeu−eû〉∂Th

= −(A(σ−ΠV σ) , eσ)Th
+T1−T2,

where T1, T2 are defined as:

T1 := 〈eu − eû , σn− (ΠV σ)n〉∂Th
,

T2 := 〈eu − eû , τ (PM (u−ΠWu))〉∂Th
.

Proof. By the error equation (4.4d) we know that eû = 0 on ∂Ω. This implies that

〈eû , σn− σ̂hn〉∂Ω = 0.



80 WEIFENG QIU, JIGUANG SHEN, AND KE SHI

Now taking (v,w,μ) = (eσ, eu, eû) in error equations (4.4a)–(4.4c) and adding
these equations together with the above identity, we obtain, after some algebraic
manipulation,

(4.5) (Aeσ , eσ)Th
+ 〈eu−eû , eσn− (σn− σ̂hn)〉∂Th

= −(A(σ−ΠV σ) , eσ)Th
.

Now we work with the second term on the left-hand side,

eσn− (σn− σ̂hn) = ΠV σn− σhn− σn+ σ̂hn

by the definition of the numerical trace (2.2e),

= −(σ −ΠV σ)n− τ (PMuh − ûh),

= −(σ −ΠV σ)n+ τ (PMeu − eû)− τ (PM (ΠWu− u)),

the last step is by the definition of eu, eû. Inserting the above identity into (4.5)
and moving terms around, we have

(Aeσ , eσ)Th
+ 〈eu − eû , τ (PMeu − eû)〉∂Th

= −(A(σ −ΠV σ) , eσ)Th
+ T1 − T2.

Finally, notice that on each F ∈ ∂Th, τ (PMeu − eû)|F ∈ M(F ), so we have

〈eu − eû , τ (PMeu − eû)〉∂Th
= 〈PMeu − eû , τ (PMeu − eû)〉∂Th

.

This completes the proof. �

From the above energy argument we can see that we need to bound T1, T2 in
order to have an estimate for eσ. Next we present the estimates for these two
terms:

Lemma 4.3. If the parameter τ = O(h−1), we have

T1 ≤ Cht‖σ‖t,Ω (‖τ 1
2 (PMeu − eû)‖∂Th

+ ‖ε(eu)‖Th
),

T2 ≤ Chs−1‖u‖s,Ω ‖τ 1
2 (PMeu − eû)‖∂Th

,

for all 1 ≤ t ≤ k + 1, 1 ≤ s ≤ k + 2.

Proof. We first bound T2. We have

T2 = 〈eu − eû , τ (PM (u−ΠWu))〉∂Th
= 〈PMeu − eû , τ (PM (u−ΠWu))〉∂Th

= 〈PMeu − eû , τ (u−ΠWu)〉∂Th

≤ ‖τ 1
2 (PMeu − eû)‖∂Th

τ
1
2 ‖u−ΠWu‖∂Th

≤ Chs(τ
1
2h− 1

2 )‖τ 1
2 (PMeu − eû)‖∂Th

‖u‖s,Ω,

for all 1 ≤ s ≤ k + 2. In the last step we applied the inequality (4.1d).
The estimate for T1 is much more sophisticated. We first split T1 into two parts:

T1 = T11 + T12,

where

T11 := 〈PMeu − eû , σn− (ΠV σ)n〉∂Th
,

T12 := 〈eu − PMeu , σn− (ΠV σ)n〉∂Th
.
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For T11, we simply apply the Cauchy-Schwarz inequality,

T11 ≤ ‖τ 1
2 (PMeu − eû)‖∂Th

τ−
1
2 ‖σn− (ΠV σ)n‖∂Th

≤ Cht(τ−
1
2h− 1

2 )‖σ‖t,Ω‖τ
1
2 (PMeu − eû)‖∂Th

,

for all 1 ≤ t ≤ k + 1. Here we used the inequality (4.1e).
Now we work on T12. Using the L2-orthogonal property of the projection PM ,

we can write

T12 = 〈eu − PMeu , σn− (ΠV σ)n〉∂Th

= 〈eu − PMeu , σn〉∂Th

= 〈eu − PMeu , σn− PM (σn)〉∂Th
,

by the fact that ΠV σn|F ,PM (σn)|F ∈ M (F ) for all F ∈ ∂Th,

T12 = 〈eu , σn− PM (σn)〉∂Th
, since PMeu|F ∈ M(F ), ∀F ∈ ∂Th,

= 〈eu +Λ , σn− PM (σn)〉∂Th
,

where Λ ∈ L2(Ω) is any vector-valued function in Υh. Notice here the last step
holds only if Υh|F ∈ M (F ), ∀F ∈ ∂Th. This is true if k ≥ 1. Next, on each
K ∈ Th, if we denote u to be the average of u over K, then we have

〈eu +Λ , σn− PM (σn)〉∂K = 〈eu +Λ− (eu +Λ) , σn− PM (σn)〉∂K
≤ ‖eu +Λ− (eu +Λ)‖∂K‖σn− PM (σn)‖∂K ,

by the standard inequalities (4.1f), (4.1g),

〈eu +Λ , σn− PM (σn)〉∂K ≤ Cht−1‖σ‖t,K‖eu +Λ− (eu +Λ)‖K
≤ Cht‖σ‖t,K‖∇(eu +Λ)‖K ,

for all 1 ≤ t ≤ k + 1. The last step is by the Poincaré inequality. Notice that the
constant C in the above inequality is independent of Λ ∈ Υh. Now applying the
Lemma 4.1, yields,

〈eu +Λ , σn− PM (σn)〉∂K ≤ Cht‖σ‖t,K‖ε(eu)‖K .

Summing over all K ∈ Th, we have

T12 ≤ Cht‖σ‖t,Ω‖ε(eu)‖Th
,

for all 1 ≤ t ≤ k + 1. We complete the proof by combining the estimates for
T2, T11, T12. �

Combining Lemma 4.3 and Proposition 4.1, we obtain the following estimate.

Corollary 4.1. If the parameter τ = O(h−1), then we have

‖eσ‖2L2(A,Ω) + ‖τ 1
2 (PMeu − eû)‖2∂Th

≤ C
(
h2t‖σ‖2t,Ω + h2(s−1)‖u‖2s,Ω + ht‖σ‖t,Ω‖ε(eu)‖Th

)
,

for all 1 ≤ s ≤ k + 2, 1 ≤ t ≤ k + 1, the constant C is independent of h and the
exact solution.
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The proof is omitted. One can obtain the above result by the Cauchy-Schwarz
inequality and the weighted Young’s inequality. Finally, we can finish the estimate
for eσ by the following estimate for ε(eu):

Lemma 4.4. Under the same assumption as Theorem 4.1, we have

‖ε(eu)‖Th
≤ C

(
ht‖σ‖t,Ω + ‖eσ‖L2(A,Ω) + ‖τ 1

2 (PMeu − eû)‖∂Th

)
,

for all 0 ≤ t ≤ k + 1.

Proof. Notice that ε(eu) ∈ V h, so we can take v = ε(eu) in the error equation
(4.4a), after integrating by parts, we have:

(Aeσ , ε(eu))Th
− (∇eu , ε(eu))Th

+ 〈eu − eû , ε(eu)n〉∂Th

= (A(ΠV σ − σ) , ε(eu))Th
.

Notice that ε(eu) ∈ V h and it is symmetric, so we have

(∇eu , ε(eu))Th
= ‖ε(eu)‖2Th

, 〈eu−eû , ε(eu)n〉∂Th
= 〈PMeu−eû , ε(eu)n〉∂Th

.

Inserting these two identities into the first equation, we have

‖ε(eu)‖2Th
= (Aeσ , ε(eu))Th

+ 〈PMeu − eû , ε(eu)n〉∂Th

+ (A(σ −ΠV σ) , ε(eu))Th

≤ C‖eσ‖L2(A,Ω)‖ε(eu)‖Th
+ Cτ−

1
2 ‖τ 1

2 (PMeu − eû)‖∂Th
‖ε(eu)n‖∂Th

+ Cht‖σ‖t,Ω‖ε(eu)‖Th

≤ C‖eσ‖L2(A,Ω)‖ε(eu)‖Th
+ Cτ−

1
2h− 1

2 ‖τ 1
2 (PMeu − eû)‖∂Th

‖ε(eu)‖Th

+ Cht‖σ‖t,Ω‖ε(eu)‖Th
by inverse inequality (4.1f).

The proof is complete by the assumption τ = O(h−1). �

Finally, combining Lemma 4.4 and Theorem 4.1, after simple algebraic manipu-
lation, we have our first error estimate:

Corollary 4.2. Under the same assumption as in Theorem 4.1, we have

‖eσ‖L2(A,Ω) + ‖τ 1
2 (PMeu − eû)‖∂Th

+ ‖ε(eu)‖Th
≤ C(ht‖σ‖t,Ω + hs−1‖u‖s,Ω),

for all 1 ≤ t ≤ k + 1, 1 ≤ s ≤ k + 2, the constant C is independent of h and the
exact solution.

One can see that by taking t = k + 1, s = k + 2, both of the errors eσ, ε(eu)
obtain optimal convergence rate. Moreover, if we take τ = 1/h, we readily obtain
the superconvergence property

‖h 1
2 (PMeu − eû)‖∂Th

≤ C hk+2,

for smooth solutions. It is this superconvergence property, the one which allows us
to obtain the optimal convergence in the stress and, as we are going to see next, in
the displacement.
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Step 3 (Estimate of eu). Next we use a standard duality argument to get an esti-
mate for eu. First we present an important identity.

Proposition 4.2. Assume that (φ,ψ) ∈ H2(Ω) × H1(Ω) is the solution of the
adjoint problem (2.3a), we have

‖eu‖2Ω = (Aeσ , ψ −ΠV ψ)Th
− (A(σ −ΠV σ) , ΠV ψ)Th

− 〈eσn− (σn− σ̂hn) , φ−ΠWφ〉∂Th
+ 〈eu − eû , (ψ −ΠV ψ)n〉∂Th

.

Proof. By the dual equation (2.3), we can write

‖eu‖2Ω = (eu , ∇ ·ψ)Th
+ (eσ , Aψ − ε(φ))Th

= (eu , ∇ ·ψ)Th
+ (Aeσ , ψ)Th

− (eσ , ∇φ)Th

= (eu , ∇ ·ΠV ψ)Th
+ (Aeσ , ΠV ψ)Th

− (eσ , ∇ΠWφ)Th

+ (Aeσ , ψ −ΠV ψ)Th
+ (eu , ∇ · (ψ −ΠV ψ))Th

− (eσ , ∇(φ−ΠWφ))Th
,

integrating by parts for the last two terms, applying the property of the L2-
projections, yields

‖eu‖2Ω = (eu , ∇ ·ΠV ψ)Th
+ (Aeσ , ΠV ψ)Th

− (eσ , ∇ΠWφ)Th

+ (Aeσ , ψ −ΠV ψ)Th
+ 〈eu , (ψ −ΠV ψ)n〉∂Th

− 〈eσn , φ−ΠWφ〉∂Th
.

Taking v := ΠV ψ and ω := ΠWφ in the error equations (4.4a) and (4.4b), re-
spectively, and inserting these two equations into the above identity, we obtain

‖eu‖2Ω = 〈eû , ΠV ψn〉∂Th
− (A(σ −ΠV σ) , ΠV ψ)Th

− 〈σn− σ̂hn , ΠWφ〉∂Th

+ (Aeσ , ψ −ΠV ψ)Th
+ 〈eu , (ψ −ΠV ψ)n〉∂Th

− 〈eσn , φ−ΠWφ〉∂Th
.

Next, note that by the regularity assumption, (ψ,φ) ∈ H2(Ω) × H1(Ω), so the
normal component of ψ and φ are continuous across each face F ∈ Eh. By the
equation (2.2c), the normal component of σ̂h is also strongly continuous across
each face F ∈ Eh. This implies that

−〈eû , ψn〉∂Th
= −〈eû , ψn〉∂Ω = 0, by (4.4d),

〈σn− σ̂hn , φ〉∂Th
= 〈σn− σ̂hn , φ〉∂Ω = 0 by (2.3c).

Adding these two zero terms into the previous equation and rearranging the terms,
we obtain the expression as presented in the proposition. �

As a consequence of the result just proved, we can obtain our estimate of eu.

Corollary 4.3. Under the same assumption as in Theorem 4.1, in addition, if the
elliptic regularity property (2.4) holds, then we have

‖eu‖Ω ≤ C(ht+1‖σ‖t,Ω + hs‖u‖s,Ω),

for 1 ≤ t ≤ k + 1, 1 ≤ s ≤ k + 2.
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Proof. We will estimate each of the terms on the right-hand side of the identity in
Proposition 4.2.

(Aeσ , ψ −ΠV ψ)Th
≤ Ch‖eσ‖L2(A,Ω)‖ψ‖1,Ω ≤ Ch‖eσ‖L2(A,Ω)‖eu‖Ω,

by the projection property (4.1b) and the regularity assumption (2.4).

(A(σ −ΠV σ) , ΠV ψ)Th
= (A(σ −ΠV σ) , ψ)Th

− (A(σ −ΠV σ) , ψ −ΠV ψ)Th

= (σ −ΠV σ , Aψ−Aψ)Th
−(A(σ −ΠV σ) , ψ−ΠV ψ)Th

≤ Ch‖σ −ΠV σ‖Ω‖ψ‖1,Ω
≤ Ch‖σ −ΠV σ‖Ω‖eu‖Ω
≤ Cht+1‖σ‖t,Ω‖eu‖Ω,

for all 0 ≤ t ≤ k+1. Here we applied the Galerkin orthogonal property of the local
L2-projection ΠV and the regularity assumption (2.4).

For the third term, by the definition of the numerical trace (2.2e), we have

〈eσn− (σn− σ̂hn) , φ−ΠWφ〉∂Th
= −〈(σ −ΠV σ)n) , φ−ΠWφ〉∂Th

+ 〈σ̂hn− σhn , φ−ΠWφ〉∂Th

= −〈(σ −ΠV σ)n) , φ−ΠWφ〉∂Th

− 〈τ (PMuh − ûh) , φ−ΠWφ〉∂Th

= −〈(σ −ΠV σ)n) , φ−ΠWφ〉∂Th

+ 〈τ (PMeu − eû) , φ−ΠWφ〉∂Th

+ 〈τ (PM (u−ΠWu) , φ−ΠWφ〉∂Th
.

To bound the third term, we only need to bound the above three terms individually.

〈(σ −ΠV σ)n) , φ−ΠWφ〉∂Th
≤ ‖(σ −ΠV σ)n)‖∂Th

‖φ−ΠWφ‖∂Th

≤ Cht− 1
2 ‖σ‖t,Ωh

3
2 ‖φ‖2,Ω,

by the standard inequalities , (4.1d), (4.1e),

≤ Cht+1‖σ‖t,Ω‖eu‖Ω,

for all 1 ≤ t ≤ k + 1. The last step is due to the regularity assumption (2.4).
Similarly, we apply the Cauchy-Schwarz inequality and (4.1d) for the other two

terms:

〈τ (PMeu − eû) , φ−ΠWφ〉∂Th
≤ Cτ

1
2 ‖τ 1

2 (PMeu − eû)‖∂Th
‖φ−ΠWφ‖∂Th

≤ Cτ
1
2h

3
2 ‖τ 1

2 (PMeu − eû)‖∂Th
‖φ‖2,Ω

≤ Cτ
1
2h

3
2 ‖τ 1

2 (PMeu − eû)‖∂Th
‖eu‖Ω.

〈τ (PM (u−ΠWu) , φ−ΠWφ〉∂Th
≤ τ‖PM (u−ΠWu)‖∂Th

‖φ−ΠWφ‖∂Th

≤ τ‖u−ΠWu‖∂Th
‖φ−ΠWφ‖∂Th

≤ Cτhs− 1
2 ‖u‖s,Ωh

3
2 ‖φ‖2,Ω

≤ Cτhs+1‖u‖s,Ω‖eu‖Ω,

for all 1 ≤ s ≤ k + 2.
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Finally, for the last term in Proposition 4.2, we can write:

〈eu − eû , (ψ −ΠV ψ)n〉∂Th
= 〈PMeu − eû , (ψ −ΠV ψ)n〉∂Th

+ 〈eu − PMeu , (ψ −ΠV ψ)n〉∂Th
.

For the first term, we can apply a similar argument as in the previous steps to
obtain:

〈PMeu − eû , (ψ −ΠV ψ)n〉∂Th
≤ Cτ−

1
2h

1
2 ‖τ 1

2 (PMeu − eû)‖∂Th
‖eu‖Ω.

For the second term, we apply the same argument for the estimate of T12 in the
proof of Lemma 4.3 and obtain:

〈eu − PMeu , (ψ −ΠV ψ)n〉∂Th
≤ Ch‖ψ‖1,Ω‖ε(eu)‖Th

≤ Ch‖ε(eu)‖Th
‖eu‖Ω.

Finally, if we take τ = O(h−1) and combine all the above estimates and Proposition
4.2, we obtain the estimate in Lemma 4.3. �

As a consequence of Proposition 4.2, Lemma 4.3, we can obtain Theorem 2.1
by a simple triangle inequality and the approximation property of the projections
ΠW ,ΠV (4.1a), (4.1b).

Step 4 (Proof of locking-free result). We can now give the proof of Theorem 2.2.

Proof of Theorem 2.2. In what follows, we assume that s is some arbitrary real
number in [1, k + 1] and C is a positive constant independent of PT and s. We
recall that eσ = ΠV σ − σh, eu = ΠWu− uh, eû = PMu− ûh.

For any B ∈ R
3×3, we denote BD := B − 1

3 trB I3. So, we have

eσ = eσ
D +

1

3
treσI3.

By Assumption 2.1 and Theorem 2.1, we have

(4.6) ‖P
1
2

Deσ
D‖L2(Ω) ≤ ‖eσ‖L2(A,Ω) ≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω).

In order to bound ‖treσ‖L2(Ω) independently of P−1
T , we would like to use the

well-known result [12, 13] that for any q ∈ L2(Ω) with
∫
Ω
qdx = 0, we have

‖q‖L2(Ω) ≤ C0 sup
η∈H1

0(Ω)

(q,∇ · η)Ω
‖η‖H1(Ω)

,(4.7)

for C0 solely depends on the domain Ω. By the assumption g = 0, taking v = I3 in
(4.4a), we have that

∫
Ω
tr(Aeσ)dx = 0. According to Assumption 2.1 and the fact

that PT > 0, we have
∫
Ω
treσdx = 0.

For any η ∈ H1
0(Ω), we have

(
1

3
treσ,∇ · η)Ω =− (∇(

1

3
treσ),η)Th

+ 〈(1
3
treσ)n,η〉∂Th

=− (∇(
1

3
treσ),ΠWη)Th

+ 〈(1
3
treσ)n,η〉∂Th

=(
1

3
treσ,∇ ·ΠWη)Th

− 〈(1
3
treσ)n,ΠWη − η〉∂Th

=(eσ − eσ
D,∇ΠWη)Th

− 〈(eσ − eσ
D)n,ΠWη − η〉∂Th

.
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By (4.4b) with ω = ΠWη, we have

(
1

3
treσ,∇ · η)Ω

=〈σn− σ̂hn , ΠWη〉∂Th
− (eσ

D,∇ΠWη)Th
− 〈(eσ − eσ

D)n,ΠWη − η〉∂Th

=T1 + T2,

where

T1 :=〈σn− σ̂hn , ΠWη〉∂Th
− 〈eσn,ΠWη − η〉∂Th

,

T2 :=− (eσ
D,∇ΠWη)Th

+ 〈eσDn,ΠWη − η〉∂Th
.

For the bound of T1, by (2.2c) and the fact that η = 0 on ∂Ω, we have

〈σn− σ̂hn , ΠWη〉∂Th

= 〈σn , ΠWη − η〉∂Th
− 〈σ̂hn , ΠWη − PMη〉∂Th

= 〈σn− σ̂hn , ΠWη − η〉∂Th

= 〈(σ −ΠV σ)n,ΠWη − η〉∂Th
+ 〈eσn,ΠWη − η〉∂Th

+ 〈τ (PMuh − ûh),ΠWη − η〉∂Th
.

So, we have

T1 = 〈(σ −ΠV σ)n,ΠWη − η〉∂Th

+ 〈τ (PMuh − ûh),ΠWη − η〉∂Th
.

(4.8)

According to Corollary 4.2, we have

(4.9) ‖τ 1
2 (PMeu − eû)‖∂Th

≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω).

By the definition of eû and eu, we have

‖τ 1
2 (PMuh − ûh)‖2∂Th

≤ 2‖τ 1
2 (PMeu − eû)‖2∂Th

+ 2‖τ 1
2PM (u−ΠWu)‖2∂Th

≤ 2‖τ 1
2 (PMeu − eû)‖2∂Th

+ 2‖τ 1
2 (u−ΠWu)‖2∂Th

.

Now applying Young’s inequality and (4.9), (4.1a) we obtain:

(4.10) ‖τ 1
2 (PMuh − ûh)‖∂Th

≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω).

According to (4.8), (4.10), we have

T1 ≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω)‖η‖H1(Ω).(4.11)
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For the bound of T2, we have

T2 =− (eσ
D,∇ΠWη)Th

+ 〈eσDn,ΠWη − η〉∂Th

=− (eσ
D,∇(ΠWη − η))Th

+ 〈eσDn,ΠWη − η〉∂Th
− (eσ

D,∇η)Th

=(∇ · eσD,ΠWη − η)Th
− (eσ

D,∇η)Th

=− (eσ
D,∇η)Th

.

By (4.6), we have

T2 ≤ Chs(‖u‖s+1,Ω + ‖σ‖s,Ω)‖η‖H1(Ω).(4.12)

Finally, combining the estimates (4.6), (4.7), (4.11), (4.12), we have

‖eσ‖L2(Ω) ≤ C1h
s(‖u‖s+1,Ω + ‖σ‖s,Ω)‖η‖H1(Ω).

Here the constant C1 is independent of P−1
T . �

5. Numerical experiment

In this section, we display numerical experiments in 2D to verify the error es-
timates provided in Theorem 2.1. We also display numerical results showing that
our method does not exhibit volumetric-locking when the material tends to be in-
compressible. In addition, our numerical results suggest that the error estimates
provided in Theorem 2.2 for the incompressible limit case are sharp.

We carry out the numerical experiments on the domain Ω = (0, 1) × (0, 1) and
monitor the errors ‖ΠV σ−σh‖L2(Ω) and ‖ΠWu−uh‖L2(Ω).To explore the depen-
dence of the convergence properties of our method with respect to the form of the
meshes, we consider two types of meshes, as shown in Figure 1.

Figure 1. An example of Mesh-1(left) and Mesh-2(right) with h = 0.354

5.1. Order of convergence of our HDG method. In this section, we consider
an isotropic material in 2D with plain stress condition and take the Poisson Ratio
ν = 0.3 and the Young’s Modulus E = 1:

Aσ =
1 + ν

E
σ − ν

E
tr(σ)I2.(5.1)

In particular, we test our HDG method on a smooth solution u = (u1, u2) in [35],
such that:

(5.2) u1 = 10 sin(πx)(1− x)(y − y2)(1− 0.5y), u2 = 0.
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We set f and g to satisfy the above exact solution (5.2). To explore the convergence
properties of our method, we conduct numerical experiments for k = 0, 1, 2, 3 and
take τ = O( 1h ). The history of convergence is displayed in Table 2. We observe
that when k ≥ 1, our method converges with order k + 1 in the stress and order
k + 2 in the displacement for both Mesh-1 and Mesh-2. In addition, the numerical
results suggest that our method does not converge to the exact solution when k = 0.
To aid visualization, we also plot the convergence sequence of the displacement in
Figure 2.

Table 2. History of convergence for the exact solution (5.2) where
h = 0.177.

‖ΠV σ − σh‖L2(Ω) ‖ΠW u − uh‖L2(Ω) ‖ΠV σ − σh‖L2(Ω) ‖ΠW u − uh‖L2(Ω)

Mesh-1 Mesh-2
k Mesh Error Order Error Order Error Order Error Order

0
h 9.81E-02 - 3.74E-03 - 4.20E-01 - 8.28E+12 -

h/2 9.50E-02 0.05 3.69E-02 0.02 2.14E-02 0.97 1.05E+12 2.98
h/4 9.42E-02 0.01 3.68E-03 0.00 1.05E-02 1.02 1.41E+11 2.90
h/8 9.41E-02 0.00 3.68E-03 0.00 5.22E-03 1.01 1.79E+10 2.98
h/16 9.41E-02 0.00 3.68E-03 0.00 8.17E-01 -3.97 1.39E+12 -6.28

1
h 2.26E-03 - 1.88E-03 - 2.04E-03 - 9.41E-04 -

h/2 7.24E-03 1.65 3.57E-04 2.40 5.90E-03 1.79 1.45E-04 2.70
h/4 2.09E-03 1.79 5.51E-05 2.69 1.58E-03 1.92 2.00E-05 2.86
h/8 5.60E-04 1.90 7.60E-06 2.86 4.08E-04 1.95 2.62E-06 2.93
h/16 1.45E-04 1.95 9.93E-07 2.94 7.01E-06 2.00 3.35E-07 2.97

2
h 1.24E-03 - 5.52E-05 - 1.23E-03 - 3.53E-05 -

h/2 1.57E-04 2.98 3.74E-06 3.88 1.57E-04 2.97 2.25E-06 3.97
h/4 1.97E-05 2.99 2.43E-07 3.95 1.97E-05 2.99 1.42E-07 3.99
h/8 2.46E-06 3.00 1.54E-08 3.97 2.47E-06 3.00 8.90E-09 3.99
h/16 3.08E-07 3.00 9.73E-10 3.99 3.10E-07 3.00 5.58E-10 4.00

3
h 5.26E-05 - 1.45E-06 - 5.33E-05 - 1.27E-06 -

h/2 3.51E-06 3.90 4.90E-08 4.89 3.54E-06 3.91 4.36E-08 4.86
h/4 2.26E-07 3.96 1.59E-09 4.95 2.29E-07 3.95 1.43E-09 4.93
h/8 1.42E-08 3.98 5.12E-11 4.96 1.45E-08 3.98 4.59E-11 4.96

5.2. Locking experiments. In this section, we consider an isotropic material in
2D with plane-strain condition:

Aσ =
1 + ν

E
σ − (1 + ν)ν

E
tr(σ)I2,(5.3)

where ν is the Poisson Ratio and E is the Young’s Modulus. This example satisfies

Assumption 2.1 with PD = 1+ν
E and PT = (1+ν)

E (1− 2ν). By sending ν → 0.5, this
material is nearly incompressible. We consider an example in [10, 35] by setting f
and g to satisfy the exact solution:

u1 = −x2(x− 1)2y(y − 1)(2y − 1),(5.4)

u2 = y2(y − 1)2x(x− 1)(2x− 1),(5.5)

with E = 3. We conduct numerical experiments for this problem for k = 1, 2, 3 with
τ = O( 1h ). The history of convergence is displayed in Table 3 and the convergence
sequence of the stress and the displacement is plotted in Figure 3. By increasing ν
from 0.49 to 0.49999, we observe the same order of convergence which is optimal in
both stress and displacement. In addition, our numerical results demonstrate that
the convergence properties of our method do not depend on the type of meshes.
Altogether, this observation exactly aligns with the error estimates provided in
Theorem 2.2 and it justifies that our HDG method is free from volumetric-locking.
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Figure 2. Convergence sequence of the displacement on Mesh-2
for k = 1. Left: u1

h(quadratic), Right: û
1
h(linear)
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Figure 3. Convergence sequence of the stress and the
displacement on Mesh-1 for k = 1 and ν = 0.49999.
Left: σ11

h (linear), right u1
h(quadratic).
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Table 3. History of convergence for the exact solution (5.4) where
h = 0.354.

‖ΠV σ − σh‖L2(Ω) ‖ΠW u − uh‖L2(Ω) ‖ΠV σ − σh‖L2(Ω) ‖ΠW u − uh‖L2(Ω)

ν = 0.49
Mesh-1 Mesh-2

k Mesh Error Order Error Order Error Order Error Order

1
h 4.12E-03 - 1.14E-04 - 4.12E-03 - 9.15E-04 -

h/2 1.22E-03 1.75 2.53E-05 2.17 1.27E-03 1.70 1.47E-05 2.64
h/4 3.32E-04 1.88 4.76E-06 2.41 3.40E-04 1.90 2.00E-06 2.87
h/8 8.69E-05 1.93 8.17E-07 2.54 8.64E-05 1.98 2.58E-07 2.96
h/16 2.22E-05 1.97 1.23E-07 2.73 2.17E-05 1.99 3.27E-08 2.98

2
h 9.33E-04 - 2.00E-05 - 9.37E-04 - 1.24E-05 -

h/2 1.29E-04 2.85 1.65E-06 3.60 1.32E-04 2.83 9.42E-07 3.71
h/4 1.65E-05 2.97 1.17E-07 3.82 1.64E-05 3.00 6.01E-08 3.97
h/8 2.07E-06 3.00 7.76E-09 3.92 2.05E-06 3.00 3.77E-09 3.99
h/16 2.58E-07 3.00 4.98E-10 3.96 2.56E-07 3.00 2.36E-10 4.00

3
h 1.44E-04 - 1.65E-06 - 1.57E-04 - 1.53E-06 -

h/2 9.78E-06 3.88 6.18E-08 4.74 9.87E-06 3.99 5.11E-08 4.90
h/4 6.27E-07 3.96 2.09E-09 4.89 6.19E-07 3.99 1.68E-09 4.93
h/8 3.95E-08 3.99 6.77E-11 4.95 3.89E-08 3.99 5.43E-11 4.95
h/16 2.49E-09 3.99 2.21E-12 4.94 2.44E-09 4.00 1.74E-12 4.97

ν = 0.4999
Mesh-1 Mesh-2

k Mesh Error Order Error Order Error Order Error Order

1
h 4.12E-03 - 1.13E-04 - 4.13E-03 - 9.05E-04 -

h/2 1.22E-03 1.76 2.52E-05 2.17 1.26E-03 1.71 1.45E-05 2.64
h/4 3.31E-04 1.88 4.72E-06 2.41 3.39E-04 1.90 1.98E-06 2.87
h/8 8.66E-05 1.93 8.11E-07 2.54 8.61E-05 1.98 2.55E-07 2.96
h/16 2.21E-05 1.97 1.22E-07 2.73 2.16E-05 1.99 3.23E-08 2.98

2
h 9.32E-04 - 1.98E-05 - 9.34E-04 - 1.22E-05 -

h/2 1.29E-04 2.86 1.64E-06 3.60 1.32E-04 2.83 9.31E-07 3.72
h/4 1.64E-05 2.97 1.16E-07 3.82 1.64E-05 3.00 5.94E-08 3.97
h/8 2.06E-06 3.00 7.70E-09 3.92 2.04E-06 3.00 3.73E-09 3.99
h/16 2.57E-07 3.00 4.95E-10 3.96 2.55E-07 3.00 2.33E-10 4.00

3
h 1.44E-04 - 1.63E-06 - 1.57E-04 - 1.51E-06 -

h/2 9.75E-06 3.88 6.09E-08 4.74 9.83E-06 3.99 5.03E-08 4.90
h/4 6.25E-07 3.96 2.06E-09 4.89 6.17E-07 3.99 1.66E-09 4.93
h/8 3.94E-08 3.99 6.72E-11 4.95 3.87E-08 3.99 5.39E-11 4.94
h/16 2.48E-09 3.99 2.20E-12 4.93 2.43E-09 3.99 1.73E-12 4.96

ν = 0.49999
Mesh-1 Mesh-2

k Mesh Error Order Error Order Error Order Error Order

1
h 4.12E-03 - 1.13E-04 - 4.13E-03 - 9.05E-04 -

h/2 1.22E-03 1.76 2.52E-05 2.17 1.26E-03 1.71 1.45E-05 2.64
h/4 3.31E-04 1.88 4.72E-06 2.41 3.39E-04 1.90 1.98E-06 2.87
h/8 8.66E-05 1.93 8.11E-07 2.54 8.61E-05 1.98 2.55E-07 2.96
h/16 2.21E-05 1.97 1.22E-07 2.73 2.16E-05 1.99 3.23E-08 2.98

2
h 9.32E-04 - 1.98E-05 - 9.34E-04 - 1.22E-05 -

h/2 1.29E-04 2.86 1.64E-06 3.60 1.32E-04 2.83 9.31E-07 3.72
h/4 1.64E-05 2.97 1.16E-07 3.82 1.64E-05 3.00 5.94E-08 3.97
h/8 2.06E-06 3.00 7.70E-09 3.92 2.04E-06 3.00 3.73E-09 3.99
h/16 2.57E-07 3.00 4.95E-10 3.96 2.55E-07 3.00 2.33E-10 4.00

3
h 1.44E-04 - 1.63E-06 - 1.57E-04 - 1.50E-06 -

h/2 9.75E-06 3.88 6.09E-08 4.74 9.83E-06 3.99 5.03E-08 4.90
h/4 6.25E-07 3.96 2.06E-09 4.89 6.17E-07 3.99 1.66E-09 4.93
h/8 3.94E-08 3.99 6.72E-11 4.95 3.86E-08 3.99 5.39E-11 4.94
h/16 2.48E-09 3.99 2.20E-12 4.93 2.44E-09 3.98 1.74E-12 4.95
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