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INF-SUP STABILITY OF GEOMETRICALLY

UNFITTED STOKES FINITE ELEMENTS

JOHNNY GUZMÁN AND MAXIM OLSHANSKII

Abstract. This paper shows an inf-sup stability property for several well-
known 2D and 3D Stokes elements on triangulations which are not fitted to a
given smooth or polygonal domain. The property implies stability and optimal
error estimates for a class of unfitted finite element methods for the Stokes
and Stokes interface problems, such as Nitsche-XFEM or cutFEM. The error
analysis is presented for the Stokes problem. All assumptions made in the
paper are satisfied once the background mesh is shape-regular and fine enough.

1. Introduction

Unfitted finite element (FE) methods incorporate geometrical information about
the domain where the problem is posed without fitting the mesh to lower dimen-
sional structures such as physical boundaries or internal interfaces. This is oppo-
site to fitted desretizations such as (isoparametric) traditional FE and isogeometric
analysis. The advantage of the unfitted approach is a relative ease of handling prop-
agating interface and geometries defined implicitly, i.e., when a surface parametriza-
tion is not readily available. Prominent classes of unfitted FE are given by XFEM
[24] and cutFEM [14] also known as Nitsche-XFEM methods or traceFEM in the
case of embedded surfaces. In cutFEM, one considers background mesh and FE
spaces not tailored to the problem geometry, while numerical integration in FE bi-
linear forms is performed over the physical domains Ω and/or ∂Ω which cut through
the background mesh in an arbitrary way. Effectively, this leads to traces of the
ambient FE spaces on the physical domain, where the original problem is posed,
and integration over arbitrary cut simplexes.

The idea of unfitted FE can be followed back at least to the works of Barrett and
Elliott [2–4], where a cut FE method was studied for the planar elliptic problems
and elliptic interface problems. Over the last few decades, unfitted FE methods
emerged in a powerful discretization approach that has been applied to the wide
range of problems, including problems with interfaces, fluid equations, PDEs posed
on surfaces, surface-bulk coupled problems, equations posed on evolving domains,
etc.; see, e.g., [5, 10, 15, 21, 22, 27, 34, 35, 39, 40, 42]. Among important enabling
techniques used in unfitted FEM are the Nitsche method for enforcing essential
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boundary and interface conditions [29], ghost penalty stabilization [13], and the
properties of trace FE spaces on embedded surfaces [38]. We note that many
of these developments are accomplished with rigorous stability and convergence
analysis of the unfitted FE, which demonstrate both utility and reliability of the
approach.

One important application of unfitted FE methods is the numerical simulation of
fluid problems with evolving interfaces as occurs in fluid-structure interaction prob-
lems and two-phase flows. If the fluid is treated as incompressible, then the pro-
totypical model suitable for numerical analysis is the stationary (interface) Stokes
problem. This paper addresses the question of numerical stability of a certain class
of geometrically unfitted Stokes finite elements. Unfitted FE methods for the Stokes
problem received recently a closer attention in the literature. In [16] optimal order
convergence results were shown for the unfitted inf-sup stable velocity-pressure 2D
FE with Nitsche treatment of the boundary conditions and ghost-penalty stabiliza-
tion for triangles cut by ∂Ω. This analysis was extended to the Stokes interface
problem and P1isoP2−P1 elements in [31]. Optimal order convergence in the energy
norm for P bubble

1 −P1 unfitted FE using slightly different pressure stabilization over
cut triangles was shown for the Stokes interface problem in [17]. In [32] the P2−P1

elements were analysed for the Stokes interface problem, when the pressure element
is enriched to allow for the jump over unfitted interface, while the velocity element
is globally continuous. Globally stabilized unfitted Stokes finite elements, P1 − P1

and P1 − P disc
1 , were studied in [17, 37, 45]. Other related work on geometrically

unfitted FE for the Stokes problem can be found in [1, 28, 33, 41].
The analysis of inf-sup stable unfitted Stokes elements, however, is not a straight-

forward extension of the standard results for saddle point problems. In particular,
it essentially relies on a certain uniform stability property of the finite element
velocity-pressure pair. This property can be found as an assumption (explicitly
or implicitly made) in [16, 17, 31]. Loosely speaking the following condition on FE
velocity-pressure spaces is required: Assume a family of shape-regular triangula-
tions {Th}h>0 of R2, and let Ω ∈ R

2 be a bounded domain with smooth boundary.
Consider the family of domains Ωh, where each Ωh consists of all triangles from Th
which are strictly inside Ω. Then one requires that the LBB constants (optimal
constants from the FE velocity-pressure inf-sup stability condition) for the domains
Ωh are uniformly in h bounded away from zero. In the same way the property is
formulated in 3D. In section 2 we discuss what sort of difficulties one encounters
trying to employ common techniques to verify this property.

Recently, in [32] the required uniform stability condition was proved for P2−P1,
the lowest order Taylor-Hood element. In this paper, we show the uniform inf-
sup stability result for a wider class of elements, including Pk+1 − Pk, k ≥ 1, and
Pk+d − P disc

k for k ≥ 0, Ω ⊂ R
d, d = 2, 3, and several other elements; see section 6.

Following [32] we employ the argument from [44]. This helps us to formulate more
local conditions on FE spaces which are sufficient for the uniform inf-sup stability,
but easier to check. Further we show that this condition is satisfied by a number
of popular LBB-stable FE pairs.

This paper also applies the acquired uniform stability result to show the opti-
mal order error estimates of the unfitted FE method for the Stokes problem. The
analysis improves over the available in the literature by eliminating certain assump-
tions on how the surface ∂Ω (or an interface in the two-phase fluid case) intersects
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the background mesh. Instead, we impose certain assumptions, which are always
satisfied once the background mesh is shape-regular and the mesh size is not too
coarse with respect to the problem geometry; see section 4 for the assumptions and
further discussion in Remark 1.

The remainder of the paper is organized as follows. In section 2 we define the
problem of interest and formulate the central question we address in this paper
about uniform inf-sup stability. Section 3 collects necessary preliminaries and aux-
iliary results. Here we present the unfitted finite element method for the Stokes
problem. Further we formulate assumptions sufficient for the main uniform stability
result. Section 5 shows how the well-posedness and optimal order error estimates
for the unfitted FE method follow from our assumptions. In section 6 we give the
examples of velocity and pressure spaces satisfying the assumptions.

2. Problem setting

Consider the Stokes problem posed on a bounded domain with Lipschitz bound-
ary Ω ⊂ R

d, d = 2, 3,

(2.1)

⎧⎪⎨⎪⎩
−Δu+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Vector function u ∈
[
H1

0 (Ω)
]d

and p ∈ L2(Ω)/R are the weak solution to (2.1),
having the physical meaning of fluid velocity and normalized kinematic pressure.

Assume there is a domain S ⊃ Ω, and we let {Th}h>0 be an admissible family
of triangulations of S. We are interested in a finite element method for (2.1) using
spaces of piecewise polynomial functions with respect to Th. Note that we make
no assumption on how Ω overlaps with Th, i.e., ∂Ω may cut through tetrahedra or
triangles from Th in an arbitrary way.

In the next section we give details of the finite element method. Now we formu-
late the stability condition, which is crucial for the analysis of this method (and
likely many other unfitted FE methods for (2.1)). Consider the set of all strictly
internal simplexes and define the corresponding subdomain of Ω:

T i
h := {T ∈ Th : T ⊂ Ω}, Ωi

h := Int
( ⋃

T∈T i
h

T
)
.

For background finite element velocity and pressure spaces Vh and Qh, consider

their restrictions on Ωi
h, that is, V i

h = Vh ∩
[
H1

0 (Ω
i
h)
]d

and Qi
h = Qh ∩ L2

0(Ω
i
h),

L2
0(Ω

i
h) := {q ∈ L2(Ωi

h) :
∫
Ωi

h
q dx = 0}, and define

θh := inf
q∈Qi

h

sup
v∈V i

h

∫
Ωi

h
q div v dx

‖v‖H1(Ωi
h)
‖q‖L2(Ωi

h)

.

We are interested in the following condition:

(2.2) 0 < inf
h<h0

θh,

for some positive h0.
Note that standard arguments based on the Nečas inequality and Fortin’s pro-

jection operator (cf. [9]) cannot be applied in a straightforward way to yield (2.2)
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for inf-sup stable elements (e.g., for Taylor-Hood element). For reference purpose
recall the Nečas inequality:

(2.3) CN (Ωi
h)‖q‖L2(Ωi

h)
≤ sup

v∈[H1
0 (Ω

i
h)]

d

∫
Ωi

h
q div v dx

‖v‖H1(Ωi
h)

∀ q ∈ L2
0(Ω

i
h).

Since Ωi
h is Lipschitz for any given Th, the inequality holds with some domain

dependent constant CN (Ωi
h) > 0; see, e.g., [11, 25]. However, we are not aware

of a result in the literature which implies that CN (Ωi
h) are uniformly bounded

from below by a positive constant independent of h. For example, the well-known
argument for proving (2.3) is based on the decomposition of a Lipschitz domain
into a finite number of strictly star-shaped domains (see Lemma II.1.3 in [25])
and applying the result of Bogovskii [11] in each of the star domains. However,
the number of the star domains in the decomposition of Ωi

h may infinitely grow
for h → 0 even if ∂Ω is smooth and {Th}h>0 is shape-regular, which would drive
the lower bound for CN (Ωi

h) to zero. Alternatively, the recent analysis from [7]
provides a lower bound for CN (Ωi

h) if there exist diffeomorphisms Φh : Ωi
h → Ω

with uniformly bounded W 1,∞(Ωi
h) norms. We do not see how to construct such

diffeomorphisms (note that ∂Ωi
h is not necessarily a graph of a function in the

natural coordinates of ∂Ω). Additional difficulty stems from the observation that
T i
h does not necessarily inherit a macro-element structure that Th may possess.

This said, we shall look for a different approach to verify (2.2).
We end this section noting that the finite element method and the analysis of

the paper can be easily extended to the Stokes interface problem, a prototypical
model of two-phase incompressible fluid flow. However, we are not adding these
extra details to the present report.

3. Finite element method

3.1. Preliminaries. We adopt the convention that elements T and element edges
(also faces in 3D) are open sets. We use the over-line symbol to refer to their
closure. For each simplex T ∈ Th, let hT denote its diameter and define the global
parameter of the triangulation by h = maxT hT . We assume that Th is shape
regular, i.e., there exists κ > 0 such that for every T ∈ Th the radius ρT of its
inscribed sphere satisfies

(3.1) ρT > hT /κ.

The set of elements cutting the interface Γ ≡ ∂Ω, and restricted to Ω are also of
interest. They are defined by:

T Γ
h := {T ∈ Th : meas2(T ∩ Γ) > 0},
T e
h := {T ∈ Th : T ∈ T i

h or T ∈ T Γ
h }.

In particular, for T ∈ T Γ
h we denote TΓ = T ∩ Γ. Observe that the definition

of T Γ
h guarantees that

∑
T∈T Γ

h
|TΓ| = |Γ|. Under these definitions we define the

h-dependent domains

ΩΓ
h := Int

( ⋃
T∈T Γ

h

T
)
, Ωe

h := Int
( ⋃

T∈T e
h

T
)
.
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Note that Ωe
h = Ωi

h ∪ ΩΓ
h and that Ωi

h ⊂ Ω ⊂ Ωe
h. For these domains define sets of

faces:

F i
h := {F : F is an interior face of T i

h},
FΓ

h := {F : F is a face of T Γ
h , F �⊂ ∂Ωe

h},
Fe

h := {F : F is an interior face of T e
h }.

Now we can define finite element spaces. A space of continuous functions on Ωe
h

which are polynomials of degree k on each T ∈ T e
h is denoted by W k

h . The spaces
of discontinuous and continuous pressure spaces are given by

Qdisc
h = {q ∈ L2(Ωe

h) : q|T ∈ P kp(T ) ∀ T ∈ T e
h },

Qcont
h = Qdisc

h ∩H1(Ωe
h).

Throughout this paper we will consider eitherQh = Qdisc
h (for kp ≥ 0) orQh = Qcont

h

(for kp ≥ 1). We will denote the finite element velocity space by Vh ⊂ [H1(Ωe
h)]

d,
and we will assume (

W ku

h

)d ⊂ Vh ⊂
(
W s

h

)d
for some integer s ≥ ku ≥ 1. In section 4, we introduce a more technical assump-
tion 3 that our pair of spaces {Qh, Vh} has to satisfy. Then, later we give examples
of pairs that satisfy all necessary assumptions. For example, if Qh = Qdisc

h , then
Vh can be the space of continuous piecewise polynomials of degree kp + d; and if
Qh = Qcont

h , then Vh can be the space of continuous piecewise polynomials of degree
kp + 1. We give more examples of spaces satisfying our assumptions in section 6.

3.2. Finite element method. We will use the notation (v, w) =
∫
Ω
vw dx. Intro-

duce the mesh-dependent bilinear forms

ah(uh, vh) := (∇uh,∇vh) + sh(uh, vh) + jh(uh, vh) + ηjh(uh, vh),

with

sh(u, v) = −
∫
Γ

{(n · ∇u) · v + (n · ∇v) · u}ds,

jh(u, v) =
∑

T∈T Γ
h

1

hT

∫
TΓ

u · vds,

jh(u, v) =
∑

F∈FΓ
h

s∑
�=1

h2�−1
F

∫
F

[
∂�
nu

] [
∂�
nv

]
ds,

and

bh(ph, vh) := −(ph, div vh) + rh(ph, vh),

with

rh(p, v) =

∫
Γ

p v · n ds.

Here and further ∂�
nq on face F denotes the derivative of order � of q in direction

n, where n is normal to F ; and [φ] denotes the jump of a quantity φ over a face F .
We can now define the numerical method: Find uh ∈ Vh and ph ∈ Qh such that

(3.2)

{
ah(uh, vh) + bh(ph, vh) = (f, vh),

bh(qh, uh)− Jh(ph, qh) = 0
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for all vh ∈ Vh, qh ∈ Qh, where

Jh(q, p) =
∑

F∈FΓ
h

kp∑
�=0

h1+2�
F

∫
F

[
∂�
nq

] [
∂�
np

]
ds.

The unfitted FE method in (3.2) was introduced in [16].
Pressure solutions to both (2.1) and (3.2) are defined up to an additive constant.

It is convenient to assume that the restriction of ph on Ωi
h is from L2

0(Ω
i
h). We shall

fix one particular p solving (2.1) later.
Before proceeding with the analysis, we briefly discuss the role of different terms

in the finite element formulation (3.2). First note that all volume integrals in
(3.2) are computed over physical domains Ω and Γ rather than computational
domain Ωe

h. The gradient and div-terms appear due to the integration by parts in
a standard weak formulation of the Stokes problem. Since finite element velocity
trial and test functions do not satisfy homogenous Dirichlet conditions strongly
on Γ, the integration by parts brings the sh and rh terms to the formulation.
The −

∫
Γ
(n · ∇v) · uds integral in sh is added to make formulation symmetric. It

vanishes for u, the Stokes equations solution. The same is true for the rh term
in the continuity equation in (3.2). The penalty term jh(uh, vh) weakly enforces
the Dirichlet boundary conditions for uh, as common for the Nitsche method, with
a parameter η = O(1). The terms jh(uh, vh) and Jh(ph, qh) are added for the
numerical stability of the method: we need jh(uh, vh) to gain control over normal
velocity derivatives in sh, and we need Jh for pressure stability over cut triangles.
In practice, both jh and Jh can be scaled by additional stabilization parameters of
O(1) order; we omit this detail here.

We note that the unfitted FEM analyzed in the paper is closely related to the ex-
tended finite element method (XFEM). Indeed, the trace space of background finite
element functions on the domain Ω can be alternatively described as a FE space
spanned over nodal shape functions from Ω and further enriched by certain degrees
of freedom tailored to ∂Ω. Hence the results of this paper can be as well considered
as the analysis of a certain class of XFEM methods for the Stokes problem.

The next section proves the key result for getting numerical stability and optimal
order error estimates for the unfitted finite element method (3.2).

4. Stability

We need to define some norms and semi-norms. First we define the mesh-
dependent norm for the velocity

‖u‖2Vh
= |u|2H1(Ω) + jh(u, u) + jh(u, u).

Note that due to the boundary term jh, the functional ‖u‖Vh
defines a norm on

Vh equivalent to the H1(Ω) norm, ‖u‖H1(Ω) � ‖u‖Vh
� h−1

min‖u‖H1(Ω), hmin =
minT∈T e

h
hT . We need a set of all tetrahedra intersected by Γ together with all

tetrahedra from Ω touching those:

T̃ Γ
h = {T : T ∈ T Γ

h or T ⊂ Ω, T ∩ ΩΓ
h �= ∅},

and also

Ω̃Γ
h := Int

( ⋃
T∈˜T Γ

h

T
)
.



INF-SUP STABILITY OF GEOMETRICALLY UNFITTED STOKES FE 2097

For a generic set of tetrahedra T ⊂ Th denote ω(T ) ⊂ Th the set of all tetrahedra
having at least one vertex in T . We need the following assumptions on how well
the geometry is resolved by the mesh.

Assumption 1. For any T ∈ T Γ
h we assume that the set W (T ) = T i

h ∩ ω (ω(T ))
is not empty.

We note that the assumption can be weaken by allowing in W (T ) neighbors of
T of degree L, with some finite and mesh independent L ≥ 2.

Given T ∈ T Γ
h we associate an arbitrary but fixed KT ∈ W (T ), which can

be reached from T by crossing faces in FΓ
h . More precisely, there exist simplices

T = K1,K2, . . . ,KM = KT with Kj ∈ T Γ
h for j < M . The number M is uniformly

bounded and only depends on the shape regularity of the mesh. Note that by (3.1)
there exists a constant c only depending on the shape regularity constant κ such
that 1

chT ≤ hKT
≤ chT . For T ∈ T i

h we define KT = T .

Assumption 2. Let F ∈ FΓ
h with F = ∂T1 ∩ ∂T2. We assume KT2

can be reached
from KT1

by crossing a finite, independent of h, number of faces of tetrahedra from
T i
h .

We recall that we assume that Ω is Lipschitz.

Remark 1. One can check that the Assumptions 1 and 2 are satisfied if h is suffi-
ciently small and the minimal angle condition (3.1) holds. This is an improvement
of the available analysis of unfitted finite elements which commonly imposes a fur-
ther restriction on how interface intersects Th. In 2D this extra assumption is
formulated as follows: ∂Ω does not intersect any edge from Fe

h more than one time;
see, e.g., [29]. An analogous restriction was commonly assumed in 3D. One easily
builds an example showing that this extra assumption is not necessarily true for
arbitrary fine mesh and smooth ∂Ω, while enforcing it by “eliminating” ineligible
elements introduces O(h2) geometrical error diminishing possible benefits of using
higher order elements. We do not need this extra assumption.

Assumptions 1 and 2 also allow local mesh refinement.

We will make use of the following well-known scaled trace inequality:

(4.1) ‖v‖L2(∂T ) ≤ C(h
− 1

2

T ‖v‖L2(T ) + h
1
2

T ‖∇v‖L2(T )) ∀ v ∈ H1(T ).

We will also need a local trace inequality for parts of Γ. We give the proof of
the result only assuming that the boundary is Lipschitz in the appendix. Under
various stronger assumptions the following result was proved in [18, 29, 30, 40].

Lemma 1. Under the assumption that Ω is Lipschitz we have the following in-
equality for every T ∈ T Γ

h :

(4.2) ‖v‖L2(T∩Γ) ≤ C(h
− 1

2

T ‖v‖L2(T ) + h
1
2

T ‖∇v‖L2(T )) ∀ v ∈ H1(T ),

with a constant C independent of v, T , how Γ intersects T , and h < h0 for some
arbitrary but fixed h0.

One can show the following stability result.

Lemma 2. For η sufficiently large and h ≤ h0 for sufficiently small h0, there exists
a mesh-independent constant c0 > 0 such that

(4.3) c0‖vh‖2Vh
≤ ah(vh, vh) ∀ vh ∈ Vh.
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Proof. To show (4.3) we need the following estimate (see Lemma 5.1 in [36]): For
any T1, T2 from T Γ

h sharing a face F = T1 ∩ T2 it holds that
(4.4)

‖q‖2L2(T1)
≤ C

(
‖q‖2L2(T2)

+

m∑
�=0

h1+2�
F

∫
F

[
∂�
nq

]2
ds

)
∀ q ∈ Pm(T1)× Pm(T2),

with a constant C depending only on the shape regularity of Th and polynomial
degree m. Thanks to FE inverse inequality, (4.4) and Poincaré inequality, we have

for any T1, T2 from T̃ Γ
h sharing a face F = T1 ∩ T2 the following estimate:

‖∇vh‖2L2(T1)
≤ Ch−2

F ‖vh − α‖2L2(T1)

≤ C

(
h−2
T2

‖vh − α‖2L2(T2)
+

s∑
�=1

h−1+2�
F

∫
F

[
∂�
nvh

]2)

≤ C

(
‖∇vh‖2L2(T2)

+

s∑
�=1

h−1+2�
F

∫
F

[
∂�
nvh

]2) ∀ vh ∈ Vh,

(4.5)

where we take α = |T2|−1
∫
T2

vh ds. This inequality is also found in Proposition 5.1

in [36] in the case Vh = [W 1
h ]

d. Thanks to Assumption 1 the estimate (4.5) implies

(4.6) ‖∇vh‖2L2(Ωe
h)

≤ C(‖∇vh‖2L2(Ω) + jh(vh, vh) ).

Further, one uses the Cauchy-Schwarz inequality, trace inequality (4.2), and the
FE inverse inequality to estimate

|sh(vh, vh)| =
∣∣∣∣∫

Γ

(n · ∇vh) · vhds
∣∣∣∣ ≤ ∑

T∈T Γ
h

‖∇vh‖L2(TΓ)‖vh‖L2(TΓ)

≤ 1

2η

∑
T∈T Γ

h

hT ‖∇vh‖2L2(TΓ)
+

η

2
jh(vh, vh)

≤ C

2η

∑
T∈T Γ

h

(‖∇vh‖2L2(T ) + h2
T ‖∇2vh‖2L2(T )) +

η

2
jh(vh, vh)

≤ C

2η
‖∇vh‖2L2(Ωe

h)
+

η

2
jh(vh, vh).

Combining this with (4.6) and choosing η sufficiently large, but independent of h,
proves the lemma. �

We need to define the scaled semi-norms for the pressure:

|p|2H1
h,i

=
∑
T∈T i

h

h2
T ‖∇p‖2L2(T ) +

∑
F∈Fi

h

hF ‖[p]‖2L2(F ),

|p|2H1
h,e

=
∑
T∈T e

h

h2
T ‖∇p‖2L2(T ) +

∑
F∈Fe

h

hF ‖[p]‖2L2(F ).

Assumption 3. Assume that there exists a constant β > 0 independent of h and
only depending on polynomial degree of finite element spaces and the shape regularity
of Th such that

(4.7) β|q|H1
h,i

≤ sup
v∈V i

h

∫
Ωi

h
q div v dx

‖v‖H1(Ωi
h)

∀q ∈ Qh,

where V i
h = Vh ∩

[
H1

0 (Ω
i
h)
]d
.
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We also need the following extension result. A proof of this result is given in the
appendix.

Lemma 3. For every q ∈ Qh there exists a Ehq ∈ Qdisc
h such that

Ehq = q on Ωi
h

and

(4.8) |Ehq|H1
h,e

≤ C|q|H1
h,i

.

Using the degrees of freedom of piecewise linear functions one can show the
following result.

Lemma 4. For every vh ∈ W 1
h there exists a unique decomposition

(4.9) vh = π1vh + π2vh,

where πivh ∈ W 1
h for i = 1, 2, π2vh is supported in Ω̃Γ

h and such that

(4.10) π2vh = vh on ΩΓ
h

and

(4.11)
∑

T∈˜T Γ
h

1

h2
T

‖π2vh‖2L2(T ) ≤ C
∑

T∈T Γ
h

1

h2
T

‖vh‖2L2(T ).

The constant C is independent of vh and h and only depends on the shape regularity
of the mesh. In particular, note that this implies π1vh ∈ V i

h.

Proof. For a set of tetrahedra τ , V (τ ) denotes the set of all vertices of tetrahedra
from τ . For vh ∈ W 1

h , one defines π2vh(x) = vh(x) for all x ∈ V (T Γ
h ) and π2vh(x) =

0 for all x ∈ V (Th \ T Γ
h ). It is clear that π2vh = vh on ΩΓ

h and π1vh ∈ V i
h . For

any T ∈ T̃ Γ
h let ω̃(T ) = ω(T )∩T Γ

h . Thanks to the shape regularity assumption, we

have for any T̃ ∈ T̃ Γ
h :

h−2
˜T
‖π2vh‖2L2(˜T )

≤ C h−2
˜T
|T̃ |

∑
x∈V (˜T )

|π2vh(x)|2 = h−2
˜T
|T̃ |

∑
x∈V (˜T )∩V (T Γ

h )

|π2vh(x)|2

= h−2
˜T
|T̃ |

∑
x∈V (˜T )∩V (T Γ

h )

|vh(x)|2 ≤ C
∑

T∈ω̃(˜T )

h−2
T |T |

∑
x∈V (T )

|vh(x)|2

≤ C
∑

T∈ω̃(˜T )

h−2
T ‖vh‖2L2(T ).

Summing over all T̃ ∈ T̃ Γ
h and using shape regularity again we prove the result in

(4.11). �
The following theorem shows the LBB stability result for the internal domain

Ωi
h and so proves the key uniform bound (2.2). Note again that Ωi

h is not an O(h2)
approximation of a smooth domain and there is no uniform in h result concerning
decomposition of Ωi

h into a union of a finite number of star-shaped domains. The
latter is a standard assumption for proving the differential counterpart of this finite
element condition; see, e.g., [25]. This result is crucial for the stability and conver-
gence analysis of the unfitted FE method (3.2). For the lowest order Taylor-Hood
element, the proof of the following result is found in [32]. We follow a similar ar-
gument, but extend the result so it can be applied to higher order elements in two
and three dimensions.
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Theorem 1. Suppose Assumptions 1–3 hold. Then, there exists a constant θ > 0
and a constant h0 such that for all q ∈ Qh with

∫
Ωi

h
qdx = 0 we have the following

result for h ≤ h0:

(4.12) θ‖q‖L2(Ωi
h)

≤ sup
v∈V i

h

∫
Ωi

h
q div v dx

‖v‖H1(Ωi
h)

.

The constant θ > 0 is independent of q and h.

Proof. Let ψ = Ehq given by Lemma 3 and let ch = 1
|Ω|

∫
Ω
Ehq. Using that Γ is

Lipschitz, there exists a v ∈ [H1
0 (Ω)]

2 with the following properties (cf. [11, 25]):

(4.13) div v = ψ − ch on Ω

and

(4.14) ‖v‖H1(Ω) ≤ C ‖ψ − ch‖L2(Ω).

Extend v by zero to all of Ωe
h. Let vh∈ W 1

h be the Scott-Zhang interpolant of v
and vh|∂Ωe

h
= 0. We will write (v, w)e =

∫
Ωe

h
vwdx. With the help of (4.13) and

the decomposition (4.9), we obtain
(4.15)
‖ψ − ch‖2L2(Ω) = (div v, ψ) = (div π1vh, ψ)e + (div(v − vh), ψ)e + (div π2vh, ψ)e.

Integration by parts over each T ∈ T e
h gives

(div(v − vh), ψ)e = −
∑
T∈T e

h

∫
T

(v − vh) · ∇ψdx−
∑

F∈Fe
h

∫
F

[ψ](v − vh) · nds.

We proceed by applying the Cauchy-Schwarz inequality, elementwise trace inequal-
ity, and the definition of the H1

h,e norm. This gives the bound

(div(v − vh), ψ)e ≤ C

⎛⎝ ∑
T∈T e

h

(
1

h2
T

‖v − vh‖2L2(T ) + ‖∇(v − vh)‖2L2(T ))

⎞⎠1/2

|ψ|H1
h,e

.

Using the approximation properties of the Scott-Zhang interpolant, (4.14) and (4.8),
we have

(4.16) (div(v − vh), ψ)e ≤ C‖ψ − ch‖L2(Ω)|ψ|H1
h,e

≤ C‖ψ − ch‖L2(Ω)|q|H1
h,i

.

In a similar fashion, but now using inverse FE estimates instead of approximation

results, and recalling that supp(π2vh) ⊂ Ω̃Γ
h, we show

(div π2vh, ψ)e ≤ C

⎛⎝ ∑
T∈˜T Γ

h

1

h2
T

‖π2vh‖2L2(T )

⎞⎠1/2

|ψ|H1
h,e

≤ C

⎛⎝ ∑
T∈T Γ

h

1

h2
T

‖vh‖2L2(T )

⎞⎠1/2

|ψ|H1
h,e

.

(4.17)

Note the following Friedrich’s-type FE inequality:

h−2
T ‖vh‖2L2(T ) + h−1

T ‖vh‖2L2(∂T )

≤ C(‖∇vh‖2L2(T ) + h−1
T ‖vh‖2L2(F )) ∀ T ∈ Th, F is a face of T.
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We apply the above inequality elementwise and use vh = 0 on ∂Ωe
h to show that

(4.18)⎛⎝ ∑
T∈T Γ

h

1

h2
T

‖vh‖2L2(T )

⎞⎠1/2

≤ C‖∇vh‖L2(ΩΓ
h)

≤ C ‖∇v‖L2(Ωe
h)

= C ‖∇v‖L2(Ω).

In the last inequality we used the stability of the Scott-Zhang interpolant. Hence,
using (4.14) we get from (4.17)–(4.18) the estimate

(4.19) (div π2vh, ψ)e ≤ C‖ψ − ch‖L2(Ω)|q|H1
h,i

.

The last term on the right-hand side of (4.15) we handle as follows:

(div π1vh, ψ)e = (div π1vh, ψ)L2(Ωi
h)

≤ ‖π1vh‖H1(Ωi
h)

sup
w∈V i

h

(divw, q)L2(Ωi
h)

‖w‖H1(Ωi
h)

.

Now we bound ‖π1vh‖H1(Ω):

‖π1vh‖H1(Ω) ≤ (‖π2vh‖H1(˜ΩΓ
h)

+ ‖vh‖H1(Ω)).

Using inverse estimates, (4.11) and (4.18) we get

‖π2vh‖H1(˜ΩΓ
h)

≤ C‖v‖H1(Ωe
h)

= C‖v‖H1(Ω).

Hence, the stability of the Scott-Zhang interpolant and (4.14) imply

(4.20) ‖π1vh‖H1(Ω) ≤ C ‖ψ − ch‖L2(Ω).

Therefore, we get from (4.16), (4.19), (4.20), and (4.15), the upper bound

‖ψ − ch‖L2(Ω) ≤ C

(
sup
w∈V i

h

(divw, q)L2(Ωi
h)

‖w‖H1(Ωi
h)

+ |q|H1
h,i

)
.

Using Assumption 3 we get

(4.21) ‖ψ − ch‖L2(Ω) ≤ C sup
w∈V i

h

(divw, q)L2(Ωi
h)

‖w‖H1(Ωi
h)

.

Finally, note that

‖ch‖L2(Ω) ≤ |Ω|1/d|ch| = |Ω|−1+1/d

∣∣∣∣∫
Ω

ψdx

∣∣∣∣ = |Ω|−1+1/d

∣∣∣∣∣
∫
Ω\Ωi

h

ψdx

∣∣∣∣∣ .
The last equality holds since ψ = q in Ωi

h and
∫
Ωi

h
q dx = 0. After applying Cauchy-

Schwarz inequality and using that |Ω \ Ωi
h|1/d ≤ h1/d we have that

‖ch‖L2(Ω) ≤ Ch1/d‖ψ‖L2(Ω).

Hence, using the triangle inequality in (4.21) and assuming h is sufficiently small,
we have

‖ψ‖L2(Ω) ≤ C sup
w∈V i

h

(divw, q)L2(Ωi
h)

‖w‖H1(Ωi
h)

.

We note that the constant C is independent of h and q. The result now follows
after noting that ‖q‖L2(Ωi

h)
≤ ‖ψ‖L2(Ω) and letting θ = 1

C . �
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Corollary 1. If Assumptions 1–3 hold true, the following stability condition is
satisfied by the bh and Jh forms of the finite element method (3.2),

(4.22) cb‖q‖L2(Ω) ≤ sup
v∈Vh

bh(v, q)

‖v‖Vh

+ J
1
2

h (q, q) ∀ q ∈ Qh, s.t. q|Ωi
h
∈ L2

0(Ω
i
h).

The constant cb > 0 is independent of q and h.

Proof. Fix some q ∈ Qh, such that q|Ωi
h
∈ L2

0(Ω
i
h). Using (4.4), Assumption 1 and

the finite overlap argument, one shows that

‖q‖2L2(Ω) ≤ c (‖q‖2L2(Ωi
h)

+ Jh(q, q)).

Thanks to the uniform inf-sup property from Theorem 1 there exists v ∈ Vh with
supp(v) ⊂ Ωi

h such that

(4.23) ‖q‖2L2(Ω) ≤ c
( (div v, q)2

‖v‖2
H1(Ωi

h)

+ Jh(q, q)
)
.

Using v = 0 in ΩΓ
h and applying the FE inverse inequalities we show

jh(v, v) =
∑

F∈FΓ
h , s.t. F⊂∂Ωi

h

s∑
�=1

h2�−1
F

∫
F

[
∂�
nv

]2
≤ C

∑
T∈˜T Γ

h ∩T i
h

‖∇v‖2L2(T ) ds ≤ C‖v‖2H1(Ωi
h)
.

This estimate and jh(v, v) = 0 for v ∈ Vh with supp(v) ⊂ Ωi
h imply the uniform

equivalence ‖v‖Vh
� ‖v‖H1(Ωi

h)
. Using this in (4.23) yields

‖q‖2L2(Ω) ≤ c
((div v, q)2

‖v‖2Vh

+ Jh(q, q)
)
.

Finally, we note that (div v, q) = bh(v, q) if supp(v) ⊂ Ωi
h. This completes the

proof. �

5. Well posedness and error estimates

One easily verifies that ah is continuous:

ah(u, v) ≤ Ca‖u‖Vh
‖v‖Vh

∀ u, v ∈ Vh,

with some Ca > 0 independent of h and the position of Γ. The continuity and
coercivity of the ah(u, v) form (Lemma 2) and the inf-sup stability of the bh(v, q)
form (Corollary 1) readily imply the stability for the bilinear form of the finite
element method (3.2) with respect to the product norm,

(5.1) Cs‖uh, ph‖ ≤ sup
{v,q}∈Vh×Qh

Ah(uh, ph; v, q)

‖v, q‖ ∀ {uh, ph} ∈ Vh ×Qh,

with some Cs > 0 independent of h and the position of Γ and

Ah(u, p; v, q) := ah(u, v) + bh(v, p) + bh(u, q)− Jh(p, q),

‖v, q‖ :=
(
‖v‖2Vh

+ ‖q‖2L2(Ω) + Jh(q, q)
) 1

2

.
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The proof of (5.1) extends standard arguments (cf., e.g., [23]) for Jh �= 0. For
completeness we sketch the proof here. For given {uh, ph} ∈ Vh × Qh, thanks to
(4.22), one can find z ∈ Vh such that ‖z‖Vh

= ‖ph‖L2(Ω) and

cb‖ph‖2L2(Ω) ≤ bh(z, ph) + J
1
2

h (ph, ph)‖ph‖L2(Ω)

= Ah(uh, ph; z, 0)− ah(uh, z) + J
1
2

h (ph, ph)‖ph‖L2(Ω)

≤ Ah(uh, ph; z, 0) +
C2

a

cb
‖uh‖2Vh

+
cb
4
‖ph‖2L2(Ω) +

1

cb
Jh(ph, ph)

+
cb
4
‖ph‖2L2(Ω).

Combining this inequality with

Jh(ph, ph) + c0‖uh‖2Vh
≤ Ah(uh, ph; uh,−ph),

we get

c ‖uh, ph‖2 ≤ Ah(uh, ph; uh + αz,−ph),

for a suitable α > 0 and a constant c > 0 depending only on cb, Ca, and c0.
Inequality (5.1) follows by noting ‖uh, ph‖ ≥ 1

1+α‖v, q‖, with v = uh−αz, q = −ph.

One verifies that Ah is continuous

(5.2) Ah(u, p; v, q) ≤ Cc‖u, p‖‖v, q‖ ∀ {u, p}, {v, q} ∈ Vh ×Qh,

with some Cc > 0 independent of h and the position of Γ. Note also that Ah is sym-
metric. Therefore, by the Banach–Nečas–Babuška theorem (see, e.g., Theorem 2.6
in [23]) the problem (3.2) is well-posed and its solution satisfies the stability bound

‖uh, ph‖ ≤ C−1
s ‖f‖V ′

h
.

Further, in this section, we assume that the solution to the Stokes problem is
sufficiently smooth, i.e., u ∈ Hs+1(Ω) and p ∈ Hkp+1(Ω). Since we are assuming
that Γ is Lipschitz, there exist extensions of u and p, which we also denote by u, p,
such that u ∈ Hs+1(S) and p ∈ Hkp+1(S) (see [43]). We let Ihu be the Scott-Zhang

interpolant of u onto
[
W ku

h

]d
. We also let Ihp be the Scott-Zhang interpolant

of p in the case Qh = Qcont
h and the L2 projection onto discontinuous piecewise

polynomials of degree kp if Qh = Qdisc
h . For the pressure interpolant we can always

assume (Ihp)|Ωi
h
∈ L2

0(Ω
i
h) by choosing a suitable additive constant in the definition

of p. Applying trace inequalities (4.1) and (4.2), standard approximation properties
of Ih, and extension results, one obtains the approximation property in the product
norm:

‖u− Ihu, p− Ihp‖

≤ C

(
hmin{ku,kp+1}(‖u‖Hku+1(Ω)+‖p‖Hkp+1(Ω))+hku

s+1∑
�=ku+1

h�−ku−1‖u‖H�(Ω)

)
.

(5.3)
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We also have the following continuity result and approximation results:

Ah(u− Ihu, p− Ihp; v, q) ≤ C ‖u− Ih, p− Ihp‖‖v, q‖
+ |sh(u− Ihu, v)|+ |rh(p− Ihp, v)|,

(5.4)

|sh(u− Ihu, v)|+ |rh(p− Ihp, v)|
≤ C hmin{ku,kp+1}(‖u‖Hku+1(Ω) + ‖p‖Hkp+1(Ω))‖v‖Vh

,
(5.5)

for all {v, q} ∈ Vh ×Qh. Here we used (4.2), (4.1), and (4.6).
Denote by eu = u− uh and ep = p− ph the finite element error functions. Note

that for u ∈ Hs+1(S) and p ∈ Hkp+1(S) the jumps of derivatives in bilinear forms
jh and Jh vanish. This and the boundary condition u|Γ = 0 imply jh(u, vh) =
jh(u, vh) = Jh(p, qh) = 0 and sh(u, vh) = −

∫
Γ
(n · ∇u) · vh. Hence, it is easy to see

that the method (3.2) is consistent for u and p sufficiently smooth as stated above,
i.e., (3.2) is satisfied with uh replaced by u. Therefore, the Galerkin orthogonality
holds:

(5.6) Ah(eu, ep; vh, qh) = 0

for all vh ∈ Vh and qh ∈ Qh.
The optimal order error estimate in the energy norm is given in the next theorem.

Theorem 2. For sufficiently smooth u, p solving (2.1) and uh, ph solving (3.2), the
error estimate holds:

|u− uh|H1(Ω) + ‖p− ph‖L2(Ω) ≤ ‖u− uh, p− ph‖

≤ C

(
hmin{ku,kp+1}(‖u‖Hku+1(Ω)+‖p‖Hkp+1(Ω))+hku

s+1∑
�=ku+1

h�−ku−1‖u‖H�(Ω)

)
,

with a constant C independent of h and the position of Γ with respect to the trian-
gulation Th.

Proof. The results follows from the inf-sup stability (5.1), continuity (5.4), Galerkin
orthogonality (5.6), and approximation properties (5.3), (5.5), by standard argu-
ments; see, for example, section 2.3 in [23]. �

Using the Aubin-Nitsche duality argument one shows the optimal order error
estimate for the velocity in L2(Ω)-norm. Consider the dual adjoint problem. Let

w ∈
[
H1

0 (Ω)
]d

and r ∈ L2
0(Ω) be the solution to the problem

(5.7)

⎧⎪⎨⎪⎩
−Δw −∇r = eu in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω.

We assume that Ω is such that (5.7) is H2-regular, i.e., for eu ∈
[
L2(Ω)

]d
it holds

that w ∈
[
H2(Ω)

]d
and r ∈ H1(Ω) and

‖w‖H2(Ω) + ‖r‖H1(Ω) ≤ C(Ω)‖eu‖L2(Ω).

By the standard arguments (section 2.3 in [23]) the results in (5.1), (5.2), (5.6),
(5.3), and the above regularity assumption lead to the following theorem.
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Theorem 3. For sufficiently smooth u, p solving (2.1) and uh, ph solving (3.2), the
error estimate holds:

|u− uh|L2(Ω) ≤ Ch‖u− uh, p− ph‖,

with a constant C independent of h and the position of Γ with respect to the trian-
gulation Th.

6. Example of spaces satisfying Assumption 3

6.1. Generalized Taylor-Hood elements. Consider Qh = Qcont
h := W k

h and

Vh =
[
W k+1

h

]d
, k ≥ 1. In this case, the proof of estimate (4.7) from Assumption 3

is given in section 8 of [9] for d = 2 (two-dimensional case). In three-dimensional
case and k = 1, the result can be found in Lemma 4.23 in [23]. Below we extend
the proof for all k ≥ 1 in 3D. We require each T ∈ T i

h to have at least three edges
in the interior of Ωi

h. Note that the proof in [9] for d = 2 does not need a similar
assumption. For any edge from the set of internal edges of T i

h , E ∈ E i
h, we denote

a unit tangent vector be tE (any of two, but fixed), xE is the midpoint of E, and
ω(E) is a set of tetrahedra sharing E. Also we denote by φE ∈ W 2

h (Ω
i
h) a piecewise

quadratic function such that φE(xE) = 1 and φE(x) = 0, where x is any vertex or
a midpoint of any other edge from E i

h. For p ∈ Qh we set

v(x) = −
∑
E∈Ei

h

h2
EφE(x) [tE · ∇p(x)]tE.

Since the pressure tangential derivative tE · ∇p is continuous across faces F that
contain E, it is easy to see that v ∈ V i

h . We compute∫
Ωi

h

div v p dx = −
∫
Ωi

h

v · ∇p dx =
∑
E∈Ei

h

h2
E

∫
ω(E)

φE |tE · ∇p|2 dx

≥ c
∑
E∈Ei

h

h2
E

∫
ω(E)

|tE · ∇p|2 dx.

The constant c > 0 in the last inequality depends only on the polynomial degree
k and shape regularity condition (3.1). From the condition (3.1) we also infer
hE � hT for T ∈ ω(E). This gives, after rearranging terms, the estimate∫

Ωi
h

div v p dx ≥ c
∑
T∈T i

h

∑
E∈T∩Ωi

h

h2
T

∫
T

|tE · ∇p|2 dx

≥ c
∑
T∈T i

h

h2
T

∫
T

|∇p|2 dx = c‖p‖2H1
h,i

.

For the last inequality we used the assumption that at least three edges of the
tetrahedra are internal and we apply the shape regularity condition one more
time. Due to the finite element inverse inequalities and the obvious estimate
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|φE |+ hT |∇φE | ≤ c on T , with E ∈ T , we have

‖v‖2H1(Ωi
h)

≤ c

∫
Ωi

h

|∇v|2 dx ≤
∑
T∈T i

h

∑
E∈T∩Ωi

h

h4
T

∫
T

(|∇φE |2|∇p|2 + |φE |2|∇2p|2) dx

≤
∑
T∈T i

h

∫
T

h2
T (|∇p|2 + h2

T |∇2p|2) dx ≤ c‖p‖2H1
h,i

.

This shows (4.7).

6.2. Bercovier-Pironneau element. This is a “cheap” version of the lowest order
Taylor-Hood element. In 2D the element is defined in [6], the 3D version can be
found, e.g., in [23]. To define the velocity space, one refines each triangle of Th by
connecting midpoints on the edges in 2D, while in 3D one divides a tetrahedron into
six tetrahedra by the same procedure. Then the velocity space consists of piecewise

linear continuous function with respect to the refined triangulation, Vh =
[
W 1

h/2

]d
,

and Qh = Qcont
h := W 1

h . For this element, one shows (4.7) following the lines
of the proof of Theorem 8.1 in [9] for k = 1 in 2D or the arguments from the
section 6.1 with obvious modifications: For example, in the 3D case one substitutes
“edge-bubbles” φE by their P1isoP2 counterparts.

6.3. Pk+2 − P disc
k (for d = 2) and Pk+3 − P disc

k (for d = 3) elements. We
only consider the two-dimensional case d = 2 as the case d = 3 is similar. We
let Qh = Qdisc

h be the space of piecewise polynomial functions of degree k and let

Vh =
[
W k+2

h

]2
. The canonical degrees of freedom of a function m ∈ Pk+2(T ) are

given by ∫
T

msdx for all s ∈ Pk−1(T ),∫
E

mq dx for all edges E of T, q ∈ Pk(E),

m(x) for all the vertices x of T.

To show Assumption 3 holds in this case, take q ∈ Qdisc
h . We can choose v ∈ V i

h

(using the degrees of freedom above) such that∫
T

v · w dx = −h2
T

∫
T

∇q · w dx for all w ∈ Pk−1(T ),

and for all T ∈ T i
h . Also for every interior edges E of Ωi

h,∫
E

rv · n+ds = hE

∫
E

r(q+n+ + q−n−) · n+ dx for all r ∈ Pk(E),

where E = ∂T+ ∩ ∂T− and T+, T− ∈ T i
h . Also, n± is the outward pointing unit

normal of T±.
To pin down v ∈ V i

h , we make v vanish on all vertices and have tangential
components vanish on all edges. Finally, we make v ≡ 0 on ∂Ωi

h.
Using elementwise integration by parts, we get∫

Ωi
h

div v q dx =
∑
T∈T i

h

−
∫
T

v · ∇qdx+

∫
∂T

qv · nds.
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From the construction of v, we see that∫
Ωi

h

div v q dx =
∑
T∈T i

h

h2
T ‖∇q‖2L2(T ) +

∑
E∈Ei

h

hF ‖[q]‖2L2(F ) = |q|2Hi
h
.

It is not difficult to show, using a scaling argument that ‖v‖H1(Ωi
h)

≤ C|q|Hi
h
. From

this we see that Assumption 3 holds.

6.4. Bernardi-Raugel element. In a similar way we can show that the Bernardi-
Raugel spaces satisfy Assumption 3. The space of Bernardi-Raugel elements con-
sists of piecewise constant pressure and for the velocity one takes P 1 continuous
functions enriched with the normal components of the velocity as a degree of free-
dom at barycenter face nodes [8].

6.5. Mini-element. Let Ω ⊂ R
2. With kp = 1, Qh = Qcont

h and Vh = [W 1
h ]

2+ {v :
v|T ∈ bT cT , where cT ∈ [P0(T )]2 for all T ∈ T e

h }. Here bT is the cubic bubble.
To prove (4.7) we consider an arbitrary q ∈ Qh. A simple argument gives∑

T∈T i
h

h2
T ‖∇q‖2L2(T ) ≤ C

∑
T∈T i

h

h2
T ‖

√
bT∇q‖2L2(T ).

Integration by parts gives ‖
√
bT∇q‖2L2(T ) = −

∫
T
div(bT∇q)qdx. If we define

wh ∈ V i
h in the following way wh|T := −h2

T bT∇q|T , then we have∑
T∈T i

h

h2
T ‖

√
bT∇q‖2L2(T ) =

∫
Ωi

h

divwh qdx.

Hence, we get ∑
T∈T i

h

h2
T ‖∇q‖2L2(T ) ≤ C sup

v∈V i
h

(div v, q)

‖v‖H1(Ωi
h)

‖wh‖H1(Ωi
h)
.

Now, using Poincare’s inequality

‖wh‖2H1(Ωi
h)

≤ C
∑
T∈T i

h

‖∇wh‖2L2(T ) ≤ C
∑
T∈T i

h

h4
T ‖∇bT ‖2L∞(T )‖∇q‖2L2(T ).

Since h2
T ‖∇bT ‖2L∞(T ) ≤ C, we get

‖wh‖2H1(Ωi
h)

≤
∑
T∈T i

h

h2
T ‖∇q‖2L2(T ).

The result now follows.

6.6. Generalized conforming Crouzeix-Raviart element. This element is de-
fined by Qh = Qdisc

h with kp = k ≥ 1 for d = 2 or k ≥ 2 for d = 3. We define the

velocity space to be Vh = [W k+1
h ]d + {v : v|T ∈ bT∇Pk(T ) for all T ∈ T e

h }, where
bT is cubic bubble in two dimensions or quartic bubble in three dimensions. This
P bubble
k+1 − P disc

k space was first introduced in [20]. The proof of (4.7) in this case
will be similar to that of mini-elment. We leave the details to the reader.
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Appendix A. Proof of Lemma 1

First we state a result found, for example, in [12, 26], which requires that Γ is
Lipschitz.

Proposition 1. There exists a constant C such that

‖v‖2L2(Γ) ≤ C‖v‖H1(Ω)‖v‖L2(Ω) for all v ∈ H1(Ω).

For the moment we assume the following result.

Lemma 5. Let T ∈ Th. There exists an extension operator RT : H1(T ) → H1(Rd)
such that

RT v =v on T,(A.1)

‖RT v‖L2(Rd) + hT ‖∇RT v‖L2(Rd) ≤C(‖v‖L2(T ) + hT ‖∇v‖L2(T )),(A.2)

where the constant C is independent of T and v.

A.1. Proof of Lemma 1. Let T ∈ Th and let v ∈ H1(T ). Then, we have, using
Proposition 1,

‖v‖L2(T∩Γ) ≤ ‖RT v‖L2(Γ) ≤ C‖RT v‖1/2L2(Rd)
‖RT v‖1/2H1(Rd)

≤ C
(
‖RT v‖1/2L2(Rd)

‖∇RT v‖1/2L2(Rd)
+ ‖RT v‖L2(Rd)

)
.

We apply the arithmetic-geometric mean inequality and use hT ≤ h0 to get

‖v‖L2(T ) ≤ C(h
−1/2
T ‖RT v‖L2(Rd) + h

1/2
T ‖∇RT v‖L2(Rd)).

The result now follows after applying Lemma 5.

A.2. Proof of Lemma 5. We will denote the reference tetrahedra of unit size with
a vertex at the origin T̂ . Then, we know ([43]) there exists an extension operator

from R : H1(T̂ ) → H1
0 (B2) such that

Rv̂ =v̂ on T̂ ,(A.3)

‖Rv̂‖H1(B2) ≤C‖v̂‖H1(T̂ ).(A.4)

Here B2 is the ball with radius 2 centered at the origin.
Let FT : T̂ → T be the onto affine mapping and has the form FT (x̂) = Bx̂ + b.

For any v ∈ H1(T ) we can define v̂ ∈ H1(T̂ ) in the following way: v̂(x̂) = v(FT (x̂)).
Our desired extension will be given by

(RT v)(x) = (Rv̂)(F−1
T (x))

For notational convenience we use w = RT v. Then, we see that ŵ = Rv̂. Using a
change of variables formula we get

‖∇w‖2L2(Rd) =

∫
F (B2)

|∇w(x)|2dx =

∫
B2

|B−t∇ŵ(x̂)|2|detB|dx̂.

Using that the mesh is shape regular we have (see [19]) |Bij | ≤ C hT ,|B−1
ij | ≤ C h−1

T .
Therefore, we obtain∫

B2

|B−t∇ŵ(x̂)|2|det|Bdx̂ ≤ Chd−2
T ‖∇ŵ‖2L2(B2)

= Chd−2
T ‖∇Rv̂‖2L2(B2)

.

Using (A.4) we obtain

‖∇w‖2L2(Rd) ≤ C hd−2
T (‖v̂‖2

L2(T̂ )
+ ‖∇v̂‖2

L2(T̂ )
).
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It is standard to show, again using a change of variable formula, and the bounds
for B and B−1 above that

hd−2
T (‖v̂‖2

L2(T̂ )
+ ‖∇v̂‖2

L2(T̂ )
) ≤ C (h−2

T ‖v‖2L2(T ) + ‖∇v‖2L2(T )).

Therefore, we have shown

hT ‖∇RT v‖L2(Rd) ≤ (‖v‖L2(T ) + hT ‖∇v‖L2(T )).

The bound for ‖RT v‖L2(Rd) follows a similar argument.

Appendix B. Proof of Lemma 3

Let q ∈ Qh. Note that the extension Ehq does not have to be continuous even if
Qh = Qcont

h . Now for every T ∈ Th we let qextT ∈ P kp(Rd) be the natural extension
of qT ≡ q|T onto the entire R

d.
For T ∈ T Γ

h , we define Ehq|T = qextKT
|T , where KT ∈ Ωi

h is given by Assumption 1
(see the remark right below the assumption). Since KT ∈ W (T ) ⇒ dist(KT , T ) ≤
ChT , it follows that

‖∇Ehq‖L2(T ) = ‖∇qextKT
‖L2(T ) ≤ C‖∇q‖L2(KT ).

Hence, we have

(B.1)
∑

T∈T Γ
h

h2
T ‖∇Ehq‖2L2(T ) ≤ C

∑
T∈T i

h

h2
T ‖∇q‖2L2(T ).

To bound the face terms, we let F ∈ FΓ
h , where F = ∂T ∩ ∂T̃ . If we use the

notation K = KT and K̃ = K
˜T belonging to T i

h we have Ehq|T = qextK |T and
Ehq|˜T = qext

˜K
|
˜T . Now due to the assumption 2 there exists a sequence of tetrahedra

K = K1,K2, . . . ,KM = K̃ all belonging to T i
h where Ki,Ki+1 share a common

face which we denote by Fi and the number M is bounded and only depends on
the shape regularity of the mesh.

First using inverse estimates we get

h
1/2
F ‖[Ehq]‖L2(F ) = h

1/2
F ‖qextK1

− qextKM
‖L2(F ) ≤ C‖qextK1

− qextKM
‖L2(T ).

It is easy to see that since K1 and T belong to the same patch W (T ) that

‖qextK1
− qextKM

‖L2(T ) ≤ C ‖qextK1
− qextKM

‖L2(K1).

Thanks to the triangle inequality we get

‖qextK1
− qextKM

‖L2(K1) ≤ ‖qK1
− qextK2

‖L2(K1) + ‖qextK2
− qextKM

‖L2(K1).

Using the equivalence of norms in the finite dimensional case we obtain

‖qK1
− qextK2

‖L2(K1) ≤ C
(
h
1/2
F1

‖[q]‖L2(F1) + hK1
‖∇(qK1

− qextK2
)‖L2(K1)

)
.

We also have

‖qextK2
− qextKM

‖L2(K1) ≤ C ‖qextK2
− qextKM

‖L2(K2).

So we get,

‖qextK1
− qextKM

‖L2(K1) ≤ C
(
h
1/2
F1

‖[q]‖L2(F1) + hK1
‖∇(qK1

− qextK2
)‖L2(K1)

)
+ ‖qextK2

− qextKM
‖L2(K2).
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If we continue this we will get

‖qextK1
− qextKM

‖L2(K1)≤C

⎛⎝M−1∑
j=1

h
1/2
Fj

‖[q]‖L2(Fj)+

M−1∑
j=1

hKj
‖∇(qKj

−qextKj+1
)‖L2(Kj)

⎞⎠ .

Again, we see that

M−1∑
j=1

hKj
‖∇(qKj

− qextKj+1
)‖L2(Kj) ≤ C

M∑
j=1

hKj
‖∇q‖L2(Kj).

Hence, we get

h
1/2
F ‖[Ehq]‖L2(F ) ≤ C

⎛⎝M−1∑
j=1

h
1/2
Fj

‖[q]‖L2(Fj) +
M∑
j=1

hKj
‖∇q‖L2(Kj)

⎞⎠ .

If we now sum over F ∈ FΓ
h we get∑

F∈FΓ
h

hF ‖[Ehq]‖2L2(F ) ≤ C
∑
T∈T i

h

h2
T ‖∇q‖2L2(T ) + C

∑
F∈Fi

h

hF ‖[q]‖2L2(F ).

The result now follows by combining this inequality with (B.1).
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