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ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME
TO A CAHN-HILLIARD PHASE-FIELD MODEL
FOR TWO-PHASE INCOMPRESSIBLE FLOWS

YONGYONG CAI AND JIE SHEN

ABSTRACT. In this paper, we carry out a rigorous error analysis for a finite-
element discretization of the linear, weakly coupled energy stable scheme in-
troduced by Shen and Yang for a Cahn-Hilliard phase-field model of two-phase
incompressible flows with matching density.

1. INTRODUCTION

Phase-field approaches for multi-phase incompressible flows have attracted con-
siderable interest in recent years (cf. [IL15} 1618 20,22, 27] and the references
therein). For two-phase incompressible flows, the phase-field models consist of ei-
ther a Navier-Stokes-Cahn-Hilliard (NSCH) system or a Navier-Stokes-Allen-Cahn
(NSAC) system. How to design efficient and accurate numerical methods for these
coupled nonlinear systems brings great challenge to the scientific computing com-
munity.

In this paper, we focus on the following Cahn-Hilliard phase-field model with
matching density,

(1.1) b +u-Vo—yAw=0, in QcR?
(1.2) w=—-A¢+ f($), in QcCRY
(1.3) po(us + (u- V)u) — poAu + Vp — AwVe =0, in QC R
(1.4) V-u=0, in QcR?
00, 0w,
(15) u|8Q — Oa %|39 — 07 %‘39 — Oa

with given initial data w(0) = wg, ¢(0) = ¢o. In the above, d = 2 or 3, ¢ is
the phase function, where ¢ ~ +1 corresponds to two different fluids, w is the
chemical potential, u is the velocity field and p is the pressure. pq is the density of
both fluids; v is a relaxation constant; A is the mixing energy density, f(¢) = F'(¢),

242
where F(¢) = (125’2 ) , and the parameter € > 0 represents the interfacial thickness.

The above system satisfies the following energy law:
d

ORI

A
(1 + 5190 +AF(@))dz = = [ (ol Vul? + X[ Tuf)do.
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While various convergence results and error estimates have been derived for the
Navier-Stokes equations [8,[13}25], there are only a few error estimates available
for phase-field models of multi-phase flows. In [4], Feng proved convergence of dis-
crete finite-element solutions for a Cahn-Hilliard phase-field model with matching
density, and in [5] the authors established similar convergence results for an Allen-
Cahn phase-field model with matching density. Most recently, Grin [9] proved
convergence results for a Cahn-Hilliard phase-field model with variable densities.
Later, Griin et al. [I0] established convergence of a convex splitting scheme for a
Cahn-Hilliard phase-field model with general mass densities, and Diegel et al. [3]
obtained error estimates of a fully discretized convex splitting method for a Cahn-
Hilliard-Darcy-Stokes model. However, the schemes considered in these papers are
fully coupled (velocity and pressure) and/or nonlinear. From a computational point
of view, it is more efficient to use a decoupled or weakly coupled linear scheme. In
[231124], some weakly coupled linear, energy stable schemes are constructed, where
the phase equations are discretized by the stabilized scheme [2126] and the Navier-
Stokes (NS) equations are discretized by a projection scheme [I3]. These schemes
lead to, at each time step, a weakly coupled elliptic equation for the phase function
and velocity, and a decoupled pressure Poisson equation for the pressure. Hence,
they are very efficient and easy to implement.

Though various error estimates are available for projection type methods to
the Navier-Stokes equations [I3] and for the Cahn-Hilliard/Allen-Cahn equations
[6L[7, 17, 2T], it is highly nontrivial to deal with the systems which couple Navier-
Stokes and Cahn-Hilliard/Allen-Cahn, since the splitting error in the projection
step affects the whole system. The major difficulties arise from the projection step
to deal with the incompressibility constraint and from the coupling between the
phase function and the velocity. To the best of our knowledge, error estimates for
such schemes in fully discrete form are not yet available. In a recent work [2], we
carried out an error analysis for the schemes presented [23[24] in semi-discrete-
in-time form. However, the analysis in [2] cannot be easily extended to the fully
discrete case, as the full discretization adds another level of difficulty, particularly
in obtaining optimal error estimates for the pressure due to the splitting error in
the scheme. The main purpose of this paper is to provide a rigorous error analysis
for the energy stable scheme in [24] for the Navier-Stokes-Cahn-Hilliard system in
fully discrete form. To make our analysis applicable to more general settings, we
make only standard assumptions on the finite-element discretization.

The rest of the paper is organized as follows. In section 2, we recall some
preliminary results regarding the Navier-Stokes and the Cahn-Hilliard equations
and for the finite-element approximation. In section 3, we introduce the fully
discretized scheme for the Cahn-Hilliard phase-field model based on the scheme
introduced in [24]. Section 4 is devoted to the error analysis, where we prove
the error estimates for phase functions, velocity field and the pressure, under the
assumption that the exact solution is sufficiently smooth. In section 5, we show that
the numerical solution converges to the weak solution of the continuous problem
without assuming extra regularity of the exact solution. We conclude with a few
remarks in section 6.
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2. PRELIMINARIES

Let Q C R? (d = 2,3) be a connected, bounded, open domain with C'*! boundary
9Q (or such that the Stokes problem has H? regularity, see (2.3) below). The
following Sobolev inequalities hold (cf. for instance [19]):

HQH%‘l(Q) < C©2,DgllL2) gl a2 ) d=2,
91750 < CB, Dgll2@llgllar @), d=3.

In particular, ||g||L6(Q) < OHgHHl(Q).

Let t™ = not (0 <n < N = [T/dt]), where dt is the time step. For a sequence of
functions ¢, ¢!, ..., ©" in some Hilbert space E, we denote the sequence by s,
and define the following discrete norms for g,

(2.1)

N 1/2
(2.2) lestllizcz) = <5t§% ||<Pn|2E> ) st lli () = O%?N(H@”HE)-
n=
Let || - || denote the usual H*(Q) (H*(Q)?) norm, and || - ||, denote the W*»
norm. In particular, ||- || and (-, ) are the L?(£2) (L (Q)d) norm and inner product,
respectively.
We also denote
ey x-mo =@ ={ser@: [a-of,
Q

and the following spaces of incompressible vector fields,

(2.4) H={ve L’ (M)%V -v=0;v nlpq =0},
V= {U € HY(Q)%4 Vv = 0; v]on :O}.
It holds that [25]

(2.5) L*(Q)?=H o V(HY(Q)),

where V(H!(Q)) = {Vg|g € H'(Q)}. Define Py as the L?-orthogonal projector in
H,ie.,

(2.6) (u— Pyu,v) =0  YueL*(Q)?, veH

We also define the inverse Stokes operator S : H~1(Q)¢ — V as follows. For all
ve H1(Q)4, (S(v),r) € V x LZ(Q) is the solution to the following Stokes problem,

(2.7) { (VS(v), Vw) — (r,V - w) = (v, w) Vw € HY (Q)?,
(28) @V S@)=0  Yqe I3(®),

where (-, -) denote the pairing between H ()¢ and HZ ()¢ and 7 is the pressure.
By the assumption on €, we have the following H? regularity results [25]:

(2.9) IS@Il + V7] < elloll Vo € 12(@)2

The following properties of S are shown in [12].

Lemma 2.1. For all v in HE(Q)? and for all 0 < 6 < 1, we have
(VS(v), Vo) > (1 —0)|[v]|* — c()||v — v*||* Yo* € H.

In particular,
(VS(v), Vo) = ||lv||> Yo e V.
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Lemma 2.2. The bilinear form H=*(Q)% x H1(Q)4 > (v,w) — (S(v),w) € R
induces a semi-norm on H~1(Q)? that we denote by | -|., and

ol = IS@) 1 < elloll-1 Yo e HTHQ)™.

2.1. Variational formulation. Since we are interested in the values of the phase
variable ¢ in the range of [—1, 1], it is a common practice to replace F'(¢) by

g%(qs - 1)27 ¢ > ]-7
(2.10) F(¢) =1 =" - 1% ¢e[-1,1],
5%(¢+1)27 ¢<_1'

It can be checked that f(¢) = F’(¢) has a bounded first order derivative |f’(¢)| <
2/e%, f'(¢) is Lipschitz and |f(¢)| < Z(|¢| + 1). Hereafter, we shall assume that
F(¢) takes the above modified form.

To write the variational formulation, we adopt similar notations as those in
[T1,[13]. Define the linear, continuous operator 4 : X — X' = H~1(Q)? (resp.
bilinear form a : X x X — R) such that for all (u,v) € X x X:

d
8ui (%Z-
(2.11) (Au,v) = a(u,v) := (Vu, Vo) = 121 (a—z]7 8—1:]) .

A: HY(Q) = H~Y(Q) (resp. bilinear form @ : H'(Q) x H'(2) — R) so that for all
(6, 0) € HY(Q) x HY(Q),
(2.12) (A, 0) = (9, ) == (Vo, Vo).

Introduce the operator B : X — M and its transpose BT : M — X’ (resp. linear
form b: X x M — R) so that for all v € X and ¢ € M,

(213) (B’Uvq) = b(’U, Q) = _(V : ’Uvq)'
Define the bilinear operator D : X? — X' (resp. trilinear form d : X x X x X — R)
so that for (u,v,w) € X x X x X
1
(2.14) (D(u,v),w) = d(u,v,w) := ((u- V)v,w) + §(V S, U W),

where u - v denote the Euclidean scalar product. It is easy to check that for any
u € X, d(u,-,-) is a skew-symmetric bilinear form and thus d(u,v,v) = 0.
Then, the weak formulation for the continuous problem (I)-(LE) is: Find

6 € L>™(0,T; H'(Q), ¢:€ L*0,T; H Q) forall T >0,

w € L*(0,T; HY(Q)) forall T >0,

u € L0, T; L2 ()Y N L0, T; HY()Y), uy € L*(0,T; (H )4,
p€ L*(0,T; M) forall T >0,

such that

(2.15) by +u-Vo+yAw =0,

(2.16) w=A¢+ f(9),

(2.17) po(us + D(u,u)) + poAu + BTp — AMwVe =0, in QcCR?
(2.18) Bu =0,

with ¢(t = 0) = ¢o and u(t = 0) = ug. Initial values of p and w can be determined
from the equations by ¢¢ and uyg.
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2.2. FEM discretization. Let 7} be a regular, quasi-uniform triangulation of 2
of mesh size 0 < h < 1 and Q = UKeTh K. For a nonnegative integer 7, denote
P.(K) as the space of polynomials of degree less than or equal to r on K.

Let X, € X, M), C M be a pair of inf-sup compatible (see ([220) below)
mixed finite-element spaces based on the triangulation 7, and let ¥, be a finite-
dimensional subspace of H!(Q). Let Y}, be a finite-dimensional subspace of L?(£2)4,
and we assume that either Y}, is conformal in

(2.19) HV(Q)={ve L’ (V)% V-vel?(Q), v nlp=0}

or My, is conformal in H!(Q). In particular, we assume X;, C Yy, and h(z) =1 € Uy,
We assume that the finite-element spaces satisfy the following approximation
properties: There exists [ > 1 and ¢ > 0 such that for all 0 < r <,

inf {llo —vnll +hllo = vnlli} < b lollay Vo€ HTHHQ)IAX,

(2.20) " o
inf o —vnllip < [Vllrs1p 2<p<oo VweWTTHPQINX
VhEXH

and

(2.21)

ot {1 = vl + Al = v} Sl Ve € @) HY(Q),
inf ([~ dnllip < W [Ullirg 2<p<oo Ve WTHR(Q) N HN(Q).
h h

P
There exists some constant ¢ > 0 such that for all 0 < r <,
(2.22) inf [lg— aull < ch"llall, Vg € H(Q)N M.
qn€Mp,

In addition, for the choice of M, C H(f2), we assume that there exists some
constant ¢ > 0, such that for all 0 < r </,

(2.23) inf (/g — qnll +hllg = anll) < ch"llgll, Vg € H'(Q) N M,
qn€Mp
and the following inverse inequality holds:
m—n4<4_—4d
[vnllnp < ch e [vnllm.q

(2.24)
Vopb € Xpor¥, 0<m<n<l, 1<g<p<o.

In addition, we also assume the inverse inequality (Z24)) holds for Y}, if Y}, C HgY.
One possible choice is the following [5]:

Xh = Yh = {Q)h S [Co(ﬁ)}d n [H&(Q)]d;ﬂhh( (S [PQ(K)}d}7
Vio=Avn € Xn: (V-vn,qn) =0 Vaqn € My},
My, = {qn € L§(Q); anlx € Po(K)}, ¥y ={thp € C°(Q);Yn|x € Po(K)}.

Define the L2-orthogonal projections: Py, : L2(Q)¢ — X}, Py, : L2(Q) — ¥,
and Py, : L?(Q) — M), such that

(v— Px,v,u;) =0 Yo e L2 ()9, v, € Xy,
(1/} - P‘I’}Lwawh) =0 V‘/’ € L2(Q)a djh S \Ijhv
(q - PMh,(LQh) =0 Vq € LQ(Q)u qnh € Mh-
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Define the discrete version of the divergence operator By : X, — M and its
transpose B,:f : My, — X, so that for every couple (vp, qn) € X, x M), there holds
(Brvn, qn) = b(vn, qn) and (v, Bl gn) = b(vn, qn). We also assume By, is surjective,
i.e., the following inf-sup condition holds:

(Bhvn, qn) > 8

(2.25) 38 > 0, inf  sup >
anllllvnllx

am€Mn v, eX),

We introduce the following discrete divergence operator on Yj: Let Cp, : Yy, — My,
such that for every couple (vp,qp) € Yy X My, either (Crup,qn) = —(V - vp, qn) if
Y, C H(c)iiv or (C’hvh,qh) = (vh, th) if My, C HI(Q)

Let Aj, : Xj, — X, be the linear, continuous operator such that (Apup,vy) =
a(up,vy) for all (up,vp) € Xp X Xp. Define Dy : Xp, x Xj, — X such that
(Dp(up,vp), wp) = d(up, vp, wy) for (up, v, wp) € Xp X Xp X Xp. Then it holds
that d(up,vn,vn) = 0.

Define the linear, continuous operator Ay : ¥), — U N L3(2) by

(2.26) (Ahéﬁhﬂ/)h) = (Vén, Viy) Von, vn € Wy

Let iy : X, — Yj be the continuous injection of X into Y, and let zf be the
transpose of i, i.e., the L?-orthogonal projection onto Xj,.

Proposition 2.1 (cf. [T1]). C}, is an extension of By, and B, = Chip, sz,? = B,?;
we have the commutative diagrams below:

B 4
X, ———— M, X, +—m— M,
. -T
Th Zh
C},, CE
Yy Yy

Set Hj, = ker(By), we then have the~ L?-orthogonal decqmposition of X as
Xn=H, D B;{(Mh) [11] Similarly, set H, = ker(Ch), Y, =H, ® C;{(Mh) [11]

3. FULL DISCRETIZATION AND ITS STABILITY

In this section, we will present a full finite-element Galerkin approximation
based on the stabilized semi-discrete schemes introduced in [24], and show that
it is unconditionally stable. Let Js = {t"}Y_; be a quasi-uniform partition of
[0,T] of mesh size §t := T/N. A fully discrete finite-element approximation based
on the stabilized semi-discrete scheme is defined as: Given suitable approxima-
tions (o9, w,ud, p?) of initial data (¢o,wo,uo, po) (wo and py can be determined
from ([Z) and (I3), respectively), find {(¢} ™ witt wptt aptt pit V-t e
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\I/h X \I/h X Yh X Xh X Mh such that

n+1 _ (bn |
(3.1) 5t + Pcph (( )gbh) + ’yAh’LUn+ =0,
n S n n n
(32) | with = S(0h" = 0h) = Andp T + Po, [(9h),
(3.3) { 5 (@ —ilup) + poPx, (Dal, @) + poAniiy ™

+BJ pi — APx, (w}T'Vepr) =0

(34) | B — i) + O - ph) =0,

3.5)  Cruptt =0,

where S > % is a stabilizing parameter. Initially, we set u% = 122 eXp,CYy.
Before discussing the numerical procedure, we show below that the above scheme
is unconditionally stable. For a sequence {v"}Y_ . we denote

(3.6) S ="t —m,

Theorem 3.1. The fully discrete scheme BI)-@BR) is unconditionally stable and
satisfies the following discrete energy law:

[p"n U+ IV + AP z*lm]

2
(3.7) + %IIC;? PP+ ot Vgt |? + Ayt || Vwp |2

PO 2 A n||2 n ot 2
< 7||Uh|| + §Hv¢h|| +A(F (), )| + _HC pull, n>0.

Proof. Testing (B with Astw;t' € U, B2) with —\(¢)} ™" — ¢7) € ¥y, B3I)
with ota)t! € X, we obtain

Aoyt — g wp ™) + Mot (@t - V), wpt) 4+ Ayt Vw12 = 0,
=M (T =) + 5 2D g+t — g2
= 2 (I + V80712 — IVRIP) — A (F(67), 057" — o)
(H~”+1H2 +llaptt =g upl® = ik uil?) + podtl|Vag | = 6t (By py, aptt)
— Aot (wi Ve, aptt) =o0.
Summing up the above identities, we find
(||V¢"“||2 + | VSipll* - ||V¢m|2)
+A(F(OR) it = on) + IIGé”+1 ORlI® + Mot || Vw12
(3.8) + 5 (1P + g - zhuhn? — (i up?)

+ uoétHVuZHHz — 0t (Bh PR, U ~”Jrl) =0.
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Testing ([B.4) with CIpl! € Y}, in view of (B.H), we obtain
o ot
(3.9) (inty ™, Cywp) = (up™, Ciph) — o — (Cioh, Cr (™" = 1)

n ot n n
= (Crup ™, pj) — 20 (ICh R IP = IChPhII* = ICF (™ = pi)I1?)

5t n n n
= (IIC;? W = IR PRI = IR (ot = o)) -

Using 1;, C’}? = BT leads to
(3.10) (inay ™, Chpi) = (@i, Gy ph) = (@™, B pp).-
Moreover, we rewrite [B.4]) as
n ’ﬂ 5 n
(3.11) inty = up P —Cy (0™ = p}),
with both sides belonging to Y}, C L?; taking the L2-norm of both sides and using
B.3), we get
(3.12) linay ¥ I* = [l ™1 + _2||Ch( (A 9]

Combining X)), (1), (I0), and @I2) together and noticing that |jixi) || =
(|t we find

(3.13) (||V¢"+1||2 + Vo i l? = IVoR11%) + A (F(07), op T — ¢3)
+—2||o>”+1 ORIIP + Mot ||V |12

+£ 5 Ul M2 + N1t = | — [lig i)

52 n .
+ 550 UCKRTIP = ICERRIP) + odt VP
=0.
In addition, Taylor expansion and ([2I0) imply that for S > 1/2,

F(6™) ~ F(ef) =FR) 61" — o) + @

<f(on)(er " = op) + \ﬂﬁ"“ Sl

Hence, we draw the conclusion via substituting the above inequality into (B13) and
noticing the fact that zf .Y}, = X, is an L?-orthogonal projection. ([l

lpptt — g2

Remark 3.1. Based on the above stability analysis, if we rewrite BI)-B3) as a
coupled linear system for the unknown (wﬁ“, Z“ — Z,ﬁZ“)T, the matrix of
the linear system is then positive definite (but not symmetric). Therefore, the
coupled system (BI)-([B3) can be solved efficiently by an iterative method such as
BICGSTAB (cf. [22] and references therein). For the projection step (B:4)-(B3),
the following equation is solved in practice by applying C} to (3.4),

(314) Cth( n+1 _ph) B ~n+1

Po
ot
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Noticing the inf-sup condition (2:25]), the coefficient matrix of ([BI4) is positive
definite and ([B.I4]) admits a unique solution.

From Remark B.] the practical procedure for implementing scheme BJI)-(B.3])
can be described as:

Algorithm 1: Implementation of (BI)-(BX)

Initialize (49, w?,a?,p?) from initial data (do, wo, uo, po), where ¢p and ug are
given, wy and pg are determined from ([2) and (3]), respectively. Set
ugzﬁg and n = 0;

while n < N —1 do

Solve the weakly coupled linear system (B.1))-(B3) for
(wZH7 Z“ ", &Z“) by an iterative method such as BICGSTAB;
Solve the pressure equation ([3.I4) for p"'*'1 ntl,

)
end

and update uy

4. ERROR ESTIMATES

4.1. Preparations. Let (4(t),w(t),u(t),p(t)) be the exact solution. As usual,
we will compare the numerical solution with the interpolates defined below. Let
(up(t),pr(t)) € Xp x My, be the solution of the following discrete Stokes problem,
(4.1)
Ho (Vuh( ) Vuy, ) + (B;{ph( ) ) = o (Vu(t),Vvh) — (p(t),V . ’Uh) Y, € Xy,
(Bhun(t),rn) = = (V-ul(t),rn)  Vrn € My,
and define (¢p(t), wn(t)) € ¥y, x Uy, as the solution of the following discrete elliptic
problem

Von(t), Vin) = (Vo(t), Vibn) Y € Wy,
)

4.2
- Vun(t), Ven) = (V). Ven) Yen € ¥,
(wa(t),1) = (w(t),1).

Using the H2-regularity of the Stokes operator in regular domains with classical du-

ality argument, we have the following results concerning interpolates (up(t), pn(t))
[11]:

Lemma 4.1. Under the assumptions u(t) € L*([0,T); HTY( Q) N V), p(t) €
Le([0,T); H{(Q2) N M) for 1 < s < 0o, there exists ¢ > 0 such that
(4.3)

[l — un|

L ([0,7):L2(2) ]

Leo.rL2(9)d) + 1 [ s(jo,1);HY () + [P — pal

< ch!*! [|jul

(0,7} H1 ()] -

Lo ([0,T); HI+1(
Lemma 4.2. Under the assumptions u(t) € L*([0,T]; H*(Q)INV), p(t) € L*([0, T);
HY Q)N M) for 1 < s < oo, there exists ¢ > 0 such that

(4.4)

[[un]

L= ([0,T); W00 (Q)dnW1:3(Q)d) <c (HUHLS([O,T];HQ(Q)UZ) + [l LS([O,T];Hl(Q))) .
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Lemma 4.3. Under the assumptions u(t) € L*([0,T); H*(Q)? N HL(Q)Y), p(t) €
L([0,T); HY(Q) N M) for 1 < s < oo, there exists ¢ > 0 such that

(4.5) IC7 ol

L3 ([0,T);L2(2)4) <c (||U\ Ls(j0,T);H2(2)4) T HP| LS([O,T];Hl(Q))) .

For (¢p(t), wr(t)) € ¥y x Uy, we have the following.

Lemma 4.4. Under the assumptions ¢(t),w(t) € L*([0,T]; H*1(Q)) for 1 < s <
o0, there exists ¢ > 0 such that

(4.6)
16 — dnlls(o.11:02(0)) + Blld — GnllLe o1 () < ch' ¢

l[w = w|

Le([0,T]; H 1 (Q))»

Le(0,1):22(@) + hllw = whl| e o1y, @) < b H|wll Lo o711 () -

Lemma 4.5. Under the assumptions ¢(t), w(t) € L*([0,T]; H*(Q)) for 1 < s < oo,
there exists ¢ > 0 such that
Pnll s (jo, 17w 0.0 (w3 )y < clloll s o, 11:82 ()

(4.7)
[[wnl

Lo ([0,T); W02 ()13 (Q)) < cllwl| s (0,77 12 () -

Discrete inverse Laplace operator with Neumann boundary condition.
Define the discrete inverse Laplace operator L, : H~'(Q) — ¥,. For all v €
H=YQ), Ly(v) € ¥, N L3(£) is the solution to the following problem,

(4.8) (VLy(v),Vor) = (v —vo,0n)  Veon € Xp,

where vy = ﬁ(v, 1).
L, can be viewed as elliptic projection of the usual inverse Laplace operator
L:H Q) — HY(Q)N L3(), where

(4.9) (VL(¢), Vo) = (¥ = o, 0) Vg € H'(),

with ¢ = 5 (4, 1).
In particular, using the H2-regularity, we have

(4.10)

IL(v) = Lu(v)ll20) + R L(v) = Ly () g1 0) < eth® L)l a2(9) < c2h®[|v]22(0)-
Discrete inverse Stokes operator. Define the discrete inverse Stokes operator

Sp : HH Q) — Xp,. For all v € H71(Q)?, (Su(v),rn) € Xp, x My, is the solution
to the following problem:

{(Ah(sh(v))vvh) + (Bfrp,on) = (v,v)  Vop € Xy,

(4.11)
(BhSh(v),wh) =0 Yw, € M.

(Sh(v), ) can be viewed as an interpolate of (S(v),r) similar to (@T]).
In what follows, the following inequalities, which are valid for d = 2,3, will be
frequently used:

(412) (- V)v,w) | < Vol e fullm 2wl Vu,v,w e H Q)
(413) (- V)v,w) | < Jull = Volslwlm Va,v,we H'(SQ),
(414)  Jd(u,v,0)] < c(lofl= + lollwrs)lwllz o

Vo € H2(Q)4, u e HY(Q)?, w e L*(Q)%.
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We note that ([I2) and [@I3) hold for u € H'(Q)¢ with v,w € H*(Q). Thanks to
integration by parts, we also have

(4.15) |d(u, v, w)| < c([Jull e + ullwrs) [0l 2wl a2
Vu € H*(Q) N HY(Q)Y, v,w e HY(Q),
and
(4.16) | ((u- Vv, w) | < c(llullzoe + [[ullwrs)[[v]l 2]lw] g
Vu € H*(Q)4 N HY(Q), v,w € HY(Q).
Obviously, we have
(4.17) l[ullpes + [lullwrs < cllull g

4.2. Error analysis. Let (¢}, w),ul,ay,pp) € Uy X ¥y x Yy x Xj, X My, be the
numerical solutions and intermediate velocity obtained from scheme [B.1)-(B.1). We

define the error functions for n =0,1,2,..., N as
(4.18) eg = on(t") —op, ey =wn(t") —wy, ey =un(t") —uj,
' €y = up(t") — p, ey =pn(t") — ph,

and we denote by €, s5¢, €w,st, €u,5t, €¢,5¢, €p,s¢ the corresponding sequence of error
functions.

Assumption A. We assume that the solution (p(t), w(t),u(t),p(t)) of the Cahn-
Hilliard phase-field model [II)-([TH) is sufficiently smooth such that for somel > 1:

¢, w, 0 € L=([0, T H™Y),  w, dpu € L=([0, T]; (H')%),
p, 0w € L([0,T); H'),  du¢ € L=([0,T); H'),
duu € L=([0,T): (HY)Y),  dup € L=([0,T); L?).

In addition, we assume the scheme is initialized such that

(4.19) el + 6t 2 Vel + llegll + Vel + 6t R epll < 6t + R,

e.g., choose ug = ﬂ% = Px, uo, gi)% = Py, ¢o, p% = Py, po. Then, the following error
estimates hold.

Theorem 4.1. Under Assumption [&], for sufficiently small 6t, the finite-clement
approzimate solution to the scheme BI)-BR) satisfies

¢ — ¢h,6t||loo(L2(Q)) + |lu— uh,5t||loo(L2(Q)d) + ||lu— ﬂh76t||l(x>(L2(Q)d) < ot+ hl7
||¢ - ¢h,5t||l°°(H1(Q)) + ||u - ah,ét”p(Hl(Q)d) + ||’LU - U)h)ét”ﬂ(Hl(Q)) g ot + hl,
1P = prstllizey S (1+h/Vot) (5t + hb).
If X, =Yy, the error on pressure becomes
Ip = prselliz ) S 6t + A

The proof of the above results will require a sequence of intermediate results
that we establish below.
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By definition, we have the following equations for the interpolates (up(t), pn(t),

Or(t), wr(t)):

¢h (tn-i-l) _ ¢h (tn)
ot

@21) | () = Son0m ) - onem)
= A (") + Py, [RUH + 1(0(t7)]

(4.22) % (un (1) = un (#™)) + pro Anun (1) + B pp (1)

(4.20) Ay Apn () = Py, [RET = (u) - 9)a(e")]

= Py, [R™ = poD(u(t™), u(t™1) + (™) V(i)
(4.23) | Brup(t"™) =0,

where

(4.24)

gt =20 ) — () - D)) + () - Vo),

Ryt = - g(sbh(t"“) — on(t™) + F(O(" ) = f(o(")) + w(t™ ) — wy, (¢"F),
R =pg 5tugt(t") — podeu(t™) — p (u(thrl) V) u(E ) 4 Aw (T Vet )

+poD(u(t"), u(t™ 1)) = MotV (t").

Using the properties for the interpolates defined in (A1) and (£Z), we have the
following results.

Lemma 4.6. Under Assumption [A], we have
(4.25)

N N ~ N T
IRG I+ IR + Ry < 6t + R R S6t+h' VO<n < 5

Proof. We will only prove the bound for ||RgJr1 I, and omit the others as the argu-
ments are similar. Noticing that

RZ-H :at¢h(tn+1) _ 8t¢(tn+l) _ (u(tn+1) . V) (¢(tn+1) _ ¢(tn))
1 0
_ st /0 /0 Ousbi (tn s — s6t) dsdo),

applying the properties of interpolates as well as the regularity assumption, we have

IR S N10en (87 — 0 (8" )| + St lult™ )| oo |00l Lo 0,751
+ 0t[|04t Pl Loe (0,13 H1)
S RO oo (i) + Ot S 3+ A,

where we have differentiated ([£2]) in time ¢ once and used approximation property
in Lemma 4] to control ||0;¢p, (t" 1) — d;p(t" ). O
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Subtracting (B1)-B3) from (20)-([@.22]), respectively, we obtain the following

error equations governing the growth of én+! egH and et

n+l _ _n

(& e ~ ~
(426) ¢(54t¢ + ’yAheZ)'H — P‘l/h {Rg+1 + RZJA} ’
s . 3
(27) | i = Septt = ep) = Anelt + Pu, |RT 4+ RIT,
(4:28) | B3 (@t —ifen) + modneytt + Bley = Px, [Rit + R+ R

where

Ry = —(u(t™) - V)o(t") + (@t - V)f,

R = f((t™) = f(on) = (o(t") — ¢Z)/O F'(sp(t") + (1= 5)¢p) ds,

429 ~n, n 7 n n
(4.29) ér =pu(t") — pi = Sipn(t™) + €,

Rt = —poD(u(t™), u(t™)) + poDp (i, aj ),
RN = Aw(t" T Ve(t") — Awp T V.

In addition, since up(t"*t1) € Xp, Brupy (") = 0 and O}, is an extension of By,
we have the error equation

(4.30)

Bo(entt —ipentt) + C’g(eg+1 —én) =0,
CheﬁJrl =0.

It is convenient to write RZH and RZEI as

(4.31) Ry = — ((u(t™™) —un(t™)) - V) o(t") — (@ - V)or
— (un(t™) - Ve — (un(t™™) - V) (6(") — ¢n(t™)),

(4.32) RN =A(w(t"th) —wn (")) V(") + AT Vo + Ay (17T Vel
+ Awp (") V(0(") — o ().
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Taking the inner product of ([@.26]) with )\e”Jrl € Uy, Aeltl € 0y, Lh(ngr1 —eg) €
U, N L3(Q) and 1 € ¥y, respectively, we obtain

(4. 33)
(e ™7 + e ™ = eI = 13l + M (Ve Ve )
:A(RZHﬂLRZ“ g+1)7
(4.34)
A
S (et = epent™) + M (Ve Verth) = ARG ) + MRS e,
(4.35)
IVIa(eep)l® er < .
T—’_’y(ew-‘r 76t6¢) ‘Q|(§t€¢, )( + 71)
= (R + Ry Li(6iel),
(4.36)

(Oreh, 1 )_/(eg+1 el) zat/ﬂ(ég“Jng“).
Testing ([A27) with e € ¥}, and e"+1 —eg € ¥p, respectively, we find

(437) enti2 - 2 (e - eg,egﬂ):(vegﬂ,w::,“)+(R"+1+R"+1,eg+1)

(4.38) §(||V6f;“||2 +IVaeq|? — Vegl*) = (ei™. duel) — H5t6¢||2
— (Rp™ + R 6el).
Then taking the inner product of {28) with §te" ! € X;,, we get
(4.39)
B (lle+?

= |lik e l® + llentt — iienl®) + podt|| Ve tH® + ot(By ey, entt)

_ 6t(RZ,+1 Rn—i—l +Rn+1 nJrl)

uu7u

Combining 6t - (@33) + 6t - @E34) + @E37) + 6thy - E3D) + (A + ) - @E3T) + @E39),

we arrive at

(440)
2 = el + ) + 22 12 — el + lest — ifell?)
+ 2 e - ||Ve¢||2+||wte¢u2>+Enwh(@%)n?
SA—FF)/ ~MN mn n
+ ¥||6te¢||2 oSt VE I 4 At + Ayt Vet
+6t(Bhep5 Z+1)
Sét)\'y

(5t ¢, n+1)_’_)\5t(Rn+1 n+1)+5t(Rn+1 ~n+1)

u,p 7 20
+ 5t)\7(R”+1 et + StAy (R et + ASH(RE T et + ot(Ry T Entt)
+Ot(RYE @) + ASH(RT el ) + SR el ) + (G, 1) (et 1)

u,u

+ (BT Ry Lu(Greg)) — (A + (R, Gef) — (A + ) (R 8eeg).
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In order to control the right-hand side of (@40]), we establish below bounds for
those nontrivial terms. As the first step, we provide the estimates for terms involv-
ing Rg“ including (Rg“,eg‘*‘l)7 (RZ“,@ZH) and (RZH,L;L(éteg)) as follows.

Lemma 4.7. Under Assumption [l for any @), € ¥y, and x,x" > 0, there holds
(441)  (REM,0n) < e (BPD 1 [l 13 + llonll®) + £ Vonl? + &' Ve 2
and
(442)  (REM,0n) < e (BPD 1 (1G] + 1€57HP) + mllonll? + #/VE2.
In particular, we have
(4.43) (REFL D] < e(h™ + [le ] + ([ Veg).-
Proof. For any ¢, € ¥y, in view of (£31]), we have
(B on) = = (™) —un (")) - V)o(t"), 0n) — (€7 - V)l on)
= ((un (™) - V)(@(") = dn(t™)), o) — (un(t™1) - V)el, on).
We estimate each term on the RHS as follows:
= (@) = up (")) - V)o(t"), 1)
< cllu(™) = un ("o lwra lonlly
< ch T (ull oo iy + [Pl Lo () lonln
< SR 4 Sn 7.
Using the a priori bound for ||[V¢7} || in Theorem B}, we derive
—(@ - V)ex on) <c|VSRI lew lallenllenllh

K ~
e llonll” + SIVenll” + Ve,

= ((un (") - V) (O(t") = ¢n(t")), n)
< cllo(t™) = () (lun (@)l + llun (@) lwra) lonll
< (Il Lo ey + 1wl oo (areny) (luall oo a2y + Pl oo ) llonl

C K
< Ep2an) B 2
< SR 4 Slon3

and
—((un (1) - Ve, on) <[lun(t™ )| < VeRllllenll < clVeR* + llenl>.

Combining the above inequalities, we obtain ([@4I]). The other desired results in
Lemma [£7] can be derived in the same manner. O

Lemma 4.8. Under Assumption [Al, we have

n ~n ~n Ho ~n Ho ~n
(4.44)  (REL @] < e(hHD 4 et ?) + g\lV%HH2 + EHV%HQ-

KRR
Proof. Using the skew-symmetric property of d(uf, -, -), we obtain
(Ruthen™) == po [dlu(t™), u(t™™),ey™) — d(ay, ap ™, e th)]
= — pod(u(t™) — up(t"), u(t" ™), ex ™) — pod(&y, un (¢ ), €4 FY)

= pod(un ("), u(t"1) —un (t" 1), &),
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Using the Cauchy-Schwarz inequality, the Sobolev inequalities, |[enT!|; < c[|[VenT?|,
and properties of the interpolates, we estimate each term on the RHS as follows:

[pod(u(t™) — un ("), u(t™ 1), en* )] <cllu™ ) [2llu(t™) — un()lll€5+ 1

<ch™(||ull po ey + 1Dl ooy €™ l1a

<ch?(+0 4 B vert 2,

[pod (&, un ("), & D) <e (flun (") [z + llun (") llws) llenllllen ]
<e (lullz= a2y + Ipll o= crny) lEglllen™ |

<ellent1)12 o HOoan 2
<cleu™ I + e lveul’®,
and

|pod(up (t"), w(t™T1) — uy, (£, &7
§C||u(tn+1) — uh(tn-‘rl)(Huh(tn)le s 4 ||uh(tn)||Loo)||en+1”1

<cllut™) = un (@ e (lull oo a2y + ol 1))

<ch"™(lull poe ey + ol poe ) lE 1

<ch20+D) HO |\ sn+1 2
<D 4 B0 geni
Then the conclusion follows. O

Lemma 4.9. Under Assumption [&], we have

(R ey < e(h2) + let |12 + | Vey |2) + B2 ver+ 2
A
+ e P+ Ve,
Proof. Noticing ([£32]), we have

(R &) = (™) = wn () Vo), &t) + A (e VR, et
+ A (wp ("THV(B(E™) — dn(t™)), é;‘“) +A (wh(t”“)Veg, éZH) .

Using ||entt||; < ¢||Vert?||, we bound each term on the RHS as:

AW (™) = wp (") V™), en ) < w(™+) — wn () V()1 1€0
< el eol|poe garren) S 15

< ch204D) 4 iL_gHVéZHHz_

Recalling the stability of the scheme, which implies the a priori bound for |[V¢} ||,
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we have

~ ~ ~ 1/2
Ment ' Ven, et < el L Iveriert I et Iy

~ - Ay
< el + B2 wert? + 2 (et + [ ven ),

Mwn (" V(S(") = on (")), E0 ")
= = AMwn(t" ) (S(t") = on(t"), V - &)
= M@ V)wn ("), o) = ¢n(t"))
< cllwn (")l lo(t") — o () IVEL|
+ cllwn () lwrallo ") — en )R+ lx
< 0]l oo (i) 1wl e (s 1€ 10

R NG

and
Awp, (") Veg, enth) < cl| Ve |llwn (") 11 lleg 1
< | Veglller o)k
< d|| Vel + Ve,
This completes the proof. O

Lemma 4.10. Under Assumption [Al we have
(4.45) (et 1) < et + R 4 (|6e ]| + e )
Proof. We have from (27 that
S .
(enth 1) = 5 (0ef, 1) + (R 1) + (R, 1).

The term (R%*! 1) can be bounded as

(R DI e (J0(") = ], 1) < e(lo(™) — on(t™)]| + lleg )

< 'l Lo rrin) +cllegll < e(h+ Jleg ).
Using Lemma [£.6] we obtain the desired inequality. O
We can now establish the following convergence results for 4y, uj and ¢}, wy.

Lemma 4.11. Under Assumption [Al, for sufficiently small 6t, the finite-element
approzimate solution to the scheme [BI)-BA) satisfies

¢ — dnstlli(r2(0)) + 1t — wn,stllico L2y + 1w — Gnsellio (2 ay S 6t + B,
|6 — Pn.stllice (1)) + 1w — wh st lliz @)y + 1w — Gnselliz o @)y S 6t + K.
Proof. We start from (@40).

(a) First, we bound the terms on the RHS of ({40), except the last two terms,
as follows:

Sét/\'y

Ot
—— (Gef ) = cotfaegll e < edtlle|® + TVII%HHQ-
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From Lemmas B.7] and 9] (choosing ¢, = e in ([E42)), we get

Not(RH ent) + ot(Ry L entt)
3podt
< Bt (R 4 e 1F + et ) + =

3ot
+ =

Ve
(et M I + 11VeR ).
Applying Lemma [£.6] we have
SEAY (R enth) < Myt Ry | lei™ || < edt(88% + h*F2) + MT&IIGZHHQ-

Using the expression of R and the assumption on f(-), we get
SEMY (R el th) <stay | Ry llen ) < edt([lo(t™) — on (™) + leg Dl |
<t (W' (||l poe ey + 1wl oo rieny) + lleg D e

Aot
8

<edt(B*HD 4 [leg|®) + = llen 1.

Lemma [£.6] leads to
- - Aot
MR, i) < ARG et < eot(dt + )7 4+ 20 et
and
SR ety < St Rptlentt | < eot(t + BT + btflen .
Lemma implies

oot
16

oot
8
By Lemma L7 choosing @), = egH in (@41, we have

|5t(Rn+1 én-i-l)l < Cét(hz(l-i-l) + ||érut+1||2) +

> €u IVerI1? + =—lverl®.

ARG e ™) < est (D e 1T + lleg™HIT) + %IIWZ“IIQ-
Based on Lemma [£.6] the following term can be bounded as
ASE(RTE el ) < AS| R [lef ™| < eot® + st el |2
Using ([{30]), we have
(4.46) (6re, 1) = 6t(RLT, 1) + 6t(RyT, 1),
and we derive from Lemmas .7 10, and that
- 7(675627 1)(Gg+1, 1)
< eot(|RG I+ AT+ [len ™+ [Veg ) (8t + A+ (16 ]| + lled )
< et(R?HY 4 687 + |G |2 + [lef|® + [IVepl® + et 1)

Next, we deal with the first term in the last line of equation (£A40). By the definition
of Ly, we have

[1Ln (0reg)|l < clV(Ln(Seeg))ll < clldreq — (dreg, 1)/IQ] < clldeeg]l-
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Applying Lemmal[Z7and the Sobolev inequality (choose ¢), = %Lh(éteg) in (d.42),
we derive
(Rytt+ R, Lu(diep))

- 1
1 1
< REFHIILa(0rep)[| + ot (R T ,ELh(éteZ))

~n n /”L at ~n
< [C&(hw“ e + leg D) + 1557 IV InGeed)I* + =4~ - 5 Ive e

106t
+ el RV Ly (el

~n n 1 n /1’0(% ~n
< edt(8t% + h2HY et P+ [lep)T) + @IIV!Zh(&segb)ll2 + == lIvert .

(b) It remains to estimate the last two terms on the RHS of (£40). The H*-
stability of Py, is implied by the inverse inequality. Recalling that

— (AR diep)
= —(A+ ) (V(Pa, Ry™), VLR (6ie})) — (A +7) (Ris™, 1)(6eef, 1),

by using ([4.440), we derive

— (AR Sen)
= (A4 ) (T (Pay B, VL (Fe)) — (A +7) (B, 1) (Bre 1)
< R LIV LG ] + eSt(IRE 4+ R+ e+ Ves IRy
< R 0 VIR (el + ebt(St + W+ & + [ Venl) | &t

IV Lo (8|2

<ot (W + 0t + e P + | VeR]l®) + ——5;

To deal with the last term in (Z40), we split R? ! as

Rg-ﬁ-l — Rg-’i-al +Rn+1

w,b
where
Ryl = F(0(M) = F(on(), BLE = F(on(t") = F(#7):
It is obvious that, given the properties of f, interpolates ¢p, (¢™), and exact solution

¢, we have |RIFL < co(t") — ¢n(t")], and |REEH < cled], [VRIEY < c(|Vel| +
Vor (™) |e?]). In addition, as f’ is bounded and Lipschitz, we have
@

VR < e(IV((t") — dn(t")] + [6(t") — ¢n(t")[ Vo (™))
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We can then estimate (Rﬁ,t},éteg) by using the discrete inverse Laplacian Ly, as
follows:

—(A+ (R 6rel)
=— A+ (V(Py, R, VLa(61e)) — (A + ) (RiEE 1) (8, 1)
<R LN IVLR(Sep)l| = (A + ) (RiEL 1) (8ref, 1)
<c([lo(t") = on(t™) 11 + 1o(t"™) — dn ()|l IVA(E™ ) 23) [V Ln(dceq) |
+cSt(8t+ W+ (lE ] + (IVeR DIl o) — on (™|
<ch! ||| oo a1y (1 + [|6(#™) |2) [V L (S1€3) |
+ St ||| Lo (grieny (68 + BT+ ||é”“\| +[Vegl)

<cot(3t* + '+ [ley P + | Vepl®) + IV La(dreq) .

55t

On the other hand, we have

—(A+ (8 5 a5t€¢)

— A+ N(V(Py, RyE, VLA(S:€)) — (A +7)(Ry 3 1) (6ef, 1)
<c|| Ry I IV Ly (8ee) || + eot(5t + T+ Ve | + [ Veg )[Ryl
<c(lleglly + llon ) Iwrslleglls) [V Ln(6eeg)|

+ 83t + B+ VY| + [[Venl) e
< IVIAGeR)? + B2 vy

+ e6t(5t2 + h2TD 4 [len||® + [ Vep]® + [lent]?).

Thus, combining all previous estimates, [{40) implies that

(4.47)
>\ n n >\ n pO ~n n ~n n
St = llegl®) + Sl + 22 (lert I — i enl® + e - ifel))
)‘+’7 vn+12 Vn2 A v n|2 VL (5 2
+ 222V~ IVeR) + A+ IVEGI + e VLG
S(A+7) 5u05t o /\’yét n 5)\’y5t n
+ 2L e + R Ve 4 S el + 2 Vel P
+ 8t(By ey, éntt)
n n /’Loét ~n,
< o3t [ (3t + )2+ llegllf + et I + el + e 12) + B (v

(¢) Now, we want to bound 6t(Bg~;,éZ+1) on the LHS of [@47) to complete

the estimates. Testing {30) with 6t°C} €} € Y}, we have

—dtpo(By ey, e, + IICT p 7= ”Ch( p el + —”Oh olI?

= Byt - ihéz“n? + 7”0,?(@%@") +ep)
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Applying Lemma 3] we obtain

2 2
. P o ot
—0tpo(Bj ey, ) + IICT i o et —indi P = - lIChepl®

Scétz(IlCiFeZII + IIC;?étph(t")II)IIC;?étph(t")ll
<cdt*(|C e | + ICx epn (™) Nt (el Lo (rr2) + 1Pt ]| oo (1)
(4.48) <st°||Clep|? + et
Testing ([@30) with §te? ! € Y}, we get

0 0 .~ 0~
(4.49) Dlle I + Blleit! —anen I = Blent 12 = 0

Summing up (£47) + plo(m + ([@43)), we obtain
(4. 50)

A Po
2 et 17 — egl?) + Sl + 22 (et 12 — I el + lleg+ — el P)

A+ n n n
+ —(IIV STHZ = IVeRl®) + (A + ) Ve

5t2 . N SA+~
+ S (ICT e = ICTeg?) + 5 IV InGed) P+ 25 ey P

5u06t . Ayét 5yt "
+ —||V€u“||2 + —Ilewﬂ\l2 + —||V6w“\|2

< cit [@th) el + et 13 + el + e 12 + 62 CF g

+ L ve .
Summing up (E5Q) for n = 0 ,m, and noticing ||| < |[entt—ile| +|ifen||
and [|e?t1]|2 = [lentt —ipile "+1||2 + ||iFent1||2, we obtain
(4. 51)
|| 5P+ ||@T i /\+7||V 5P+ 6t2 5 lIChep ™
+ Z {_H‘St oll* + || il el + 2 5 leatt —igeql

+(A+7)|IV5teZ||2 |VLh(5t€¢)||2

5515 |

S\ + 1odt B Yot 5 \vot
+ MH& m)12 4 B went 2 4 22T et 4 2208 gt 2
4 8 8
m
e6t Y (llentt — i en)® + [15iel))?)
n=0

+c(lle 2,||1 +llenll? + ot Vey|* + 6t Cry ey %)

+ 6t Z (lezll® + 1VeR|? + it enl® + 62 Cex|?) + cm 6t(St + h')2.
n=0
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Denote
=t + et + A Y et 4 ||cT i
=2 e + MH& B2+ 2 e zhe"n?
1" = IV LGP+ et — el I+ L2 w2 4 A2 e
20 et 2 + () IVl
Then, we have
I+ zm:(S” +T™) < ¢16t i([” + 8™) + co (6t + h')?
n=0 n=0

+es(llegli + lleall” + ot Veq|* + 62| Cirepl?).-
Since the initial errors at ¢ = 0 satisfy
legll? + [IVegll* + [leg]|* + atl|Veql* + 8t*[|Cyep|* < h* + ot2,

by applying the discrete Gronwall inequality, we obtain the following estimates for
sufficiently small dt¢:

(4.52) I" 4+ (SF+TF) < (ot + h')2.
k=0
The desired results then follow from the properties of the interpolates. O

Remark 4.1. In the proof of LemmalLTI] we notice that the projection step implies
that

en-i—l — el Zh€n+1 e
453 u u CT n+l ~n _ u
( ) Po 5t +0C5 (ep ) Po 5t
Taking L? norm of both sides, using Cpe" ! = Cye? = 0 and the properties of iy,
we find

(454)  len™ —enll* < lliney™ —enll* = llen™ —ipenl® + llet —iniyerl?,
from which we derive that for n < [T'/dt] —

(T/6t]—1 1/2

el S e+t (a6 ST ekl | S 60+ ).
k=0

4.3. Error on pressure. As in the case of the pressure-correction scheme for
Navier-Stokes equations [14], the key idea to obtain the optimal error estimate on
the pressure is to use the inf-sup condition/inverse Stokes operator and improved
estimates of the time increments for the errors.

In order to obtain error estimates on [lef ||, we introduce the following semi-

norm for v € H~1(Q)%:

(4.55) [V]e.n, = sup <v,vh>.
v €Xp th”l
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Denote H}‘:o

(4.56) L* ()" = H @ V(Hj_).

() = H*(Q) N M, and we have the L2-orthogonal decomposition

Lemma 4.12. For v € Yy, with Crv = 0, there exists constant ¢ > 0 independent
of h such that

(4.57) [0 sn = lih vlan < c(IVSR(0)]| + Rv])).
In particular, if Xy, =Y}, for v € Y, with Cpv =0, there holds
(4.58) [v]s,n < || VSR(v)]]-

Proof. By the definition of Sj, and S, we have for some p, € My, p € M, B,Si(v) =

0 and the following holds:
4 59) (VSh(U), Vo) + (B,?ph,vh) = (v,vn) Yo, € Xp,
' (VS8(), V) + (p,V-0) = (v,8) Vo € HE(Q).

For vy, € X}, we have (B py,vs) = (pn, V - v3). Using the L2-decomposition, we
set vy, = Pgvp + VR, with Ry, € H}:O'

(i) If Y}, C HSY. We have
(v,vp) = (v, Pgop) + (v, VRy) = (v, Pgop) + (V- v, Ry — 1) Vrp € My,

Making use of the inverse inequality, the H!-stability of Py [25], and approximation
properties of M}, and properties of Sy, and S, we deduce that ||Ry||2 < c||vg |1, and

(v,vp) =(v, Pgop) +(V - v, Ry, —1p)

=(VS(v),VPyv) + (V- v,Rp, —rp)
c(IVSh(v) | + [VSh(v) = VS@)DIIVonl + ch™[o]|h?|| Rp 2
(IVSh ()l + hlIS (@) |2) [ Vonll + b~ |[vl|h? || Ry |2
(IVSu(@)Il + Rl Vonll + ch™ o] |2 (| Ra |2
Sc(IVSh()[l + hllvl)llonl]:-

<
<c
<c
(i) If My, C H!, we have
(v,vp) = (v, Pgop) + (v, VRy) = (v, Pgop) + (v, V(Ry — 1))  Vrn € My,
Using the same arguments as above, we derive

(v,on) <c[[VS)|[[Vor| + vl inf [[Rh =7l
rhEMp,

<c(IVSn(@)[| + hllvID Vo]l + cllvlhl[ Rall2
<c([[VSn ()l + Allol))[[on]1-
Hence, we obtain ([{51).

If Xp, = Y3, testing (£59) with v € X}, making use of Crv = 0 and the inverse
inequality, we have

[vl* = (VSn(v), Vo) < [VSh (@) [Voll < ¢/Al[VSu(v)]l[|v]l,

and so h||v|| < ¢[|VSh(v)|, which would imply the conclusion ([358) in light of
. O
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Lemma 4.13. Under Assumption [Al, we have the following estimates:

N 1/2
(4.60) [[VSw(Seel)[| S 5¢/2(5t+h1), (atzwsh(atemn?) < 51(5t+hl).

n=0
Proof. Summing i} ({30) + [E2]), we have
(4.61)

2 (ifent —ifen) + noAneit + Blept! = Py, [Ri + R + RIS
(4.62)

Ch62+1 =0.
Testing (@61 with Sp(if en™ — ile) = Sp(en™! — e) € X}, noticing that
B (Sn(drey;)) = 0, we get
IV Sn (e[
0 ot

Using the same arguments as those in the proof of Lemma .11l the RHS can be
easily bounded as

+ 1o (Ve VS (5ie™)) = (Rz“ + R+ R Sh(éteZ)> :

(Rt + R + R Su(0iel) ) < L2V S (3iel) |12
T ot [(& F A2 e 4 (el + et + ||é:;|%]

We also have

o (VEL, USH(0rel)) < L2 VS (duei) |2 + coten 3.

— 46t
Thus, we get
p0||V8h(5t€Z)||2 n n n ~n ~n
=y S oot P+ lleg R+ llen T I+ eI +eot(dt+ AT,
Applying Lemma [£17], we draw the conclusion. O

Now, we are ready to prove Theorem [£.1]

Proof of Theorem A1l We only need to bound the error on pressure. By inf-sup
condition and (@6T]), there holds

BT erntl o
et < sup PR
vp €Xp thnl

1. » ~
< C(E|’L¥;5t62|*7h +Anep ™ on + R + RN+ RUE . n).
From Remark 1] Lemmas 12 and [£13] we obtain

St/2 4 h

l
(6t + 1),

1 . 1 o h
E|Z£5t6u|*,h: E\5t€u|*,h <c (&||V8h(5teu)|| + Enéteu”) S

N-1 1/2
(& > #ﬁf&ez 37h> < (14 h/V6t)(0t+hY, N = [T/t

n=0



ERROR ESTIMATES FOR FULL DISCRETIZATIONS OF PHASE-FIELD MODELS 2081

From the proof of Lemma [£.11] it can be easily seen that

~ - 1
[Aney ™ on + Ry + R + R S W(at + hly,

N-1 1/2
<6t ST (AnE R, + Ry + R +leih)> <ot hl.

n=0

Then it follows that
lepstllizrz) S (6t + AY) (14 h/V5t).

Combining with the estimates for the interpolate and under the condition h? < §t,
we obtain

0 = pnselliz2) S 0t + .

The proof is complete. O

Remark 4.2. In this approach, since there is no particular assumption on the re-
lation between finite-element spaces X; and Yj except X; C Y}, the use of the
inverse Stokes operator will result in the type of estimates in Lemma T2l It is no-
ticed that if Xj, = Y}, then h? < §t is unnecessary. It is possible to study the time
increment d:e?’ and establish higher order convergence for §:el’ as in [I1], instead
of using the discrete inverse Stokes operator.

The same proof works for the Allen-Cahn phase-field equations, but we will have
L2-norm of ;™! instead of the H'-norm of e

5. CONVERGENCE ANALYSIS

We derived error estimates of the fully discrete scheme (B.I)-(B.5) under appro-
priate regularity assumptions of the exact solution. Now we show below that the
numerical solution of [BI))-(B.3H]) converges to the exact solution of NSCH system
(CI)-(@C3) without such assumptions, when h, 0t — 0. There are several challenges
towards such an analysis. In particular, the choices of the finite-element spaces
are rather general, where X, C Y;, may not be identical, and this brings signifi-
cant difficulties when analyzing the velocity splitting scheme considered here. In
the following arguments, when X, # Y}, we will assume the technical condition
h? < 6t.

From Remark Bl and the stability result Theorem Bl we could obtain the
following a priori bounds on the numerical solution

(@R wp ™ up A ph S

Lemma 5.1. Given the initialization ( %, w%, ug,p%)T and &% = u%, there exists a
unique solution {(¢) 1, wptt wptt aptt pitt) Nl e W, x U, x Y, x Xp, x My,

3

to the fully discrete scheme BI)-@B.H). Assume (9, w, ul), pd)T is initialized such
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that 22[|ud||® + 3|7 [1> + A(F(2), 1)+ a2 ~|CPYIIP < co, the numerical approxi-
mation satisfies the following estimates:

(5.1) Jmax {[[up|* + [IVORII* + (F(d7), 1) + oI Crpil*} < e,

(5.2)
N-1
D (USedp T + llapt = ifupl® + llup ™ = indf w17 + 16cun]|* + 6ear 1) < e
n=0

N
(5.3) 5t > (IVwp|® + [ Vap]®) < e
n=0
N
2 2 ni2 <
(5.4) OLH{XN{H@zH + |lay | }+6tZ||wh|| <¢
N-1 L2 g
1 T n otd h2 ¢
(5.5) 5tn§ 5O B <1+<6t> >

N 2 K2\ 4
. T|ere < 1
(5.6 6t2\|ph||6+d_ +(&) ,

n=0
N—

(5.7) Z

(5.8) 5ty

n=0

-1

where the constant ¢ depends on ¢y, pg, A and . In particular, if Yy, is chosen as
Yy = Xy, then the estimates (B3)-(BT) become

N-1 N
1 O 12
(5.9) § ||<5tz,,uh||6+d 5 > Nl |3+ 6t > |Iphlere < e
n=0 n=0

Proof. (E:D)-(IBB]) are direct consequences of the proof in Theorem Bl except those
estimates on d;uy and 0,4y . Indeed, using the arguments in Remark EIl we find
from (B4) that

pO n n Po n
St ( 1 uh) + Ch ( i pZ) 5t (Zhuh+1 - u;LL)

Since Ch(uz+1 —uj) = 0, taking the L?-norm on both sides, using triangle inequal-
ity, and the fact that i is an L?-orthogonal projection, we get

lup ™ =l < llinay ™ = uhll < ufy —inigup || + @y ™ —dpuhl, 0<n< N-1,
and the estimates of ||§,ul!|| are implied. For &,a}, 6,9 = ai — it u) (@) =it ul),

for n > 1, we get

—1 || + || ~n+1

0|l < llig ey, | + llah — i, —ipupll.

Hence, we derive the estimates on ||0,a}| in (T.2]).

For (5.4), the potential term F(-) (ZI0) implies that s? < (1 + 2¢2)(F(s) + 1)
(s € R) and

lohll* < e ((F(gr), 1) + 1),
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where || denotes the total volume of 2. The estimates on ||¢}| hold. Testing (B.1])
with 6t¢} ™' € ¥}, and using previous bounds (I)-(53), we arrive at

n n 1
(IR 1% + llgn™ = 6hlI) = 5l 6h11”
5t (a1 0)gf, o) = 2(Vup L, Vgt
cot (HU”HHLG||V¢h||||¢ﬁ+1||1 + IV Ve )

< et ([VaptH® + o I + I Vwy THI%)

which leads to the estimates for ||0.¢} .

Testing (3.2) with wy, € ¥, and applying the Cauchy inequality, we obtain

5
w12 =55 @it wi ™) + (Vo™ Tup ™) + (F(87), wh ™)

1
2

/\

||w"+1||2 + (IR + 17 GDI) + V82 + [V

IIw"HII2 + e (I8enll” + 07117 +1) + [IVer > + [V 12,

and the estimates of w} in (5.4)) are true by using (G.I)-(G.3).
Next, we prove (G.H). For i} d;ul € Xp, using Lemma B2 and H'-stability of
Py, , we have

||if(5tu2||,1 _ sup <i£6tu27v> _ sup (lgétu27 PXhU) . ||PXhUH1
ozveri(@  llvlh ozveri@  I1Px, vl [o]lx
(5.10) <clip oeup|s,n < e(|IVSn (i drup)ll + hliy deupll),
where the estimates of ||i} 6;u?|| can be found in (EI)-(E2) as
N-1 N-1
(5.11) D linseapl® < Y llswui]? < .
n=0 n=0

We only need to estimate |[VSy (i} 6;ull)||. Applying i} to (34) and adding it to

B3), we obtain
(5 12)

& Zh §tuh + poPx, (Dh(uh, uh )) +quhﬂZ+1 + ngZ'H — APx, (wﬁ"'quﬁZ) =0.

Testing (B12) with v, = Sp(dup) = Sp(iLsup) € Xp, noticing (GI)-(GA), we

derive

1 ~n ~ ~Nn n
EHV%HQ =- % (VuhH,Vvh) - d(um hH,Uh) + (wh+1v¢27vh)

uOIIV"“II IVon|| + (II%IIHIIVU”HII + —HV’uhIIII "“Hm) [[on [ Lo
+ lwi L3 V@ Hvnll Lo
<c (V| + llwp 1) IVon]l + ellag || = | Vag | & [V | os]
+ ella = T Vg Vou]
and

1 - e - - d
EHV%H <c (||VUZ+1|| + lwplly + (IVaR |5 [ Vap | + [ Vap s HVUZH) ,
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Combining the above estimates with Young’s inequality, (5.I)-(E3), (GII) and
(EI0), we have

N-1 ot N-1 o B2 g
ot —iT g <c+ 6t =il s <c|1 — .
I R T of FE R (Y

Next, we prove the estimates on the pressure p}. Using inf-sup condition ([2.25))
and similar arguments above as well as those in subsection [£.3]for the pressure error
estimates, from (B&12]), we have for n =0,...,N — 1,

1
n+1<_
S|

—1
~ ~ d ~ ~ d ~
+ (IIVUZ“II +llwpll + IVaplls [ Vay ™ | + vy @ HVUZII) ;

and (B4 follows.

In a similar way, we can prove (5.7) for §;ay. Noticing that @) = u? by initial-
ization and for n > 1, applying i} to ([B.4) with time step n — 1 and adding it to
B3) to eliminate i} u}, we have

Po

(5.13) 5t Sy + poPx, (Dn(ap, @) + po Aty ™ + Bl (2p) — pp ")

— APx, (wpttVep) = 0.

‘We then control

1
—§,an
o]

~ ~ 4 ~ ~ 4 ~ —
S (IIWZ“||+||wZH1+IIVuZH6 Ivay I+ Ivay 1 Vag | +120n - py 1||> ;

and the estimates on [|6,;a}||—1 can be derived.
Last, for any ¢ € H, testing (B.]) with ¢, = Py, p € Uy, we get

1 ~ M 3 n

57 Ok 0) = = (@ V)gi,on) +7 (Vw™, Veor)
<c (@ eIV eRllllonlze + [IVwy T IlIVenl)
<c(IVag I+ [Vwp ) 1Venll

and we can derive (5.8) since Py, is H' stable. O

For the fully discrete numerical solution {(¢, w?, uf, @, pp)}N_o € ¥), x ), ¥
Y}, % X, X M}, define the linear interpolation (Uy, s (z,t), ®p.s¢(z,t)) of {(@2, ¢7) N,
in time as

(5.14)

ot
Unot (1) =ty + —=—

ot

~n ~ t—1n n
@ =), Pl 0) = o+ O — )

for t € [tn,tns1], n = 0,1,...,N —1. We also denote Py 5:(z,t), Upst(z,t),
6h,5t(x,t), Wh,gt(x,tL and Uy si(z,t) as the piecewise constant extensions of
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(P a0 {ur o {0 o, {wi}nlo and {a}};,, respectively, i.e.,

(5.15)  Puat(t) :=pf, t€[tatns1); Unse(t) = up, € [tn,tasr);
(5.16)  Ppsi(t) =), tE€[tntnr1); Wha(t) = w)l, tE€ [tn,tni1);
(517) ﬁh,&(',t) = ﬁ;zla te [tnatn+1)a n:Oa]-a-“aN_l-

Theorem 5.1. Assume initial data (¢o,uo) € H'(Q) x V and (¢9,w?, u), p))T is
initialized such that 2 ||uf||> + 3|¢%1% + AN(F(49), 1) + %HC’;?p?LHQ < ¢g. Further-
more, we require h?> < 8t if Y, # Xn. Let (u,¢,w,p) denote the unique solution
of NSCH system (L1))-(LH), and let (gh,étvwh,étavh,éhﬁh,zShﬁh,ét) be defined as
above. Then there holds

(5.18) h7§£0 (”Uh,zSt —ull 22y + 1Un,st — ull 22y + | Bhse — ¢||L2(L2)> =0,
(5.19) Whst —w, weakly in L*([0.7]; H(Q)),

(5.20) Phs —p, weakly in LfflJr_Qd([O,T};LQ(Q)).

Proof. We only sketch the proof below as the procedure is similar to that in [4].

Moreover, we work with the case X} # Y}, as the arguments are almost the same
for the X}, =Y}, case but without the condition h? < §t.

Step 1. First, we collect some a priori estimates and extract convergent subse-
quences. From Lemma 5.1l we know

| ®nstll oo (rrry + 110:®@hsel| L2 -1y + | Whstll L2y + | F (@, 6t)HL°°(L1 C,

||atUh,5t||L#2d ,t 1Un.stllo L2y + 1UnstllL2(m1y < C <1 + )

||Ph,6t||L#2d(L2) <C ( >

We can extract convergent subsequences {(fbhy,;t, Wh st ﬁhﬁt,ﬁh’&)} (denoted as
the original one for simplicity) and find a quadruple (¢., ws, u., p«) such that
¢ € L=([0, T HH(Q)) N HY ([0, T, HH(Q)),  w. € L*([0,T); HY(2)),
ue € L([0,T]; L2(Q)) 0 L2((0, T); HH(Q)!) n W25 ([0, T); HH(Q)%),
p. € L'/574([0,TT; L2 (%)),

and

(5.21) O, 5025306, weakly xin L([0, T]; HY()),
weakly in H'([0,T]; H1(2)),
strongly in L*([0, T]; L*(Q)),

(5.22) Whs "253%w,, weakly in L2([0, T); HY(Q)),

)
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(5.23) Up.se "253%u,, weakly xin L([0, T); L2(Q)?),
weakly in L2([0, T]; H'(Q)%),
weakly in WH/0H4 ([0, T); H(Q2)7),
strongly in L%([0, T; L*(Q)9),

(5.24) Prs 253, weakly in L2/6+4([0, T]; L2(Q)).

Furthermore, recalling Lemma [5.1] we have

_ N b (t—tp)?
1@n,50 = Pnstll T2 (prny = Z ok —on I / Tn_ dt
1

n=1 tn—

ot 3 n n—1p2 Hh0tN\0
=S e — g "N,
n=1

N
~ ot - N h,8EN\0
1Un,st = Un.stll72(r2) = 3 E lay — a7 253%,

n=1

N
= ~ _ RO o
1Un.st = Un,sillZ2(p2) = Ot Z lup ™" = a7 oy

n=1

We then conclude from the above computations and the estimates in Lemma
Bl that @, 5 converge to ¢, strongly in L?([0,T]; L?(£2)), and ®j 5 converges
to ¢, weakly x in L>([0,T]; H(Q)); Up.s: and Uy s converge to u, strongly in
L2(]0,T); L2(Q)%), and Uy, 5, converges to u, weakly in L2([0,T]; H'(Q)%).

Step 2. Now, we want to pass to limits as h,dt — 0 in BI)-B3H) and show that
(Guy Wi, Us, pi) is & weak solution of ZIH)-(ZI6). Applying il to ([B4) with time
step n — 1, adding it to (3] and denoting p, ' = p, we have

t5tuh + poPx, (Dn(ay, ay ™)) + poAnay ™ + By (201 — pjp )
— APx, (wpttVep) = 0.
Recalling 3I4)), 31I)-(B35) can be written equivalently for ¢t € [t,,t,41) as
(5.25)
(Ou®h,50(8), Yn) + (Tt +68) - VBisi (1), ¥n ) + 7 (TWs0(t +6t), Tbn) = 0,
(5.26)
(Whse(t+6t), o) — ;2 (Pr,5e(t +6t) — Dpse(t), on) — (VPuse(t), Vion)

= (f(®n.se(t), o) ,
(5.27)

0 (BeUn 5t (1), vn) + pod(Un 5(t), Un st (t + 6t), vn) + pio (Vﬁh,ét(t + 4t), VUh)
+ ((QFh,gt(t) — Fh,ét (t — (5t)), V’Uh) - A (Wh’gt(t + 5t)V6h,5t(t)7 ’Uh) =0,

0
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with
1 /—=c —=C . 1
(6:38)  (V-Unguoai) = = (Phrsilt+86) = P (), Van ), if My, © H'(Q),
0

1 —C —C . iv
(5.29) (V-Unst,qn) = o (V (P, 50 (t + 0t) — Ph,ét(t))vqh)a if Vi, C Hi™(Q),

—C .
for all (Y, on,vn,qn) € ¥p x ¥, X Xj, x My, where P, 5, denotes the piece-
wise extension of §tCIpl. From Lemma [5.1] it is easy to see there exists pS €

L2([0,T); L%(92)?) such that a subsequence F(hjﬁt — p¢ weakly in L2([0,T]; L?(2)9)
(denoted as the original sequence for simplicity) as h,dt — 0.

For any n(t) € C[0,T], multiplying (5:25)-(E29) by n(¢) and integrate from 0 to
T, we have

T
/O (D151 (8), )+ (Tt (1+88) - T g0 (£), ) +7 (VW su(£4+08), Vi) | (1) dt
=0,

T
/o {(Whvgt(ﬁ—ét), ©n) —;2 (Ph,5e(t+08) =P 5e(t), o) — (Vs (1), th)} n(t) dt
T
- /0 (F @nse(t)), on) () dt,
T
/0 {PO (atUh,Jt (t), Uh)-i-pod(ﬁh,ét (1), ﬁhﬁgt (t+0t), vp)+ 1o (Vﬁh,ét (t+0t), VUh)} n(t)dt

T
+ /0 [((2Ph,s5t(t) =P st (t—5t)), Vou) =X (W st (t+65t) VP, 56 (L), vn ) | n(t) dt
=0,

and if M, C HY(Q),

(5.30)
T 1 (T ¢ —c
|- Onseanynydt == [ (Prae+ 80 = P (o). Van) nie)
0 Po Jo
or if Yy, ¢ HV(Q),
(5.31)
T 1 [T — —C
(V- Unse,qn) n(t) dt = o (V “(Phse(t +6t) = Py, 5.(1)), %) n(t) dt.
0 0

For any (1, p,v) € HY(Q) x HY(Q) x X, choose (¢, on,vn) € ¥) X ¥), x X, such
that when h — 0,

(5.32) Y — 1 strongly in H'(Q); ¢n — ¢ strongly in HY(Q);
(5.33) v, = v strongly in X = H}(Q)%

Since Up,sr — us strongly in L([0,T]; LP(Q)%) (1 < p < 2%) and @5 — ¢

strongly in C([0,T]; LP(Q)) (1 < p < %), combing with the results in Step 1 and



2088 YONGYONG CAI AND JIE SHEN

following [4], we can conclude that u.(t = 0) = ug, ¢«(t = 0) = ¢o,

T
/0 (Buard) + (s - Va8 — 7(Vuww, V)] m(t) dt = 0,
T T
/ (s, 0) — (Vo Vi) (1) dt = / (F(62), ) m(t) dt,
0 0

T
/ [0 (Ortts, V) 4 pod (s, Us, V) F o (Vis, VU) + (D, VO) = A (w Vo, v)] () dt = 0.
0

Thus (¢, Wi, U, P« ) satisfies (ZI0)-(ZI7) except the divergence free equation (ZI8)
in view of the fact that C[0, 7] is dense in L?[0,T]. Next, we prove that u, actually

satisfies (2.I8]) and separates the proof into two cases.
(1) When M,, ¢ H*(Q), for any ¢ € H'(Q) N L3(f), we can choose g, € M,
such that q; — ¢ strongly in H'. Then passing to the limit in (5.30) as h, 6t — 0,

we have Fi(;t(t + 0t) — ?i(;t(t) — 0 weakly in L2([0, T]; L2(Q)%) and

(5.34) /0 (V- uy,q)]n(t)dt = 0.

Since H'(Q) N L3(?) is dense in L3(2) and C([0,T]) is dense in L2[0,T], we find
u, fulfills (2.I1).

(2) When Y}, € HFV(Q), for any ¢ € L3(f), we can choose g, € Mj, such that
qn — g strongly in L2. On the other hand, using (3.I4) and the estimates in Lemma
B we have V - (?iét(t + dt) — ﬁi&(t)) is uniformly bounded in L?([0,T]; L?),
and we can extract a subsequence (denoted as the original one for simplicity) such
that for some py € L%([0,T]; L?), V - (?iét(t + dt) — ﬁiét(t)) — py weakly in
L2([0,T]; L?) as h,dt — 0. Since we know Fi5t(t + 0t) — Fiét(t) — 0 weakly in
L2([0,T]; L2(Q)%) as h,dt — 0, we identify pY = 0. Thus, passing to the limit in
E31) as h, 6t — 0, we get

T
(5.35) / (V- e )] () di = 0,

and then w, fulfills (2.I]).
Now, we have proved that (@., ws, u., ps) is a weak solution of (2.IH)-(2IF]).

Step 3. Under the assumption that the system (LI)-(L3]) admits a unique solution,
the convergence results in Theorem [5.1] can be obtained by the same arguments in
[4] and the detail is omitted here. O

6. CONCLUDING REMARKS

We derived rigorously in this paper error estimates for a fully discretized energy
stable scheme of a Cahn-Hilliard phase-field model for two-phase incompressible
flow. The full discretization is based on a finite-element discretization to the weakly
coupled, linear, energy stable scheme introduced in [24]. The main difficulties for
the error analysis were introduced by the splitting error in the projection step and
the nonlinear coupling between the phase function and velocity. We derived optimal
convergence rates for both phase functions and velocity in the H'-norm and pressure
in the L?-norm, and established qualitative convergence of the numerical solution
towards the weak solution of the continuous problem under minimal regularity
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assumption. To the best of our knowledge, this is the first rigorous error analysis
for a fully discrete scheme involving a projection step for a phase-field model of two
phase flows.
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