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ENERGY STABILITY AND ERROR ESTIMATES

OF EXPONENTIAL TIME DIFFERENCING SCHEMES

FOR THE EPITAXIAL GROWTH MODEL

WITHOUT SLOPE SELECTION

LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Abstract. In this paper, we propose a class of exponential time differencing
(ETD) schemes for solving the epitaxial growth model without slope selec-
tion. A linear convex splitting is first applied to the energy functional of the
model, and then Fourier collocation and ETD-based multistep approximations
are used respectively for spatial discretization and time integration of the cor-
responding gradient flow equation. Energy stabilities and error estimates of
the first and second order ETD schemes are rigorously established in the fully
discrete sense. We also numerically demonstrate the accuracy of the proposed
schemes and simulate the coarsening dynamics with small diffusion coefficients.
The results show the logarithm law for the energy decay and the power laws
for growth of the surface roughness and the mound width, which are consistent
with the existing theories in the literature.

1. Introduction

Let us consider the two-dimensional model of epitaxial thin film growth without
slope selection taking on the form [11]

(1.1)
∂u

∂t
= −∇ ·

(
∇u

1 + |∇u|2

)
− ε2Δ2u, x ∈ Ω, t ∈ (0, T ],

where Ω = (x0, x0 +X)× (y0, y0 + Y ) is a rectangular domain, ε > 0 is a constant
parameter, and u = u(x, t) is the scaled height function of the thin film subject
to the periodic boundary condition. This model (1.1) describes the coarsening
processes arising from many applications in physics, chemistry and biology [25], in
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which the nonlinear second order term models the Ehrlich-Schwoebel effect and the
linear fourth order term the surface diffusion. The equation is mass conservative
along the time evolution due to

(1.2)

∫
Ω

u(x, t) dx =

∫
Ω

u(x, 0) dx, t > 0,

under the periodic boundary condition.
The equation (1.1) in fact defines a gradient flow with respect to the L2(Ω) inner

product of the energy functional

(1.3) E(u) =

∫
Ω

(
− 1

2
ln(1 + |∇u|2) + ε2

2
|Δu|2

)
dx.

The logarithmic term − 1
2 ln(1 + |y|2), y ∈ R2, is bounded above by zero but un-

bounded below. Moreover, it has no relative minima, which implies that there are
no energetically favored values for |∇u|. From a physical point of view, it means
that there is no slope selection mechanism in the epitaxial growth dynamics. Some
detailed discussions on this issue could be found in [17,18] and the references cited
therein. The well-posedness of the initial boundary-value problem involving the
equation (1.1) was studied in [17] using the perturbation analysis method.

The physically interesting process is the coarsening dynamics occurring on a very
long time scale for spatially large systems, i.e., small ε. For instance, Li and Liu
[18] have proved that the energy is bounded below by O(− ln t) for large time t
and the global minimum energy scales as O(ln ε) in the limit ε → 0. Therefore,
numerical simulations for the coarsening dynamics of large systems require the long
time stability and accuracy of the numerical methods. In particular, temporally
and spatially high order schemes with unconditional stability are highly demanded
in terms of efficiency and effectiveness.

Energy stability has been investigated recently for numerical schemes of the thin
film growth models [23, 24] and other phase field models [6, 10]. Wang et al. [30]
derived first order (in time) convex splitting schemes for epitaxial growth models
under the convex splitting framework exploited by Eyre [9], and Shen et al. [27]
constructed second order (in time) schemes based on the same convex splitting
approach. A linear iteration algorithm was further developed for the second order
energy stable scheme for the model (1.1) in [3]. We note that these numerical
schemes are nonlinear although unconditionally energy stable. A linear convex
splitting scheme was developed for the model (1.1) by Chen et al. [2], and their
main contribution lies in an alternate convex splitting of the Ehrlich-Schwoebel
part in (1.3). The convex splitting technique also has been used extensively on
different phase field models, e.g., the Cahn-Hilliard equations [20,33], the phase field
crystal model [31], the diffuse interface model with the Peng-Robinson equation of
state [21], etc. On the other hand, second order nonlinear and linearized Crank-
Nicolson type difference schemes were derived by Qiao et al. [22] for the model (1.1)
where the unconditional energy stability is achieved with respect to a modified
energy functional by introducing an auxiliary variable. For the epitaxial growth
model with slope selection, Xu and Tang [32] proposed a first order linear implicit-
explicit scheme by adding an order O(Δt) stabilization term of the form AΔ(un+1−
un), where A depends nonlinearly on the numerical solutions. In other words, it
implicitly uses the L∞-bound assumption on |∇un| in order to make A a controllable
constant. In a recent work [19], these technical restrictions were removed and a
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more reasonable stability theory was established. The linear scheme presented in
[2] was essentially a first order stabilized implicit-explicit scheme with the stabilizer
equal to one. Similar approaches were also applied on the Allen-Cahn and Cahn-
Hilliard equations [28]. Overall, there exist very few works devoted to development
of temporally high order schemes with unconditional energy stability for the model
(1.1).

In this paper, we will present fully discrete numerical schemes for solving the
model (1.1), that uses the Fourier spectral collocation approximation for spatial
discretization in combination with exponential time differencing (ETD) [1, 4, 16]
and explicit multistep approximations for time integration. These schemes can
be efficiently implemented via the fast Fourier transform (FFT). The ETD-based
schemes often involve exact integration of the linear part of the target equation
followed by an explicit approximation of the temporal integral of the nonlinear
term, and can achieve high accuracy, stability and preservation of the exponen-
tial behavior of the system. Hochbruck and Ostermann provided in [13] a nice
review on the exponential integrator based methods, including the ETD ones. Du
and Zhu investigated the linear stabilities of some ETD schemes [7] and modified
ETD schemes [8]. Ju et al. developed stable and compact ETD schemes and their
fast implementations for semi-linear second and fourth order parabolic equations
[14, 15, 34] by utilizing suitable linear splitting techniques. However, apart from
numerical implementations, theoretical analysis on stability and convergence of the
ETD schemes for the phase field models are still highly desired.

The rest of the paper is organized as follows. In Section 2, we first present a
linear convex splitting of the energy functional (1.3), and then based on this splitting
develop a class of fully discrete ETD numerical schemes, in which Fourier spectral
collocation is used for spatial discretization and explicit multistep approximations
for time integration. The energy stabilities of the first and second order (in time)
ETD schemes are proved in Section 3, followed by error estimates rigorously derived
in Section 4. In Section 5, we numerically demonstrate the temporal and spatial
accuracy of the proposed ETD schemes and simulate the coarsening dynamics with
small ε to verify the scaling laws obtained at the theoretical level. Some concluding
remarks are given in Section 6.

2. Fully discrete exponential time differencing schemes

It is well known [7] that a suitable linear operator splitting can improve the
stability. Motivated partly by the work of [2], in this section we first provide a
sufficient and necessary condition, independent on the unknown solution u, on the
existence of a linear convex splitting of the energy functional (1.3). Then, we
discretize the spatial domain and the time interval, respectively, to design fully
discrete ETD numerical schemes for (1.3).

2.1. Linear convex splitting. We try to find a linear convex splitting of the
energy (1.3) as E(u) = Ec(u)− Ee(u) with
(2.1)

Ec(u) =

∫
Ω

(κ
2
|∇u|2 + ε2

2
|Δu|2

)
dx, Ee(u) =

∫
Ω

(κ
2
|∇u|2 + 1

2
ln(1+ |∇u|2)

)
dx,
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where κ > 0 is expected to be as small as possible. Ec(u) is obviously convex as
long as κ > 0, but the convexity of Ee(u) depends on the convexity of the function

G(a, b) =
κ

2
(a2 + b2) +

1

2
ln(1 + a2 + b2), a, b ∈ R.

Proposition 2.1. The function G(a, b) is convex in R2 if and only if κ ≥ 1
8 .

Proof. Simple calculations give us the Hessian matrix

∇2G(a, b) =
1

(1 + a2 + b2)2

(
d11(a

2, b2) −2ab
−2ab d22(a

2, b2)

)
with

d11(p, q) = κ(p+ q)2 + (2κ− 1)p+ (2κ+ 1)q + κ+ 1,

d22(p, q) = κ(p+ q)2 + (2κ+ 1)p+ (2κ− 1)q + κ+ 1.

The convexity of G is thus equivalent to the positive semi-definiteness of the matrix
∇2G, that is,

d11(p, q) ≥ 0,(2.2a)

d22(p, q) ≥ 0,(2.2b)

d11(p, q)d22(p, q)− 4pq ≥ 0,(2.2c)

where p = a2 and q = b2. Next we prove that (2.2) holds for any p, q ≥ 0 if and
only if κ ≥ 1

8 . We rewrite d11(p, q) as

d11(p, q) = κq2 + (2κp+ 2κ+ 1)q + κp2 + (2κ− 1)p+ κ+ 1.

Since ∂qd11(p, q) > 0 for any κ > 0 and p, q ≥ 0, the inequality d11(p, q) ≥ 0 holds
for any p, q ≥ 0 if and only if d11(p, 0) ≥ 0 for any p ≥ 0, which is equivalent to⎧⎨⎩−2κ− 1

2κ
> 0,

Δ(d11) = 1− 8κ ≤ 0,
or

⎧⎨⎩−2κ− 1

2κ
≤ 0,

d11(0, 0) ≥ 0,

and then leads to κ ≥ 1
8 . The analysis for the inequality (2.2b) is similar. We next

show that the inequality (2.2c) holds for any p, q ≥ 0 when κ ≥ 1
8 . It is not hard

to find

d11(p, q)d22(p, q)− 4pq = (1 + p+ q)[1 + κ(1 + p+ q)]d0(p, q)

with

d0(p, q) = κp2 + [2κ(1 + q)− 1]p+ κ(1 + q)2 − q + 1.

If κ ≥ 1
8 , then Δ(d0) = 1− 8κ ≤ 0, which implies that d11(p, q)d22(p, q)− 4pq ≥ 0

for any p, q ≥ 0. �

The above convex splitting of the energy (1.3) motivates us to apply ETD
schemes to the split form of the equation (1.1) with a splitting constant κ ≥ 1

8 .
To this end, we rewrite the equation (1.1) as

(2.3)
∂u

∂t
= −(ε2Δ2 − κΔ)u−∇ ·

(
∇u

1 + |∇u|2

)
− κΔu.

Usually, larger κ leads to more stable numerical schemes, but larger splitting errors.
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2.2. Spectral collocation approximations for spatial discretization. Let Nx

and Ny be two even numbers. The Nx ×Ny mesh ΩN of the domain Ω is a set of
nodes (xi, yj) with xi = x0 + ihx, yj = y0 + jhy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, where

hx = X
Nx

and hy = Y
Ny

are the uniform mesh sizes in each dimension. All of the

two-dimensional periodic grid functions defined on ΩN are denoted by MN . We
define the index sets

JN = {(i, j) ∈ Z
2 | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

ĴN =
{
(k, l) ∈ Z

2
∣∣∣ − Nx

2
+ 1 ≤ k ≤ Nx

2
, −Ny

2
+ 1 ≤ l ≤ Ny

2

}
.

For a function f ∈ MN , the 2-D discrete Fourier transform f̂ = Pf is defined
componentwise [26, 29] by

f̂kl =
1

NxNy

∑
(i,j)∈JN

fij exp
(
− i

2kπ

X
xi

)
exp

(
− i

2lπ

Y
yj

)
, (k, l) ∈ ĴN .

The function f can be reconstructed via the corresponding inverse transform f =

P−1f̂ with components given by

fij =
∑

(k,l)∈ ̂JN

f̂kl exp
(
i
2kπ

X
xi

)
exp

(
i
2lπ

Y
yj

)
, (i, j) ∈ JN .

Let M̂N = {Pf | f ∈ MN } and define the operators D̂x and D̂y on M̂N as

(D̂xf̂)kl =
(2kπi

X

)
f̂kl, (D̂y f̂)kl =

(2lπi
Y

)
f̂kl, (k, l) ∈ ĴN ,

then the Fourier spectral approximations to the first and second order partial deriva-
tives can be represented as

Dx = P−1D̂xP, Dy = P−1D̂yP, D2
x = P−1D̂2

xP, D2
y = P−1D̂2

yP.

For any f, g ∈ MN , f = (f1, f2)T ∈ MN ×MN and g = (g1, g2)T ∈ MN ×MN ,
the discrete gradient, divergence and Laplace operators are given, respectively, by

∇N f =

(
Dxf

Dyf

)
, ∇N · f = Dxf

1 +Dyf
2, ΔN f = D2

xf +D2
yf,

and the discrete L2 inner product (·, ·)N and L2 norm ‖ · ‖N by

(f, g)N = hxhy

∑
(i,j)∈JN

fijgij , ‖f‖N =
√
(f, f)N ,

(f , g)N = hxhy

∑
(i,j)∈JN

(f1
ijg

1
ij + f2

ijg
2
ij), ‖f‖N =

√
(f ,f)N .

It is easy to show the following proposition.

Proposition 2.2. For any functions f, g ∈ MN and g ∈ MN ×MN , we have the
discrete integration by parts formulas

(f,∇N · g)N = −(∇N f, g)N , (f,ΔN g)N = −(∇N f,∇N g)N = (ΔN f, g)N .

By noticing the property (1.2), without loss of generality, we assume that the
mean of u is zero and only consider the zero-mean grid functions coming from the
(NxNy − 1)-dimensional space

MN
0 = {v ∈ MN | (v, 1)N = 0} = {v ∈ MN | v̂00 = 0}.
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A function u ∈ MN could always be mapped into MN
0 by the projection

u �→ u− 1

XY
(u, 1)N .

Let Δ0
N be the limitation of ΔN on MN

0 .

Define L̃N = ε2Δ2
N − κΔN and its limitation on MN

0 , LN = ε2(Δ0
N )2 − κΔ0

N .

It is obvious from Proposition 2.2 that L̃N is symmetric (or self-adjoint) on MN ,
i.e.,

(L̃Nu, v)N = (u, L̃N v)N , ∀u, v ∈ MN .

Moreover, for any u ∈ MN
0 , we have

(LNu, u)N = ε2‖ΔNu‖2N + κ‖∇Nu‖2N ≥ 0, (LNu, u)N = 0 ⇐⇒ u = 0,

which means that the operator LN is symmetric positive definite (thus invertible)
on MN

0 . Since LN is a linear operator on the finite-dimensional linear space MN
0 ,

the following properties of matrix functions could be utilized on LN .

Lemma 2.3 ([12]). Let f be defined on the spectrum of M ∈ Cd×d, that is, the
values

f (j)(λi), 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ d,

exist, where {λi}di=1 are the eigenvalues of M , and ni is the order of the largest
Jordan block where λi appears. Then

(1) f(M) commutes with M ;
(2) f(MT ) = f(M)T ;
(3) the eigenvalues of f(M) are f(λi), 1 ≤ i ≤ d;
(4) f(P−1MP ) = P−1f(M)P for any nonsingular matrix P ∈ Cd×d;
(5) for any P,Q ∈ Cd×d, e(P+Q)t = ePteQt = eQtePt if and only if PQ = QP ;
(6) d

dt (e
Mt) = MeMt = eMtM .

Remark 2.4. We know that real symmetric matrices are diagonalizable, i.e., each
Jordan block is of order 1. Thus, a function f is defined on the spectrum of a
symmetric matrix M ∈ R

d×d as long as the values {f(λi) : 1 ≤ i ≤ d} exist.

The space-discrete scheme for the equation (2.3) is to find a function ũ : [0, T ] →
MN

0 such that

(2.4)

⎧⎨⎩
dũ

dt
= −LN ũ− fN (ũ), t ∈ (0, T ],

ũ(0) = u0,

where u0 ∈ MN
0 is given and fN (ũ) = ∇N ·

(
∇N ũ

1+|∇N ũ|2

)
+ κΔN ũ. According to

Lemma 2.3, acting as the operator eLN t on both sides of (2.4) leads to

(2.5)
d(eLN tũ)

dt
= −eLN tfN (ũ).

Given a positive integer Nt, we divide the time interval by tn = nΔt, 0 ≤ n ≤ Nt,
with a uniform time step Δt = T

Nt
. Then integrating the equation (2.5) from tn to

tn+1 gives us

(2.6) ũ(tn+1) = e−LNΔtũ(tn)−
∫ Δt

0

e−LN (Δt−τ)fN (ũ(tn + τ )) dτ.
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The equation (2.6) is equivalent to (2.4) and will play a key role in designing ETD
schemes for time stepping.

Remark 2.5. If we approximate the integration using the left-rectangle quadrature
and the exponential by eLNΔt ≈ I + LNΔt in (2.6), then we obtain

(I + LNΔt)ũ(tn+1) ≈ ũ(tn)−ΔtfN (ũ(tn)),

which leads to the first order stabilized semi-implicit (SSI1) scheme for solving (2.3)

(2.7)
un+1 − un

Δt
= −LNun+1 − fN (un).

In particular, the convex splitting scheme proposed in [2] is identical to (2.7) with
κ = 1.

2.3. ETD multistep approximations for time integration. We take an ex-
plicit multistep approach to evaluate the time integral on the right-hand side of
(2.6). We use the Lagrange polynomial interpolation of degree r based on the
nodes {tn−r, tn−r+1, . . . , tn} to approximate FN (tn + τ ) = fN (ũ(tn + τ )). Define

Pr(τ ) =
r∑

s=0

FN (tn−s)�r,s(τ ), τ ∈ [−rΔt,Δt],

where {�r,s(τ )}rs=0 are the standard Lagrange basis functions associated with the
nodes {tn−s}rs=0. We have the interpolation error FN (tn + τ )− Pr(τ ) = O(Δtr+1)

if the derivative F
(r+1)
N (t) is bounded. The integral in (2.6) can be approximated

by ∫ Δt

0

e−LN (Δt−τ)fN (u(tn + τ )) dτ ≈
r∑

s=0

Sr,s(LN )FN (tn−s),

where

Sr,s(a) =

∫ Δt

0

�r,s(τ )e
−a(Δt−τ) dτ, a ∈ R.

Then we obtain the fully discrete ETD multistep (ETDMs) scheme for solving (2.3)
as

(2.8) un+1 = e−LNΔtun −
r∑

s=0

Sr,s(LN )fN (un−s).

This scheme is expected to be (r + 1)-th order accurate in time. We have

L̃N = ε2(D2
x+D2

y)
2−κ(D2

x+D2
y) = P−1

(
ε2(D̂2

x+D̂2
y)

2−κ(D̂2
x+D̂2

y)
)
P = P−1L̂NP,

where the operator L̂N = ε2(D̂2
x + D̂2

y)
2 − κ(D̂2

x + D̂2
y) can be expressed as

(L̂N f̂)kl = λklf̂kl, (k, l) ∈ ĴN ,

for any f̂ ∈ M̂N , where {λkl | (k, l) ∈ ĴN } are the eigenvalues of L̂N (also L̃N ),
that is,

(2.9) λkl = ε2
(4k2π2

X2
+

4l2π2

Y 2

)2

+ κ
(4k2π2

X2
+

4l2π2

Y 2

)
≥ 0.

Noting the definition LN = L̃N |MN
0
and the fact that all of the eigenvectors belong-

ing to the nonzero eigenvalues of L̃N are exactly the eigenvectors of LN , we know

that the eigenvalues of LN are {λkl | (k, l) ∈ ĴN \(0, 0)}. Denoting L̂0
N = PLNP−1,
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we finally obtain an implementation formula for the ETD multistep scheme (2.8)
as

un+1 = P−1e−
̂L0
NΔtPun −

r∑
s=0

P−1Sr,s(L̂
0
N )PfN (un−s)

= P−1
(
e−

̂L0
NΔtPun −

r∑
s=0

Sr,s(L̂
0
N )PfN (un−s)

)
,

where

(e−
̂L0
NΔtf̂)kl = e−λklΔtf̂kl, (Sr,s(L̂

0
N )f̂)kl = Sr,s(λkl)f̂kl, (k, l) ∈ ĴN \ (0, 0),

for any f̂ ∈ M̂N with f̂00 = 0. The operators P and P−1 can be implemented by the
2-D fast Fourier transform and the corresponding inverse transform, respectively.
Therefore, the overall computational complexity is O(N2 log2 N) per time step,
where N = max{Nx, Ny}.

We also especially remark that the operator Sr,s(LN ) does not depend on time
in the case of uniform time partition. Since

�r,s(τ ) =

r∏
q=0,q �=s

qΔt+ τ

qΔt− sΔt
=

r∏
q=0,q �=s

q + θ

q − s
=

r∑
p=0

αr,s
p θp,

where θ = τ
Δt and {αr,s

p }rp=0 are the coefficients of the polynomial �r,s(τ ), we have

Sr,s(a) =

r∑
p=0

αr,s
p

(Δt)p

∫ Δt

0

τpe−a(Δt−τ) dτ =

r∑
p=0

αr,s
p φp(a), 0 ≤ s ≤ r,

where

φp(a) =
1

(Δt)p

∫ Δt

0

τpe−a(Δt−τ) dτ, 0 ≤ p ≤ r,

can be calculated by the recurrence formula⎧⎪⎨⎪⎩
φ0(a) = a−1(1− e−aΔt), φp(a) = a−1

(
1− p

Δt
φp−1(a)

)
, a 
= 0,

φp(a) =
Δt

p+ 1
, a = 0.

For the cases r = 0 and r = 1, we have

�0,0(τ ) = 1, �1,0(τ ) = 1 +
τ

Δt
, �1,1(τ ) = − τ

Δt
,

and the operators Sr,s(LN ) can be expressed as follows:

S0,0(LN ) = φ0(LN ), S1,0(LN ) = φ0(LN ) + φ1(LN ), S1,1(LN ) = −φ1(LN ),

where

φ0(LN ) = L−1
N (I − e−LNΔt), φ1(LN ) = L−1

N
(
I − (LNΔt)−1(I − e−LNΔt)

)
.

Thus we obtain the first order ETD multistep scheme (ETD1) as

un+1 = e−LNΔtun − φ0(LN )fN (un)(2.10)

= P−1
[
e−

̂L0
NΔtPun − φ0(L̂

0
N )PfN (un)

]
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and the second order ETD multistep scheme (ETDMs2) as

un+1 = e−LNΔtun − φ0(LN )fN (un)− φ1(LN )(fN (un)− fN (un−1))

(2.11)

= P−1
[
e−

̂L0
NΔtPun − φ0(L̂

0
N )PfN (un)− φ1(L̂

0
N )P (fN (un)− fN (un−1))

]
.

Proposition 2.6 (Discrete mass conservation). The ETD1 scheme (2.10) and the
ETDMs2 scheme (2.11) are mass conservative in the discrete sense, i.e.,
(un+1 − un, 1)N = 0 for 0 ≤ n ≤ Nt − 1.

Proof. We just take care of the ETD1 scheme, and the other case is similar. We
know from (2.10) that

(2.12) un+1 − un = −(I − e−LNΔt)un − L−1
N (I − e−LNΔt)fN (un).

Define g1(a) = 1 − e−aΔt for a ∈ R and an operator B1 = g1(LN ) = I − e−LNΔt.
Since LN is symmetric positive definite and 0 < g1(a) < 1 for any a > 0, we know
from Lemma 2.3 that B1 is also symmetric positive definite and commutes with
LN and L−1

N . Then we obtain from (2.12) that

un+1 − un = −B1u
n − L−1

N B1fN (un) = −B1(u
n + L−1

N fN (un)).

Taking the discrete L2 inner product of the above with the constant v ≡ 1 and
using the symmetry of B1, we obtain

(un+1 − un, 1)N = −(un + L−1
N fN (un), B1v)N .

Note that

B1 = I − e−LNΔt = LNΔt− 1

2
(LNΔt)2 +

1

6
(LNΔt)3 + · · · ;

thereforeB1 is essentially a differential operator, and thusB1v ≡ 0, which completes
the proof. �

3. Energy stability

For a linear symmetric positive definite operator A : MN → MN , we denote by
σ(A) the set of all the eigenvalues of A, and define the norm of A as the spectrum
radius of A, that is, |||A||| = max{|λ| : λ ∈ σ(A)}. It obviously holds that

‖Av‖N ≤ |||A|||‖v‖N ∀ v ∈ MN .

The discrete energy functional corresponding to the continuous one E(u) can be
defined as

(3.1) EN (u) =
(
− 1

2
ln(1 + |∇Nu|2), 1

)
N

+
ε2

2
‖ΔNu‖2N

for any u ∈ MN .

Lemma 3.1. For any v, w ∈ MN
0 , it holds that

EN (v)− EN (w) ≤ (LN v + fN (w), v − w)N .
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Proof. According to Proposition 2.1, a convex splitting of the discrete energy (3.1)
can be given by EN (u) = EN ,c(u)− EN ,e(u) with

EN ,c(u) =
κ

2
‖∇Nu‖2N +

ε2

2
‖ΔNu‖2N ,

EN ,e(u) =
κ

2
‖∇Nu‖2N +

(1
2
ln(1 + |∇Nu|2), 1

)
N
,

which are the corresponding discrete versions of Ec and Ee, respectively. Using the
convexity of EN ,c and EN ,e, we have the following inequality (see [20, Lemma 3.9]
or [31, Theorem 3.5]):

EN (v)− EN (w) ≤ (δuEN ,c(v)− δuEN ,e(w), v − w)N .

Some careful calculations give the variational derivatives

δuEN ,c(v) = LN v, δuEN ,e(w) = −fN (w),

which completes the proof. �
Theorem 3.2. The approximate solution produced by the ETD1 scheme (2.10)
satisfies the energy inequality

(3.2) EN (un+1) ≤ EN (un)

for any time step size Δt > 0, i.e., the ETD1 scheme (2.10) is unconditionally
energy stable.

Proof. Recall the ETD1 scheme (2.10), that is,

un+1 = e−LNΔtun − L−1
N B1fN (un).

Thus we have

fN (un) = −B−1
1 LN (un+1 − e−LNΔtun)

= −B−1
1 LN (un+1 − un + (I − e−LNΔt)un)

= −B−1
1 LN (un+1 − un)−B−1

1 LNB1u
n

= −B−1
1 LN (un+1 − un)− LNun.

Define g2(a) =
(

1
g1(a)

−1
)
a for a 
= 0 and an operator B2 = g2(LN ) = (B−1

1 −I)LN .

For any a > 0, we have 0 < g1(a) < 1 and thus g2(a) > 0. Therefore, (B−1
1 − I)LN

is symmetric positive definite. Setting v = un+1 and w = un in Lemma 3.1, we
obtain

EN (un+1)− EN (un) ≤
(
LNun+1 + fN (un), un+1 − un

)
N

(3.3)

=
(
−B−1

1 LN (un+1 − un) + LN (un+1 − un), un+1 − un
)
N

= −
(
B2(u

n+1 − un), un+1 − un
)
N .

Proposition 2.6 tells us that un+1−un ∈ MN
0 , so the energy inequality (3.2) comes

from (3.3) and the fact that B2 is positive definite. �

Corollary 3.3. For the numerical solution {un}Nt
n=1 produced by the ETD1 scheme

(2.10) with the starting data u0, there exists a constant C depending only on ε and
|Ω| such that

max
1≤n≤Nt

‖ΔNun‖N ≤ 2

ε

√
EN (u0) + C.
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Proof. For any y ≥ 0 and α ≥ 0, it holds that

ln(1 + y) + lnα = ln(1 + (αy + α− 1)) ≤ αy + α− 1,

namely,
ln(1 + y) ≤ αy − lnα+ α− 1;

then we obtain

EN (un) ≥ −α

2
‖∇Nun‖2N − 1

2
(− lnα+ α− 1, 1)N +

ε2

2
‖ΔNun‖2N .

Since un ∈ MN
0 , we have the following discrete Poincaré inequality:

‖∇Nun‖2N ≤ XY

4π2
‖ΔNun‖2N .

Choosing α = 2π2ε2

XY and denoting Cα = 1
2 (− lnα+ α− 1), we derive

EN (un) ≥ ε2

4
‖ΔNun‖2N − CαXY.

Using Theorem 3.2, we have EN (un) ≤ EN (un−1) ≤ · · · ≤ EN (u0); then

ε2

4
‖ΔNun‖2N ≤ EN (u0) + CαXY,

which completes the proof. �
Remark 3.4. We know from Corollary 3.3 that the numerical solution to the ETD1
scheme (2.10) is uniformly bounded in time in the discrete H2 sense. Such uniform
bounds were also achieved for the nonlinear and linear convex splitting schemes
given in [2, 30]. By comparison, in some other related works (see, e.g., [22]), the
energy stability is considered with respect to energy involved artificial variables.
As a result, although the energy stability is obtained at the numerical level, a
uniform in time H2 bound of the numerical solution could hardly be justified at
the theoretical level. Therefore, Corollary 3.3 implies one of the key advantages of
the ETD1 scheme (2.10).

Now we turn to the energy stability of the ETDMs2 scheme. Define a mapping
β : R2 → R2 as

(3.4) β(v) =
v

1 + |v|2 .

Lemma 3.5. For any v,w ∈ R2, there exists a symmetric matrix Q ∈ R2×2 such
that

β(v)− β(w) = Q(v −w),

and the eigenvalues λ1, λ2 of Q satisfy − 1
8 ≤ λ1, λ2 ≤ 1. Consequently, it holds

that

(3.5) |β(v)− β(w)| ≤ |v −w| ∀v,w ∈ R
2.

Proof. The Jacobian matrix of β at v = (v1, v2) is

∇β(v) =
1

(1 + |v|2)2

(
1− v21 + v22 −2v1v2
−2v1v2 1 + v21 − v22

)
and the eigenvalues of ∇β(v) are

μ1(v) =
1− |v|2

(1 + |v|2)2 , μ2(v) =
1

1 + |v|2 .
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Since min
α≥0

1−α
(1+α)2 = − 1

8 , we have

(3.6) −1

8
≤ μ1(v) ≤ μ2(v) ≤ 1.

For any v,w ∈ R2, the Taylor formula gives us

β(v)− β(w) = Q(v −w), Q =

∫ 1

0

∇β(θv + (1− θ)w) dθ.

The symmetry of ∇β implies the symmetry of Q, so there exists an orthonormal
matrix Pθ =

(
aθ bθ
cθ dθ

)
such that(

λ1

λ2

)
=

∫ 1

0

(
aθ bθ
cθ dθ

)(
μ1(ξθ)

μ2(ξθ)

)(
aθ cθ
bθ dθ

)
dθ,

where ξθ = θv + (1− θ)w, λ1 and λ2 are the eigenvalues of Q, which leads to

λ1 =

∫ 1

0

(a2θμ1(ξθ) + b2θμ2(ξθ)) dθ, λ2 =

∫ 1

0

(c2θμ1(ξθ) + d2θμ2(ξθ)) dθ.

The fact a2θ + b2θ = c2θ + d2θ = 1 implies that

μ1(ξθ) ≤ λ1 ≤ μ2(ξθ), μ1(ξθ) ≤ λ2 ≤ μ2(ξθ),

which gives us − 1
8 ≤ λ1, λ2 ≤ 1 by combining with (3.6). In addition, since the

2-norm of a symmetric matrix is equal to its spectrum radius, we obtain (3.5). �

Theorem 3.6. The approximate solution produced by the ETDMs2 scheme (2.11)
satisfies

(3.7) EN (un+1) ≤ EN (un) +
1 + κ

2

(
‖∇N (un+1 − un)‖2N + ‖∇N (un − un−1)‖2N

)
for any time step size Δt > 0.

Proof. Recall the ETDMs2 scheme (2.11), that is,

un+1 = e−LNΔtun −L−1
N B1fN (un)−L−1

N (I − (LNΔt)−1B1)(fN (un)− fN (un−1)).

Then we have

fN (un) =−B−1
1 LN (un+1 − e−LΔtun)

−B−1
1 (I − (LNΔt)−1B1)(fN (un)− fN (un−1))

=−B−1
1 LN (un+1 − un)

−B−1
1 LNB1u

n − B−1
1 (I − (LNΔt)−1B1)(fN (un)− fN (un−1))

=−B−1
1 LN (un+1 − un)− LNun

− (B−1
1 − (LNΔt)−1)(fN (un)− fN (un−1)).

Define g3(a) = (1− e−aΔt)−1 − (aΔt)−1 for a 
= 0 and an operator B3 = g3(LN ) =
B−1

1 − (LNΔt)−1. It is easy to show that g3(a) = 1 + (eaΔt − 1)−1 − (aΔt)−1 and
thus 0 < g3(a) ≤ 1 for any a > 0, which implies that B3 is symmetric positive
definite and |||B3||| ≤ 1. Using Lemma 3.1, we get

EN (un+1)− EN (un) ≤
(
LNun+1 + fN (un), un+1 − un

)
N = S1 + S2,
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where

S1 = −
(
(B2(u

n+1 − un), un+1 − un
)
N ,

S2 = −
(
B3(fN (un)− fN (un−1)), un+1 − un

)
N .

First it is obvious that S1 ≤ 0 since B2 is positive definite. Note that B3 is
symmetric and commutes with ∇N , thus we have

S2 = −
(
fN (un)− fN (un−1), B3(u

n+1 − un)
)
N

= −
(
∇N · (β(∇Nun)− β(∇Nun−1)) + κΔN (un − un−1), B3(u

n+1 − un)
)
N

=
(
β(∇Nun)− β(∇Nun−1) + κ∇N (un − un−1), B3∇N (un+1 − un)

)
N

≤
(
‖β(∇Nun)−β(∇Nun−1)‖N+κ‖∇N (un−un−1)‖N

)
‖B3∇N (un+1−un)‖N ,

where β : MN × MN → MN × MN is defined as (3.4). Denote by ∇β the
Fréchet-derivative of β. The Taylor formula gives

β(∇Nun)− β(∇Nun−1) = Qn∇N (un − un−1),

where

Qn =

∫ 1

0

∇β(θ∇Nun + (1− θ)∇Nun−1) dθ.

We know from Lemma 3.5 that |||Qn||| ≤ 1, then

‖β(∇Nun)− β(∇Nun−1)‖N ≤ |||Qn|||‖∇N (un − un−1)‖N ≤ ‖∇N (un − un−1)‖N .

Using the consistency it also holds that

‖B3∇N (un+1 − un)‖N ≤ |||B3|||‖∇N (un+1 − un)‖N ≤ ‖∇N (un+1 − un)‖N ;

thus we obtain

S2 ≤ (1 + κ)‖∇N (un − un−1)‖N ‖∇N (un+1 − un)‖N

≤ 1 + κ

2

(
‖∇N (un − un−1)‖2N + ‖∇N (un+1 − un)‖2N

)
,

which completes the proof of (3.7). �

Remark 3.7. Unlike the first order scheme (2.10), one may fail to derive a uniform
H2 bound for the numerical solution to the second order scheme (2.11), because
there are two additional positive terms involved in the energy inequality (3.7) and a
direct control of these accumulative correction terms is not available. Similarly, the
second order nonlinear and linear schemes developed in [22] also fail to ensure the
H2 stability of the numerical solution. In comparison, for the second order nonlinear
convex splitting scheme presented in [27], the uniform H2 bound of the numerical
solution is obtained from the energy stability by assuming that the concave part is
a quadratic term.

4. Error estimates

We denote by ue the exact solution to (1.1). Define

Hm
per(Ω) = {v ∈ Hm(Ω) | v is Ω-periodic}.

Li and Liu [17] have proved that if the initial data ue(·, 0) ∈ Hm
per(Ω) for some

integer m ≥ 2, the solution ue satisfies

ue ∈ L∞(0, T ;Hm
per(Ω)) ∩ L2(0, T ;Hm+2

per (Ω)) and ∂tue ∈ L2(0, T ;Hm−2
per (Ω)).
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We will derive rigorously the error estimates for the ETD1 and ETDMs2 schemes
under some assumptions on the regularity of ue. Denote by u(t) the limitation of
ue(·, t) on the mesh ΩN at any fixed time t. Let N = max{Nx, Ny}. Denoting by
λmin the smallest eigenvalue of LN , we know from (2.9) that λmin > 0.

First, we estimate the error between the exact solution u(t) and the solution ũ(t)
of the space-discrete problem (2.4), i.e.,

(4.1)

⎧⎨⎩
dũ

dt
= −ε2Δ2

N ũ−∇N · β(∇N ũ), t ∈ (0, T ],

ũ(0) = u(0) ∈ MN
0 .

Lemma 4.1. Assume that ue ∈ H1(0, T ;Hm+6
per (Ω)). For any fixed t ∈ (0, T ], we

have

(4.2) ‖u(t)− ũ(t)‖N ≤ C0N
−m,

where C0 > 0 is a constant independent on N .

Proof. The exact solution limited on the mesh ΩN , u(t), could be regarded as
satisfying (4.1) with a defect δ(t)

(4.3)
du

dt
= −ε2Δ2

Nu−∇N · β(∇Nu) + δ(t), t ∈ (0, T ],

where δ(t) = ε2(Δ2
Nu −Δ2ue) +∇N · β(∇Nu) − ∇ · β(∇ue). We know from the

Sobolev embedding theorem and ue ∈ H1(0, T ;Hm+6
per (Ω)) that

sup
t∈(0,T ]

‖δ(t)‖N ≤ C∗N
−m.

Let v(t) = u(t) − ũ(t), t ∈ [0, T ], then the difference between (4.3) and (4.1) gives
us

(4.4)
dv

dt
= −ε2Δ2

N v −∇N · (β(∇Nu)− β(∇N ũ)) + δ(t), t ∈ (0, T ],

with v(0) = 0. According to Lemma 3.5, we have

‖β(∇Nu)− β(∇N ũ)‖N ≤ ‖∇Nu−∇N ũ‖N = ‖∇N v‖N .

Taking the discrete L2 inner product of (4.4) with 2v and using Proposition 2.2
yield

d

dt
‖v‖2N = −2ε2‖ΔN v‖2N + 2(β(∇Nu)− β(∇N ũ),∇N v)N + 2(δ, v)N

≤ −2ε2‖ΔN v‖2N + 2‖β(∇Nu)− β(∇N ũ)‖N ‖∇N v‖N + 2(δ, v)N

≤ −2ε2‖ΔN v‖2N + 2‖∇N v‖2N + 2(δ, v)N

≤ −2ε2‖ΔN v‖2N + 2‖v‖N ‖ΔN v‖N + 2‖δ‖N ‖v‖N

≤ −2ε2‖ΔN v‖2N +
1

2ε2
‖v‖2N + 2ε2‖ΔN v‖2N + 2ε2‖δ‖2N +

1

2ε2
‖v‖2N

=
1

ε2
‖v‖2N + 2ε2‖δ‖2N .

An application of the Gronwall inequality then leads to

‖v(t)‖2N ≤ 2ε2
∫ t

0

e(t−τ)/ε2‖δ(τ )‖2N dτ ≤ 2Tε2eT/ε2C2
∗N

−2m, t ∈ (0, T ],

which gives (4.2) with C0 = C∗
√
2TεeT/2ε2 . �
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Next, we estimate the error between the space-discrete solution ũ(t) given by
(2.6) (equivalent to (2.4)) and the approximate solution un computed by the ETD1
scheme (2.10). Recall FN (t) = fN (ũ(t)).

Lemma 4.2. Assume that {un}Nt
n=1 is the approximate solutions calculated by the

ETD1 scheme (2.10) with u0 = ũ(0). If (I + LNΔt)F ′
N ∈ L2(0, T ;MN ) and the

time step size Δt ≤ ε2

4 , then we have

(4.5) ‖ũ(tn)− un‖N ≤ C1Δt, 1 ≤ n ≤ Nt,

where C1 > 0 is a constant independent on Δt and N .

Proof. The space-discrete solution ũ(tn+1) could be regarded as satisfying (2.10)

with a defect δ
(1)
n+1,

(4.6) ũ(tn+1) = e−LNΔtũ(tn)− φ0(LN )FN (tn)− δ
(1)
n+1, 0 ≤ n ≤ Nt − 1,

where

δ
(1)
n+1 =

∫ Δt

0

e−LN (Δt−τ)(FN (tn + τ )− FN (tn)) dτ

=

∫ Δt

0

e−LN (Δt−τ)

∫ τ

0

F ′
N (tn + σ) dσ dτ.

Since∫ τ

0

‖(I + LNΔt)F ′
N (tn + σ)‖N dσ =

τ

T

∫ T

0

‖(I + LNΔt)F ′
N (tn +

τ

T
σ)‖N dσ

≤ τ

T

(∫ T

0

‖(I + LNΔt)F ′
N (tn +

τ

T
σ)‖2N dσ

) 1
2√

T ≤ τ√
T
M1,

where M1 = ‖(I + LNΔt)F ′
N ‖L2(0,T ;MN ), we have

‖(I + LNΔt)δ
(1)
n+1‖N ≤

∫ Δt

0

|||e−LN (Δt−τ)|||
∫ τ

0

‖(I + LNΔt)F ′
N (tn + σ)‖N dσ dτ

≤ M1√
T

∫ Δt

0

τe−λmin(Δt−τ) dτ

=
M1√
T
Δt2 · e

−λminΔt − 1 + λminΔt

(λminΔt)2
≤ M1

2
√
T
Δt2.

Let vn = ũ(tn)− un, 1 ≤ n ≤ Nt. The difference between (2.10) and (4.6) gives

(4.7) vn+1 = e−LNΔtvn−φ0(LN )(fN (ũ(tn))−fN (un))−δ
(1)
n+1, 0 ≤ n ≤ Nt−1,

with v0 = 0. Acting (I + LNΔt) on both sides of (4.7) and taking the discrete L2

inner product with vn+1 yield

(4.8) ‖vn+1‖2N+ε2Δt‖ΔN vn+1‖2N+κΔt‖∇N vn+1‖2N = RHS, 0 ≤ n ≤ Nt−1,

where

RHS = (q1(LNΔt)vn−q2(LNΔt)Δt(fN (ũ(tn))−fN (un))−(I+LNΔt)δ
(1)
n+1, v

n+1)N

with

q1(a) = (1 + a)e−a, q2(a) =
(1 + a)(1− e−a)

a
.
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It is easy to show that 0 < q1(a) < 1 < q2(a) < 2 for any a > 0, thus

RHS = (q1(LNΔt)vn, vn+1)N

+Δt(q2(LNΔt)(β(∇N ũ(tn))− β(∇Nun)),∇N vn+1)N

+ κΔt(q2(LNΔt)∇N vn,∇N vn+1)N − ((I + LNΔt)δ
(1)
n+1, v

n+1)N

≤ |||q1(LNΔt)|||‖vn‖N ‖vn+1‖N +(1+κ)Δt|||q2(LNΔt)|||‖∇N vn‖N ‖∇N vn+1‖N
+ ‖(I + LNΔt)δ

(1)
n+1‖N ‖vn+1‖N

≤ ‖vn‖N ‖vn+1‖N + 2(1 + κ)Δt‖∇N vn‖N ‖∇N vn+1‖N
+ ‖(I + LNΔt)δ

(1)
n+1‖N ‖vn+1‖N

≤ 1

2
‖vn‖2N +

1

2
‖vn+1‖2N + (1 + κ)Δt‖∇N vn‖2N + (1 + κ)Δt‖∇N vn+1‖2N

+ ‖(I + LNΔt)δ
(1)
n+1‖N ‖vn+1‖N .

Then we get by combining the above equation with (4.8) that

1

2
(‖vn+1‖2N − ‖vn‖2N ) + ε2Δt‖ΔN vn+1‖2N

≤ (1 + κ)Δt‖∇N vn‖2N +Δt‖∇N vn+1‖2N + ‖(I + LNΔt)δ
(1)
n+1‖N ‖vn+1‖N

≤ (1 + κ)Δt‖vn‖N ‖ΔN vn‖N +Δt‖vn+1‖N ‖ΔN vn+1‖N
+ ‖(I + LNΔt)δ

(1)
n+1‖N ‖vn+1‖N

≤ (1 + κ)2

2ε2
Δt‖vn‖2N +

ε2

2
Δt‖ΔN vn‖2N +

Δt

2ε2
‖vn+1‖2N +

ε2

2
Δt‖ΔN vn+1‖2N

+
ε2

2Δt
‖(I + LNΔt)δ

(1)
n+1‖2N +

Δt

2ε2
‖vn+1‖2N ,

that is, for 0 ≤ n ≤ Nt − 1,

1

2
(‖vn+1‖2N − ‖vn‖2N ) +

ε2

2
Δt(‖ΔN vn+1‖2N − ‖ΔN vn‖2N )

≤ Δt

ε2
‖vn+1‖2N +

(1 + κ)2

2ε2
Δt‖vn‖2N +

ε2

2Δt
‖(I + LNΔt)δ

(1)
n+1‖2N .

Summing the above inequality from 0 to n leads to

1

2
(‖vn+1‖2N − ‖v0‖2N ) +

ε2

2
Δt(‖ΔN vn+1‖2N − ‖ΔN v0‖2N )

≤ Δt

ε2

n∑
k=0

‖vk+1‖2N +
(1 + κ)2

2ε2
Δt

n∑
k=0

‖vk‖2N +
ε2

2Δt

n∑
k=0

‖(I + LNΔt)δ
(1)
k+1‖2N

=
Δt

ε2
‖vn+1‖2N +

κ2 + 2κ+ 3

2ε2
Δt

n∑
k=1

‖vk‖2N +
ε2

2Δt

n∑
k=0

‖(I + LNΔt)δ
(1)
k+1‖2N

and, consequently,(1
2
− Δt

ε2

)
‖vn+1‖2N ≤ κ2 + 2κ+ 3

2ε2
Δt

n∑
k=1

‖vk‖2N +
ε2

2Δt

n∑
k=0

‖(I + LNΔt)δ
(1)
k+1‖2N .
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Since Δt ≤ ε2

4 , we have

‖vn+1‖2N ≤ 2(κ2 + 2κ+ 3)

ε2
Δt

n∑
k=1

‖vk‖2N +
2ε2

Δt
· M

2
1

4T
Δt4(n+ 1)

≤ 2(κ2 + 2κ+ 3)

ε2
Δt

n∑
k=1

‖vk‖2N +
1

2
ε2M2

1Δt2, 0 ≤ n ≤ Nt − 1.

An application of the discrete Gronwall inequality [5] leads to

‖vn+1‖2N ≤ 1

2
ε2M2

1 e
2(κ2+2κ+3)T/ε2Δt2, 0 ≤ n ≤ Nt − 1,

which gives us (4.5) with C1 =
√
2
2 εM1e

(κ2+2κ+3)T/ε2 . �

The condition ue ∈ H1(0, T ;Hm+6
per (Ω)) implies Δ3

N ũ ∈ H1(0, T ;MN ), which

leads to (I +LNΔt)F ′
N ∈ L2(0, T ;MN ) in Lemma 4.2. Therefore, the direct com-

bination of Lemmas 4.1 and 4.2 gives us the following result on the error estimate
of the ETD1 scheme.

Theorem 4.3. Assume that ue ∈ H1(0, T ;Hm+6
per (Ω)) with m ≥ 2 and {un}Nt

n=1 be

the approximate solution calculated by the ETD1 scheme (2.10) with u0 = u(0). If

the time step size Δt ≤ ε2

4 , then we have

‖u(tn)− un‖N ≤ C(Δt+N−m), 1 ≤ n ≤ Nt,

where C > 0 is a constant independent on Δt and N .

Finally, we turn to the error estimates of the ETDMs2 scheme (2.11) with u0 =
ũ(0) and u1 calculated by the ETD1 scheme (2.10). Setting n = 0, acting as
(I + LNΔt) on both sides, and then taking the discrete L2 inner product with 2v1

in (4.7), we first have

2‖v1‖2N + 2ε2Δt‖ΔN v1‖2N + 2κΔt‖∇N v1‖2N ≤ ‖(I + LNΔt)δ
(1)
1 ‖2N + ‖v1‖2N .

For any Δt > 0, it holds that

(4.9) ‖v1‖2N + 2ε2Δt‖ΔN v1‖2N ≤ M2
1

4T
Δt4.

Lemma 4.4. Assume that {un}Nt
n=2 is calculated by the ETDMs2 scheme (2.11)

with u0 = ũ(0) and u1 calculated by the ETD1 scheme (2.10). If (I + LNΔt)F ′′
N ∈

L2(0, T ;MN ) and the time step size Δt ≤ ε2

2(κ2+4κ+5) , then we have

(4.10) ‖ũ(tn)− un‖N ≤ C2Δt2, 1 ≤ n ≤ Nt,

where C2 > 0 is a constant independent on Δt and N .

Proof. The space-discrete solution ũ(tn+1) could be regarded as satisfying (2.11)

with a defect δ
(2)
n+1,

(4.11)

ũ(tn+1) = e−LNΔtũ(tn)− (φ0(LN ) + φ1(LN ))FN (tn) + φ1(LN )FN (tn−1)− δ
(2)
n+1
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for 1 ≤ n ≤ Nt − 1 where

δ
(2)
n+1 =

∫ Δt

0

e−LN (Δt−τ)
(
FN (tn + τ )−

(
1 +

τ

Δt

)
FN (tn) +

τ

Δt
FN (tn−1)

)
dτ

=

∫ Δt

0

e−LN (Δt−τ)

∫ τ

0

∫ σ

−Δt
τ σ

F ′′
N (tn + ξ) dξ dσ dτ.

Let M2 = ‖(I + LNΔt)F ′′
N ‖L2(0,T ;MN ). Since∫ τ

0

∫ σ

−Δt
τ σ

‖(I + LNΔt)F ′′
N (tn + ξ)‖N dξ dσ

=
τ (τ +Δt)

T 3

∫ T

0

σ

∫ T

0

∥∥∥(I + LNΔt)F ′′
N

(
tn − Δt

T
σ +

τ +Δt

T 2
σξ

)∥∥∥
N
dξ dσ

≤ τ (τ +Δt)

T 3
M2

√
T

∫ T

0

σ dσ =
τ (τ +Δt)

2
√
T

M2,

we have

‖(I + LNΔt)δ
(2)
n+1‖N

≤
∫ Δt

0

|||e−LN (Δt−τ)|||
∫ τ

0

∫ σ

−Δt
τ σ

‖(I + LNΔt)F ′′
N (tn + ξ)‖N dξ dσ dτ

≤ M2

2
√
T

∫ Δt

0

τ (τ +Δt)e−λmin(Δt−τ) dτ

=
M2

2
√
T
Δt3 ·

1− λminΔt+ 1
2 (λminΔt)2 − e−λminΔt

(λminΔt)3
≤ M2

12
√
T
Δt3.

Let vn = ũ(tn)− un. The difference between (2.11) and (4.11) gives

vn+1 = e−LNΔtvn − (φ0(LN ) + φ1(LN ))(fN (ũ(tn))− fN (un))

(4.12)

+ φ1(LN )(fN (ũ(tn−1))− fN (un−1))− δ
(2)
n+1, 1 ≤ n ≤ Nt − 1,

with v0 = 0 and v1 satisfying (4.9). Acting (I +LNΔt) on both sides of (4.12) and
taking the discrete L2 inner product with vn+1 yield

‖vn+1‖2N + ε2Δt‖ΔN vn+1‖2N + κΔt‖∇N vn+1‖2N = RHS, 1 ≤ n ≤ Nt − 1,

where

RHS = (q1(LNΔt)vn − (q2(LNΔt) + q3(LNΔt))Δt(fN (ũ(tn))− fN (un))

+ q3(LNΔt)Δt(fN (ũ(tn−1))− fN (un−1))− (I + LNΔt)δ
(2)
n+1, v

n+1)N

with q1, q2 defined as before and

q3(a) =
(1 + a)(e−a − 1 + a)

a2
.
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Since 1
2 < q3(a) < 1 for any a > 0, we get

RHS ≤ |||q1(LNΔt)|||‖vn‖N ‖vn+1‖N
+ (1 + κ)Δt|||q2(LNΔt) + q3(LNΔt)|||‖∇N vn‖N ‖∇N vn+1‖N
+ (1 + κ)Δt|||q3(LNΔt)|||‖∇N vn−1‖N ‖∇N vn+1‖N
+ ‖(I + LNΔt)δ

(2)
n+1‖N ‖vn+1‖N

≤ ‖vn‖N ‖vn+1‖N + 3(1 + κ)Δt‖∇N vn‖N ‖∇N vn+1‖N
+ (1 + κ)Δt‖∇N vn−1‖N ‖∇N vn+1‖N + ‖(I + LNΔt)δ

(2)
n+1‖N ‖vn+1‖N

≤ 1

2
‖vn‖2N +

1

2
‖vn+1‖2N +

3(1 + κ)

2
Δt‖∇N vn‖2N +

3(1 + κ)

2
Δt‖∇N vn+1‖2N

+
1 + κ

2
Δt‖∇N vn−1‖2N +

1 + κ

2
Δt‖∇N vn+1‖2N

+ ‖(I + LNΔt)δ
(2)
n+1‖N ‖vn+1‖N .

Thus we have

1

2
(‖vn+1‖2N − ‖vn‖2N ) + ε2Δt‖ΔN vn+1‖2N

≤ (2 + κ)Δt‖∇N vn+1‖2N +
3(1 + κ)

2
Δt‖∇N vn‖2N

+
1 + κ

2
Δt‖∇N vn−1‖2N + ‖(I + LNΔt)δ

(2)
n+1‖N ‖vn+1‖N

≤ (2 + κ)Δt‖vn+1‖N ‖ΔN vn+1‖N +
3(1 + κ)

2
Δt‖vn‖N ‖ΔN vn‖N

+
1 + κ

2
Δt‖vn−1‖N ‖ΔN vn−1‖N + ‖(I + LNΔt)δ

(2)
n+1‖N ‖vn+1‖N

≤ (2 + κ)2

2ε2
Δt‖vn+1‖2N +

ε2

2
Δt‖ΔN vn+1‖2N

+
9(1 + κ)2

4ε2
Δt‖vn‖2N +

ε2

4
Δt‖ΔN vn‖2N +

(1 + κ)2

4ε2
Δt‖vn−1‖2N

+
ε2

4
Δt‖ΔN vn−1‖2N +

ε2

2Δt
‖(I + LNΔt)δ

(2)
n+1‖2N +

Δt

2ε2
‖vn+1‖2N ,

that is, for 1 ≤ n ≤ Nt − 1,

1

2
(‖vn+1‖2N − ‖vn‖2N ) +

ε2

2
Δt(‖ΔN vn+1‖2N − 1

2
‖ΔN vn‖2N − 1

2
‖ΔN vn−1‖2N )

≤ κ2 + 4κ+ 5

2ε2
Δt‖vn+1‖2N +

9(1 + κ)2

4ε2
Δt‖vn‖2N +

(1 + κ)2

4ε2
Δt‖vn−1‖2N

+
ε2

2Δt
‖(I + LNΔt)δ

(2)
n+1‖2N .
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Summing the above inequality from 1 to n leads to

1

2
(‖vn+1‖2N − ‖v1‖2N )

+
ε2

2
Δt(‖ΔN vn+1‖2N +

1

2
‖ΔN vn‖2N − ‖ΔN v1‖2N − 1

2
‖ΔN v0‖2N )

≤ κ2 + 4κ+ 5

2ε2
Δt

n∑
k=1

‖vk+1‖2N +
9(1 + κ)2

4ε2
Δt

n∑
k=1

‖vk‖2N

+
(1 + κ)2

4ε2
Δt

n∑
k=1

‖vk−1‖2N +
ε2

2Δt

n∑
k=1

‖(I + LNΔt)δ
(2)
k+1‖2N

≤ κ2 + 4κ+ 5

2ε2
Δt‖vn+1‖2N +

3κ2 + 7κ+ 5

ε2
Δt

n∑
k=2

‖vk‖2N

+
5(1 + κ)2

2ε2
Δt‖v1‖2N +

ε2

2Δt

n∑
k=1

‖(I + LNΔt)δ
(2)
k+1‖2N

and, consequently,(1
2
− κ2 + 4κ+ 5

2ε2
Δt

)
‖vn+1‖2N

≤ 3κ2 + 7κ+ 5

ε2
Δt

n∑
k=2

‖vk‖2N +
(1
2
+

5(1 + κ)2

2ε2
Δt

)
‖v1‖2N

+
ε2

2
Δt‖ΔN v1‖2N +

ε2

2Δt

n∑
k=1

‖(I + LNΔt)δ
(2)
k+1‖2N .

Since Δt ≤ ε2

2(κ2+4κ+5) , we have

‖vn+1‖2N ≤ 4(3κ2 + 7κ+ 5)

ε2
Δt

n∑
k=2

‖vk‖2N +
(
2 +

5κ2 + 10κ+ 5

κ2 + 4κ+ 5

)
‖v1‖2N

+ 2ε2Δt‖ΔN v1‖2N +
2ε2

Δt
· M2

2

144T
Δt6n

≤ 4(3κ2 + 7κ+ 5)

ε2
Δt

n∑
k=2

‖vk‖2N +7‖v1‖2N +2ε2Δt‖ΔN v1‖2N +
ε2M2

2

72
Δt4

for 1 ≤ n ≤ Nt − 1. Combining the above inequality with (4.9), it holds that

‖vn+1‖2N ≤ 4(3κ2 + 7κ+ 5)

ε2
Δt

n∑
k=2

‖vk‖2N+
(7M2

1

4T
+
ε2M2

2

72

)
Δt4, 1≤n≤Nt−1.

Using the discrete Gronwall inequality, we finally obtain

‖vn+1‖2N ≤
(7M2

1

4T
+

ε2M2
2

72

)
e4(3κ

2+7κ+5)T/ε2Δt4, 1 ≤ n ≤ Nt − 1.

Combining with (4.9), we obtain (4.10) with C2 =

√
7M2

1

4T +
ε2M2

2

72 e2(3κ
2+7κ+5)T/ε2 .

�
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Noticing that ue ∈ H2(0, T ;Hm+6
per (Ω)) implies (I + LNΔt)F ′′

N ∈ L2(0, T ;MN )
in Lemma 4.4, thus the combination of Lemmas 4.1 and 4.4 gives us the following
result on the error estimate of the ETDMs2 scheme.

Theorem 4.5. Assume that ue ∈ H2(0, T ;Hm+6
per (Ω)) with m ≥ 2 and {un}Nt

n=2 is

the approximate solution calculated by the ETDMs2 scheme (2.11) with u0 = u(0)
and u1 being calculated by the ETD1 scheme (2.10). If the time step size Δt ≤

ε2

2(κ2+4κ+5) , then we have

‖u(tn)− un‖N ≤ C(Δt2 +N−m), 1 ≤ n ≤ Nt,

where C > 0 is a constant independent on Δt and N .

Remark 4.6. We have seen from Theorems 4.3 and 4.5 that there exists a constraint
taking the form Δt ≤ Cε2 for the convergence. Actually, such constraints on the
time step size are not excessive since they are necessary to prove the convergence
of all the similar numerical schemes for the model (1.1); see, e.g., [22, 30].

5. Numerical experiments

In this section, we carry out various numerical experiments to verify the temporal
convergence rates of the ETD1 and ETDMs2 schemes, and to simulate the coarsen-
ing dynamics of the epitaxial thin film growth by using the ETDMs2 scheme. We
set κ = 1

8 in all experiments.

5.1. Convergence tests. We considered the evolutions governed by the equation
(1.1) with ε2 = 0.1 on the domain Ω = (0, 2π) × (0, 2π) up to the time T = 0.05.
The initial condition was set to be u0(x, y) = 0.1(sin 3x sin 2y+sin 5x sin 5y) on the
uniform mesh with Nx = Ny = N .

First, we conducted experiments to verify the spatial spectral accuracy. To elim-
inate the time-marching effect, we adopted the ETD1 scheme (2.10) with Δt = T ;
in other words, we only considered the convergence of the Fourier collocation ap-
proximation applied on the periodic boundary-value problem of an ellipse equation.
We interpolated the grid function uN ∈ MN by

UN (x, y) =

N
2∑

k,l=−N
2

ûN
kl

ckcl
exp{i(kx+ ly)}, (x, y) ∈ Ω,

where cp = 2 for |p| = N
2 and cp = 1 for |p| < N

2 , and

ûN
kl =

1

N2

N∑
i,j=1

uN
ij exp{−i(kxi + lyj)}, −N

2
≤ k, l ≤ N

2
.

We took the interpolation UN withN = 2048 as the benchmark solution and defined
the L2 errors as

err(N) =
2π

N

√√√√ N∑
i,j=1

|uN
ij − U2048(xi, yj)|2.

The values err(N) with N = 8k, k = 1, 2, . . . , 37 are shown in Figure 1 where the
spectral accuracy is obvious.

Second, we tested the convergence rates in time of the ETD1 and ETDMs2
schemes. For the purpose of comparison, we also computed numerical errors of
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Figure 1. Spectral accuracy in space for the ETD1 scheme (2.10).

the SSI1 scheme. We fixed N = 1024 and performed the numerical simulations
up to the time T = 10δ using the time step sizes Δt = 2−kδ, k = 0, 1, 2, . . . , 8
with δ = 0.005. The approximate solution obtained by using the ETDMs2 scheme
with Δt = 2−8δ/5 was taken as the benchmark solution for calculating errors. The
discrete L2-errors of the numerical solutions are shown in Figure 2(a) where the
first order accuracy of the SSI1 and ETD1 schemes and the second order accuracy
of the ETDMs2 scheme are seen obviously. In addition, the errors of the ETD1
scheme are smaller than those of the SSI1 scheme although they have the same
order of convergence. For a given level of accuracy, for example, 10−5, we found
that the time consumption of the SSI1 scheme is about four times as much as the
ETD1 scheme and nearly a hundred times as much as the ETDMs2 scheme.

We also repeated the above experiments using ε2 = 0.01. It is easy to find from
Figure 2(b) that smaller ε leads to larger errors while the convergence rates are
independent on the value of ε.
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(a) ε2 = 0.1
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(b) ε2 = 0.01

Figure 2. Convergence rates in time of the SSI1, ETD1, and
ETDMs2 schemes.

5.2. Coarsening dynamics. To observe the longtime behaviors of the thin film
growth, such as the energy decay rate and the surface roughness growth rate, we
simulated the equation (1.1) with the parameters ε = 0.1, 0.09, . . . , 0.01 by using
the ETDMs2 scheme (2.11). We took a large domain Ω = (0, 12.8)× (0, 12.8) and
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used the uniform mesh with Nx = Ny = N . The initial condition was set to be
a random state given by random numbers varying uniformly from −0.001 to 0.001
on each grid points. We used N = 512 for ε ≥ 0.03, N = 1024 for ε = 0.02, and
N = 2048 for ε = 0.01. For the time step sizes, we set Δt = 0.001 on the time
interval [0, 400), Δt = 0.01 on the time interval [400, 6000), Δt = 0.1 on the time
interval [6000, 100000], and Δt = 0.5 for t > 100000 if needed.

Figure 3 shows the time snapshots of the calculated height u with ε = 0.01.
Coarsening dynamics with shapes of hills and valleys in the system is evident. At
the early period, there are many small hills (red part) and valleys (blue part), while
at the final time t = 2×106, the system saturates to a one-hill-one-valley structure.

(a) t = 500 (b) t = 3000 (c) t = 20000

(d) t = 90000 (e) t = 300000 (f) t = 2000000

Figure 3. Time snapshots of the calculated height u with ε = 0.01.

The energy E(t) is defined in (1.3), the surface roughness R(t) and the mound
width W (t) are defined as

R(t) =

√
1

|Ω|

∫
Ω

|u(x, t)− ū(t)|2 dx, W (t) =

√
1

|Ω|

∫
Ω

|∇u(x, t)|2 dx

with ū(t) =
1

|Ω|

∫
Ω

u(x, t) dx. For the no-slope-selection epitaxial growth model

(1.1), it is shown in [11, 18] that

E(t) ∼ O(− ln t), R(t) ∼ O(t1/2), W (t) ∼ O(t1/4).

We numerically verified these scaling laws.
Figure 4 presents the linear fitting lines for the case ε = 0.01. Figure 4(a) shows

the linear fitting of the semi-log energy data up to t = 6000, where the fitting line
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is of the form E = me ln t+ be with me = −40.719 and be = −204.967. Figure 4(b)
shows the linear fitting of the log-log surface roughness data up to t = 6000, where
the fitting line is of the form R = brt

mr withmr = 0.503 and br = 0.406. Figure 4(c)
shows the linear fitting of the log-log mound width data up to t = 6000, where the
fitting line is of the form W = bwt

mw with mw = 0.253 and bw = 5.974. It is quite
evident that the − ln t, t1/2 and t1/4 scaling laws for the energy decay rate, the
surface roughness growth rate and the mound width growth rate, respectively, are
presented by our numerical simulations.
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Figure 4. Evolutions of energy, roughness and width with ε = 0.01.

Table 1 gives the linear fitting coefficients me, be,mr, br,mw, bw, in the same
sense as above, for the cases from ε = 0.1 to ε = 0.01, We observe from Table 1
that as ε decreases, mr and mw approach 1/2 and 1/4, respectively.

Table 1. Coefficients of the linear fittings using data up to t = 400.

ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
me -37.555 -38.699 -39.614 -38.294 -38.275 -39.339 -39.499 -40.038 -40.340 -40.433
be -31.802 -36.781 -45.036 -57.440 -69.293 -78.960 -96.469 -119.664 -150.406 -205.071
mr 0.548 0.550 0.548 0.526 0.520 0.523 0.516 0.513 0.510 0.504
br 0.315 0.320 0.334 0.354 0.366 0.359 0.373 0.388 0.394 0.401
mw 0.289 0.289 0.285 0.273 0.268 0.269 0.264 0.261 0.258 0.253
bw 1.548 1.660 1.819 2.016 2.232 2.444 2.804 3.323 4.125 5.947

Finally, we consider the energy and L2 norm of the gradient of the steady states
for various ε values. Theoretically, the energy E(t) has a lower bound [2]:

E(t) ≥ γε =
L2

2

(
ln

4ε2π2

L2
− 4ε2π2

L2
+ 1

)
.

Although the bound γε is not sharp, the minimum calculated energiesmε for various
ε match γε with about 3% accuracy; see Figure 5(a). Besides, the L2 norm of
the gradient of the steady state scales as O(1/ε) [18], which is also observed in
our simulation, see Figure 5(b), where the fitting line is of the form bgε

mg with
mg = −1.008 and bg = 4.0782.

6. Conclusions

In this paper, a class of exponential time differencing multistep schemes with
Fourier spectral collocation for spatial discretization are presented for solving the
no-slope-selection epitaxial growth model with periodic boundary condition in a
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Figure 5. Energy and gradient of steady state versus ε.

rectangular domain. In particular, an optimal form of linear convex splitting is
developed and used in the schemes for the purpose of stabilization. The first and
second order schemes are theoretically and numerically proven to be energy stable
with expected convergence rates. The simulated coarsening rates of the decay of
energy, the growth of surface roughness and mound width are in excellent agreement
with the theoretical results. We also note the analysis techniques presented in this
paper can be further generalized and used to even higher order ETD schemes.

If the time integration is approximated via the interpolation of the nonlinear
term instead of the extrapolation, one can similarly derive the Runge-Kutta type
ETD schemes [16,34], which may cost more calculations per time step when higher
order schemes are adopted. However, the computations in each time step are in-
dependent of the results from previous time steps, which is more convenient to be
used in adaptive time-stepping algorithms. Correspondingly, energy stability and
convergence analysis for the ETDRK schemes could be similarly conducted. Al-
though Fourier spectral method is used and studied for spatial discretization in this
paper due to the periodic boundary condition, other spectral methods or finite dif-
ference schemes also could be used in case of the Dirichlet or Neumann boundary
conditions (see, e.g., [15]). In the end, application of the ETD method to other
phase field models will also be among our future works.
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