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NUMERICAL MODULAR SYMBOLS FOR ELLIPTIC CURVES

CHRISTIAN WUTHRICH

Abstract. We present a detailed analysis of how to implement the computa-

tion of modular symbols for a given elliptic curve by using numerical approxi-
mations. This method turns out to be more efficient than current implemen-
tations as the conductor of the curve increases.

1. Introduction

The aim of the article is to describe an alternative algorithm for computing
modular symbols for a given fixed elliptic curve E/Q of conductor N . The current
implementations use linear algebra with rational coefficients to determine the space
of modular symbols attached to E within the space of all symbols of level N .
Instead we wish to compute efficiently the value of a modular symbol for a fixed
E avoiding to work with the full space whose dimension grows linearly in N . We
build on the work of Goldfeld [12] using numerical approximation to path integrals
in the upper half plane. He already noted that the Atkin-Lehner involutions can
be used to avoid integrating close to the real line where the convergence is bad.
Goldfeld obtained that a single modular symbol for a semistable elliptic curve can
be computed roughly in N1/2 steps. See Theorem 8.1 where we recall the precise
statement.

We improve on his work in several directions. First we prove all the rigorous
bounds and we present the finer details of an implementation that returns provably
correct rational numbers. This uses some theoretical knowledge about the possible
denominators. Moreover, we explain what methods can be used for elliptic curves
that are not semistable. Furthermore, we explain an idea that allows us to compute
the modular symbols at all rational numbers with a fixed denominator. This is
very useful for the practical applications we have in mind, for instance, computing
the p-adic L-functions of E. Finally, we analyse where possible the complexity of
our algorithms. For instance, we prove that the set of all Manin symbols can be
evaluated in roughly N7/4 steps. See Theorem 8.4 for the precise statement.

We implemented the algorithms in SageMath [9]. It turns out to be faster when
computing a single modular symbol and allows for computations with larger con-
ductors than all previous implementations.

In order to describe the methods and results in more detail, we start by defining
modular symbols (sometimes called modular elements). Let E/Q be an elliptic
curve of conductor N . Let f =

∑
anq

n be the newform of weight 2 and level Γ0(N)
associated to the isogeny class of E. We know that f exists by modularity [5]. Given
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a rational number r ∈ Q, we consider the integrals

(1.1) λ(r) = 2πi

∫ r

i∞
f(z)dz = 2π

∫ ∞

0

f(r + yi)dy ∈ C.

Let γ+ be a Z-basis of the subgroup of H1

(
E(C),Z

)
fixed by complex conjugation

and, similarly, let γ− be a generator for the subgroup on which complex conjugation
acts by multiplication with −1. Let ωE be a Néron differential on E. Let Ω+

be the smallest positive period of E, i.e., Ω+ =
∣∣∫

γ+ ωE

∣∣. Similarly, we set Ω−

to be
∣∣∫

γ− ωE

∣∣ in R>0. The period lattice ΛE of E is either ZΩ+ ⊕ ZΩ− i or

ZΩ+ ⊕ Z 1
2 (Ω

+ + Ω− i) depending on whether the discriminant of E is negative or
positive.

Manin [16] and Drinfeld [10] showed that there exists an integer t such that
t · λ(r) ∈ ZΩ+ ⊕ ZΩ− i for all r ∈ Q. In Section 2, we will look for a good bound
on t in practice. Now we define the rational numbers

[r]+ =
Re

(
λ(r)

)
Ω+

∈ Q and [r]− =
Im

(
λ(r)

)
Ω− ∈ Q.

In this article, the map r �→ [r]± will be called a modular symbol rather than the
homological version where the paths are called modular symbols. Our main goal
is to find a fast algorithm for computing the values [r]± for a given curve E and
r ∈ Q.

Current implementations of modular symbols of E compute the values [r]± as
follows. First they determine the vector space over Q of all modular symbols as
the modular form varies through all rational cuspidal forms of weight 2 and level
N . Then the matrices for the first few Hecke operators are computed and they are
used, together with the known eigenvalues ap for our curve E, to find the subspace
corresponding to our fixed cuspform f . (Or rather quotient as they work with
the dual space.) Once this initial step of finding a basis for this subspace is done,
the value of [r]± for a given r is computed efficiently using the continued fractions
expansion of the rational number r.

A thorough explanation of this method is given in Stein’s book [21] and in
Cremona’s book [7]. It is implemented in Cremona’s library eclib [8], Magma [4],
PARI/GP [19] and [26], and SageMath [9]. Originally these implementations were
written to find the elliptic curves of a given conductor as explained in [7]. In
particular, the modularity of E was proven with this method, too.

Instead, we use here that the modularity of the elliptic curve is known. We
wish to avoid working with the space of all modular symbols of level N because
this involves manipulations with sparse matrices of size N/3 × N/4 as explained
in Section 8.9 of [21]. As N increases, the initial step takes a very long time and
it currently makes it difficult to work with elliptic curves of conductor larger than
105.

The approach in this paper is to compute the values of λ(r) ∈ C by finding a
numerical approximation to the integral in (1.1). We assume that we are given the
values of the Fourier coefficients an of f ; for instance, PARI [19] yields these very
fast by point counting on the reductions of E. We also know how to compute good
approximations to the values of the periods Ω±. We make one assumption: We
suppose that the Manin constant of the strong Weil curve in the isogeny class of E
is 1. See Section 2.2 for the concrete implication of this assumption.
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Here is how the modular symbol [r]+ is computed in practice. First we use
Manin’s trick [16] with continued fractions to split the path from i∞ to r into
pieces (Section 6). This reduces our problem to evaluating so-called Manin symbols
(Section 6.2). These are integrals between two cusps r and r′. The main advantage
is that the denominators of r and r′ are now small compared to N . The path
from r to r′ is split up at the best place into two pieces (Section 4). We use an
Atkin-Lehner involution as in [12] to move the path close to r to a path close to
i∞ where the Fourier expansion of f allows for fast integration. This integration is
done by a summation where the number of terms and the precision of the floating
point numbers is determined rigorously to guarantee the result within a given error
(Section 3).

However, this is not possible for all cusps r. A cusp is called “unitary” if it is
in the orbit of i∞ under the group of Atkin-Lehner involutions. If we encounter
a non-unitary cusp, we have to fall back to a much slower method using so-called
transportable paths (Section 5), which we would like to avoid, if at all possible.
The most important idea for this is to replace the curve by its quadratic twist of
minimal conductor (Section 7.2). Furthermore there is also some flexibility in the
continued fraction method.

The main application we have in mind is to compute algebraic L-values L(E,χ, 1)
for Dirichlet characters χ and to compute p-adic L-functions. In both cases one only
needs to find all values [ am ] for a fixed m. Typically they are all unitary symbols.
In Section 7.1, we explain an idea using partial sums that allows us to evaluate
all of these symbols almost as fast as a single evaluation. This also has theoretical
implications for the complexity estimates proven in Theorem 8.4.

The structure of the paper goes through the above explanation of the compu-
tation in reversed order. It is important first to understand the bounds for the
possible denominators of [r]± in Section 2. Then we deal with the numerical ap-
proximation in Section 3 followed by how to split up and move the integration
paths in Sections 4 and 5. How to use and compute Manin symbols is explained in
Section 6. Then, Section 7 describes how to take advantage of quadratic twists and
partial sums and Section 8 looks at the complexity of all steps for unitary symbols.

We end the paper with examples and numerical comparisons with current imple-
mentations. We will illustrate that our method proves to be much faster when we
need to evaluate a single, or a small number of values of [r]±. It is even comparable
when the task is to evaluate all Manin symbols as long as we assume that the curve
is semistable. When N is really large, say 1010, our method still determines single
values of modular symbols quite fast, while the current implementations cannot
perform the initial step any more. We refer to Section 9 for precise timings.

The methods in this paper could be extended to modular forms that do not
come from elliptic curves; for instance, forms associated to Q-curves. We have not
explored this or any potential generalisations to other groups or situations.

2. Denominator of modular symbols

We will compute a numerical approximation to the rational numbers [r]± defined
in the introduction. In order to know to what precision we need to compute the
approximation, we have to find a good bound on the denominator of the rational
numbers [r]+ and [r]−. This will also lead us to the issue concerning the Manin
constant. See [27] for further investigations on these denominators.
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First, we need a few further definitions. Throughout this text E will be an
elliptic curve defined over Q of conductor N . We know that E is modular and so
we let

ϕ : X0(N) ��E

be a modular parametrisation of minimal degree sending i∞ to O. This is defined
up to an automorphism of E defined over Q, so up to multiplication by [−1]. The
Manin constant is defined to be the rational number cE > 0 such that

ϕ∗(ωE) = ±cE · 2πi f(z)dz.
We choose ϕ uniquely such that it is the + sign that appears in the above equality.

In the isogeny class of E there is a unique strong Weil curve E0 (also called the
X0-optimal curve in [25]).

Assumption. The Manin constant c0 = cE0
of the strong Weil curve E0 is 1.

It is known that c0 is an integer [11], and it is believed to be equal to 1 in all
cases. See [1] for a discussion of known results about c0. In particular, it is known
that c0 is either 1 or 2 when E is semistable. See Section 2.2 for an explanation
of how harmful the above assumption is. A consequence of this assumption is that
the Néron lattice Λ0 of E0 is equal to the lattice generated by all values λ(r)−λ(s)
as r and s run through all pairs of Γ0(N)-equivalent cusps.

When comparing the period lattices of E and E0, the quotient of the Néron
periods will become important. Define the rational numbers

q+ =
Ω+

E

Ω+
E0

and q− =
Ω−

E

Ω−
E0

.

Let r be a rational number.

Definition. We write r = a
m as a reduced fraction of integers. Let M be the

greatest common divisor of m and the conductor N . Hence we can write N = Q ·M
and m = d · M . Following Section 3.1 in [17], we call a cusp r unitary if Q and
M are coprime. The integer Q/ gcd(M,Q) is called the width of the cusp r; for
unitary cusps it is simply Q.

It is known that r is unitary if and only if the cusps r and i∞ on X0(N) are
in the same orbit under the action by the group of Atkin-Lehner involutions. In
the application we have in mind, no prime of additive reduction for E divides the
denominator m. Then the cusp a

m is unitary. For a semistable curve all cusps are
unitary.

Further, we set δ2 to be the largest square dividing N . Thus δ = 1 if and only
if E is semistable.

Proposition 2.1. Let E/Q be an elliptic curve of conductor N . Choose a few
primes 	 > 2 coprime to N , with 	 ≡ 1 (mod δ) and set t0 to be the greatest
common divisor of the number N� of points on the reduction of E modulo 	. Let t±

be the numerator of t0q
±. Assume c0 = 1. We have

[r]± ∈ c∞(E0)

2t±
Z,

where c∞(E0) is the number of connected components of E0(R). If r is unitary, we
also get

[r]+ ∈ c∞(E)

2 ·#E(Q)tors
and [r]− ∈ 1

2
Z,

where c∞(E) is the number of connected components of E(R).
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For a semistable curve, even without assuming c0 = 1, we get the bounds
4 · #E(Q)tors/c∞(E) � 24 and 4 for the denominator of [r]+ and [r]−, respec-
tively. If t is a bound for the denominator of modular symbols [r]+ as above, then,
in our implementation we now round t ·Re

(
λ(r)

)
/Ω+ to the closest integer and find

[r]+ by dividing again by t. Hence we must compute Re
(
λ(r)

)
with a proven error

smaller than Ω+/(2t).

Proof. Consider the modular parametrisation ϕ0 : X0(N) → E0. After identifying
E0(C) with C/ΛE0

via the integration of ωE0
, we get an induced map ϕ̃0 from the

upper half plane to C/ΛE0
. We find

ϕ̃0(r) ≡
ϕ0(Γ0(N)r)∫

O

ωE0
≡

Γ0(N)r∫
Γ0(N)i∞

ϕ∗
0(ωE0

) ≡ c0

r∫
i∞

2πif(z)dz ≡ c0λ(r) (mod ΛE0
).

By the theorem of Manin and Drinfeld, the modular parametrisation ϕ : X0(N) →
E maps the cusp r to the torsion point ϕ(r) ∈ E(Q̄). The action of the Galois group
on the cusps on X0(N) is given in Theorem 1.3.1 in [24]. The cusps on X0(N), and
hence all points ϕ(r) for r ∈ Q, are defined over the cyclotomic field K = Q(ζδ).
The image of the unitary cusps is in the torsion subgroup of E(Q) instead.

If 	 ≡ 1 (mod δ), then there is a place v in K above 	 with residue field F�.

If 	 � N , then we get a reduction map E0(K) → Ẽ0(F�) of elliptic curves. Since
v | 	 is unramified and 	 > 2, we conclude from Theorem VII.3.4 in [20] that the
reduction map is injective on torsion points in E(K). Hence N� is a multiple of
the order of the torsion subgroup of E(K) for all of these 	. We conclude that
t0 ϕ0(r) = O in E0(K). Therefore t0 ϕ̃0(r) and hence t0 c0 λ(r) belong to ΛE0

.
Recall that λ(r) = [r]+q+ Ω+

E0
+ [r]−q− Ω−

E0
i. Now if ΛE0

is rectangular, then

c∞(E0) = 2 and c0t0q
± [r]± ∈ Z. If ΛE0

is not rectangular, then c∞(E0) = 1 and
c0t0q

± [r]± ∈ 1
2Z. Thus combined we find that c0t0q

± [r]± belong to c∞(E0)/2Z.
Finally, if r is unitary, then ϕ(r) belongs to E(Q) and hence to E(R). This

implies in both the rectangular and the non-rectangular case that [r]− ∈ 1
2c0

Z. We

find that 2 ·#E(Q)tors [r]
+/(c0 c∞(E)) belongs to Z. �

By the way, the original proof of Manin [16] and Drinfeld [10] used the Hecke
operators and found that N� for 	 ≡ 1 (mod N) is a bound for the order of ϕ0(r) ∈
E(K); our bound involving δ rather than N is better.

We add the example of the strong Weil curve 121d1. Here E(Q) is trivial and
E(R) is connected. So we expect a denominator 1 or 2 for all unitary cusps. We
have δ = 11 for this curve and N23 = 25 which is also the greatest common divisor
of the first few 	 ≡ 1 (mod 11). In fact the torsion subgroup of E(Q(μ11)) is
isomorphic to Z/25Z. Hence we can bound the denominator of [r]± by 50. One can
show that [r]+ ∈ 1

2Z and [r]− ∈ 1
50Z. For instance, λ

(
3
11

)
= − 1

2Ω
+ + 27

50Ω
− i.

2.1. Implementation of the Manin constant. We add here an explanation of
how to implement the Manin constant under the above assumption (as it is now
done in SageMath).
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Proposition 2.2. Let E be an elliptic curve defined over Q. Let n± be the numer-
ator of q± as defined above. Then the Manin constant cE is equal to:

cE =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c0 · 1
2 · n+ · n− if n+ and n− are both even and

E0(R) has more components than E(R),

c0 · 2 · n+ · n−
if E(R) has more components than E0(R) and
at least one of the denominators of q+ and q− is
odd,

c0 · n+ · n− otherwise.

If α : E → E′ is an isogeny defined over Q, then set n±
α to be the numerator and

d±α the denominator of Ω±
E′/Ω

±
E . Further we define cα by α∗(ωE′) = cα ωE . We

may choose the differentials such that cα is a positive integer.
Let ψ : E0 → E be the isogeny of smallest degree. By the definition of the strong

Weil curve, the modular parametrisation of E factors through ϕ0 and ψ. Thus the
Manin constant cE is equal to c0 · cψ. It is convenient to prove a lemma first.

Lemma 2.3. Let α : E → E′ be a cyclic isogeny defined over Q of degree pk for
some prime p. If p = 2 assume that E(R) and E′(R) have the same number of
connected components. Then gcd(n+

α , n
−
α ) = gcd(d+α , d

−
α ) = 1 and cα = n+

α · n−
α .

Proof. Integrating against the fixed Néron differentials ω and ω′ on E and E′,
respectively, we identify E(C) with C/ΛE and E′(C) with C/ΛE′ . The isogeny
C/ΛE → C/ΛE′ is then induced by the multiplication by cα on C. Recall also that
cα divides pk as cα · cα̂ = c[pk] = pk.

If n+
α and n−

α have a common divisor n, then the isogeny α would factor through
[n] : C/nΛE′ → C/ΛE , but that is not possible as α is cyclic. Similarly d+α and d−α
are coprime.

Since ker(α) is not a direct sum, it is either contained in E(R) or in E(C)−, the
set of points Q in E(C) whose complex conjugate is Q̄ = −Q. Let z + ΛE be a
generator of ker(α). Now if z = x+ iy, then z̄ ≡ ±z (mod ΛE) implies that either
2x ∈ ΛE or 2iy ∈ ΛE .

Assume now that p is odd. Then the above implies that either ker(α) is generated
by Ω+

E/p
k + ΛE or it is generated by iΩ−

E/p
k + ΛE . In the first case, we have

cαΩ
+
E/p

k = Ω+
E′ and cαΩ

−
E = Ω−

E′ . Together with cα | pk, this implies that n+
α =

d−α = 1 and cα = n−
α . The lemma is then proved in this case. The second case,

when Ω−
Ei/p

k is in ker(α), is similar but with signs swapped.
Finally, we assume p = 2. Consider w = 2k−1z. Then w+Λ is a 2-torsion point

on E and, since α is defined over Q, it lies in E(R)[2]. First, if E(R) is connected,
then w ∈ Ω+

E/2+ΛE and z ∈ Ω+
E/2

k+ΛE . We find ourselves in a case in which the
explanation for general p treated above extends to p = 2. Also when E(R) has two
connected components, we fall back onto the two cases treated above, except when
w ∈ (Ω+

E + iΩ−
E)/2 + ΛE . However, in this last case, E′(R) is connected, which is

excluded by assumption. �
Proof of Proposition 2.2. We factor ψ = β ◦ α with α : E0 → E′ and β : E′ → E.
We can impose that α is cyclic and E0(R) and E′(R) have the same number of
connected components and that β has degree 2 when E0(R) and E(R) do not have
the same number of connected components otherwise β is trivial.

Decomposing α into isogenies of prime power degrees, we can apply the previous
lemma repeatedly. It follows that gcd(n+

α , n
−
α ) = gcd(d+α , d

−
α ) = 1 and cα = n+

α ·n−
α .
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This concludes the case when E0(R) and E(R) have the same number of connected
components.

Assume now that E0(R) has two and E(R) has one connected component. As
seen above in the case p = 2, it follows that the kernel of β is generated by (Ω+

E′ +

iΩ−
E′)/2 + ΛE′ . Either cβ = 1 or 2. In the first case, we have Ω±

E′ = Ω±
E and

hence cψ = cα · cβ = n+
α · n−

α = n+
ψ · n−

ψ proves this case. In the second case,

we have cβ = 2 = Ω±
E/Ω

±
E′ . Thus n±

ψ/d
±
ψ = 2n±

α /d
±
α . We have to split up into

two cases according to the parity of d+α d−α . If it is even, then exactly one of d+α
and d−α is even and we find that cψ = 2n+

αn
−
α = n+

ψn
−
ψ . Otherwise, if it is odd,

cψ = 2n+
αn

−
α = 1

2n
+
ψn

−
ψ . It remains to note that d+α d−α is odd if and only if n+

ψ and

n−
ψ are both even.

Finally, we can treat the case when E0(R) has one and E(R) has two connected
components by a similar case-by-case treatment. Alternatively one can just apply
the above to the dual of β. �

There are other ways to find cα for an isogeny α : E → E′. For instance, the ex-
pansion of α using the formal groups for E and E′ will have cα as the leading coeffi-
cient. Also there is the useful formula c2α = deg(α) c∞(E) Ω+

E Ω−
E/(c∞(E′) Ω+

E′ Ω
−
E).

The advantage of the formula in Proposition 2.2 is that all terms can be read off E
and E′ without reference to ψ any more.

As an example we add here the case of the isogeny class 27a. There are four
curves in this class and they are linked by the following 3-isogenies

27a3 ��������������27a1������� 27a4,
27a2

where the direction of the arrow indicates the isogeny α for which cα = 1. In other
words, the inclusion of the Néron lattices is in the opposite direction. The curve
27a1 is the strong Weil curve, while 27a3 is the minimal curve in the sense of [25].
The three curves on the right have each exactly 3 points in E(Q) and they lie in
the kernel of the isogeny to the curve on their left. The Manin constants are equal
to 1 for 27a2 and 27a1 and they are equal to 3 for the two curves 27a3 and 27a4.

2.2. Outstanding issues. There are two outstanding issues. First, what happens
if c0 	= 1, and second, how do we find the strong Weil curve in the isogeny class.

Suppose that the Manin constant c0 were larger than 1. If we knew the value of
c0 we could simply multiply the bounds t0 and t±0 by c0, too. However, it is then
likely that we would at some point find a modular symbol where c0 appears as a
factor of the denominator. When rounding our numerical approximation, we would
find a large error. If this happens, we could verify that c0 	= 1 and announce the
exceptional news to the world. Therefore we do not really have to worry about this
assumption in practice.

For all isogeny classes in Cremona’s tables [7] it has been verified that c0 = 1
when the table was created. For a few curves this is slightly more complicated and
the issue is well explained in the appendix of [1].

The second issue is related to the first. Even for the curves in the tables, it is
not always possible to say with certainty which curve in the isogeny class is the
strong Weil curve. This arises because the computation in creating the table is
done mostly with +-modular symbols only. At worst, we are off by a lattice of
index 2.
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Finally, suppose the curve lies outside the range of the table. We can still
determine the isogeny class of the curve fairly quickly. However, we have no means
of knowing which curve is the strong Weil curve. To be on the safe side, we have
to assume that it is one of the curves with maximal lattice. In practice it is very
often, on the contrary, the minimal curve that is the strong Weil curve, but we
have no way of showing this for our curve. If we are really unlucky, we even picked
the wrong curve among the maximal curves; hence we should really work with the
lattice generated by all Néron lattices in the isogeny class.

3. Numerical integration

Let f be the newform associated to the isogeny class of the elliptic curve E. Let
ε > 0. In this section, we consider the finite sum that approximates the integral
of 2πif(z)dz from i∞ to a point τ in the upper half plane. We prove bounds on
the number of terms and the bit precision to work with in order to determine the
integral with an error of at most ε.

Generalising the definition of λ(r), we will consider

λ(τ ) = 2πi

∫ τ

i∞
f(z)dz

for any point τ = x+ yi in the upper half plane. As y > 0, we can express it as the
evaluation of a power series in q = e2πiτ , namely

(3.1) λ(τ ) =

∞∑
n=1

an
n
qn =

∞∑
n=1

an
n

exp(−2πny + 2πnxi).

We will approximate this sum by its finite partial sum for n � T for a bound T .
It is the value of y that determines how quickly the sum will converge and so how
large T should be. In Section 7.1, we will be interested in the following partial
sums: for any m > 1 and 0 � j < m and y > 0, we define

(3.2) κj,m(y) =
∑
n�1

n≡j mod m

an
n

exp(−2πny) ∈ R.

3.1. Truncation. We now proceed to determine how many terms in the sums
in (3.1) and (3.2) we have to add to be guaranteed a value that differs from the
infinite sum by less than a given error ε. Afterwards we will decide with what level
of precision we have to do the numerical computations so that the error due to
precision loss will be smaller than a given bound ε′. Recall that we have determined
the value of ε+ ε′ in Section 2.

Define the following function for y > 0 and ε > 0,

(3.3) T (y, ε) =
− log(2πyε)

2πy
,

which is, for a fixed ε, a function that grows like a constant multiple of 1
y log( 1y ) as

y → 0.

Lemma 3.1. Let τ be an element of the upper half plane with y = Im(τ ) and let
ε > 0. If T > T (y, ε), then we have∣∣∣∣∣λ(τ )−

T∑
n=1

an
n

exp(2πinτ )

∣∣∣∣∣ < ε .
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Proof. Write τ = x+ yi. Now we use that |an| � n as proven in Lemma 2.9 in [13].
The difference to bound is∣∣∣∣∣

∑
n>T

an
n

exp
(
2πin(x+ i y)

)∣∣∣∣∣ �
∑
n>T

|an|
n

exp(−2πny)

�
∑
n>T

exp(−2πny) =
e−2π(T+1)y

1− e−2πy
=

e−2πTy

e2πy − 1
.

Now the condition on T implies that

e−2πTy

e2πy − 1
<

2πyε

e2πy − 1
< ε. �

In this proof, we have used the inequality |an| � n. In fact, we even know that
|an| � σ0(n)

√
n where σ0(n) is the number of positive divisors of n. However,

even this asymptotically sharper inequality will not lead to a substantially better
theoretical bound on the number of terms.

Nonetheless, in practice we use the following estimates. First we have the trivial
bound σ0(n) � 2

√
n. Moreover, for every 2 > ς > 0 the equality σ0(n) < ς ·

√
n

holds for all n > B(ς) for some B(ς). Here are a few values of this bound used in
the implementation:

(3.4)
ς 1 2/3 1/2 1/3 1/4 1/5 1/6

B(ς) 1260 10080 55440 277200 831600 2162160 4324320

With the same method as in Lemma 3.1 one proves the bound on the approxi-
mation for the partial sum κj,m(y). When we will compare the methods it will be
clear that the corresponding error bound that we ask for is ε/m.

Lemma 3.2. Let y > 0, m > 1, 0 � j < m and ε > 0. If T > T (y, ε) +m, then∣∣∣∣∣κj,m(y)−
∑

n≡j mod m
1�n�T

an
n

exp(−2πny)

∣∣∣∣∣ < ε

m
.

We have seen that the value of 1
y is an important measure of how difficult it will

be to approximate the integral. This motivates the following definition.

Definition. We call the value of y the speed of the evaluation of λ(x+ yi).

The larger the speed the faster we can compute λ(τ ).
Of course, since the sums are alternating in average (because the ap for primes

p follow the Sato-Tate distribution), they actually converge much faster. In [12],
Goldfeld suggests that it is probable that the computation complexity is polynomial
in N ; in other words, that the bound for T could behave like a power of log( 1y ).

However, this is still far beyond current knowledge. Even an unproven effective
version of the Sato-Tate distribution does not seem to help here.

3.2. Implementation. For implementing these finite sums we use Horner’s rule.
Here is the algorithm to evaluate an approximation to λ(τ ). We are given τ in the
upper half plane and a bound ε on the allowed error.
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Algorithm: Numerical approximation to λ(τ ).

[ Initialisation ]: Set s ← 0 and n ← �T (y, ε)
 and compute q ←
exp(2πiτ ).
[ Loop ]: While n is positive, replace s ← s · q+ an

n and decrease n by
one.
[ End ]: Return s · q as a good approximation to λ(τ ).

The same idea can be used to compute an approximation to the partial sum κj,m(y)
for all j simultaneous. We are given m and y and the allowed error ε/m.

Algorithm: Simultaneous numerical approximation to κj,m(y).

[ Initialise ]: Set vj ← 0 for all 0 � j < m. Compute q ← exp(−2πy)
and q′ ← exp(−2πmy). Set to start n ← �T (y, ε)
.
[ Loop ]: As long as n is positive, replace vj ← vj · q′ + an

n , where
j ≡ n (mod m) and then decrease n by 1.
[ End ]: At the end the value vj · qj for 1 � j < m and v0 · q′ are good
approximations to κj,m(y).

3.3. Precision. We wish to determine how many bits b of precision we have to
work with to make sure that the error in the above algorithm is smaller than a
given error ε′. In practice this error will be chosen to be a tiny fraction of the error
ε that we allowed for finding the above bound T .

Lemma 3.3. Let 1 > ε′ > 0 and τ in the upper half plane. Let T be the number
of terms evaluated in the sum to approximate λ(τ ). If

2−b <
ε′

2T (T + ε′)
,

then the numerical value computed differs from the actual sum
∑T

n=1
an

n qn by less
than ε′ in absolute value.

Proof. Wemay suppose that the value of q can be precomputed to b bits of precision.
We use the absolute error estimate on the Horner’s rule given on page 105 of [14].
If we write δ = 2−b, then the absolute error is smaller than

2Tδ

1− 2Tδ
·

T∑
n=1

∣∣∣an
n

∣∣∣ · |e2πiτ |n � 2Tδ

1− 2Tδ
·

T∑
n=1

e−2πny � 2Tδ

1− 2Tδ
· T,

where we used again that |an| � n. It is now easy to see that the given inequality
on δ in the lemma implies that the above right hand side is smaller than ε′ �

For the approximation of κj,m(y) to have an error smaller than ε′/m, we have
to impose the bound

2−b <
ε′ m

2T ′(T ′ + ε′)
,

where T ′ = T (y, ε) +m is the upper limit of the finite sums in Lemma 3.2.
Later, it will be clear that, in view of Lemma 3.3, we may neglect the issue of

memory usage because the floating point numbers will take up approximatively as
many bits as the conductor or the coefficients of E take up.

Within the range of interesting examples, the standard double precision of 53
bits is often sufficient. For example, the period Ω+ of the curve 100002a1 is ap-
proximatively equal to 1.125. If we set ε = 0.278427 and ε′ = 0.002812, then we are
allowed to sum up T = 3558923 terms using 53 bits precision, which would allow
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for 1
y to be as large as 1627105. From the results in the following sections one can

deduce that this allows us to evaluate all Manin symbols using standard double
precision.

Instead, for a curve like E : y2 = x3 + 101x + 103 of conductor 35261176, the
evaluation of λ( 1

107 ) will require precision above 53 bits to obtain provable results.

4. Computation of unitary symbols

In this section we assume that r is a unitary cusp. It is equivalent to the definition
given at the start of Section 2 to ask that the cusp r on X0(N) is in the orbit of
i∞ under the group of Atkin-Lehner involutions. This section explains how to
compute λ(r) under this assumption. In Section 3, we explained how to compute
integrals from a point τ within the upper half plane to the cusp i∞. Now, we wish
to explain how one integrates paths from τ to another cusp r ∈ Q. The idea to use
the Atkin-Lehner involution to bring r to ∞ is already presented in [12].

4.1. Moving unitary cusps with Atkin-Lehner involutions. By assumption,
r = a

m is unitary. Recall that we denote by M be the greatest common divisor of
m and the conductor N . Further we write N = Q · M with Q and M coprime.
Then the greatest common divisor of Qa and m is 1 and hence we find integers u
and v such that Qau+mv = 1. We define

Wr =

(
Qu v

−Qm Qa

)

which is of determinant Q and sends r to i∞ under the action of GL2(Q) on the
completed upper half plane. Since Qm is divisible by N , the matrix Wr induces an
Atkin-Lehner involution on X0(N). Since f is a newform it is also an eigenfunction
for Wr. We have f |Wr

= εQ ·f for εQ ∈ {±1}. In fact, εQ is easy to compute as it is
just the product of the local root numbers for 	 | Q; and for a product of semistable
primes, we have εQ = −aQ. We get
(4.1)

2πi

∫ r

τ

f(z)dz = εQ · 2πi
∫ r

τ

f |Wr
(z)dz = εQ · 2πi

∫ i∞

Wr(τ)

f(z)dz = −εQ · λ
(
Wr(τ )

)
which can be evaluated with the previously described numerical method. Note that
the speed of this evaluation is equal to

(4.2) Im
(
Wr(τ )

)
=

Q · Im(τ )

| −Qmτ +Qa|2 =
Im(τ )

Q ·m2 · |r − τ |2 .

4.2. Splitting up the path from i∞ to r. We wish to compute λ(r) by splitting
up the path of integration from r to i∞ at a certain τ in the upper half plane.
Using (4.1), we find, for any such τ and any unitary cusp r,

(4.3) λ(r) = 2πi
(∫ τ

i∞
+

∫ r

τ

)
f(z)dz = λ(τ )− εQ · λ

(
Wr(τ )

)
.

These two values of λ can be evaluated using the numerical method. We are now
looking for the choice of τ such that the computation is fastest. The following
lemma will show that this is achieved when the speed of computing λ(τ ) is equal
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to the speed of computing λ
(
Wr(τ )

)
and they are maximal. From (4.2), the first

condition is equivalent to the equation

Im(τ ) =
Im(τ )

Q ·m2 · |r − τ |2 .

So we are looking for the τ = x+yi with maximal y such that |r− τ | = 1/
(√

Qm
)
.

This is obtained for

τ = r +
1

m
√
Q

i.

It is not difficult to see that

(4.4) Wr

( a

m
+

1

m
√
Q

i
)
= − u

m
+

1

m
√
Q

i,

where u is an inverse of Q · a modulo m. We still have to justify the claim that our
choice of τ is optimal.

Lemma 4.1. For a fixed curve E, a fixed unitary cusp r, and a fixed error ε > 0,
the minimum of

T
(
y,

ε

2

)
+ T

( y

Qm2|r − τ |2 ,
ε

2

)
is attained when τ = r + 1

m
√
Q
i.

Proof. Write as before τ = x + y i. Since t(y) := T (y, ε/2) is decreasing in y > 0,
the best choice for x must occur when x = r. The function to minimise simplifies
then to t(y) + t(1/(Cy)) with C = Qm2. Taking the derivatives with respect to y,
we see that at the minimum, we must have

y · t′(y) = 1

Cy
· t′

( 1

Cy

)
.

Now from the definition we see that t satisfies the differential equation

y · t′(y) = −t(y)− 1

2πy

and hence, since t is decreasing, y �→ y · t′(y) is increasing. Hence there is only one
minimum, namely when y = 1

Cy . �

4.3. Integrals from cusp to cusp. Let r = a
m and r′ = a′

m′ be two unitary cusps
of widths Q and Q′, respectively. Our aim is to compute

λ
(
{r′ → r}

)
= 2πi

∫ r

r′
f(z)dz = λ(r)− λ(r′),

where the integration follows any path from r′ to r in the upper half plane. One
way to do so, indicated by the last expression above, is to integrate from r′ to i∞
and then subtract the integration from r to i∞ using the method explained above.
We call this the indirect way.

Instead, the direct way splits up the integration path from r′ to r into two pieces:
First find a good τ in the upper half plane. Then use the Atkin-Lehner involution
Wr′ to move the path from r′ to τ to a path from i∞ to Wr′(τ ). Similarly use Wr

to move the second piece to a path from Wr(τ ) to i∞. As before, on these two
paths we can use the methods from the previous section. We get

λ
(
{r′ → r}

)
= 2πi

(∫ τ

r′
+

∫ r

τ

)
f(z)dz = εQ′ · λ

(
Wr′(τ )

)
− εQ · λ

(
Wr(τ )

)
.
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We expect again the best choice for τ = x+ i y to be such that the speeds of both
integrals are equal and they are maximal. We get the equation

(4.5)
y

m2Q · |τ − r|2 =
y

m′2Q′ · |τ − r′|2 .

If we denote

c =
m′

m
·
√

Q′

Q
> 0,

then the above equation (4.5) becomes

|τ − r| = c · |τ − r′|.
The set of all complex numbers satisfying this equation forms a circle around either
r or r′. More precisely, if c > 1, then it is a circle with r in its interior and r′ in
the exterior. Conversely, if c < 1, then it is r′ that lies in the interior and r in the
exterior. Finally, if c = 1, we deal with a vertical line bisecting the segment from r
to r′. Write A = |τ − r| and A′ = |τ − r′|.

Our aim now is to maximise the function in (4.5), which is the same as to maximise
y
A2 , on this circle A = c ·A′. We have

y

A2
=

y

A ·A′ · c =
sin(α)

|r′ − r| · c ,

where α is the acute angle between the segments from τ to r and r′, respectively.
This is maximal when α = π/2. So τ is the intersection of the circle A = c ·A′ with
the circle centred on the real axis and passing through r′ and r. It is now easy to
compute that

y =
c

c2 + 1
· |r′ − r| =

√
QQ′

m2 Q+m′2 Q′ · |am
′ − a′ m|,

x =
c2r′ + r

c2 + 1
=

amQ+ a′ m′ Q′

m2 Q+m′2 Q′ .

The maximum value for the speed in (4.5) is

1

mm′√QQ′ · |r − r′|
=

1√
QQ′ · |am′ − a′m|

.

Furthermore, we find

Wr(τ ) =
1

Q

Qa′u+m′v

am′ − a′m
+

i√
QQ′ · |am′ − a′m| and

Wr′(τ ) =
1

Q′
Q′au′ +mv′

a′m− am′ +
i√

QQ′ · |am′ − a′m|
.
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We could not spot any general rule to distinguish the cases when the direct or the
indirect method is faster. In practice it is easy to test before starting to sum. For
the curve E=5077a1 and ε = 0.001, the direct method is faster for (r, r′) = (0, 70

5077 ),

but slower for (r, r′) = ( 123456 ,
789
5077 ).

5. Computation of non-unitary symbols

If N is not square-free, then there are modular symbols that we do not know how
to compute with the above methods. In this section, we analyse how to compute
λ(r) when r is non-unitary. We cannot move the cusp to i∞ using an Atkin-Lehner
involution. If the elliptic curve admits a quadratic twist E† whose conductor is
square-free, then it is best to use the formula for twisting modular symbols; see
Section 7.2. But this is not always possible.

There is one special case when we can transform a non-unitary symbol to a
unitary one: Suppose 4 | N and r = a

2m with odd a and m. Then the action of the
Hecke operator T2 yields the equality

λ
(r′
2

)
+ λ

(r′ − 1

2

)
= 0

because a2 = 0. For r′/2 = r, we get λ(r) = −λ
(
a−m
2m

)
. The latter is now at a cusp

with an odd denominator and has a chance of being a unitary cusp. This little trick
only works for 4 | N not any other square dividing N .

In general, however, we know no better method than to rewrite λ(r) as the sum
of so-called transportable symbols via the use of a Hecke operator. We start by
explaining what transportable symbols are and how they can be computed.

5.1. Transportable modular symbols.

Definition. We will call λ({r′ → r}) a transportable modular symbol if the two
rational numbers r and r′ are Γ0(N)-equivalent.

This is a more restrictive definition of this term than in [22] where they allow
also sums of transportable symbols in the more general setting of higher weight
modular forms.

Let λ({r′ → r}) be a transportable modular symbol. We may compute it by
transporting the path: If γ ∈ Γ0(N) is such that r′ = γ(r), then

(5.1) λ
(
{r′ → r}

)
= 2πi

∫ r

γ(r)

f(z)dz = 2πi

∫ τ

γ(τ)

f(z)dz = λ(τ )− λ(γ(τ ))

for any τ in the upper half plane.
Write γ =

(
a b
c d

)
. Note first that if γ is not hyperbolic, i.e., if |a + d| � 2, then

there is a point τ in the upper half plane or among the cusps with γ(τ ) = τ and
thus λ

(
{r′ → r}

)
= 0. Hence we may assume that γ is hyperbolic.

Let us now find the best choice of τ = x + yi in the upper half plane. It will
be such that the speeds of summing up λ(τ ) and λ(γ(τ )) are equal and as large as
possible. This implies that

(cx+ d)2 + c2y2 = 1.

We want to maximise y under this restriction, so obviously the best choice is y = 1
|c|

and x = −d
c and the speed will be 1/|c|. See Algorithm 10.6 in [21]. Since c ∈ NZ,
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the speed will be smaller than 1
N , which is often quite worse than the previous

methods.
Given two Γ0(N)-equivalent cusps r and r′, we should try to find the matrix

γ ∈ Γ0(N) with γ(r) = r′ in such a way as to make its lower left entry c as small as
possible in absolute value. Proposition 2.2.3 in [7] gives an algorithm to construct
such a matrix, but reading carefully the proof one sees that it actually gives the
construction of all possible γ. We repeat it here in our notations for the convenience
of the reader.

Write r = e
m and r′ = e′

m′ in reduced fractions. Using the euclidean algorithm,

we can find matrices δ =
(

e u
m v

)
and δ′ =

(
e′ u′

m′ v′

)
in SL2(Z) such that δ(i∞) = r

and δ′(i∞) = r′. We have that γ0 = δ′ · δ−1 =
(
a0 b0
c0 d0

)
sends r to r′. We can obtain

all such matrices as

γ = δ′ ·
(
1 t
0 1

)
· δ−1 =

(
a b
c d

)
for some t ∈ Z, because δ′−1γδ stabilises the cusp i∞. (Alternatively one can view
this as the indeterminacy of u and v in the Bézout equation ev −mu = 1 modulo
e and m, respectively.) The equation

0 ≡ c = c0 + tmm′ (mod N)

is solvable in t if and only if r and r′ are Γ0(N)-equivalent. The choice of c is unique
up to multiples of lcm(mm′, N). So we can take t such that c is the least residue
modulo lcm(mm′, N); hence we have that the speed will be at least 2

lcm(mm′,N) .

Now so far, we have considered transporting the path close to the cusp i∞.
However, we could also choose another unitary cusp r0 of width Q instead. We
compute

λ
(
{r′ → r}

)
= 2πi

(∫ τ

r0

−
∫ γ(τ)

r0

)
f(z)dz = εQ

(
λ
(
Wr0(τ )

)
− λ

(
Wr0(γ(τ ))

))

by (4.1). Renaming Wr0(τ ) as τ and writing γr0 = Wr0 · γ ·W−1
r0 ∈ Γ0(N), this is

equal to

λ
(
{r′ → r}

)
= εQ

(
λ(τ )− λ

(
γr0(τ )

))
for all τ in the upper half plane. The best γ is obtained when the lower left entry
of γr0 is minimal. Again, this entry is divisible by N and we expect a rather low
speed.

For example, we can take r0 = 0 of width N . Then γr0 =
(

d −c/N
−bN a

)
and so

we are now looking for γ such that |b| is minimal. As before b = b0 + t e e′ and
we are looking for the least residue of b0 modulo ee′. It may be that the resulting
computation is faster with r0 than with i∞. It seems difficult to find the best choice
of the unitary cusp r0 in general.

Finally, we could also transport the path in such a way as to have γ(τ ) close to
i∞ and τ close to another unitary cusp r0. For instance, if r0 = 0, this would give
a speed of 1/

(√
N |d|

)
and we would have to minimise |d|. However, this time it

will also involve the computation of the integral from i∞ to r0.

5.2. Hecke operators to get transportable paths. Let r = a
m be a non-unitary

cusp. Set M to be the greatest common divisor of m and N . Further put d equal
to the greatest common divisor of M and Q = N

M . The previous methods explain



2408 CHRISTIAN WUTHRICH

how to compute λ(r) only in the case that d = 1. In this section, we will suppose
d > 1.

First, for any integer n coprime to N , we have the action of the Hecke operator,
which gives us

an · λ(r) =
∑
k|n

k−1∑
u=0

λ
(nr + uk

k2

)
.

The cusp nr+uk
k2 is Γ0(N)-equivalent to r if and only if n · k−2 is congruent to

1 modulo d. This implies that n ≡ 1 (mod d) and that k2 ≡ 1 (mod d) for all
divisors k | n. If n is not a prime or a square of a prime, then the smallest prime
divisor of n will provide a smaller choice for n.

Let 	 be a prime congruent to 1 modulo d. If 	 does not divide N , then

(
a� − 	− 1

)
λ(r) = λ

(
{	r → r}

)
+

�−1∑
u=0

λ

({r + u

	
→ r

})
.

The right hand side is now a sum of 	 + 1 transportable symbols. The integer
a� − 	− 1 = −N� is non-zero since N� is the number of points on the reduction of
E to F�. If 	 divides N , then we get

(
a� − 	

)
λ(r) =

�−1∑
u=0

λ

({r + u

	
→ r

})

instead. This time |a�| � 1.
The other option is to take a prime 	 such that 	2 ≡ 1 (mod d). For instance,

let 	 ≡ −1 (mod d). Then we have the following formula

(
a�2−	2−	−1

)
λ(r) = λ

(
{	2r → r}

)
+

�−1∑
u=0

λ

({
r+

u

	
→ r

})
+

�2−1∑
v=0

λ

({r + v

	2
→ r

})

which expresses a non-zero multiple of λ(r) as a sum of transportable symbols. If
	 is the smallest prime congruent to 1 modulo d and 	′ 	≡ 1 (mod d) is the smallest
prime such that 	′2 ≡ 1 (mod d), then the above formula for 	′ will have 	′2+ 	′+1
terms, which may be smaller than the 	+ 1 terms in the corresponding sum for 	.
Although not frequent, there are cases when this is useful. For instance, if d = 6441,
we have 	 = 231877 and 	′ = 227.

It is hard to estimate what the complexity of this method is. It is certainly
significantly slower than the computation of unitary cusps, but it is still useful
when the conductor is not too large. In the most frequent applications, like for
the computation of p-adic L-series, this is not important, as we will be mainly
interested in unitary symbols. Note, however, that the following section shows that
even the computation of unitary symbols for large denominators may encounter the
computations explained here.

6. Manin’s trick using continued fractions

Manin [16] introduced the use of the continued fraction expansion of the rational
r to help speeding up the computation of [r]± considerably when the denominator
of r is large compared to N . See also [12] and Section 3.3.1 in [21] for more details.
However, we need to modify it slightly here as we should avoid non-unitary cusps
if at all possible.
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Definition. Recall that the set of right coset representatives of Γ0(N) in SL2(Z) is
in bijection with P1

(
Z/NZ

)
by sending

(
a b
c d

)
to (c : d). For each such coset Γ0(N)δ

with δ =
(
a b
c d

)
, we define the Manin symbol by

(6.1) M(c : d) = 2πi

∫ 0

i∞
f |δ(z)dz = 2πi

∫ b/d

a/c

f(z)dz = λ
( b

d

)
− λ

(a
c

)
.

We start by explaining how to reduce the computation of [r]± for a large denom-
inator of r to the computation of Manin symbols and then explain how to evaluate
Manin symbols.

6.1. Using continued fractions. Here is the original trick by Manin. We are
given a rational number r = a/m. Consider the sequence of convergents of the
continuous fraction of r:

a−1

m−1
=

1

0
,

a0
m0

=
a0
1
, . . . ,

an
mn

=
a

m
.

We have akmk−1 − ak−1mk = (−1)k−1. So the matrix(
ak (−1)k−1ak−1

mk (−1)k−1mk−1

)
belongs to SL2(Z) and it sends any path linking 0 to i∞ to a path from ak−1

mk−1
to

ak

mk
. We find

λ(r) = −2πi ·
(∫ an−1/mn−1

an/mn

+

∫ an−2/mn−2

an−1/mn−1

+ · · ·+
∫ a0/m0

a1/m1

+

∫ i∞

a0

)
f(z)dz

= M
(
mn : (−1)n−1mn−1

)
+M

(
mn−1 : (−1)n−2mn−2

)
+ · · ·

+M
(
m1 : 1

)
+M

(
1 : 0

)
.

This allows us to compute λ(r) as a sum of Manin symbols M(c : d), each of which
is a modular symbol between two rational numbers of denominator c and d smaller
than N .

Now the problem with this way of splitting up is the following: Even if r is a
unitary cusp, it may be that some intermediate convergent ak/mk is not unitary.
Here is an adaptation, which may take a few steps more, but tries to avoid non-
unitary cusps. In the end this is a great gain of speed.

Algorithm: Try to split up the path into unitary Manin symbols

[ Initialisation ]: Given r = a/m. If m = 1, return λ(0).
[ Find new cusp ]: Compute with the extended euclidean algorithm x
and y such that a y + xm = 1. Make sure that −m/2 < y � m/2.
[ Unitary? ]: If −x/y is unitary, set r′ = −x/y. Otherwise, set r′ =
(x + sign(y) a)/(y − sign(y)m) if that is unitary. If both are non-
unitary, set r′ = −x/y.

[ Recursion ]: Call this function recursively with r′ and add the result
to the Manin symbol M(m : y).

Here is an example of a case when both choices of cusps are non-unitary: For
N = 36 and r = 2

5 , neither
1
2 nor 1

3 is unitary. This can only happen when the
squares of two distinct primes divide N .

Note that if we have to go for the second choice for the cusp, then we still have
|y| < m, but not |y| < m/2. So we are no longer certain if the algorithm takes
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only O(log(m)) steps. In practice, the algorithm is quite effective in avoiding non-
unitary cusps. We tested all elliptic curves of conductor at most 1000 which are not
semistable and whose conductor cannot be decreased by a quadratic twist. Among
all a/m with m < N , there were 77% such that the best choice for r′ is unitary,
for 22% the second best choice is unitary and only in 1.4% we have to pass to a
non-unitary cusp r′.

6.2. Unitary Manin symbols. As explained above, we now have to compute the
Manin symbol M(c : d) as defined in (6.1). We assume here first that both c and
d are denominators of unitary cusps. In this case, we say that the Manin symbol
M(c : d) is unitary. Note, that once we computed M(c : d), we also know M(−d :

c) = −M(c : d). This is the formula (2.2.6) in [7]. Further M(c : d) = M(c : −d).
Also, there is a three term relation M(c : d) +M(c + d : −c) +M(d,−c − d) = 0;
which can be used to compute a further value if two of them are known.

There are now at least three possible ways of evaluating the Manin symbol
M(c : d). Either by direct or indirect integration or by using transportation.
Further note that M(c : d) only depends on (c : d) in P1

(
Z/NZ

)
and we may

improve the performance by choosing good representatives c and d.
First, in the cases when both c and d are coprime to N , we could transport them

as both cusps a
c and b

d are Γ0(N)-equivalent to 0. From Section 5.1, we see that

the speed will be at best equal to 1
N and hence this method will usually lose out

on the others below.
Let Q be the width of a

c and Q′ be the width of b
d . Then the speed of using the

direct integration from a
c to b

d is equal to

1√
QQ′ · |ad− bc| =

1√
QQ′ � 1

N

as seen in Section 4.3. In the (most frequent) case when c and d are coprime to
N , then the speed is indeed equal to 1

N . Neglecting the contribution from ε, this

means that we expect a single sum over approximately 1
2πN log(N) terms.

By Section 4.2, the indirect integration via i∞ instead uses two sums with speed(
|c|
√
Q
)−1

and
(
|d|

√
Q′

)−1
each. If we neglect again the contribution from ε, we

expect in the case gcd(cd,N) = 1 to sum in total about

√
N

2π

(
|c| log

(
|c|
√
N
)
+ |d| log

(
|d|

√
N
))

.

In particular, if we can find c and d representing the point on the projective line
with |c| and |d| both smaller than 1

2

√
N , then the indirect method is faster. This

leads to the problem of finding small c and d. The following lemma shows that we
may just as well try to minimise |c|+ |d|.

Lemma 6.1. Let C =
√
N/(2π). Let γ : R2 → R�0 be the continuous function

such that γ(x, y) = C
(
|x| log(|x|

√
N) + |y| log(|y|

√
N)

)
for xy 	= 0. Let L ⊂ Z2 be

a set not containing the origin. Let (x0, y0) be a point of L at which γ is minimal
and let (x1, y1) be a point in L at which |(x, y)| = |x|+ |y| is minimal. Then

γ(x1, y1)

γ(x0, y0)
= 1 +O

( 1

log(N)

)
.
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Proof. Write A = |(x1, y1)|. Since γ is increasing on rays leaving from the origin,
we see that

γ(x1, y1) � max
{
γ(x, y)

∣∣∣ |(x, y)| = A
}
,

γ(x0, y0) � min
{
γ(x, y)

∣∣∣ |(x, y)| = A
}
.

It is not hard to show that the maximum above is C · log(A
√
N) and the minimum

is C · log(A
√
N/2). Hence we find

γ(x1, y1)

γ(x0, y0)
� 1

1− log(2)

log(A
√
N)

= 1 +O
( 1

log(N)

)
. �

6.3. Small coordinates of projective points. Let N be an integer and (u :
v) ∈ P1

(
Z/NZ

)
. In the above computation of Manin symbols, we came across the

problem of finding the integers c and d such that (u : v) = (c : d) and |c|+ |d| is as
small as possible. Write |(c, d)| = |c|+ |d| and ‖(c, d)‖ =

√
c2 + d2.

We are looking for the smallest non-zero vector in the lattice

Λ(u:v) =
{
(c, d) ∈ Z2

∣∣∣ c · v ≡ d · u (mod N)
}

such that gcd(c, d) = 1. Here is an algorithm based on Algorithm 1.3.14 in [6].

Algorithm: Find good representatives for projective points

[ Initialise ]: Set �x, �y to be a Z-basis of Λ(u:v). If one of the coordinates
u or v is invertible modulo N , say v, then we can do this as follows:
Set w to be the product of u and the inverse of v modulo N . Let
�x = (1, w) and �y = (0, N). In the general case, we set p = gcd(u,N)
and q = gcd(v,N); note that they must be coprime. Set w to be the
product of u

p and the inverse of v
q modulo N

pq . Then �x = (Nq , 0) and

�y = (w · p, q) is a basis.
[ Euclidean step ]: If the signs of x0 and x1 agree, then set r to be
the greatest integer smaller than y0+y1

x0+x1
. Otherwise set r to be the

greatest integer smaller than y0−y1

x0−x1
. Set �z = �y−r ·�x. If |�z − �x| < |�z|,

then replace �z by �z − �x.
[ Finished ? ]: If |�z| < |�x|, then set �y to �x and �x to �z and go back to
the second step. Otherwise we can terminate the algorithm. If the
coordinates of �x are coprime, we return �x. If not, we run through
small linear combinations of �x and �z, starting with �z, until we hit
one with coprime coordinates.

The proof is very analogous to the one in [6]. As long as we do the second step,
we know that �x and �y are a Z-basis of the lattice Λ(u:v). The integer r is chosen
such that |�z| is minimal. At the stage when we terminate, we are certain that �x
is the shortest non-zero vector of the lattice and �z is the shortest, which is not a
multiple of �x. The convex body theorem of Minkowski applied to the set of vectors
of | · |-norm at most

√
2N guarantees that |�x| �

√
2N .

Unfortunately, we cannot be certain that the algorithm will return the best of
all choices. For instance, with N = 30 and (u : v) = (11 : 1), we find that the
shortest non-zero vector is �x = (3, 3) and the second minimum is �z = (5,−5). None
of them are allowed to represent (11 : 1) in P1

(
Z/30Z

)
. Even �x + �z = (8,−2) and

�z − �x = (2, 8) are not permitted. Only when we compute 2�x − �z = (11, 1) and
�x+ 2�z = (13,−7) will we find coprime coordinates. It is now not certain that the
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algorithm will find the shorter one first. Note that in this example |(11, 1)| = 12 is

much larger than
√
60.

The following is a theoretical result about small coordinates for projective points
that will be used later in Section 8.5.

Lemma 6.2. There exists an absolute constant C with the following property. Let
N be a square-free integer and let P = (u : v) ∈ P1

(
Z/NZ

)
. Let �vP be the shortest

non-zero vector in ΛP and let �wP be the shortest vector in ΛP which is not collinear
to �vP . Then there exists λ ∈ Z with |λ| � C · log(N)2 such that the two coordinates
of �wP + λ�vP are coprime.

In particular, there exists (c, d) such that (c : d) = (u : v) and

max
(
|c|, |d|

)
� N

‖�vP ‖
+ C ′ log(N)2‖�vP ‖

for some absolute constant C ′.

Note that it is vain to hope for a better bound, for instance, independent of the
size of ‖�vP ‖. Suppose N = 2n is even. Then the size of the coordinates of the point
P = (1 : n) cannot be decreased. For this example �vP = (2, 0) is very small.

Proof. We will call the content, written co(x, y), of a point (x, y) in Z2 the greatest
common divisor of the two coordinates x and y. Since (u, v) ∈ ΛP and u and v are
coprime, there exists at least one point with content 1 in ΛP . It follows that the
contents of two basis vectors of ΛP must be coprime integers. In particular co(�vP )
and co(�wP ) are coprime.

Let �z = (x, y) be a vector in ΛP . Then there exists an integer k such that
cx − dy = kN . If b = gcd

(
k, co(�z )

)
, then

(
x/b, y/b

)
also belongs to ΛP . Hence if

we assume now that �z is not divisible by any integer greater than 1, then b = 1.
Thus co(�z ) divides N . In particular all points on the line L =

{
�wP +λ�vP

∣∣ λ ∈ Z
}

have contents equal to a divisor of N .
Consider two points �z = �wP +λ�vP and �z ′ = �wP +λ′�vP on the line L. We claim

that the greatest common divisor of co(�z ) and co(�z ′) divides λ− λ′: It is not hard
to show that this greatest common divisor divides (λ′ − λ) · gcd

(
co(�vP ), co(�wP )

)
and so the above justifies the claim.

For each prime divisor 	 | N , either 	 does not divide the content of any point on

L or the content of every 	th point is divisible by 	. Let Ñ be the product of the
prime divisors of N dividing the content of one of the points on L. The sequence
co(�wP + λ�vP ) as λ varies in Z is periodic with period Ñ . There is λ0 such that

�z0 = �wP +λ0�vP ∈ L has content Ñ . Now the content of �wP +λ�vP is gcd(λ−λ0, Ñ).
By a theorem of Iwaniec [15] on the Jacobsthal function, there is a constant C

such that any set of C(log(N))2 consecutive integers contain at least a unit modulo
N . It follows that in the set X ⊂ L of �wP + λ�vP with |λ| � C/2 log(N)2 there is a
point whose coordinates are coprime.

The last sentence of the lemma follows from geometric considerations (see Fig-
ure 1) measuring the length of this vector in X: The distance from (0, 0) to the real
line containing L is N/‖�vP ‖. The length of the point (x, y) in the set X furthest
away from (0, 0) satisfies

‖(x, y)‖ � N

‖�vP ‖
+
(
C/2 log(N)2 + 1

)
‖�vP ‖

by the triangle inequality. Finally, we use max(|x|, |y|) � ‖(x, y)‖. �
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Figure 1. The two shortest vectors and the line L

We also remark that when N = p is prime, we have the much better bound
|c| + |d| �

√
2N : The content of �vP can only be 1 or p. But if it were p, then the

representation of the form P = (1 : d) with 0 � d < p or (0 : 1) would be a smaller
vector in ΛP . Hence the shortest vector is always the best way to represent the
point on P1

(
Z/pZ

)
. By Minkowski’s convex body theorem |�vP | �

√
2N .

6.4. Non-unitary Manin symbols. Let (c : d) be such that at least one of them
is not the denominator of a unitary cusp. For simplicity, we assume that d is the
denominator of a unitary cusp and c is not. Given how much harder it is to work
with non-unitary cusps, we should compute M(c : d) as λ(b/d) − λ(a/c) and we
have to make c as small as possible.

Given an integer N and (u : v) ∈ P1
(
Z/NZ

)
, we are looking for (c : d) = (u : v)

such that |c| is minimal. Let M = (u,N) and Q such that N = MQ. We can take
c = M , which is minimal. The other coordinate d now has to satisfy Mv ≡ du
(mod N) and (M,d) = 1. Let x and y be such that xu+yN = M . The congruence
condition becomes d ≡ xv (mod Q). Our first choice would be to take d = xv.
However, in case xv and M are not coprime, we add Q to xv until it becomes
coprime to M .

7. Tweaks

In this section, we present two ideas to make certain computations faster.

7.1. Using partial sums. Let E be an elliptic curve over Q. Let m be a small
positive integer. Here is an idea that is useful for the evaluation of all symbols [ am ]±

as a varies through all integers 1 � a < m coprime to m. In the application where
we wish to evaluate a p-adic L-series for some small prime p, we would typically
need this for m = p2 or p3. For the sake of simplicity we assume that 1

m is unitary.
In equation (3.2), we have defined the partial sums

κj,m(y) =
∑
n�1

n≡j mod m

an
n

exp(−2πny).
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We have seen that we only need m more terms in the sum to evaluate to a given
precision all these partial sums for j = 0, . . . ,m− 1.

These can be used to evaluate λ(τ ) whenever the real part x of τ is a rational
number with denominator m, say x = a

m :

(7.1) λ
( a

m
+ yi

)
=

m−1∑
j=0

κj,m(y) · ζja,

where ζ = exp(2πi/m). In case we are only interested in the plus modular symbols
[·]+, we can do the computations with real numbers only.

Re
(
λ
(

a
m + yi

))
=

m−1∑
j=0

κj,m(y) · cos
(
2πaj/m

)
.

We see here that it is possible to use fast Fourier transform if we are interested in
evaluating λ

(
a
m + yi

)
for all a with a fixed m and y > 0. Note that the radix m

cannot be chosen to be a power of two, so we rely on mixed-radix algorithms. This
has not yet been implemented in [28].

We can use the above formula (7.1) together with equations (3.1), (4.3), and (4.4),
to give a formula for the computation of λ( a

m) for all a at once:
(7.2)

λ
( a

m

)
=

∞∑
n=1

an
n
·e−

2πn
m

√
Q ·
(
e

2πna
m i−εQe

− 2πnu
m i

)
=

m−1∑
j=0

κj,m

( 1

m
√
Q

)
·
(
ζjam −εQζ

−ju
m

)
,

where u is an inverse of Qa modulo m and ζm = exp(2πi/m).

Similarly, we can express the direct integration from r′ = a′

m′ to r = a
m as a finite

sum of partial sums: Let Q and Q′ be the widths and set d = lcm(Q,Q′)·|am′−a′m|
and y =

√
QQ′ · |am′ − a′m| and let τ be the optimal place in the upper half plan

to cut the path in two, which we found in Section 4.3. Then

Wr(τ ) =
ξ

d
+

i

y
,

where ξ = (Qa′u+ vm′)Q′/ gcd(Q,Q′) and Qau+ vm = 1. Hence we obtain

λ
(
{r′ → r}

)
=

d−1∑
j=0

κj,d

(1
y

)(
εQ′ζjξ

′

d − εQζ
jξ
d

)
.

with ξ′ = (Q′au′ + v′m)Q/ gcd(Q,Q′) and Q′a′u′ + v′m′ = 1. Note, however, that
to use this formula only makes sense when d is much smaller than N .

Finally, we could also compute the transportable symbols using partial sums.
For γ =

(
a b
c d

)
, we find

λ
(
{r′ → r}

)
=

|c|−1∑
j=0

κj,|c|

( 1

|c|
)(

ζ−dj
c − ζajc

)
.

We explain why it can be beneficial to use these partial sums: Even when com-
puting a single one of these expressions, say λ( a

m ) for some value of m, it may be
worth wasting a bit of time and using the above formulae. We first compute all
κj,m(y) in one sum with T (y, ε)+m terms. Then we do one sum involving m terms

again. Hence if m is small, say m �
√
N , we lose only very little time. Since 1/y2

is an integer in all cases above, it is easy to cache the values κj,m(y) for later use.
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If we then encounter later another symbol with the same denominator m, we have
to sum up only m precomputed terms.

However, note that this is not practical for transportable symbols or for the
computation of all Manin symbols as m will be in the order of N rather frequently.

7.2. Quadratic twists. If N is not square-free, then one can often find a qua-
dratic twist of the elliptic curve with smaller conductor. Since all the previous
computations depend heavily on the conductor, it may be an advantage to do the
computation on the twisted curve instead.

Let D be a fundamental discriminant such that the quadratic twist E† by D
has minimal conductor among all quadratic twists of E. This need not be unique,
but for our considerations it does not seem to matter much which among them we
choose. In practice we take the one with the largest period as best.

Write
√
D for the square root of D in R>0, if D is positive, and in iR>0, if D is

negative. We will use formula (I.8.5) in [18]

λ(r) =
1√
D

|D|−1∑
u=1

(D
u

)
λ†
(
r +

u

|D|
)
,

where λ† designates the modular symbol for the twisted elliptic curve. Since the
rational numbers r ± u

D all have the same denominator, we can use the idea from
the previous section to compute this sum with a single summation. Similarly, if we
wish to compute all modular symbols for E with a given denominator.

Note, however, that there is a small issue with this. Suppose 	 is a prime dividing
D such that the conductor N† of the twisted curve E† is still divisible by 	2. This
can happen for instance with N = 80, D = −4, and N† = 40. Now in this
situation, we will evaluate modular symbols with denominator divisible by 	. If
	 did not divide the denominator of r, then the resulting cusp r + u

D will not be
unitary. Because our method is a lot slower for non-unitary cusps, it is much better
to avoid this. Hence we will remove all factors of 	 in the fundamental discriminant
if the twisted curve still has additive reduction at 	. Of course this affects only
	 = 2 or 3.

How much do we expect this to speed up our computations? We will use the
notation O(f(N)) to mean that the number of steps needed in the computations
is, for sufficiently big N , bounded by C · f(N) for some constant C > 0. Suppose
we wish to evaluate λ(r) for a rational r with denominator m, which we suppose
for simplicity to be coprime to N . We will compute about log(m) Manin symbols
each with at worst a speed of 1

N . So we will be summing about O
(
log(m) log(N)N

)
terms in total.

Instead, using the twist by D, we will have D times as many terms with a
denominator of m ·D, but the conductor will be divided by D ·D′, where D′ is a
factor of D. Hence we get about O

(
log(mD) log(N/DD′)N/D′) terms to sum. If

D′ > 1, this is obviously a very good improvement. Otherwise it is negligible.
The other major advantage of twisting is that there will be less non-unitary cusps

on the twist. In particular when E† is semistable, then all cusps are unitary for
E†. This way, we can compute even the non-unitary symbols for E very quickly.
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8. Complexity

In [12] Goldfeld finds the complexity of evaluating one modular symbol on a
semistable curve. We will refine this here. We will continue to use the notation
O(f(N)) introduced above to find an upper bound on the number of steps in an

algorithm. Further the notation Õ(f(N)) suppresses the possible further factors
which are logarithmic in f(N). As mentioned before, we neglect the issues with
precision and simply find asymptotics for the number of terms that need to be
summed up.

We will assume throughout this section that N is square-free; except for Sec-
tion 8.4. Recall that this implies that E is semistable and hence the Manin constant
c0 is either 1 or 2 and hence the assumption made in Section 2 can be neglected in
this section.

8.1. Periods. Although we have often neglected the size of ε in the previous con-
sideration, we should find a proven lower bound for the size of the periods Ω+ and
Ω−. This seems, however, difficult and the issue is already discussed in [12].

Conjecture (Goldfeld’s period conjecture). There is a constant κ > 0 such that
Ω+ and Ω− are larger than O

(
N−κ

)
as N → ∞.

The graph in Figure 2 presents numerical evidence in favour of this conjecture.
In fact it looks like κ = 1 is a very reasonable guess, while κ < 1/2 is not likely. In
Section 2, we have shown that for semistable curves the bound on the denominator
of [r]± is at most 24 for the strong Weil curve. Since the number of isogenous curves
is also bounded, the denominator will not contribute to the asymptotic size of the
error ε. Under the conjecture above, we find that − log(ε) = O(log(N)).

Figure 2. For each elliptic curve in the Cremona tables, the value
of log Ω+/ logN on the vertical axis is compared with N on the
horizontal axis. Only negative values are plotted.
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Without assuming the conjecture, it seems that one only knows (see [12]) that
the periods are bounded by O

(
N−N

)
. This then gives a proven bound − log ε =

O(N log(N)).

8.2. Fourier coefficients. We have to compute the coefficients an for n up to a
bound T . In practice this is done by the command ellan in PARI. This function
first computes the values ap for all primes up to T . When p gets large, the preferred
choice of algorithm for the Frobenius trace ap is the Schoof-Elkies-Atkin algorithm,

which is known to run in polynomial time, with a heuristic expectation of Õ(log4 p).

Hence to find all ap for p < T , we expect Õ(T ) operations. The algorithm then uses
the recursive formulae and the multiplicativity of an. This is done also in about T
steps. Therefore in total we expect Õ(T ) operations.

It is to be noted that in our implementation, this step does indeed take up a
certain non-negligible portion of the total computation time. Initially, we precom-
pute the first thousand coefficients an. If we later need more terms, we add them.
However, the way we interact with PARI currently it is faster to recompute all values
from scratch unless we only have to add a small percentage of new values. Hence
in practice, we may have to perform these computations more than once. For the
theoretical considerations below, we may assume that we can determine beforehand
the highest value of n ever needed and compute all values an only once.

8.3. Computing one modular symbol. Suppose r = a
m ∈ Q with 0 < a < m

and we wish to evaluate [r]±. As we supposed that N is square-free, the cusp r
is unitary. We have seen in equations (4.3) and (4.4) that we can compute them
by integrating to τ with imaginary part equal to 1/

(
m
√
Q
)
where Q is the width

of r. Lemma 3.1 then gives us that we have to sum T = O
(
m
√
Q log(m

√
Q)

)
+

O(− log(ε)m
√
Q) terms. For this we need to evaluate that many Fourier coeffi-

cients, but that is done in Õ(T ) steps. As Q � N , we find that the total number

of steps in the computation is Õ(m
√
N) assuming Goldfeld’s period conjecture.

Of course, when m is large, one should use Manin’s trick in Section 6 instead.
Since N is square-free, all cusps are unitary and hence we can split up the computa-
tion of [r]± into O(log(m)) Manin symbols. Now using the direct integration from

cusp to cusp, any unitary Manin symbol can be computed in Õ(N log(N)) = Õ(N)
steps. We have now recovered

Theorem 8.1 (Goldfeld, Theorem 2 in [12]). Assume Goldfeld’s period conjecture

holds. Then the modular symbol
[
a
m

]±
on a semistable curve E defined over Q of

conductor N can be computed in less than Õ(N log(m)) steps.

However, we can often do much better. For instance, when N is prime, then each
Manin symbol can be computed in Õ(

√
N log(N)) = Õ(

√
N) steps due to the fact

that projective coordinates can always be chosen of size O(
√
N); see the remark

after Lemma 6.2. In fact a large proportion of Manin symbols are computable at
that complexity:

Proposition 8.2. Assume Goldfeld’s period conjecture holds. For each N , there
is a subset P containing at least 95% of all points on P1

(
Z/NZ

)
such that each

Manin symbol M(x) for x ∈ P can be computed in less than Õ(N1/2) steps.
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Proof. Let �v be a vector with ‖�v‖ <
√
N and whose coordinates are coprime. Then

�v is the shortest vector in a lattice ΛP for some P ∈ P1
(
Z/NZ

)
. Take P to be the

set of all these points. For each P , there is only one other non-zero element of ΛP ,

namely −�v, in the ball of radius
√
N . There are approximately 1

2
6
π2 π

√
N

2
= 3

πN
pairs of opposite points with coprime integers in this ball. This is asymptotically
more than 95% of all elements in P1

(
Z/NZ

)
. �

8.4. Computing all modular symbol with a given small denominator. Re-
call that δ2 is the largest square dividing N .

Theorem 8.3. Assume Goldfeld’s period conjecture and assume Manin’s conjecture
that c0 = 1. Let m > 1 be an integer. Then there is a method to evaluate all modular
symbols {[

a
m

]± ∣∣∣ 0 � a < m and gcd(a,m) = 1
}

for any elliptic curve over Q of conductor N with gcd(m, δ) = 1 in less than

Õ(N1/2) steps.

If we restrict to semistable curves, the condition on c0 can be dropped and m is
always coprime to δ = 1.

Proof. By assumption all cusps a/m are unitary. Recall from the explanations in
Section 7.1 the formula (7.2). Hence we start by evaluating all

{
κj,m(y)

}
j
with

y = m
√
Q using the approximation in Lemma 3.2. This can be done with m sums

of O(m
√
Q/m) terms. Thus this first part takes O(m

√
Q) steps.

Given the vector
{
κj,m(1/y)

}
j
, we need to obtain the vector

{m−1∑
j=0

κj,m

( 1

m
√
Q

)
ζja

∣∣∣ a = 1, . . . ,m− 1
}
,

where ζ = exp(2πi/m). For this we can use fast Fourier transform; in particular,
with Bluestein’s multi-radix algorithm [3] this is done in O(m log(m)) steps even

when m is not a prime power. Hence we get a complexity of Õ(m
√
N) as Q � N ,

which yields the result as m is fixed. �

In practice, we may be interested in computing approximations to the p-adic
L-function for varying elliptic curves. Let pr be a fixed prime power. In order to
determine the rth approximation to the p-adic L-function as explained in [23], we
will only need to compute all modular symbols with denominator pr. By the above
this can be done with a complexity Õ(

√
N).

In Figure 3, we plot the time to compute the fourth approximation P4 in the
notation of [23]. We tested random semistable curves with good ordinary reduction
at 5 of conductor up to 106, either from Cremona’s table or from table of Stein
and Watkins. The steeply increasing set of values uses eclib, the other timings are
obtained with our implementation. The graph shows two anomalies: First there
are a small number of values significantly higher than others. It turns out these are
those examples for which the standard double precision of 53 bits is not sufficient
and the implementation has to use the much slower library of arbitrary precision
floating point numbers. Second, there is a strange vertical strip empty. This is due
to the choices of the values of B(ς) in (3.4); these particular computations involve
about 277200 terms in the sum.
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Figure 3. Comparison of approximations computing 5-adic L-
functions for semistable elliptic curves

8.5. Computing all Manin symbols. We wish to compare the numerical mod-
ular symbols to current implementations. Traditional methods start by finding a
basis for the space of modular symbols attached to E in the space of all modular
symbols for Γ0(N). This is equivalent to computing all Manin symbols M(c : d) for
(c : d) ∈ P1

(
Z/NZ

)
. We will estimate therefore the complexity to compute all Manin

symbols via numerical approximations. Note, however, that in practice, we never
do this. Instead we fill up the cached values for Manin symbols as we go along.

Theorem 8.4. Assume Goldfeld’s period conjecture is true. Then there is a method
to evaluate all Manin symbols for any semistable elliptic curve over Q of conductor
N in less than Õ(N7/4) steps.

Proof. As in Section 6.3 we denote for each P ∈ P1
(
Z/NZ

)
the lattice ΛP whose

points with coprime coordinates are the possible representations of P . Let �vP be
the shortest non-zero vector in ΛP .

We start by evaluating all M(P ) for those P ∈ P1
(
Z/NZ

)
with ‖�vP ‖ � 2N3/8.

There are at most 4πN3/4 of them and each such Manin symbols can be evaluated
in Õ(N) steps using the direct method. Hence all of them are done in Õ(N7/4)
steps.

Now, we may assume that ‖�vP ‖ > 2N3/8. By Minkowski’s convex body theorem,
we also know that ‖�vP ‖ � 2/

√
πN1/2. We apply Lemma 6.2 and find that P can

be written as (c : d) with

max(|c|, |d|) � N

‖�vP ‖
+ C ′ log(N)2 ‖�vP ‖

< 1
2 N

5/8 + C ′ log(N)22/
√
πN1/2 = O(N5/8)

if N is sufficiently large. Therefore, we can evaluate all the remaining Manin
symbols using the indirect method if we can compute all λ( a

m ) with m < N5/8 and
0 < a < m. To do this, we use the idea in the previous section and we can get all
λ( a

m ) for a fixed m in Õ(m
√
N) steps. Hence to find all λ( a

m ) for m < N5/8 we

require Õ
(
(N5/8)2

√
N
)
= Õ(N7/4) steps. �
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Again, we can comment that this complexity is not always optimal. If N is
prime, then all Manin symbols can be computed using all λ( a

m ) with m < O(
√
N).

This gives a total complexity of Õ(N3/2).
To get unconditional results, i.e., independent of Goldfeld’s conjecture, one may

multiply all the complexities above with N .
The current implementations involve Gaussian elimination on sparse matrices of

size O(N) × O(N). More precisely, as explained in Algorithm 8.38 in [21], each
matrix has about N/3 rows each containing at most three non-zero values. It is not
hard to see that Gaussian elimination needs at least O(N3/2) steps for each such
matrix as we expect to reach a dense matrix by the time we are dealing with the
last

√
N rows. However, it would be rather hard to prove a precise complexity for

the full algorithm.

9. Examples

The computations below are performed with our implementation [28] written in
Cython [2]. Note that this implementation is not fully optimised. The emphasis was
on getting correct results for unitary cusps and for computing all modular symbols
for a given denominator. For instance, it does not include the algorithm with the
complexity of Theorem 8.4, though for the range of considered conductors this will
not matter much.

First, we present a concrete example of our methods. We choose the curve
E = 234446a1, famous for being the first curve in Cremona’s tables of rank 4. It is
semistable so we do not have to worry about non-unitary cusps. We are interested in
computing the p-adic L-function Lp(E, T ) as explained in [23] at the good ordinary
prime p = 5. There are no isogenies from E defined over Q and the Néron period
lattice ΛE = 1.486336 . . .Z⊕ 0.800625 . . .Zi is rectangular. Therefore the modular
symbols [r]± are integers. In fact [ 1

27 ]
+ = [ 17 ]

− = 1 and [ 17 ]
+ = 0 show that the

values λ(r) generate ΛE . In particular, we have to approximate the real part of
λ(r) to precision 0.743168. When computing all values of [a5 ]

+ using the partial
sums κj,5(y) we need T = 2923 terms and the precision of 53 bits is enough. The
largest error in evaluating these was smaller than 0.00032Ω+. Similar for all values
[ a
25 ]

+ we only need to sum 17716 terms, still with precision of 53 bits. Using these
values one finds that the fourth coefficient of L5(E, T ) is congruent to 1 modulo 5.
This implies that the rank of E(Q) is at most 4. Together with the explicit basis
of E(Q) one can deduce without much further effort that the 5-primary part of the
Tate-Shafarevich group X(E/Q) is trivial.

Next, in comparison an example involving non-unitary cusps. Let E be the
elliptic curve 1017a1, which has additive reduction at 3 of Kodaira type III. Its
quadratic twist by −3 is 1017e1, which has type III∗ at 3. The seemingly harmless
computation of [ 13 ]

+ now involves more than 48000 terms to sum in total. Instead

[ 15 ]
+ only requires 217 terms to sum. Though we have to admit that it is likely that

the implementation for the non-unitary cases could be improved.
Now to the asymptotic behaviour as N increases. In Figure 4, we used the nu-

merical implementation to compute all [ a
25 ]

+ for various random semistable curves.
The time in seconds is plotted against the conductor N . The quicker ones are those
with conductor divisible by 5. This and the following computations were performed
on rather standard hardware, for instance, on a Intel Xeon E5-2660 2.6 GHz virtual
machine with two cores.
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Figure 4. Time to compute all symbols [ a
25 ]

+ for some semistable curves.

We now pass to compare the various implementations. There is our implemen-
tation [28] of numerical modular symbols written in Cython [2] incorporated into
SageMath [9], the implementation of eclib [8], written in C, also accessible within
SageMath, the pure Python implementation in SageMath, the implementation in
Magma [4] and the implementation in PARI [19]. First we will exclude the pure
Python implementation in SageMath and the one in PARI, which is still under de-
velopment, as they are both significantly slower then the other three. The fact
that these four implementations of the same algorithm have such different timings
explains why we cannot compare them directly: they are written in different lan-
guages. Also, we call them from within SageMath and the time SageMath spends to
call the underlying code varies much. Instead we want to illustrate the asymptotic
behaviour of the computation.

In Figure 5 we plot the time to compute all Manin symbols M(c : d) using the
numerical implementation (•) against the determination of the space of modular
symbols by Magma (�) and eclib (+). We do this in all three cases for random
semistable curves of conductor up to 55000. The computation was stopped after
30 seconds, meaning that for some curves the plotted point would lie an unknown
amount above the visible part. The computations in Magma became rather quickly
too complicated and they were stopped after conductor 25937.
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Figure 5. Time to compute all Manin symbols for some
semistable curves
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