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GRADIENT-BASED METHOD WITH ACTIVE SET STRATEGY

FOR �1 OPTIMIZATION

WANYOU CHENG AND YU-HONG DAI

Abstract. In this paper, we propose an identification function and develop
an active set identification technique for solving the �1 optimization prob-
lem. Such a technique has a strong ability to accurately identify the zero
components in a neighbourhood of an isolated stationary point without strict
complementarity conditions. Based on the active set identification technique,
we propose a gradient-based method for the �1 optimization problem. To ac-
celerate the algorithm, a subspace Barzilai-Borwein steplength and a subspace
exact steplength are developed, respectively. Under appropriate conditions, we
show that the method with the nonmonotone line search technique is globally
convergent. Numerical experiments with compressive sensing problems show
that our approach is competitive with several known methods for the standard
�2-�1 problem.

1. Introduction

In this paper, we consider the optimization problem

(1.1) minφ(x) := f(x) + μ‖x‖1,
where f is continuously differentiable, μ > 0 and ‖ · ‖1 is the one-norm. A special
case of (1.1), that has attracted much attention in signal/image denoising and data
mining/classification, is the well-known �2-�1 problem

(1.2) min
x∈Rn

1

2
‖Ax− b‖22 + μ‖x‖1,

where A ∈ Rm×n is dense (usually m ≤ n), b ∈ Rm and n is large.
Recently, there have been many approaches for solving (1.1). One of the most

popular methods for solving problem (1.2) is the class of iterative shrinkage-
thresholding algorithms (ISTA), where each iteration involves a matrix-vector mul-
tiplication involving A and AT followed by a shrinkage/soft-threshold step; see, e.g.,
[18,24]. To accelerate the convergence, a two-step ISTA (TWISTA) algorithm was
developed in [7] and the sequential subspace optimization techniques was added
to ISTA [23] (nevertheless, global nonasymptotic rate of convergence has not been
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established for the methods in [7, 23]). Beck and Teboulle [5] constructed a faster
shrinkage-thresholding algorithm, called FISTA, that keeps its simplicity of ISTA
but provides a better global convergence rate. To improve practical performances of
the above methods, Wright et al. [40] introduced the sparse reconstruction by sep-
arable approximation (SpaRSA) algorithm for solving (1.1). The rules for choosing
the parameter and the line search are quite different. Hager et al. [29] analyzed the
convergence rate of SpaRSA and proposed an improved version of SpaRSA based on
a cyclic version of the Barzilai-Borwein iteration [4] and an adaptive choice for the
reference function value in the line search. Hale et al. [28] proposed a fixed point
continuation (FPC) algorithm that embeds the soft-thresholding (ISTA) algorithm
[18, 24] in a continuation strategy. Wen et al. [38] improved the performance of
FPC by adding an active set (AS) step and proposed an abridged version of the
active-set algorithm FPC AS for solving (1.2). The global convergence of FPC AS
is shown in [39].

Other algorithms for the l1 minimization include alternating direction method of
multipliers SALSA [1,9]; coordinatewise descent methods [36]; interior point meth-
ods [12, 30, 35]; projected gradient methods [25]; Bergman iterative regularization
based methods [41]; gradient methods [32] for minimizing the more general function
J(x) +H(x), where J is nonsmooth, H is smooth, and both are convex; smoothed
penalty algorithm (SPA) [2, 3]; second-order methods [26, 31]. We refer to papers
[6, 10, 20] for recent advances in this area.

In this paper, we shall propose an identification function and an active set iden-
tification technique. Such a technique has a strong ability to accurately identify
the zero components in a neighbourhood of an isolated stationary point of (1.1)
without strict complementarity conditions. Based on this active set identification
technique, we propose a gradient-based method for solving (1.1). Specifically, at
each iteration, the active variables and free variables are defined by the identifi-
cation technique; we take dk = −xk to update some active variables, while using
a gradient-based method to update the free variables and some active variables.
Hence the method is distinct from the existing methods [38, 39] in that it uses a
first-order method to obtain a working index set and utilizes a second-order method
to solve a smooth subproblem defined by the working index set. To accelerate the
convergence of the algorithm, a subspace Barzilai-Borwein steplength and a sub-
space exact steplength are provided, respectively. The use of the gradient method
reduces the storage requirement of our method. Hence, the method can be used to
solve large-scale problems. In addition, the method has the following advantages:
(a) The method is suitable for solving a more general problem of (1.1); (b) Rapid
changes in the active set are allowed; (c) The method based on a nonmonotone line
search technique [27] is showed to be globally convergent; (d) The main compu-
tational burden at each iteration involves matrix-vector multiplication involving A
and AT ; (e) Preliminary numerical experiments show that the method is effective
and competitive with the state-of-the-art methods.

The remainder of this paper is organized as follows. We propose the algorithm
and the steplength strategy in Section 2. In Section 3, we establish the global
convergence of the algorithm. Some numerical results are reported in Section 4 and
conclusions are made in the last section.

Throughout the paper, ‖.‖ denotes the Euclidean norm of vectors. AT and xT

denote the collections of columns and entries of A and x, whose indices are in an
index set T ⊂ {1, 2, 3, · · · , n}, respectively.
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2. Motivation and properties

In this section, we propose a new active-set algorithm for solving (1.1). We begin
with some notations. Let x̄ be a stationary point of (1.1). We define the active set
G(x̄) to be the set of indices corresponding to the zero components and the inactive
set T (x̄) to be support of x̄, i.e.,

G(x̄) = {i : x̄i = 0} and T (x̄) = {i : x̄i �= 0}.
The active set is further subdivided into two sets

G+(x̄) = {i ∈ G(x̄) : |gi(x̄)| < μ} and G0(x̄) = {i ∈ G(x̄) : |gi(x̄)| ≥ μ},
where gi(x̄) is the i-th component of the gradient vector of f at x̄. Then the first-
order necessary condition for x̄ to solve (1.1) is equivalent to the following system:{

gi(x̄) + αiμ = 0, if i ∈ G(x̄),
gi(x̄) + μ sgn(x̄i) = 0, if i ∈ T (x̄),

where αi ∈[-1,1] is a constant and sgn(t) : R → R is the sign function defined by

sgn(t) =

⎧⎨
⎩

1, if t > 0,
0, if t = 0,
−1, if t < 0.

In general, the efficiency of an active-set algorithm heavily depends on how fast the
correct support of the solution point can be identified.

In what follows, we introduce an active-set identification technique to approx-
imate the correct support. To this aim, we briefly recall the general definition of
identification function [11].

Definition 2.1. A continuous function ρ(x) : Rn → R+ is called an identification
function for x̄ with respect to a sequence {xk} if ρ(x̄) = 0 and

lim
xk→x̄, xk �=x̄

ρ(xk)

‖xk − x̄‖ = +∞.

For y ∈ Rn and μ > 0, define the shrinkage operator

S(y, μ) := sgn(y)
max{|y| − μ, 0},
where 
 denotes componentwise multiplication. Denoting

ψν(x) = S(x− νg(x), νμ)− x,

where ν is some positive constant, we shall consider the following identification
function for problem (1.1),

ρ(x) = min{c1, c2
√
‖ψν(x)‖},

where c1 and c2 are both positive constants. Based on this identification function,
we give the following approximations A(x) to G(x̄) and F(x) to T (x̄), respectively,

A(x) = {i : |xi| ≤ ρ(x)} and F(x) = {i : |xi| > ρ(x)}.
The following theorem shows that ρ(x) is an identification function for x̄ indeed

and the set A(x) can accurately identify the zero components in a certain neigh-
borhood of an isolated stationary point of (1.1). Hence, the set A(x) is a good
estimate of G(x̄). We make the following assumptions on the objective function.
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Assumption 2.1.

(i) The level set Ω := {x ∈ Rn : φ(x) ≤ φ(x0)} is bounded;
(ii) f is continuously differentiable on an open set N containing Ω.

Theorem 2.1. Suppose that Assumption 2.1 holds. If x̄ is an isolated stationary
point of problem (1.1) and satisfies the strong second-order sufficient optimality
conditions, then there exists a neighborhood N(x̄) of x̄ such that

A(x) = G(x̄), ∀ x ∈ N(x̄).

Proof. For any constant ν > 0, we see by Lemma 2 in [36] that ψν(x) = 0 if and
only if x is a stationary point of problem (1.1). Furthermore, by P4 and P5 of
Lemma 2.1 in [39], we get

‖ψν1
(x)‖ ≥ ‖ψν2

(x)‖ and
‖ψν1

(x)‖
ν1

≤ ‖ψν2
(x)‖

ν2

for any x ∈ Rn and for all ν1 ≥ ν2 > 0. Hence we have ‖ψ1(x)‖ ≤ ‖ψν(x)‖ for ν > 1

and ‖ψ1(x)‖ ≤ ‖ψν(x)‖
ν for ν ∈ (0, 1]. It follows that ‖ψ1(x)‖ ≤ ‖ψν(x)‖max(1, 1

ν )
for all ν > 0. By Lemma 4.7 in [39], we know that there exists some constant τ̄ > 0
such that

‖x− x̄‖ ≤ τ̄‖ψ1(x)‖.
Thus we have for all x ∈ Rn,

‖x− x̄‖ ≤ τ̄‖ψν(x)‖max(1,
1

ν
).

Therefore, we can obtain

lim
x→x̄, x�=x̄

ρ(x)

‖x− x̄‖ ≥ 1

max(1, 1
ν )

min(c1, c2
√
‖ψν(x)‖)

τ̄‖ψν(x)‖
→ +∞, as x → x̄,

because ψν(x) → 0 as x → x̄. This implies that ρ(x) is an identification function
for x̄. Then the statement follows from Lemma 4.15 in [39]. �

In what follows, we are going to develop an active set gradient-based method
for solving (1.1). At first, we define the search direction. Let xk ∈ Ω be the k-th
iteration. For simplicity, we let Ak = A(xk) and Fk = F(xk). Define the direction
dk = (dkAk , d

k
Fk)

T by

(2.1) dki = −λk∇φi(x
k), ∀i ∈ F(xk),

where αmin ≤ λk ≤ αmax, αmin and αmax are positive constants and ∇φi(z) =
∂φ(x)
∂xi

|x=z. To define dkAk , we partition the active set Ak into two parts:

Ak
1 = {i ∈ Ak : |gki | ≤ μ},

Ak
2 = {i ∈ Ak : |gki | > μ},

where gki = gi(x
k). It is easy to see that Ak

1 is the index set of variables that
approximately satisfies the first-order necessary conditions. Thus, it is reasonable
for us to fix those variables with indices in Ak

1 to 0. On the other hand, noting that
Ak

2 is the index set of variables that violate the first-order necessary conditions, we
further subdivided Ak

2 into two subsets Ak
21 = {i ∈ Ak

2 : xk
i = 0} and Ak

22 = {i ∈
Ak

2 : xk
i �= 0}. We consider the direction of the form −(gki − μ sgn(gki )) for those
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variables with indices in Ak
21 and −∇φi(x

k) for those variables with indices in Ak
22

to improve the corresponding components. Hence, we define the direction dkAk by

dki = −xk
i , i ∈ Ak

1 ,(2.2)

dki = −(gki − μ sgn(gki )), i ∈ Ak
21,(2.3)

dki = −(gki + μ sgn(xk
i )), i ∈ Ak

22.(2.4)

It is easy to see that

(2.5) |dki | = |gki | − μ > 0, ∀i ∈ Ak
21,

and

(2.6) |dki | ≥ |gki | − μ > 0, ∀i ∈ Ak
22.

If the unit steplength is accepted, we will have that xk+1
i = 0 for all i ∈ Ak

1

(see Algorithm 2.1). We can prove that the dk defined by (2.1)–(2.4) is a descent
direction of φ at xk (see Theorem 2.5). In addition, in our numerical experiments,
we observed that the dkAk

21
performs better than taking the normal negative gradient

for this part.
The following theorem shows that dk = 0 if and only if the iteration point xk is

a stationary point of problem (1.1).

Theorem 2.2. Let dk be determined by (2.1)–(2.4). Then, dk = 0 if and only if
xk is a stationary point of problem (1.1).

Proof. Let dk = 0. By (2.5) and (2.6), we obtain Ak
2 = ∅. If xk

i = 0, then it must
hold that

i ∈ Ak
1 ,

which implies that |gki | ≤ μ. If xk
i �= 0, by (2.2), then it must hold that

i ∈ Fk.

This together with (2.1) implies that ∇φi(x
k) = 0. Therefore, dk = 0 implies that

xk is a stationary point of φ.
Suppose that xk is a stationary point of problem (1.1). Then we have ρ(xk) = 0.

Consequently, we have

Ak = {i : xk
i = 0} and Fk = {i : xk

i �= 0}.

Furthermore, we have Ak
2 = ∅. From (2.1)–(2.4), we immediately get that dk = 0

since xk is a stationary point of problem (1.1). The proof is completed. �

The following theorem shows that if xk → x∗ and dk → 0, then x∗ is a stationary
point of problem (1.1).

Theorem 2.3. Assume that xk → x∗ and dk → 0, where dk is determined by
(2.1)–(2.4). Then x∗ is a stationary point of problem (1.1).

Proof. Taking into account that the number of distinct sets Ak
1 , Ak

21, Ak
22, Fk is

finite, there exists a subsequence that (without loss of generality, we label again
{xk}) such that index sets Ak

1 , Ak
21, Ak

22, Fk are constant and hence we can write

Ak
1 = A1, Ak

21 = A21, Ak
22 = A22 and Fk = F .
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If ρ(x∗) = 0, then x∗ is a stationary point of problem (1.1) and the conclusion is
clear. Assume that ρ(x∗) �= 0. By the continuity of g(x) and the assumption that
limk→∞ dk = 0, we have

lim
k→∞

μ sgn(xk
i ) = −gi(x

∗) �= 0, ∀i ∈ A22.

Thus, we get that

(2.7) lim
k→∞

sgn(xk
i ) = −sgn(gi(x

∗)) �= 0, ∀i ∈ A22.

We consider two cases for each i ∈ A22. In the first case, suppose that x∗
i �= 0. By

the assumption that xk
i → x∗

i �= 0 and the preserving sign property of the limit, we
get

lim
k→∞

sgn(xk
i ) = sgn(x∗

i ).

By the continuity of g(x), the assumption that limk→∞ dk = 0 and the last equality,
we have

0 = lim
k→∞

−dki = lim
k→∞

gi(x
k) + μ sgn(xk

i ) = gi(x
∗) + μ sgn(x∗

i ) = ∇φi(x
∗).

In the second case, suppose that x∗
i = 0. Again, by the continuity of g(x), the

assumption that limk→∞ dk = 0 and (2.7), we have

0 = lim
k→∞

−dki = lim
k→∞

gi(x
k) + μ sgn(xk

i ) = gi(x
∗)− μ sgn(gi(x

∗)),

which implies that |gi(x∗)| = μ. Since dk → 0 and xk → x∗, by the definition of F ,
A1, A21, A22 and the continuity of ρ(x), we get the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗
i �= 0 and ∇φi(x

∗) = 0, if i ∈ F ,

x∗
i = 0 and |gi(x∗)| ≤ μ, if i ∈ A1,

x∗
i = 0 and |gi(x∗)| = μ, if i ∈ A21,

x∗
i �= 0, ∇φi(x

∗) = 0 or x∗
i = 0, |gi(x∗)| = μ, if i ∈ A22,

which shows that x∗ is a stationary point of problem (1.1). �

The next two theorems show that dk is a descent direction of φ at xk provided
xk is not a stationary point of problem (1.1).

Theorem 2.4. Let dk be determined by (2.1)–(2.4). Then, we have

(2.8)
∑
i∈Fk

−(∇φk
i )

2 +
∑
i∈Ak

1

(gki + μ sgn(xk
i )) d

k
i +

∑
i∈Ak

2

−(dki )
2 ≤ 0.

Furthermore, the equality holds if and only if xk is a stationary point of problem
(1.1).

Proof. To get (2.8), it suffices to prove

(2.9) (gki + μ sgn(xk
i )) d

k
i ≤ 0, ∀i ∈ Ak

1 .

If xk
i = 0, then dki = 0 and the conclusion is clear. If dki = −xk

i �= 0, by |gki | ≤ μ,
we have

gki + μ sgn(xk
i ) =

{
gki + μ ≥ 0 if xk

i > 0,

gki − μ ≤ 0, if xk
i < 0.

Thus, we get (2.9).
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Suppose that xk is a stationary point of problem (1.1). Then we have ρ(xk) = 0,

Ak = {i : xk
i = 0}, Fk = {i : xk

i �= 0} and Ak
2 = ∅.

Furthermore, we get

∇φk
i = 0, ∀i ∈ Fk and dki = 0, ∀i ∈ Ak

1 .

Thus, the left-hand side of the inequality (2.8) is equal to zero. On the other hand,
suppose that the left-hand side of the inequality (2.8) is equal to zero. By (2.5),
(2.6) and the assumption, we have Ak

2 = ∅ and

(2.10) ∇φk
i = 0, ∀i ∈ Fk and (gki + μ sgn(xk

i )) d
k
i = 0, ∀i ∈ Ak

1 .

If xk
i = 0, then it must hold

i ∈ Ak
1 ,

which implies that |gki | ≤ μ. If xk
i �= 0, then it must hold that

i ∈ Fk ∪Ak
1 ,

which implies that ∇φi(x
k) = 0 by (2.2) and (2.10). This shows that xk is a

stationary point of problem (1.1). The proof is completed. �

The following theorem shows that dk is a descent direction of φ at xk provided
xk is not a stationary point of problem (1.1).

Theorem 2.5. Suppose that xk is not a stationary point of problem (1.1). Then
the direction dk determined by (2.1)–(2.4) is a descent direction of φ at xk, i.e.,
there is a positive constant ᾱ such that

φ(xk + αdk) < φ(xk), ∀α ∈ (0, ᾱ).

Proof. By the definition of dk and (2.5), we have

φ(xk + αdk)− φ(xk)

= f(xk + αdk)− f(xk) + μ(‖xk + αdk‖1 − ‖xk‖1)

= αg(xk)Tdk + μ

n∑
i=1

(|xk
i + αdki | − |xk

i |) + o(α)

≤
∑

i∈Fk∪Ak
1∪Ak

22

(αgki d
k
i + μ|xk

i + αdki | − μ|xk
i |) + α

∑
i∈Ak

21

(gki d
k
i + μ|dki |) + o(α)

= α
∑

i∈Fk∪Ak
22

(gki d
k
i + μdki sgn(x

k
i )) + α

∑
i∈Ak

21

(gki d
k
i + μ|dki |)

+
∑
i∈Ak

1

(αgki d
k
i + μ|(1− α)xk

i | − μ|xk
i |) + o(α)

≤ α
∑
i∈Fk

− (dki )
2

αmax
+α

∑
i∈Ak

22

−(dki )
2 + α

∑
i∈Ak

21

(
gki (−gki + μ sgn(gki )) + μ(|gki |−μ)

)

+α
∑
i∈Ak

1

(gki d
k
i − μ|xk

i |) + o(α)
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= α
∑
i∈Fk

− (dki )
2

αmax
+ α

∑
i∈Ak

22

−(dki )
2 + α

∑
i∈Ak

21

(−(gki )
2 + 2μ|gki | − μ2)

+α
∑
i∈Ak

1

(gki d
k
i − μ sgn(xk

i )x
k
i ) + o(α)

= α
∑
i∈Fk

− (dki )
2

αmax
+ α

∑
i∈Ak

22

−(dki )
2 + α

∑
i∈Ak

21

−(|gki | − μ)2

+α
∑
i∈Ak

1

(gki d
k
i + μ sgn(xk

i )d
k
i ) + o(α)

= α
∑
i∈Fk

− (dki )
2

αmax
+ α

∑
i∈Ak

2

−(dki )
2 + α

∑
i∈Ak

1

(gki + μ sgn(xk
i ))d

k
i + o(α).

In the above, the first inequality uses the triangle equality for each i ∈ Ak
21, the

third equality is due to (2.2) and the fact that for any i ∈ Fk ∪Ak
22,

(2.11) |xk
i + αdki | − |xk

i | =
{
αdki , if xk

i > 0,

−αdki , if xk
i < 0,

= αdki sgn(x
k
i )

as α → 0. Since xk is not a stationary point of problem (1.1), we immediately get
the conclusion by Theorem 2.4. The proof is completed. �

Based on the above discussion, we propose an active set gradient-based method
for solving (1.1) as follows.

Algorithm 2.1 (Active set gradient-based method).

Step 0. Given an initial point x0 ∈ Rn and positive constants M , η ∈ (0, 1)
and δ ∈ (0, 1). Set k := 0.
Step 1. Perform the convergence test and terminate with an approximate
solution xk if the stopping criterion is satisfied.
Step 2. Compute dk by (2.1)–(2.4).
Step 3. Determine αk := max{ηj , j = 0, 1, . . .} satisfying

(2.12) φ(xk + αkdk) ≤ φk
max − δ(αk‖dk‖)2,

where φk
max := max{φ(xk−j) : 0 ≤ j ≤ min(k,M − 1)}.

Step 4. Let the next iterate be xk+1 := xk + αkdk.
Step 5. Set k := k + 1 and go to Step 1.

Since φk
max ≥ φ(xk), Theorem 2.5 implies that the condition (2.12) must hold

after a finite number of reductions of αk. Consequently, Algorithm 2.1 is well-
defined.

To accelerate the active set gradient-based method, we shall propose a subspace
Barzilai-Borwein steplength and a subspace exact steplength, respectively. To this
aim, we briefly recall the Barzilai-Borwein method (see, e.g., [4, 16]). Consider the
unconstrained minimization problem

min
x∈Rn

h(x),

where h : Rn → R is continuously differentiable. The Barzilai-Borwein method is
defined by

xk+1 = xk − αk
BB∇h(xk),
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where the scalar αk
BB is given by

(2.13) αk
BB =

‖sk−1‖2
(sk−1)T yk−1

,

where αk
BB is called the Barzilai-Borwein steplength, sk−1 = xk−xk−1 and yk−1 =

∇h(xk) − ∇h(xk−1). The basic idea of Barzilai-Borwein (BB) [4] method is to
use the diagonal matrix D(α) = 1

αI, where I denotes the identity matrix, to ap-

proximate the Hessian ∇2h(xk) by imposing a certain quasi-Newton condition on
D(α):

(2.14) αk
BB = arg min

α∈R
‖D(α)sk−1 − yk−1‖2.

By straightforward calculations and (2.14), we obtain (2.13). Due to its easy im-
plementation, numerical efficiency and low storage requirement, BB-type methods
have widely been used in many applications such as box constrained optimization
[8, 15], nonlinear equations [13] and sparse reconstruction [25, 40]. Some recent
analysis on the BB method can be found in [14, 15, 17]. Similar to the idea of the
Barzilai-Borwein steplength, by solving the following optimization problem

min
λ∈R

‖D(λ)sk−1
Fk − yk−1

Fk ‖2,

where sk−1
Fk = xk

Fk − xk−1
Fk and yk−1

Fk = gkFk + μ sgn(xk
Fk) − gk−1

Fk − μ sgn(xk−1
Fk ), we

obtain the subspace Barzilai-Borwein steplength as follows

λk
BB =

‖sk−1
Fk ‖2

(sk−1
Fk )T yk−1

Fk

.

To avoid small and large values of λk
BB, we project it in the interval [αmin, αmax],

where αmin < αmax are given positive constants. That is, we let

(2.15) λk
1 = max{αmin,min{αmax, λ

k
BB}}.

For simplicity, we call Algorithm 2.1 with the steplength (2.15) used in (2.1) as the
active set Barzilai-Borwein algorithm and abbreviate it as ABB.

In what follows, we describe the subspace exact steplength for solving (1.2). To
this aim, consider the unconstrained minimization problem

min
α∈R

F (xk
Fk + αdkFk) :=

1

2
‖Am×Fk(xk

Fk + αdkFk)− b‖2 + μ‖xk
Fk + αdkFk‖1.

The solution of the above problem is

α =
−(dkFk)

T (AT
m×Fkr

k
Fk + μ sgn(xk

Fk + αdkFk))

(Am×FkdFk)TAm×FkdkFk

,

where dkFk = −∇φFk and rkFk = Am×Fkxk
Fk − b. The parameter α is contained in

the right-hand side of the above equality as well and hence is difficult to calculate.
To overcome this difficulty, we use the following ᾱ to approximate α. That is,

α ≈ ᾱ =
−(dkFk)

T (AT
m×Fkr

k
Fk + μ sgn(xk

Fk + dkFk))

(Am×FkdFk)TAm×FkdkFk

.

Since the matrix A is not column full rank, it follows that AFkdFk may be equal
to zero. Therefore, we confine it in the interval [αmin, αmax]. Namely,

λk
2 := max{αmin,min{αmax, ᾱ}}.
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In this case, we call Algorithm 2.1 with the steplength λk
2 used in (2.1) as AGE.

Notice that AGE cannot directly be used for solving (1.1) in general since the
subspace exact steplength makes use of the special form of (1.2).

3. Convergence analysis

In this section, we analyze the convergence of Algorithm 2.1 under Assumption
2.1. By Assumption 2.1 and the definition of ‖x‖1, we get that φ(x) is uniformly
continuous on the open set N containing Ω. Proceeding with a similar analysis as
the one in [27], we get the following lemma. For completeness, we give the details
of the proof.

Lemma 3.1. Suppose that f satisfies Assumption 2.1 and {xk} is generated by
Algorithm 2.1. Then

(3.1) lim
k→∞

αkdk = 0.

Proof. Let m(k) = min(k,M − 1) and l(k) be an integer such that

k −m(k) ≤ l(k) ≤ k

and
φ(xl(k)) = max

0≤j≤m(k)
φ(xk−j).

Note that

φ(xl(k+1)) = φk+1
max = max

0≤j≤m(k+1)
φ(xk+1−j) ≤ max(φ(xk+1), φ(xl(k))) ≤ φ(xl(k)).

Thus, the sequence {φ(xl(k))} is nonincreasing. Since φ(xk) ≤ φ(x0) for all k,
xk ∈ Ω, there exists a constant φ̄ such that

(3.2) lim
k→∞

φ(xl(k)) = φ̄.

By the line search condition (2.12), we get for k > M − 1,

φ(xl(k)) = φ(xl(k)−1 + αl(k)−1dl(k)−1)

≤ φl(k)−1
max − δ(αl(k)−1‖dl(k)−1‖)2

= max
0≤j≤m(l(k)−1)

φ(xl(k)−1−j)− δ(αl(k)−1‖dl(k)−1‖)2

= φ(xl(l(k)−1))− δ(αl(k)−1‖dl(k)−1‖)2.
This together with (3.2) implies that

(3.3) lim
k→∞

αl(k)−1‖dl(k)−1‖ = 0.

Let
l̄(k) = l(k +M + 2).

In what follows, we shall show that

(3.4) lim
k→∞

αl̄(k)−j‖dl̄(k)−j‖ = 0

and

(3.5) lim
k→∞

φ(xl̄(k)−j) = φ̄

hold for any given j ≥ 1. Without loss of generality, we assume that the iteration
index k is large enough to avoid the occurrence of negative subscripts, that is,
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k ≥ j − 1. If j = 1, (3.4) follows from (3.3) since {l̄(k)} ⊂ {l(k)}. This in turn

implies limk→∞ ‖xl̄(k) − xl̄(k)−1‖ = 0. Thus, (3.5) holds for j = 1 since φ(x) is
uniformly continuous on Ω. Assume now that (3.4) and (3.5) hold for a given j.
Again by the line search condition (2.12), we get

φ(xl̄(k)−j) ≤ φl̄(k)−j−1
max − δ(αl̄(k)−j−1‖dl̄(k)−j−1‖)2

= φ(xl(l̄(k)−j−1))− δ(αl̄(k)−j−1‖dl̄(k)−j−1‖)2.

Letting k → ∞ and using (3.5), we have

lim
k→∞

(αl̄(k)−j−1‖dl̄(k)−j−1‖)2 = 0,

which implies that (3.4) holds for j + 1. The last equality implies ‖xl̄(k)−j −
xl̄(k)−j−1‖ → 0. By (3.5) and the uniform continuity of φ on Ω, we have

lim
k→∞

φ(xl̄(k)−j−1) = lim
k→∞

φ(xl̄(k)−j) = φ̄.

Thus, we conclude that (3.4) and (3.5) hold for any given j ≥ 1.
Now for any k, we have

(3.6) xk+1 = xl̄(k) −
l̄(k)−k−1∑

j=1

αl̄(k)−jdl̄(k)−j .

By the definition of l(k), we have l̄(k) − k − 1 = l(k + M + 2) − k − 1 ≤ M + 1.
Thus, by (3.6) and (3.4), we have

lim
k→∞

‖xk+1 − xl̄(k)‖ = 0.

By (3.2) and the uniform continuity of φ on Ω, we have

(3.7) lim
k→∞

φ(xk) = φ̄.

Again, by the line search condition (2.12), we have

φ(xk+1) ≤ φ(xl(k))− δ(αk‖dk‖)2.

Taking limits for k → ∞, by (3.7), we have

lim
k→∞

(αk‖dk‖)2 = 0,

which implies (3.1). The proof is completed. �

The following theorem together with Theorem 2.2 shows that every accumulation
point of {xk} is a stationary point of problem (1.1).

Theorem 3.1. Assume that f satisfies Assumption 2.1. Let {xk} be the sequence
generated by Algorithm 2.1. If dk �= 0 for all k, every accumulation point x∗ of
{xk} is a stationary point of problem (1.1).

Proof. Assume that dk �= 0 for all k. It is not difficult to see that {xk} ⊂ Ω. Let
x∗ be any accumulation point of {xk}. Then there exists an infinite index set K
such that

lim
k∈K

xk = x∗.
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Taking into account that the number of distinct sets Ak
1 , Ak

21, Ak
22, Fk is finite,

there exists a subsequence of {xk}k∈K that, without loss of generality, we label
again {xk}k∈K such that the index sets Ak

1 , Ak
21, Ak

22, Fk are constant and hence
we can write

Ak
1 = A1, Ak

21 = A21, Ak
22 = A22 and Fk = F

for any k ∈ K. If the sequence {αk}k∈K has a nonzero limit, we get from (3.1) that

lim
k∈K

dk = 0.

Then the conclusion follows from Theorem 2.3. Otherwise, we have that limk∈K αk

= 0. In this case, we know by the line search condition (2.12) that for all k ≥ 1,

(3.8) φ(xk +
αk

η
dk)− φ(xk) ≥ φ(xk +

αk

η
dk)− φk

max > −δ(
αk

η
‖dk‖)2.

On the other hand, for sufficiently large k ∈ K, by the mean-value theorem, we
have

φ(xk +
αk

η
dk)− φ(xk) =

αk

η
g(xk + θk

αk

η
dk)T dk

+μ
∑

i∈F∪A22

(
|xk

i +
αk

η
dki | − |xk

i |
)

+μ
∑

i∈A1∪A21

(
|xk

i +
αk

η
dki | − |xk

i |
)

=
αk

η
g(xk + θk

αk

η
dk)T dk + μ

αk

η

∑
i∈F∪A22

dki sgn(x
k
i )

+μ
∑

i∈A1∪A21

(
|xk

i +
αk

η
dki | − |xk

i |
)

≤ αk

η
g(xk + θk

αk

η
dk)T dk + μ

αk

η

∑
i∈F∪A22

dki sgn(x
k
i )

+μ
∑

i∈A21

αk

η
|dki | − μ

∑
i∈A1

αk

η
|xk

i |,

where θk ∈ (0, 1), the second equality uses (2.11) for i ∈ F ∪ A22 and the inequal-
ity uses the triangle inequality for i ∈ A21 and the definition (2.2) for i ∈ A1.
Substituting (3.8) into the last inequality, we obtain

(g(xk + θk
αk

η
dk)− g(xk))Tdk + g(xk)Tdk

+ μ
∑

i∈F∪A22

dki sgn(x
k
i ) + μ

∑
i∈A21

|dki | − μ
∑
i∈A1

|xk
i | > −δ

αk

η
‖dk‖2.
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By direct calculations and (2.5), we get that the left-hand side of the above in-
equality

= (g(xk + θk
αk

η
dk)− g(xk))Tdk −

∑
i∈F

(dki )
2

λk

−
∑

i∈A22

(dki )
2 +

∑
i∈A21

(gki d
k
i + μ|dki |) +

∑
i∈A1

(gki d
k
i − μ|xk

i |)

= (g(xk + θk
αk

η
dk)− g(xk))Tdk −

∑
i∈F

(dki )
2

λk
−

∑
i∈A22

(dki )
2

+
∑

i∈A21

(gki (−gki + μ sgn(gki )) + μ(|gki | − μ)) +
∑
i∈A1

(gki d
k
i − μ|xk

i |)

= (g(xk + θk
αk

η
dk)− g(xk))Tdk −

∑
i∈F

(dki )
2

λk
−

∑
i∈A22

(dki )
2

−
∑

i∈A21

(dki )
2 +

∑
i∈A1

(gki d
k
i − μ|xk

i |)

> −δ
αk

η
‖dk‖2.(3.9)

If ρ(x∗) = 0, then the conclusion is clear. Assume that ρ(x∗) �= 0. Since the
sequence {λk}k∈K and {dk}k∈K are both bounded, without loss of generality, there
exist constants λ∗ satisfying αmin ≤ λ∗ ≤ αmax and d∗ such that

lim
k∈K

λk = λ∗ and lim
k∈K

dk = d∗.

Furthermore, using (3.1) and taking limits in K, we get from (3.9) that

(3.10)
∑
i∈F

− (d∗i )
2

λ∗ +
∑
i∈A2

−(d∗i )
2 +

∑
i∈A1

(gi(x
∗)d∗i − μ|x∗

i |) ≥ 0.

Since limk∈K dk = d∗, we get that for each i ∈ A1,

lim
k∈K

dki = lim
k∈K

−xk
i = −x∗

i = d∗i .

Proceeding with a similar analysis as those for Theorems 2.4 and 2.5, we get that
for each i ∈ A1,

(3.11) (gi(x
∗) + μ sgn(x∗

i ))d
∗
i ≤ 0.

Notice that the left-hand side of (3.10) equals∑
i∈F

− (d∗i )
2

λ∗ +
∑
i∈A2

−(d∗i )
2 +

∑
i∈A1

(gi(x
∗) + μ sgn(x∗

i ))d
∗
i ≤ 0.

The last inequality together with (3.10) shows that

(3.12)
∑
i∈F1

− (d∗i )
2

λ∗ +
∑
i∈A2

−(d∗i )
2 +

∑
i∈A1

(gi(x
∗) + μ sgn(x∗

i ))d
∗
i = 0.

Then we have limk∈K dki = d∗i = 0, for all i ∈ A22. By the continuity of g(x) and
the definition of dk, we have

lim
k∈K

μ sgn(xk
i ) = −gi(x

∗) �= 0, ∀i ∈ A22.
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Thus, we get that

lim
k∈K

sgn(xk
i ) = −sgn(gi(x

∗)) �= 0, ∀i ∈ A22.

Proceeding with a similar analysis as those for Theorem 2.3, we get that for each
i ∈ A22,

(3.13) x∗
i �= 0, ∇φi(x

∗) = 0 or x∗
i = 0, |gi(x∗)| = μ.

By the definition of dk, F , A1, A21 and the continuity of g(x) and ρ(x), taking
limits in K, we have

(3.14)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
k∈K

dki = λ∗∇φi(x
∗) and |x∗

i | ≥ ρ(x∗) > 0, ∀i ∈ F ,

lim
k∈K

dki = −x∗
i |x∗

i | ≤ ρ(x∗) and |gi(x∗)| ≤ μ, ∀i ∈ A1,

lim
k∈K

dki = −(gi(x
∗)− μ sgn(gi(x

∗)),

x∗
i = 0 and |gi(x∗)| ≥ μ, ∀i ∈ A21.

By (3.11), (3.12), (3.13) and (3.14), we have the following system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x∗
i �= 0 and ∇φi(x

∗) = 0, if i ∈ F ,

x∗
i �= 0, ∇φi(x

∗) = 0 and x∗
i = 0, |gi(x∗)| ≤ μ, if i ∈ A1,

x∗
i = 0 and |gi(x∗)| = μ, if i ∈ A21,

x∗
i �= 0, ∇φi(x

∗) = 0 or x∗
i = 0, |gi(x∗)| = μ if i ∈ A22,

which shows that x∗ is a stationary point of problem (1.1). The proof is completed.
�

The following theorem shows that |xk
i |, i ∈ G+(x

∗), converges to zero monoton-
ically decreasing for all k sufficiently large if {xk} converges to a stationary point
x∗ of problem (1.1).

Theorem 3.2. Suppose that Assumption 2.1 holds and the sequence {xk} generated
by Algorithm 2.1 converges to a stationary point x∗ of problem (1.1). Then, for
i ∈ G+(x

∗), xk
i converges to zero after a finite number of steps or |xk

i | converges to
zero monotonically decreasing for all k sufficiently large.

Proof. Assume that G+(x
∗) is nonempty. Since g(x) is continuous and the sequence

{xk} converges to x∗, there exists an index k̄ such that for all k ≥ k̄ and for all
i ∈ G+(x

∗),

(3.15) |gki | < μ.

Suppose that there exists xk
l = 0 for l ∈ G+(x

∗) and k ≥ k̄. Then by (3.15), we have
l ∈ Ak

1 . Furthermore, by the definition of dkl , we get dkl = 0. Consequently, when
an index l ∈ G+(x

∗) becomes active, i.e., xk
l = 0, at iterate xk, k > k̄, it remains

active for all the subsequent iterations. On the other hand, we assume that there
exists l ∈ G+(x

∗) and xk
l �= 0 for all k ≥ k̄. In this case, we have l ∈ Ak

1 ∪ Fk for
k ≥ k̄. If l ∈ Ak

1 for k ≥ k̄, we have

|xk+1
l | = |xk

l + αkdkl | = (1− αk)|xk
l | < |xk

l |.
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If l ∈ Fk for k ≥ k̄, we have

|xk+1
l | = |xk

l + αkdkl |
= |xk

l − αkλk(gkl + μ sgn(xk
l ))|

=

{
|xk

l − αkλk(gkl + μ)|, if xk
l > 0;

|xk
l − αkλk(gkl − μ)|, if xk

l < 0

< |xk
l |,

where the last inequality follows from (3.15). The proof is completed. �

4. Numerical experiments

In this section, we first present some numerical experiments to illustrate how the
identification technique performs. Second, we partition the rest of the experiments
into two classes based on different types of φ. In the first class, we use our algorithm
to solve �1-regularized nonconvex problem and compare it with the Matlab function
fminsearch. In the second class, we use our algorithm to solve �1-regularized least
squares, which mainly appear in compressive sensing. Specifically, we provide some
numerical experiments to test the performance of the proposed method and com-
pare it with the following three existing solvers: FPC AS [38], GPSR BB [25] and
SpaRSA [40]. All codes are written in MATLAB R2013a and all tests described in
this section were performed on a PC with Intel I5-3230 2.6GHZ CPU processor and
6G RAM memory with a Windows operating system. We implemented Algorithm
2.1 with the following parameters: M = 5, αmin = 10−10, αmax = 1010, δ = 10−2

and η = 0.5. The parameters in ρ(x) are set to c1 = 0.05, c2 = 1, ν = 0.01 for
subsection 4.1 and ν = max(( 12 )

k, 0.01) for other subsections. The initial point of
all tested algorithms is the zero vector. The other three algorithms were run with
default parameters.

Experiments in [25, 28, 38, 40] have confirmed the effectiveness of continuation.
The basic idea of continuation is that, instead of solving problem (1.1) directly
from scratch, one solves a sequence of problems (x∗

μk
:= argminx∈Rn{φμk

(x) =
f(x) + μk‖x‖1}), where μ0 > μ1 · · · > μ, using the solution (or an approximate
solution) x∗

μk−1
as the initial estimate of the solution to the next problem. There-

fore, we embedded our method in a continuation procedure. Now, we describe our
continuation strategy in details. The sequence of μk is defined by

μk =

{
max(γ1‖g(0)‖∞, μ

γ1
), if k = 0,

max(γ1min(‖gAk(xk)‖∞, μk), μ), if k > 0,

where γ1 ∈ (0, 1) is a constant. The main difference between our continuation
strategy and the continuation strategy in [38] consists in the definition of the active
set Ak. In our implementation, at the end of iteration k, the next parameter μk is
set to a value smaller than μk−1 if the point xk satisfies the condition

|φμk−1
(xk)− φμk−1

(xk−1)| ≤ εf max(|φμk−1
(xk)|, |φμk−1

(xk−1)|, 1),

where εf = 0.01.
In Table 1, we summarize a list of symbols used in the subsequent tables and

figures.



1298 WANYOU CHENG AND YU-HONG DAI

Table 1. Summary of symbols used in all subsequent tables and figures

m, n numbers of rows and columns of A, respectively

cpu cpu time

nnzx number of the nonzeros in the reovered solution

nMat total number of matrix-vector products involving A and AT

sgn |{i : xi(xs)i < 0}|, number of corresponding entries of x and xs that are
nonzero but have opposite signs

miss |{i : xi = 0, (xs)i �= 0}|, number of zero entries in x with a corresponding
nonzero entry in xs

over |{i : xi �= 0, (xs)i = 0}|, number of nonzero entries in x with a corresponding
zero entry in xs

4.1. Identification ability of the active set. In this subsection, we illustrate the
identification possibility of our method with respect to sparse signals in compressed
sensing. Namely, we consider the problem (1.2), where the goal is to reconstruct
a length-n sparse signal from m observations, where m < n. The m × n measure
matrix A is obtained by first filling it with independent samples of a standard
Gaussian distribution and then orthonormalizing the rows. These random matrices
are generated by using MATLAB command randn. In this experiment, we set
n = 1024 and m = round(0.1 ∗ n). The observation b is generated by b = Axs.
To generate the signal xs, we first generated the support by randomly selecting T
indices between 1 and n and then assigned a value to xi for each i in the support
by one of the following four methods:

Type 1: one (zero-one signal);
Type 2: the sign of a normally distributed random variable;
Type 3: a normally distributed random variable (Gaussian signal);
Type 4: a uniformly distributed random variable (−1, 1).

Let S denote the support of xs. Then for all i ∈ S, for type 1, xi = 1; for
type 2, xi is a Bernoulli random variable with success probability 1/2; for type 3,
xi ∼ N (0, 1); for type 4, xi ∼ U(−1, 1). The regularization parameter μ is taken
as μ = 0.01‖AT b‖∞. Notice that μ ≥ ‖AT b‖∞ and the unique minimum of (1.2) is
the zero vector [30].

Random points x at different fixed distances were generated from the exact
sparsest solution xs More precisely, for each pair (ε, T ), ε ∈ {10, 1, 10−1, 10−2, 10−3}
and T ∈ {1, 2, . . . , 100}, we generated 100 random points x on the boundary of the
set

K = {x : ‖x− xs‖∞ < ε}.
For each component of signal xs and the generated random points, we consider it
as a nonzero component when its absolute value is great than 0.001‖xs‖∞. For
each random point, we compare our approximate active sets A(x) with the exact
active set G(xs). In Table 2, we report the total number of the correctly identified
G(xs), the values of “sgn”, “miss” and “over”. Noting that, if x matches xs in
terms of support and sign, the values of “sgn”, “miss” and “over” should all be
zero. For types 1-2, ε = 10−2, 10−3 and T = 1 : 100, we can see from Table 2 that
the active set identification technique can accurately identify the zero components
of xs. For types 1-4, we also see that the closer the distance between the random
points and the exact sparse solution xs is, the stronger the identifiable ability of
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Table 2. Numerical results for n = 1024 and m = round(0.1 ∗ n)

Type 1 T = 10 T = 1 : 100

ε total sgn miss over total sgn miss over

ε = 10 0 1 0 88526 0 185 378 8498493

ε = 1 0 0 0 56360 0 0 0 5305683

ε = 10−1 0 0 0 2597 0 0 0 0

ε = 10−2 100 0 0 0 10000 0 0 0

ε = 10−3 100 0 0 0 10000 0 0 0

Type 2 T = 10 T = 1 : 100

ε total sgn miss over total sgn miss over

ε = 10 0 1 2 88614 0 206 360 8499047

ε = 1 0 0 0 55634 0 0 0 5306896

ε = 10−1 0 0 0 2567 0 0 0 149750

ε = 10−2 100 0 0 0 10000 0 0 0

ε = 10−3 100 0 0 0 10000 0 0 0

Type 3 T = 10 T = 1 : 100

ε total sgn miss over total sgn miss over

ε = 10 0 135 50 88648 0 51023 25326 8499649

ε = 1 0 5 31 55891 0 2346 8617 5368878

ε = 10−1 0 0 0 3411 0 4 3173 248648

ε = 10−2 100 0 0 0 8292 0 1808 0

ε = 10−3 100 0 0 0 8400 0 1700 0

Type 4 T = 10 T = 1 : 100

ε total sgn miss over total sgn miss over

ε = 10 0 155 74 88588 0 49734 24901 8499210

ε = 1 0 15 61 56662 0 2165 8639 5377848

ε = 10−1 0 0 0 3888 0 1 2670 276123

ε = 10−2 100 0 0 0 8205 0 1937 0

ε = 10−3 100 0 0 0 8500 0 1600 0

the the proposed active set identification technique is. In a summary, from Table 2,
we can see that the proposed active set identification technique has a strong ability
to accurately identify the zero components in a neighborhood of the solution.

4.2. Test on the �1-regularized nonconvex problem. In this subsection, we
demonstrate the viability of our approach and focus on the specific problem of
binary classification using the �1-regularized logistic regression. For these problems,
the function f(x) in (1.1) is set to

f(x) =

m∑
i=1

log(1 + e−yix
Twi),

where wi ∈ Rn, i = 1, 2, . . . , n, are the training samples and yi ∈ {−1,+1} are
the corresponding labels. Such problems are used for training a linear classi-
fier x ∈ Rn. For more details about support vector machine problems, we refer
the reader to [42]. All nine data sets used were downloaded from the web site
http://www.csie.ntu..tw/∼cjlin/liblinear and have been featurewise normalized to
[−1, 1].

For each test problem, we first ran fminsearch and stored the final value of the
objective function and then ran the ABB algorithm until it reaches at least the same
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Table 3. Numerical results for the �1-regularized nonconvex prob-
lem with μ = 0.1

Problem ABB fminsearch
name m n iter time nnz time nnz
heart 270 13 16 1.09 13 15.72 13
australian 690 14 2 5.67 14 79.25 14
fourclass 862 2 17 0.85 2 1.03 2
diabetes 768 8 13 2.45 8 29.42 8
ionosphere 351 34 50 17.37 32 218.60 34
sonar 208 60 27 6.63 60 150.46 60
svmguide3 41 22 17 0.28 2 2.06 19
liver-disorders 345 6 47 2.10 6 4.01 6
breast 683 9 21 2.24 9 28.82 9

Table 4. Numerical results for �1-regularized nonconvex problem
with μ = 1

Problem ABB fminsearch
name m n iter time nnz time nnz
heart 270 13 9 0.9204 13 20.47 13
australian 690 14 13 2.87 14 47.31 14
fourclass 862 2 17 0.78 2 1.45 2
diabetes 768 8 10 1.76 8 19.95 6
ionosphere 351 34 43 9.84 29 132.57 34
sonar 208 60 14 3.82 54 119.57 60
svmguide3 41 22 11 0.20 2 2.27 18
liver-disorders 345 6 44 2.04 6 3.47 5
breast 683 9 20 2.54 9 15.83 9

objective function value. Each component of the final solution x̄ obtained by the
two tested methods is considered as a nonzero component when its absolute value
is greater than 0.001‖x̄‖∞. The detailed numerical results are presented in Tables
3 and 4, which contain the name of the tested data set, the number of training
samples m and features n, the number of iterations (iter), the CPU time required
in seconds (time) and the number of nonzero components of solutions (nnz).
As shown in Tables 3 and 4, ABB yields much better performance for the test data
sets and is a promising method for solving �1-regularized nonconvex problems.

4.3. Test on the �2-�1 problem. In this experiment, we tested the matrix A with
size n = 212 with m = round(0.1 ∗ n) or m = round(0.2 ∗ n), and n = 214 with
m = round(0.1 ∗ n) and considered a range of degrees of sparsity: the number T of
nonzero spikes in xs ranges from 1 to 30 for each type of elements in the support.
We generated random matrices A using the same strategy as that of subsection 4.1.
The observation b is generated by b = Axs and the regularization parameter μ is
taken as μ = 0.01 ‖AT b‖∞. The above procedure yields a total of 360 problems.
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For each test problem, we stop all tested algorithms if the condition

|φ(xk)− φ(xk−1)|
max(1, |φ(xk−1), |φ(xk)|) ≤ 10−12

is satisfied or the number of iterations exceeds 104.
Again, each component of signal xs and the final solution obtained by each tested

method is considered as a nonzero component when its absolute value is greater
than 0.001‖xs‖∞. We adopt the performance profiles by Dolan and Moré [22] to

evaluate the CPU time, the final function value, the relative error (rel.err= ‖xs−x‖
‖xs‖ ),

and the numbers of nMat and nnz. Figures 1–10 show the performance profiles of
the five methods relative to the CPU time (Figures 1 and 6), the final function
value (Figures 4 and 9), the relative errors (Figures 5 and 10), and the numbers of
nMat and nnz (Figures 2, 3, 7, and 8). It shows that the AGE method performs
best for the 360 test problems; it generally requires least CPU time, fewest numbers
of nMat and obtains almost the same numbers of nnz, the final function value and
the relative error.

Figure 1. Performance
profiles based on CPU time
in log2 scale for n = 212 and
m = round(0.1n)

Figure 2. Performance
profiles based on nMat in
log2 scale for n = 212 and
m = round(0.1n)

Figure 3. Performance
profiles based on nnz in
log2 scale for n = 212 and
m = round(0.1n)

Figure 4. Performance
profiles based on the fi-
nal function value in log2
scale n = 212 and m =
round(0.1n)
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Figure 5. Performance
profiles based on the relative
error in log2 scale for n = 212

and m = round(0.1n)

Figure 6. Performance
profiles based on CPU time
in log2 scale n = 214 and
m = round(0.1n)

Figure 7. Performance
profiles based on nMat in
log2 scale for n = 214 and
m = round(0.1n)

Figure 8. Performance
profiles based on nnz in log2
scale for n = 214 and m =
round(0.1n)

Figure 9. Performance
profiles based on the final
function value in log2 scale
for n = 214 and m =
round(0.1n)

Figure 10. Performance
profiles based on the rel-
ative error in log2 scale
n = 214 and m =
round(0.2n)
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5. Conclusions

In the paper, we have proposed an identification function and developed an
active set identification technique. The active set identification technique has a
strong ability to accurately identify the zero components in a neighborhood of
an isolated stationary point of (1.1) without strict complementarity conditions for
the �1 optimization problem. Based on the active set identification technique, we
proposed a gradient-based method for solving (1.1). To accelerate the algorithm,
a subspace Barzilai-Borwein steplength and a subspace exact steplength have been
developed, respectively. Under appropriate conditions, we showed that the method
with the nonmonotone line search technique is globally convergent. The numerical
results in Section 4 demonstrated the effectiveness of the algorithm for solving some
standard �2-�1 problems.
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