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QUASI-MONTE CARLO FOR DISCONTINUOUS INTEGRANDS

WITH SINGULARITIES ALONG THE BOUNDARY

OF THE UNIT CUBE

ZHIJIAN HE

Abstract. This paper studies randomized quasi-Monte Carlo (QMC) sam-
pling for discontinuous integrands having singularities along the boundary of
the unit cube [0, 1]d. Both discontinuities and singularities are extremely com-
mon in the pricing and hedging of financial derivatives and have a tremendous
impact on the accuracy of QMC. It was previously known that the root mean
square error of randomized QMC is only o(n1/2) for discontinuous functions
with singularities. We find that under some mild conditions, randomized QMC
yields an expected error of O(n−1/2−1/(4d−2)+ε) for arbitrarily small ε > 0.
Moreover, one can get a better rate if the boundary of discontinuities is parallel
to some coordinate axes. As a by-product, we find that the expected error rate
attains O(n−1+ε) if the discontinuities are QMC-friendly, in the sense that all
the discontinuity boundaries are parallel to coordinate axes. The results can

be used to assess the QMC accuracy for some typical problems from financial
engineering.

1. Introduction

It is known that quasi-Monte Carlo (QMC) integration over the unit cube [0, 1]d

yields an asymptotic error rate of O(n−1(logn)d) when the integrand has bounded
variation in the sense of Hardy and Krause (BVHK); see [9] for details. In this
paper we consider integrands that are discontinuous and have singularities along
the boundary of the unit cube [0, 1]d. Such integrands cannot be BVHK because
they are unbounded. Both discontinuities and singularities are extremely common
in computational finance. Specifically, many problems arising from option pricing
can be formulated as an integral over an unbounded domain R

d (see Glasserman
[5] and references therein). A necessary first step in applying QMC methods to
a practical integral formulated over R

d is to transform the integral into the unit
cube [0, 1]d. The transformation may introduce singularities at the boundary. In
addition, discontinuities appear in the pricing and hedging of financial derivatives
(e.g., barrier options) and have a tremendous impact on the accuracy of the QMC
method [6, 16].

Formally, we are interested in integrands of the form

(1.1) f(u) = g(u)I{u ∈ Ω},
where Ω ⊂ [0, 1]d and g has singularities along the unit cube [0, 1]d. The integrand
f has a singularity at the boundary if Ω ∩ [0, 1]d �= ∅. The QMC estimate of the
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integral

I(f) =

∫
[0,1]d

f(u) du

is given by the average of n samples

(1.2) Î(f) =
1

n

n∑
i=1

f(ui),

with carefully chosen ui ∈ [0, 1]d. He and Wang [7] studied the convergence rate of
RQMC for discontinuous functions of the form (1.1), but g is assumed to be BVHK
that excludes singularities. Under some mild assumptions on Ω, they proved that
the root mean square error of RQMC is O(n−1/2−1/(4d−2)+ε) for any ε > 0. If
some discontinuity boundaries are parallel to some coordinate axes, the rate can be
further improved to O(n−1/2−1/(4du−2)+ε), where du denotes the so-called irregular
dimension, that is the number of axes which are not parallel to the discontinuity
boundaries. The results in He andWang [7] cannot be applied to our setting because
g is not BVHK.

Owen [12] considered functions to be singular around any or all of the 2d corners
of [0, 1]d and obtained some error rates that can be as good as O(n−1+ε) if the
singular function obeys a strict enough growth rate. Owen [13] found the conver-
gence rate of RQMC for integrands with point singularities with unknown locations.
More recently, Basu and Owen [2] considered functions on the square [0, 1]2 that
may be singular along a diagonal in the square. A key strategy in [12], [13], and [2]
is to employ another function that has finite variation to approximate the singular
function. The approximation has low variation. Motivated by these works, we use
a low variation approximation g̃ to g, resulting in an approximation of f , given by

(1.3) f̃(u) = g̃(u)I{u ∈ Ω}.
Then using triangle inequality gives∣∣∣I(f)− Î(f)

∣∣∣ ≤ ∣∣∣I(f)− I(f̃)
∣∣∣+ ∣∣∣I(f̃)− Î(f̃)

∣∣∣+ ∣∣∣Î(f̃)− Î(f)
∣∣∣ .

Suppose that u1, . . . ,un in (1.2) are RQMC points where each ui ∼ U([0, 1]d)
individually; then

E

[∣∣∣Î(f̃)− Î(f)
∣∣∣] ≤ 1

n

n∑
i=1

E

[∣∣∣f(ui)− f̃(ui)
∣∣∣] = I(|f − f̃ |).

As a result,

E

[
|I(f)− Î(f)|

]
≤ 2I(|f − f̃ |) + E

[
|I(f̃)− Î(f̃)|

]
.

To get an expected error bound, it suffices to bound the approximation error
I(|f − f̃ |) and the RQMC integration error for the function (1.3). An upper bound
of the approximation error can be obtained similarly as in Owen [12], which requires
a growth condition on g. For the later, we will follow the analysis in [7] since g̃ is
BVHK.

This paper finds some rates of convergence for RQMC integration of the func-
tion (1.1). Suppose that g obeys a strict enough growth rate. We find that the
expected error in RQMC is O(n−1/2−1/(4d−2)+ε). Moreover, one can get a better
rate O(n−1/2−1/(4du−2)+ε) if the boundary of Ω is parallel to some coordinate axes.
These results are similar to those found in He and Wang [7]. As a by-product,
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the expected error rate attains O(n−1+ε) if the discontinuities involved in (1.1) are
QMC-friendly (they are parallel to coordinate axes as discussed in [15]). Our theo-
retical results can explain why QMC integration can be effective for some problems
with both discontinuities and singularities in financial engineering. They also reveal
the effects of discontinuities and singularities on QMC accuracy.

This paper is organized as follows. Section 2 gives the background on (t,m, d)-
nets, (t, d)-sequences and the randomization technique proposed by [10]. The singu-
lar function g is assumed to satisfy the growth condition. Some results from [7] are
also reviewed. Convergence results of the expected error in RQMC for the function
(1.1) are formally stated and proved in Section 3. Section 4 presents some examples
arising from computational finance in which the growth condition is satisfied with
arbitrarily small positive rates. Section 5 concludes this paper.

2. Background

2.1. Digital nets and sequences. Throughout this paper, we work with scram-
bled nets and sequences following the framework of He and Wang [7]. The integer
b ≥ 2 serves as a base. To begin with, we define an elementary interval in base b.

Definition 2.1. An elementary interval in base b is a subset of [0, 1)d of the form

(2.1) E =

d∏
i=1

[
ti
bki

,
ti + 1

bki

)
,

where ki, ti ∈ N with ti < bki for i = 1, . . . , d.

Definition 2.2. Let t and m be nonnegative integers with t ≤ m. A finite sequence
u1, . . . ,ubm ∈ [0, 1)d is a (t,m, d)-net in base b if every elementary interval in base
b of volume bt−m contains exactly bt points of the sequence.

Definition 2.3. Let t be a nonnegative integer. An infinite sequence (ui)i≥1 with
ui ∈ [0, 1)d is a (t, d)-sequence in base b if for all k ≥ 0 and m ≥ t the finite sequence
ukbm+1, . . . ,u(k+1)bm is a (t,m, d)-net in base b.

2.2. Scrambling. Owen [10] applied a scrambling scheme on the nets that retains
the net property. Let u1, . . . ,un be a (t,m, d)-net or the first n elements of a
(t, d)-sequence in base b where ui = (u1

i , . . . , u
d
i ). We may write the components

of ui in their base b expansion uj
i =

∑∞
k=1 aijkb

−k, where aijk ∈ {0, . . . , b − 1}
for all i, j, k. The scrambled version of u1, . . . ,un is a sequence ũ1, . . . , ũn with
ũi = (ũ1

i , . . . , ũ
d
i ) written as ũj

i =
∑∞

k=1 ãijkb
−k, where ãijk are defined in terms

of random permutations of the aijk. The permutation applied to aijk depends
on the values of aijh for h = 1, . . . , k − 1. Specifically, ãij1 = πj(aij1), ãij2 =
πjaij1

(aij2), ãij3 = πjaij1aij2
(aij3) and, in general,

ãijk = πjaij1aij2...aijk−1
(aijk).

Each permutation π• is uniformly distributed over the b! permutations of {0, . . . ,
b− 1}, and the permutations are mutually independent.

2.3. Convergence results from He and Wang [7]. He and Wang [7] considered
integrands of the form f(u) = g(u)I{u ∈ Ω}, where g is BVHK and the boundary
of Ω admits a (d− 1)-dimensional Minkowski content defined below.
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Definition 2.4. For a set Ω ⊂ [0, 1]d, define

(2.2) M(∂Ω) = lim
ε↓0

λd((∂Ω)ε)

2ε
,

where (A)ε := {x+y|x ∈ A, ‖y‖ ≤ ε}, and ‖·‖ denotes the usual Euclidean norm. If
M(∂Ω) exists and finite, then ∂Ω is said to admit a (d−1)-dimensional Minkowski
content.

In the terminology of geometry, M(∂Ω) is known as the surface area of the set
Ω. The Minkowski content has a clear intuitive basis, compared to the Hausdorff
measure [8] that provides an alternative to quantify the surface area. We should
note that the Minkowski content coincides with the Hausdorff measure, up to a
constant factor, in regular cases. It is known that the boundary of any convex set
in [0, 1]d has a (d − 1)-dimensional Minkowski content. In this case, M(∂Ω) ≤ 2d
since the surface area of a convex set in [0, 1]d is bounded by the surface area of the
unit cube [0, 1]d, which is 2d. More generally, Ambrosio et al. [1] found that if Ω has
a Lipschitz boundary, then ∂Ω admits a (d−1)-dimensional Minkowski content. In
their terminology, a set Ω is said to have a Lipschitz boundary if for every boundary
point a there exists a neighborhood A of a, a rotation R in R

d and a Lipschitz func-
tion f : Rd−1 → R such that R(Ω ∩ A) =

{
(x, y) ∈ (Rd−1 × R) ∩R(A)|y ≥ f(x)

}
.

In other words, Ω ∩A is the epigraph of a Lipschitz function.
He and Wang [7] showed that a faster convergence rate of RQMC can be achieved

if the set Ω has some regularity. They studied partially axis-parallel sets as defined
below. For a positive integer d, denote 1:d = {1, . . . , d}. For a set u ⊂ 1:d, denote
the cardinality of u as |u| and −u = 1:d\u.

Definition 2.5. A set Ω is said to be a partially axis-parallel set with irregular
dimension du = |u| if

(2.3) Ω = Ωu ×
∏
i/∈u

[ai, bi),

where u ⊂ 1:d, du < d, 0 ≤ ai < bi ≤ 1 for i /∈ u, and Ωu is a Lebesgue measurable
subset of

∏
i∈u[0, 1). The quantity du counts the number of axes which are not

parallel to the boundaries of Ω.

Denote VHK(g) as the variation of the function g in the sense of Hardy and
Krause. See [11] for an outline of the variation. The following proposition summa-
rizes the convergence results found in He and Wang [7].

Proposition 2.6. Suppose that f(u) = g(u)I{u ∈ Ω}, where g ∈ L2[0, 1]d satisfies
VHK(g) < ∞. Assume that the sequence u1, . . . ,un in (1.2) is a scrambled (t, d)-
sequence in base b ≥ 2. If ∂Ω admits a (d − 1)-dimensional Minkowski content,
then for all sufficiently large n,

(2.4) Var[Î(f)] ≤ cd,ΩM
2
gn

−1−1/(2d−1)(log n)2d/(2d−1),

where cd,Ω depends only on Ω and d, and

(2.5) Mg = max

(
VHK(g), sup

u∈[0,1]d
|g(u)|

)
.

If Ω is a partially axis-parallel set with irregular dimension du defined by (2.3),
where ∂Ωu admits a (du−1)-dimensional Minkowski content, then for all sufficiently
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large n,

(2.6) Var[Î(f)] ≤ cd,ΩM
2
gn

−1−1/(2du−1)(log n)2d/(2du−1).

Proof. The first part (2.4) has been proven in Theorem 3.5 of [7], and the second
part (2.6) has been proven in Theorem 3.6 of [7]. Here we show the implicit con-
stants in the upper bounds of the scrambled net variances because they are useful
in the following proofs. �

Functions of BVHK must necessarily be bounded. So Mg given by (2.5) is finite.
However, for many practical problems arising from computational finance, g has
singularities on the surface of the unit cube [0, 1]d. In this cases, g is unbounded,
and hence g has infinite variation. The conditions in Proposition 2.6 are thus
not satisfied. Before establishing the convergence rate of scrambled net errors for
singular integrands, we suppose that g satisfies the growth condition as studied in
Owen [12].

2.4. Growth condition. For a set v ⊆ 1:d, ∂vg denotes the mixed partial deriva-
tive of g taken once with respect to components with indices in v. Following Owen
[12], we first introduce a growth condition for g on (0, 1)d that may become singular
at the boundary of [0, 1]d as shown in some integrands in the valuation of options
with unbounded payoffs (see Section 4 for some examples).

Definition 2.7. A function g defined on (0, 1)d is said to satisfy the boundary
growth condition if

(2.7) |∂vg(u)| ≤ B
∏
i∈v

min(ui, 1− ui)
−Ai−1

∏
i/∈v

min(ui, 1− ui)
−Ai

holds for some Ai > 0, some B < ∞ and all v ⊆ 1:d.

The boundary growth condition is the second growth condition described in
Owen [12]. Owen [13] and Basu and Owen [2] studied other types of growth
conditions for point singularities and singularities along a diagonal in the square,
respectively. Large values of Ai correspond to more severe singularities. When
maxi Ai ≥ 1 the upper bound for |g| is not even integrable. When maxi Ai < 1/2,
then f2 is integrable and Monte Carlo sampling has a root mean square error of
O(n−1/2). We use a region to avoid the singularities as

(2.8) K(ε) = {u ∈ [0, 1]d|
∏

1≤i≤d

min(ui, 1− ui) ≥ ε},

for small ε > 0. We now define an extension gε of g from K(ε) to [0, 1]d such that
gε(u) = g(u) for u ∈ K(ε).

Definition 2.8. A set K ⊂ [0, 1]d is said to be Sobol′ extensible with anchor c if

for every u ∈ K the rectangle
∏d

i=1[min(ui, ci),max(ui, ci)] ⊂ K.

It is easy to see that K(ε) is Sobol′ extensible with anchor c = (1/2, . . . , 1/2).
So one may write

(2.9) g(u) = g(c) +
∑
v �=∅

∫
[cv,uv ]

∂vg(zv:c−v) dzv,
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and then the desired low variation approximation of g is given by

(2.10) gε(u) = g(c) +
∑
v �=∅

∫
[cv,uv]

∂vg(zv:c−v)I{zv:c−v ∈ K(ε)} dzv,

where zv:c−v denotes the point y ∈ [0, 1]d with yj = zj for j ∈ v and yj = cj for
j /∈ v.

3. Expected errors in RQMC

Proposition 3.1. If g satisfies the boundary growth condition (2.7), then for any
η > 0 there exists C1 < ∞ such that

(3.1) VHK(gε) ≤ C1ε
−maxi Ai−η.

If there is a unique maximum among A1, . . . , Ad, then (3.1) holds with η = 0.

Proof. See the proof of Theorem 5.5 in [12]. �

Proposition 3.2. Let fε(u) = gε(u)I{u ∈ Ω}, where gε is given by (2.10). If
g satisfies the boundary growth condition (2.7) with maxi Ai < 1, then for any
η ∈ (0, 1−maxi Ai), there exists C2 < ∞ such that

(3.2) I(|f − fε|) ≤ C2ε
1−maxi Ai−η.

If there is a unique maximum among A1, . . . , Ad, then (3.2) holds with η = 0.

Proof. From the proof of Theorem 5.5 in [12] which is based on a result in [14],
we have I(|g − gε|) ≤ C2ε

1−maxi Ai−η. The upper bound (3.2) then follows from
I(|f − fε|) = I(|g − gε| I{u ∈ Ω}) ≤ I(|g − gε|). �

Proposition 3.3. If g satisfies the boundary growth condition (2.7), then for any
η > 0 there exists C3 < ∞ such that

(3.3) sup
u∈[0,1]d

|gε(u)| ≤ C3ε
−maxi Ai−η.

If there is a unique maximum among A1, . . . , Ad, then (3.3) holds with η = 0.

Proof. The procedure is similar to the proof of Theorem 5.5 in [12]. Combining
(2.10) with the boundary growth condition (2.7), we have

|gε(u)| ≤ |g(c)|+
∑
v �=∅

∫
[cv,uv]

∣∣∂vg(zv:c−v)
∣∣ I{zv:c−v ∈ K(ε)} dzv

≤ |g(c)|+ B
∑
v �=∅

Iv
∏
i/∈v

min(ci, 1− ci)
−Ai ,(3.4)

where

Iv :=

∫
[0v,1v ]

∏
i∈v

min(zi, 1− zi)
−Ai−1

I{zv:c−v ∈ K(ε)} dzv.

We first assume that A1, . . . , Ad are distinct positive numbers. Let

m(v) = argmax
i∈v

Ai and ṽ = v − {m(v)}.
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Let e(zṽ) =
∏

i∈ṽ min(zi, 1− zi)
∏

i/∈v min(ci, 1− ci). Then

Iv =

∫
[0ṽ,1ṽ ]

∏
i∈ṽ

min(zi, 1−zi)
−Ai−1

(∫
min(y,1−y)≥ε/e(zṽ)

min(y, 1−y)−Am(v)−1 dy

)
dzṽ

= 2

∫
[0ṽ,1ṽ ]

∏
i∈ṽ

min(zi, 1− zi)
−Ai−1

(∫ 1/2

ε/e(zṽ)

y−Am(v)−1 dy

)
dzṽ

≤ 2

∫
[0ṽ,1ṽ ]

∏
i∈ṽ

min(zi, 1− zi)
−Ai−1 (ε/e(zṽ))

−Am(v)

Am(v)
dzṽ

= 2
ε−Am(v)

Am(v)

∏
i/∈v

min(ci, 1− ci)
Am(v)

∫
[0ṽ,1ṽ ]

∏
i∈ṽ

min(zi, 1− zi)
Am(v)−Ai−1 dzṽ

≤ 2
ε−Am(v)

Am(v)

∏
i/∈v

min(ci, 1− ci)
Am(v)

∏
i∈ṽ

2

Am(v) −Ai

= Cvε
−Am(v) ,

where Cv is a finite constant. It then follows from (3.4) that

(3.5) |gε(u)| ≤ |g(c)|+ B̃ε−maxi Ai

for some finite B̃.
If Aj = Ak < maxi Ai for some j �= k, then we increase some of the Ai so that

A1, . . . , Ad are distinct, while leaving maxi Ai unchanged. Then (3.5) also holds if
there is a unique maximum among A1, . . . , Ad. We thus have (3.3) with η = 0 due
to |g(c)| < ∞. If there are two or more maximums among A1, . . . , Ad, then these
maximums can be increased to distinct values, while raising maxi Ai by no more
than η. �

Theorem 3.4. Suppose that f is given by (1.1), where g satisfies the boundary
growth condition (2.7) with maxi Ai < 1. Assume that the sequence u1, . . . ,un in
(1.2) is a scrambled (t, d)-sequence in base b ≥ 2. If ∂Ω admits a (d−1)-dimensional
Minkowski content, then for any η ∈ (0, 1−maxi Ai),

(3.6) E

[∣∣∣I(f)− Î(f)
∣∣∣] = O(n−γ(1/2+1/(4d−2))(log n)γd/(2d−1)),

where γ = 1 − maxi Ai − η. If Ω is a partially axis-parallel set with irregular
dimension du defined by (2.3), where ∂Ωu admits a (du−1)-dimensional Minkowski
content, then

(3.7) E

[∣∣∣I(f)− Î(f)
∣∣∣] = O(n−γ(1/2+1/(4du−2))(log n)γd/(2du−1)).

If there is a unique maximum among A1, . . . , Ad, then (3.6) and (3.7) hold with
γ = 1−maxi Ai.

Proof. Using the triangle inequality and the unbiasedness of the estimate Î(fε), we
have

E

[∣∣∣I(f)− Î(f)
∣∣∣] = E

[∣∣∣I(f)− I(fε) + I(fε)− Î(fε) + Î(fε)− Î(f)
∣∣∣]

≤ I(|f − fε|) + E

[∣∣∣I(fε)− Î(fε)
∣∣∣]+ E

[
Î(|fε − f |)

]
≤ 2I(|f − fε|) + Var[Î(fε)]

1/2.
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Proposition 3.2 gives I(|f − fε|) = O(εγ), where γ = 1 − maxi Ai − η. For the
function fε(u) = gε(u)I{u ∈ Ω}, it follows from Propositions 2.6, 3.1, and 3.3 that

Var[Î(fε)]
1/2 ≤ √

cd,ωMgn
−(1/2+1/(4d−2))(log n)d/(2d−1)

= O(ε−maxi Ai−ηn−1/2−1/(4d−2)(log n)d/(2d−1)).

Consequently,

E

[∣∣∣I(f)− Î(f)
∣∣∣] = O(εγ) +O(εγ−1n−1/2−1/(4d−2)(log n)d/(2d−1)).

Taking ε ∝ n−1/2−1/(4d−2)(logn)d/(2d−1) establishes (3.6). The rate (3.7) can be
proved in the same way. �

From Theorem 3.4, the rates for discontinuous integrands with singularities are
not faster than those in Proposition 2.6. RQMC is asymptotically superior to
Monte Carlo when Ai < 1/(2d) for all i. For some applications in computational
finance (see Section 4 for some examples), it is possible that g obeys the growth
condition (2.7) with arbitrarily small positive Ai for all i. The associated rates
are presented in the following corollary, which are asymptotically superior to plain
Monte Carlo sampling. In this case, the singularities may be regarded as QMC-
friendly singularities because they deliver the best possible rate in our setting.

Corollary 3.5. Suppose that f is given by (1.1), where g satisfies the boundary
growth condition with arbitrarily small positive Ai for all i. Assume that the se-
quence u1, . . . ,un in (1.2) is a scrambled (t, d)-sequence in base b ≥ 2. If ∂Ω admits
a (d− 1)-dimensional Minkowski content, then

(3.8) E

[∣∣∣I(f)− Î(f)
∣∣∣] = O(n−(1/2+1/(4d−2))+ε)

for arbitrarily small ε > 0. If Ω is a partially axis-parallel set with irregular di-
mension du defined by (2.3), where ∂Ωu admits a (du − 1)-dimensional Minkowski
content, then

(3.9) E

[∣∣∣I(f)− Î(f)
∣∣∣] = O(n−(1/2+1/(4du−2))+ε).

4. Examples from computational finance

Let S(t) denote the underlying price dynamics at time t under the risk-neutral
measure. In a simulation framework, it is common that the prices are simulated
at discrete times t1, . . . , td satisfying 0 = t0 < t1 < · · · < td = T , where T is
the maturity of the financial derivative of interest. Without loss of generality, we
assume that the discrete times are evenly spaced, i.e., ti = iΔt, where Δt = T/d.
For simplicity, denote Si = S(ti), and S = (S1, . . . , Sd)


. Under the risk-neutral
measure, the price and the sensitivities of the financial derivative can be expressed
as an expectation I = E [f(S)] for a real function f over R

d. To translate the
problem into QMC setting, we suppose that Si can be expressed as a function
of u ∼ U([0, 1]d), denoted by Si(u), after some appropriate transformations. Let
S(u) = (S1(u), . . . , Sd(u))


. We thus have

I = E [f(S)] = E [f(S(u))] =

∫
[0,1]d

f(S1(u), . . . , Sd(u)) du.

After the transformations, the integrand f ◦S is often unbounded at the boundary
of the unit cube.
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Many functions in the pricing and hedging of financial derivatives involve indi-
cator functions, which can be expressed in the form

(4.1) f(S) = g(S)I{h(S) ≥ 0},
where g and h are usually smooth functions over Rd (see [6]). For pricing financial
options, the factor g determines the magnitude of the payoff and h(S) > 0 gives
the payout condition. For calculating Greeks by the pathwise method, the target
function often involves an indicator function as in (4.1) even though the underlying
payoff function is continuous.

We assume that under the risk-neutral measure the asset follows the geometric
Brownian motion

(4.2)
dS(t)

S(t)
= r dt+ σ dB(t),

where r is the risk-free interest rate, σ is the volatility and B(t) is the standard
Brownian motion. Under this assumption, the solution of (4.2) is analytically
available

(4.3) S(t) = S0 exp[(r − σ2/2)t+ σB(t)],

where S0 is the initial price of the asset. Let x := (B(t1), . . . , B(td))
T. We have

x ∼ N(0,Σ), where the entries of Σ are given by Σij = Δtmin(i, j).
Note that Σ is positive definite. Let A be a generating matrix satisfying AA
 =

Σ. Let Φ be the cumulative distribution function of the standard normal distribu-
tion. Using the transformation x = AΦ−1(u), it follows from (4.3) that

Si(u) = S0 exp

⎡⎣(r − σ2/2)iΔt+ σ

d∑
j=1

aijΦ
−1(uj)

⎤⎦ .(4.4)

To verify the boundary growth condition, we need partial derivatives of g ◦ S
of order up to the dimension of the unit cube. The multivariate Faa di Bruno
formula from [4] gives an arbitrary mixed partial derivative of g ◦ S in terms of
partial derivatives of g and Si. Basu and Owen [3] also used the formula to study
the variation of some composition functions. The formula requires that the needed
derivatives exist. Let λ = (λ1, . . . , λd) be a vector of nonnegative integers. Define

|λ| =
∑d

i=1 λi. Denote gλ as the derivative of g taken λi times with respect to the
ith component. It follows from Basu and Owen [3] that for ∅ �= v ⊆ 1:d,

(4.5) ∂v(g ◦ S) =
∑

1≤|λ|<|v|
gλ(S)

|v|∑
s=1

∑
(�r,kr)∈ ˜KL(s,v,λ)

s∏
r=1

∂�rSkr
(u),

where

K̃L(s, v,λ) = {(	r, kr)|r ∈ 1:s, ∅ �= 	r ⊆ 1:d, kr ∈ 1:d,

s⋃
r=1

	r = v,

	r ∩ 	r′ = ∅ for r �= r′ and |{j ∈ 1:d|kj = i}| = λi}.
The following lemma is a result of Owen [12]. We prove it here also.

Lemma 4.1. Suppose that Si is given by (4.4); then for any v ⊆ 1:d and i ∈ 1:d,

(4.6) |∂vSi(u)| ≤ Ci

∏
j∈v

min(uj , 1− uj)
−Aj−1

∏
j /∈v

min(uj , 1− uj)
−Aj

holds for arbitrarily small Aj > 0 and Ci < ∞.
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Proof. It follows from (4.4) that

∂vSi(u) = S0 exp

⎡⎣(r − σ2/2)iΔt+ σ

d∑
j=1

aijΦ
−1(uj)

⎤⎦∏
j∈v

(
σaij

dΦ−1(uj)

duj

)
.

Note that Φ−1(ε) = −
√
−2 log(ε) + o(1) and Φ−1(1 − ε) =

√
−2 log(ε) + o(1) as

ε ↓ 0. This leads to exp(aΦ−1(uj)) = O(min(uj , 1− uj)
−Aj/2) for any Aj > 0 and

an arbitrary a ∈ R. Denote φ(x) = (2π)−1/2 exp(−x2/2) as the probability density
of the standard normal distribution. We find that

dΦ−1(uj)

duj
=

1

φ(Φ−1(uj))

=
√
2π exp

[
(
√
−2 log(uj) + o(1))2/2

]
= O(min(uj , 1− uj)

−1−Aj/2)

for any Aj > 0. The inequality (4.6) is thus obtained. �

Since the function Si admits the boundary growth condition for arbitrarily small
Aj > 0, Owen [12] showed that Si can be integrated with error O(n−1+ε) by the
Halton sequence. However, the results of Owen [12] cannot be applied to our target
function (4.1) because it is discontinuous. To apply Theorem 3.4, we need to verify
the boundary growth condition for the composition g ◦ S. Combining (4.5) and
(4.6), we have
(4.7)

|∂v(g ◦ S)| ≤ B1

∑
1≤|λ|≤|v|

|gλ(S)|
∏
j∈v

min(uj , 1− uj)
−Aj−1

∏
j /∈v

min(uj , 1− uj)
−Aj

for some finite B1, arbitrarily small Aj > 0 and ∅ �= v ⊆ 1:d. Therefore, the
function g ◦ S satisfies the growth condition (2.7) as long as

(4.8) |gλ(S)| ≤ B2

d∏
j=1

min(uj , 1− uj)
−Ãj

holds for all |λ| ≤ |v|, Ãj > 0 and B2 < ∞. This may be verified for a broad range
of functions since (4.6) admits that

(4.9) Si(u) ≤ Ci

d∏
j=1

min(uj , 1− uj)
−Aj

holds for arbitrarily small Aj > 0. In our applications, g is rather simple so that
gλ is available. As illustrative examples, we next show that the growth condition
(2.7) can be satisfied with arbitrarily small growth rates.

Example 1. The discounted payoff of an arithmetic Asian option is

(4.10) f(S) = e−rT (SA −K) I{SA > K},

where SA = (1/d)
∑d

j=1 Sj and K is the strike price.

Example 2. The pathwise estimate of the delta of an arithmetic Asian option is

(4.11) f(S) = e−rT SA

S0
I{SA > K}.
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The delta of an option is the sensitivity with respect to the initial price S0 of the
underlying asset.

Example 3. An estimate of the gamma of an arithmetic Asian option is

(4.12) f(S) = e−rT SA

(
log(S(t1)/S0)− (r + σ2/2)Δt

)
S2
0σ

2Δt
I{SA > K},

which results from applying the pathwise method first and then the likelihood ration
method (see [5]). The gamma is the second derivative with respect to the initial
price S0 of the underlying asset.

Example 4. The pathwise estimate of the rho of an arithmetic Asian option is

(4.13) f(S) = e−rT

[
dSA

dr
− T (SA −K)

]
I{SA > K},

where

dSA

dr
=

T

d2

⎛⎝ d∑
j=1

jS(tj)

⎞⎠ .

The rho of an option is the sensitivity with respect to the risk-free interest rate r.

Example 5. The pathwise estimate of the theta of an arithmetic Asian option is

(4.14) f(S) = e−rT

[
dSA

dT
− r(SA −K)

]
I{SA > K},

where

dSA

dT
=

1

d

d∑
j=1

S(tj)

[
ωj

2d
+

log(S(tj)/S0)

2T

]
.

The theta of an option is the sensitivity with respect to the maturity of the option
T .

Example 6. The pathwise estimate of the vega of an arithmetic Asian option is

(4.15) f(S) = e−rT 1

d

d∑
i=1

dS(ti)

dσ
I{SA > K},

in which
dS(ti)

dσ
= S(ti)

1

σ

[
log

(
S(ti)

S0

)
−
(
r +

1

2
σ2

)
ti

]
.

The vega of an option is the sensitivity with respect to the volatility σ.

Theorem 4.2. Suppose that f is one of the functions (4.10)–(4.15), where Si is
given by (4.4). Letting f be expressed as the form (4.1), then g ◦ S satisfies the
boundary growth condition (2.7) with arbitrarily small Ai > 0 for all i.

Proof. For the functions (4.10)–(4.15), g(S) is a linear combination of some com-
ponents Si and log(Si)Si′ for i, i

′ ∈ 1:d. It suffices to verify that these components
satisfy (4.8) because the linear combination then also satisfies (4.8).

Consider g(S) = Si for any i ∈ 1:d. We have |gλ(S)| ≤ 1 for any 1 ≤ |λ| ≤ |v|.
For |λ| = 0, |gλ(S)| = |g(S)| = Si = O(

∏d
j=1 min(uj , 1 − uj)

−Ãj ) due to (4.6),

for arbitrarily small Ãj > 0. In this case, gλ satisfies (4.8) with arbitrarily small
growth rates.
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Consider g(S) = log(Si)Si′ for any i �= i′. We have gλ(S) = 0 if λk > 0 for some
k /∈ {i, i′} or λi′ > 1. So it remains to consider three cases:

(1) 1 ≤ λi ≤ |v| , λk = 0 for any k �= i;
(2) 0 ≤ λi ≤ |v| − 1, λi′ = 1, λk = 0 for k /∈ {i, i′}; and
(3) all λk = 0.

For case (1), we have

gλ(S) = Si′
dλi log(Si)

dSλi
i

= (−1)λi+1c(λi)Si′S
−λi
i ,

where c(1) = 1 and c(λi) = (λi − 1)! for λi > 1. For case (2), we have

gλ(S) =

{
(−1)λi+1c(λi)S

−λi
i , λi > 0,

log(Si), λi = 0.

For case (3),
gλ(S) = g(S) = log(Si)Si′ .

From the proof of Lemma 4.1, we have

S−λi
i = O

⎛⎝ d∏
j=1

min(uj , 1− uj)
−Ãj

⎞⎠
and

|log(Si)| = O

⎛⎝ d∏
j=1

min(uj , 1− uj)
−Ãj

⎞⎠
for arbitrarily small Ãj > 0. So gλ satisfies (4.8) with arbitrarily small growth
rates.

Consider g(S) = log(Si)Si for any i ∈ 1:d. If λk = 0 for all k �= i, we have

gλ(S) =
dλi(log(Si)Si)

dSλi
i

=

⎧⎪⎨⎪⎩
log(Si)Si, λi = 0,

1 + log(Si), λi = 1,

(−1)λic(λi − 1)S−λi+1
i , λi > 1.

If λk > 0 for some k �= i, then gλ(S) = 0. In this case, gλ satisfies (4.8) with
arbitrarily small growth rates.

Based on the reasoning above, it follows from (4.7) that for the functions (4.10)–
(4.15), g ◦S satisfies the boundary growth condition with arbitrarily small growth
rates. �

Note that the statement in Theorem 4.2 holds for any decomposition of Σ =
AA
. To handle discontinuities, Wang and Tan [16] proposed the orthogonal
transformation (OT) method to make the discontinuities QMC-friendly, in the sense
that all the discontinuity boundaries are parallel to coordinate axes. The OT
method delivers a special matrix A satisfying AA
 = Σ to generate the path
(4.4). To illustrate its effects, let us consider the function

(4.16) f̃(S) = g(S)I{SG > K},

where SG =
∏d

i=1 S
1/d
i is the geometric average of the prices. For this function,

applying the OT method we arrive at

I{SG > K} = I{u1 > κ}
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for some constant κ (see [16] for determining the matrix A). As a result, dis-
continuities occur only on the axis-parallel hyperplane u1 = κ, which are QMC-
friendly. The function (4.16) is then transformed to g(S(u))I{u ∈ Ω}, where
Ω = {u ∈ [0, 1]d|u1 > κ}. Note that the irregular dimension du of the set Ω is one.
Corollary 3.5 admits that the expected error rate of RQMC for the transformed
function g(S(u))I{u ∈ Ω} is O(n−1+ε) if g ◦ S has the same kind of singularities
as examined in Theorem 4.2. This suggests that making the discontinuities of the
function (4.16) QMC-friendly by the OT method can improve the efficiency of QMC
greatly. For the functions of the form g(S(u))I{SA > K} in the examples above,
Wang and Tan [16] suggested that using the obtained matrix A for the function
(4.16) can still be effective since SG is a good substitute for SA. The usefulness of
this strategy was illustrated by several numerical examples in [6, 16].

5. Conclusion

We find that for discontinuous functions with singularities along the boundary
of the unit cube [0, 1]d, RQMC has an expected error of O(n−γ(1/2+1/(4d−2))+ε)
for γ = 1 − maxi Ai ∈ (0, 1) depending on the growth rates Ai. The convergence
rate O(n−γ(1/2+1/(4d−2))+ε) is a bit disappointing for large values of Ai. However,
the error rate can be as good as O(n−(1/2+1/(4d−2))+ε) for some problems from
computational finance in which the growth rates are arbitrarily small. In these
cases, it seems that the singularities have insignificant impact on QMC accuracy,
compared to the rate for discontinuous integrands (without singularities) found in
He and Wang [7]. We also show theoretically the benefits of making discontinuities
QMC-friendly, which have been shown empirically in various numerical examples
of Wang and Sloan [15] and Wang and Tan [16].

For singular functions (even discontinuous) satisfying the growth condition with
arbitrarily small growth rates, QMC can lead to improved accuracy. It would be
interesting to know how generally the problems from financial engineering fit into
this setting, beyond those under the Gaussian model discussed in Section 4.
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