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Contact network epidemiology:  
Bond percolation applied to infectious disease prediction and control. 

 
Lauren Ancel Meyers 

 
Abstract. Mathematics has long been an important tool in infectious disease 
epidemiology. I will provide a brief overview of compartmental models, the dominant 
framework for modeling disease transmission, and then contact network epidemiology, a 
more powerful approach that applies bond percolation on random graphs to model the 
spread of infectious disease through heterogeneous populations. I will derive important 
epidemiological quantities using this approach and provide examples of its application to 
issues of public health. 
 
Background 
Infectious diseases can have devastating impacts on human life and welfare. In the last 
three years, SARS, avian influenza, simian foamy virus, and monkeypox have jumped 
from animals into human populations. The uneven spread of SARS worldwide poignantly 
demonstrated that containment is possible, but depends critically on appropriate and 
aggressive management. With the growing threats of newly emerging diseases and 
bioterrorism, strategies to rapidly and effectively control outbreaks are vital to public 
health.  

Mathematics is an invaluable epidemiological tool. It allows public health 
officials to conduct virtual experiments that would be practically unfeasible or unethical. 
Controlled experiments to evaluate the efficacy of control strategies are impossible in 
practice as we cannot intentionally introduce disease into populations or withhold 
potentially lifesaving interventions for the sake of scientific study. Mathematical models 
of disease transmission dynamics enable systematic evaluation of strategies such as 
vaccination and quarantine, and thereby provide a way around this difficulty. 

In the 18th century, Daniel Bernoulli – the son, nephew and brother of 
mathematicians Johann, Jacob and Nicolaus II Bernoulli, respectively – made one of the 
first great mathematical contributions to infectious disease control [1]. While formally 
trained in medicine, Bernoulli is known for his research in biomechanics, hydrodynamics, 
economics, and astronomy. He also played an important role in the eradication of 
smallpox from Europe, which was likely introduced there in the early 16th century, and 
was endemic (maintained constantly) by the 18th century. Variolation is an inoculation 
technique whereby a scab or pus from an individual with a mild smallpox infection is 
introduced into the nose or mouth of healthy individuals. This practice began as early as 
1000 AD in China and India and was introduced into England in 1717, where it was 
initially controversial. While variolation reduced the mortality probability of infected 
individuals from 30% to 1% [2], there was a small chance that the procedure would lead 
to death from a full-blown case of smallpox.  

Bernoulli developed a mathematical model with which he argued that the gain 
from variolation in life expectancy through the eradication of smallpox far outweighed 
associated risks [1, 3]. Assuming that all individuals had a one in n chance of catching 
smallpox, and a one in m chance of dying from an infection, he derived the following 
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equation for the change in the number of currently naïve (never been infected) 
individuals in a specific age cohort during a small increment of time: 
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where dx is the change in the age of the individuals in the cohort, s and ds are the number 
of currently naïve individuals and the change in that number, respectively, and !  and d!  
are the total number of individuals in the cohort and the change in that number, 
respectively. On the right side of the equation, the first term is the number of new 
infections and the second term is the loss of susceptible individuals through death from 
other causes. Bernoulli integrated equation (1) and assumed that each cohort is born 
entirely susceptible (that is, s = !  when x=0) to find the expected fraction of susceptible 
individuals in a cohort of age x. This fraction is given by 
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Bernoulli assumed that the risk of catching smallpox was 12.5% (one in eight) in a given 
year across all age classes and that the mortality rate was 12.5% (one in eight) for all 
infected individuals. Using overall survivorship estimates calculated by Edmund Halley 
(of comet fame), he then used equation (2) to predict the mortality rates in every age class 
in a steady-state population with a birth class of size 1300. 
 Inoculation via variolation of all newborns would confer widespread immunity, 
yet entail some mortality due to variolation-induced smallpox. Bernoulli compared the 
annual mortality rates and average life expectancy predicted by his model to those 
predicted assuming universal inoculation, and found that variolation saves lives even if 
the mortality rate associated with variolation is quite high (with his parameters, as high as 
10.6%).  

Bernoulli’s calculations clarified the benefits of widespread inoculation, even 
when there are significant risks. England began widely administering variolation in the 
1750’s, and upon the development of the smallpox vaccine in 1796, mandated the 
inoculation of all infants. Thanks to these efforts, smallpox was eradicated by the end of 
the 19th century. 

Since Bernoulli, mathematicians and statisticians have offered many practical 
insights into infectious disease control. Notably, the English statistician William Farr 
analyzed the spatial distribution of choera cases, and thereby provided the first solid 
evidence that the disease spread via water rather than air [4].  

Mathematical epidemiology exploded in the 20th century following the 
introduction of an intuitive and tractable framework.  Between 1906 and 1927, the mass-
action principle was introduced [5] and ultimately formalized in a deterministic model of 
disease transmission now attributed to Kermack and McKendrick [6]. In chemistry, the 
mass-action law states that the rate of a chemical reaction is proportional to the product 
of the concentrations of the reacting substances. In epidemiology, the mass-action 
assumption states that the number of new cases of disease in a time interval is 
proportional to the product of numbers of infected and susceptible hosts in the previous 
time interval. Within a decade, Reed and Frost introduced the first stochastic version of 
this model, the chain-binomial, which assumes that a disease spreads in discrete 
generations [7, 8]. This model derives a probability law for the next generation from that 
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of the present generation. More recently, Anderson and May among others have extended 
these efforts into a flexible approach, known as compartmental modeling, for predicting 
the transmission of a wide range of diseases on multiple scales [9]. 

We will discuss this framework as well as some of its practical applications and 
limitations below. This will set the stage for the introduction of contact network 
epidemiology, a new analytical approach that overcomes a major limitation of the mass-
action assumption. 
 
Compartmental SIR models 
Compartmental models subdivide host populations by disease status. A simple and 
widely used example is the SIR model that tracks the movement of hosts among three 
states: susceptible (S), infected (I), and recovered (R) (Figure 1) [6]. These models 
assume that upon infection, hosts are immediately infectious and remain infectious until 
they recover. Infected hosts are assumed to have potentially disease-causing contacts with 
random individuals from the population according to a Poisson process that yields an 
average contact rate of !  per unit time. Disease transmission occurs if and only if the 
individual at the receiving end of the contact is susceptible. There lies the mass-action 
assumption. 

 
 

Figure 1. Compartmental and contact network models. Mass-action models assume 
that all individuals in a group are equally likely to become infected, while contact 
network epidemiology considers diverse contact patterns that underlie disease 
transmission. The disease spreads along the arrows (top) and the edges (bottom). 
(S=susceptible, I=infected, and R=recovered.) 
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Infectious hosts leave the infectious state at an average rate !  either by 
recovering and becoming immune or by dying. Thus the recovered class is a catchall for 
hosts that have been previously infected and are no longer infected or susceptible. In the 
limit of a large host population, this process is modeled by the following coupled 
nonlinear differential equations: 
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where S t( ) , I t( ) , and R t( ) , are the numbers of susceptible, infected, and recovered 
hosts, respectively. Because the model ignores the birth and death of susceptibles, the 
total population size N = S + I + R  is static, and therefore the third equation is 
unnecessary. These equations apply to rapidly spreading diseases like measles and 
influenza that confer immunity extending beyond the typical length of an epidemic. The 
model can be easily adapted to consider the loss of immunity as well as birth and death 
dynamics. 
 
The Basic Reproductive Rate 
One of the touchstones of epidemiology is the basic reproductive rate of a disease: the 
number of secondary infections produced by a single infected host in an entirely 
susceptible population. This quantity indicates the initial growth rate for the infected 
class and the potential for a large-scale epidemic. In model (3), the per capita increase of 
infected individuals is given by 

 
1

I

dI

dt
= !S "#.  (4) 

The number of infected individuals increases by the product of the disease-causing 
contact rate !  and number of susceptibles S  and decreases by the combined recovery 
and mortality rate (henceforth removal rate) ! , which has units of 1 t . The reciprocal of 
the removal rate, 1 ! , is the average time interval during which an infected individual 
remains contagious. The number of secondary cases infected per unit time is !S  which 
yields a basic reproductive rate of 

 R
0
=
!S

"
.  (5) 

If R
0
> 1, then each infected host will transmit disease to at least one other host 

during the infectious period, and the model predicts that disease will spread through the 
population. If not, then the disease is expected to fizzle out before reaching a substantial 
fraction of the population. Thus R

0
= 1  is a critical epidemiological value. In other 

words, pathogens with high levels of contagion and low recovery and mortality rates will 
pose the greatest threat. 
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Herd Immunity 
The immunization of a single host not only protects that host but also indirectly protects 
others against the possible of disease transmission from the immunized host. If a 
sufficient fraction of a population is immunized, then an epidemic may be averted 
altogether.  The protection of an entire population via the immunity of a fraction of the 
population is called herd immunity. 
   Equation (5) can be rearranged to find the minimum size of a susceptible 
population necessary for an epidemic to occur. Assuming that R

0
= 1 , this threshold is 

given by 

 S
T
=
!

"
. (6) 

A pathogen will go extinct if the size of the susceptible population is less than this 
threshold (S < S

T
). If the population size is above this threshold, then we can rewrite the 

basic reproductive rate as  

 R
0
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S

S
T

.  (7) 

 Immunization reduces the size of the susceptible class, and thus leads to a smaller 
basic reproductive rate of the pathogen. In particular, immunizing a fraction p of a 
population reduces R

0
 to  

 R
0

i
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= 1! p( )R

0
.  (8) 

Immunization will successfully eradicate the disease if it causes the basic reproductive 
rate to drop below one. Thus the critical immunization rate pc is  

 p
c
= 1!

1

R
0

.  (9) 

 Extensions of this basic model have been used to predict the minimum coverage 
necessary to drive specific diseases to extinction. For example, measles and whooping 
cough—two of the most contagious diseases—are thought to require 90-95% coverage, 
chicken pox and mumps 85-90% coverage, polio and scarlet fever 82-97% coverage, and 
smallpox 70-80% coverage [9]. 
 
Limitations of the Mass-Action Assumption: The example of SARS 
Shortly after severe acute respiratory syndrome (SARS) was first recognized outside of 
Asia, mathematical epidemiologists estimated the average number of secondary cases 
emanating from one primary case in a susceptible population (R0) to be in the range of 
2.2 and 3.6 for this virus – an estimate well above one, approximating that of a new 
subtype of influenza [10-12]. Despite this estimate and near-universal susceptibility, 
SARS did not emerged as a global pandemic. Instead, initial seeding was followed by 
intense but tightly circumscribed activity in some locales with only scant activity in 
others.  

The discrepancy between the estimates of R0 and the observed epidemiology 
might stem from early and effective intervention since Rt, the reproductive ratio of a 
disease at time t, will decrease with the implementation of successful infection control 
measures. Yet, even during the three and a half months in which SARS spread in China 
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between its initial appearance and the broad implementation of public health measures, 
case counts were much less than expected from such values of R0 [13], as shown by a 
back-of-the-envelope calculation. By definition, the total number of expected cases of a 
disease goes up by a factor of R0 for every generation of infection, a generation being the 
mean time between an individual becoming infected and their infecting others. Based on 
recorded dates of the first symptoms for 124 pairs of subsequent infections in Singapore 
and Toronto [14, 15], the average generation time (

� 

! ) for SARS is estimated to be 
9.7±0.3 days. This estimate clearly depends on the accuracy of the reported data. 
Roughly, the cumulative number of SARS cases over D days should be  
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(This is capped by total population size and does not consider the reduction in Rt once a 
substantial proportion of the population is infected). Thus for R0 ranging between 2.2 and 
3.6, this equation predicts that in the first 120 days of transmission in China, there should 
have been between approximately 30,000 and 10 million cases. In fact only 782 cases 
were reported during the initial three months [16], which, using this simple calculation, 
suggests that R0 should be much lower and closer to 1.6.  

Why do the initial estimates of R0 seem incompatible the observed epidemiology 
in China? The basic reproductive rate has two basic inputs: (1) intrinsic properties of the 
pathogen that determine the transmission efficiency per contact and the duration of the 
infectious period and (2) the patterns of contacts between infected and susceptible hosts 
in the population. While the first factor may be fairly uniform across outbreaks, the 
second may be quite context dependent, varying both within and among populations. The 
problem with the SARS estimates stems from the mass-action assumption of 
compartmental models – that all individuals in a group are equally likely to become 
infected (or infect others) – often does not hold and therefore may lead to spurious 
estimates or estimates that cannot justifiably be extrapolated from the specific setting in 
which they were measured to the broader community context. Early SARS estimates 
were based largely on transmission data from closed settings like hospitals and crowded 
apartment buildings, where there are unusually high rates of contact between individuals 
[10, 11]. In fact, hospital transmission accounts for 50% of the value of R0 described in 
[11]. If the contact patterns within these settings vary considerably, then the estimates for 
R0 may be inaccurate.  Even if the estimates for R0 were indeed appropriate for these 
specific settings, they probably should not be extrapolated to the population at large. 
Contact rates may be considerably lower outside hospitals and crowded apartment 
buildings and, thus, so may be the general value of R0 for SARS [17].  

SARS, like many other infectious diseases, exhibited great heterogeneity in 
transmission efficiency with certain individuals appearing to be responsible for a large 
proportion of transmission events [14, 18, 19]. These individuals may be 
“superspreaders” with unusually large numbers of contacts or “supershedders” who are 
unusually effective at excreting the virus into the environment they share with others. In 
contrast to the mass-action assumption of standard compartmental models, the contact 
patterns in a community may be quite diverse. There is an enormous difference between a 
situation in all individuals share typical contact patterns and one in which most infected 
individuals pass the disease on to only one or even zero others, but a small number pass it 
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onto dozens or even hundreds – the mean value of R0 can be the same in both cases, 
while the epidemiological outcomes are vastly different. 

While the mass-action assumption laid the groundwork for major advances in 
epidemiological theory, it may be inappropriate when contact patterns are heterogeneous. 
To overcome this limitation, mathematical epidemiologists have developed several 
methods to explicitly consider heterogeneity in contact patterns. To name a few, more 
complex deterministic and stochastic compartmental models with multiple demographic 
groups capture greater contact heterogeneity [8, 20], other stochastic approaches 
including branching process models [21, 22], dyad models [23, 24], and Reed-Frost 
chain-binomial models [25] allow better predictions of the size and probability of 
epidemics; and "individual-based modeling", a computational approach which tracks the 
contact and infection histories of simulated individuals, yields detailed statistical 
predictions about disease outcomes [26-32]. Today we will consider a recent addition to 
this toolkit, contact network epidemiology, which is an analytical framework that 
explicitly and intuitively captures the diverse interactions that underlie the spread of 
diseases (Figure 1) [33-41].   
 
Contact network epidemiology 
The methods of contact network epidemiology can be divided into three steps. First we 
attempt to build a realistic network (graph) model of the contact patterns at an appropriate 
temporal and spatial scale. Second, we mathematically predict the spread of disease 
through the population based on intrinsic features of the pathogen and structural 
properties of the network. Third, we manipulate the network to model control strategies 
and analyze the epidemiological impact of such manipulations. We will now discuss each 
of these steps with illustrative examples. 
 
The contact networks 
A contact network model captures the patterns of interactions can lead to the transmission 
of an infectious disease. In a contact network, each person (or location) translates into a 
“vertex” and contacts among people (or locations) translate into “edges” that connect 
appropriate vertices.  For example, one might model the contacts between individuals in a 
hospital or city that might lead to respiratory disease transmission [32, 41-43], the 
contacts between different geographical regions via human travel patterns that might lead 
to long-range transmission, or the sexual interactions within a high school that might lead 
to sexually transmitted disease transmission [44, 45].  

The number of edges emanating from a vertex is called the degree of the vertex 
and indicates the number of possible contacts that can lead to disease transmission to or 
from an individual. The distribution of the number of such contacts within a population 
(the degree distribution) is fundamental to the ability of disease to spread through the 
population. The mass-action assumption of compartmental models is tantamount to 
assuming that the underlying contact patterns form a random graph with a Poisson degree 
distribution. If a network departs significantly from this ideal structure, then the 
traditional modeling approach may be invalid. 

The contact (or social) network is a hot concept across many disciplines including 
sociology, epidemiology, biology, computer science and physics [46]. Researchers look 
for universal properties, and have paid special attention to small-world networks— 
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Figure 2. Contact networks. (A) Undirected network; (B) Bipartite network; and (C) 

Semi-directed network. 

  
characterized by high levels of both local clustering and global connectivity [47], and 
scale free networks—characterized by degree distributions that follow a power law 
distribution with a small fraction of very highly connected hubs [48]. Several 
epidemiological-relevant contact networks including sexual contact networks and the 
internet, for example, have been characterized as scale free [49-51].  

Realistic contact networks, however, do not always fall into one of these well-
studied families of networks [41, 43]. Some have more complex structures, for example, 
those depicted in Figure 2.  Bipartite networks, in which there are two types of nodes, 
have been used to represent asymmetric probabilities of transmission between caregivers 
and patients in a medical facility [43]. Semi-directed networks, in which some contacts 
are reciprocal and others are unidirectional, have been used to capture situations in which 
a person may infect another person but the converse is not true [42]. This situation may 
arise, for example, when infected individuals seek medical treatment during an outbreak. 
Suppose individual A is normally healthy and thus has no reason to go to the hospital 
until he or she becomes infected. At that point, individual A may come into contact and 
potentially spread disease to caregivers at the hospital. In contrast, if a caregiver at the 
hospital acquired the disease while individual A remained healthy, then there would be 
no opportunity for transmission in the opposite direction. This asymmetry can be 
modeled by directed edges pointing from individual A to health care workers. As 
described next, the mathematical methods of contact network epidemiology can 
accommodate such complex random networks with arbitrary degree distributions.  
 
Predicting disease dynamics 
Imagine that an infectious disease first appears at a randomly chosen vertex in a contact 
network (epidemiologically speaking, that vertex represents patient zero). Disease will 
propagate through the network as described for the compartmental models, except that 
the Poisson distribution of contacts is replaced by the structure of the contact network. 
The initial vertex will remain infected and infectious for some period of time, during 
which it has the potential to transmit disease to each of its contacts. The secondary cases 
likewise can transmit disease to their contacts during their infectious period, and so on. 
This process resembles bond percolation and can be analyzed using percolation models 
from statistical physics [35, 41-43, 52, 53]. This approach was initially suggested by 
Grassberger [54], and has been extended into a flexible framework for infectious disease 
prediction by Newman and colleagues [42, 43]. In what follows, we will review 
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Newman’s derivations of fundamental epidemiological quantities for an undirected 
random network with an arbitrary degree distribution and some practical corollaries. 
 The percolation of disease through a network depends on both the level of 
contagion and the structure of the contact network. Following Newman [35], every edge 
in a network has a per unit time probability of disease transmission associated with it (rij), 
that is, the probability that vertex i, if infected, will transmit disease to vertex j in a given 
time increment. Assuming discrete time steps, if vertex i is infectious for !  time steps, 
then the probability that j will be infected by i is Tij = 1! 1! r

ij( )
"

. For continuous time, 

1! T
ij
= lim

" t#0

1! r
ij
"t( )

r " t

= e
!rij$ , and thus Tij = 1! e

!rij" . The quantity rij  summarizes core 

aspects of disease transmission including the likelihood that a contact will lead to 
transmission and individual susceptibility and will therefore vary across individuals. If rij  
is assumed to be an independent identically distributed (iid) random variable chosen from 
a distribution P r( ) , then Tij  is also an iid random variable. Therefore the spread of 
disease will depend only on the mean probability of transmission between individuals 
(henceforth, the average transmissibility), which is given by  

 T = Tij = 1! Q r( )dr
0

"

#  (11) 

where Q r( ) = 1! P r( ) 1! r( )
"  or Q r( ) = 1! P r( )e!r" , for discrete or continuous time, 

respectively.  
 
Probability generating functions 
To predict the fate of an outbreak, we use probability generating functions (pgf’s), 
quantities that describe probability distributions, and here, summarize useful information 
about the structure of the contact network. The pgf for the degree distribution of a 
network is  

 G
0
(x) = pkx

k

k=1

!

"  (12) 

where pk  is the relative frequency of vertices of degree k in the network. The average 

degree equals the derivative of this function at x=1, that is, 

� 

k = kpk
k=1

!

" . 

If we choose a random edge and follow it to one of its vertices, then the number 
of remaining edges connected to the vertex is called the excess degree of the vertex. The 
higher the degree of a vertex, the more likely it is to lie at the end of a randomly chosen 
edge. In particular, the likelihood of reaching a vertex with degree k, and thus with excess 
degree k-1 will be proportional to k. Thus the probability that a vertex at the end of a 

random edge has excess degree k-1 is kpk
k

. This yields a generating function for the 

excess degree of a vertex of 

 G
1
(x) =

kpkx
k!1

k=1

"

#

kpk
k=1

"

#
.  (13) 
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and an average excess degree of ke =

k(k !1)pk
k=1

"

#

kpk
k=1

"

#
=

k
2

k
!1 . 

When disease is introduced into a network, it will traverse some but not all of the 
edges according to the average transmissibility T. The edges that are infected during an 
epidemic are called occupied. Once the disease has run its course, the cluster of vertices 
connected to the first infected vertex by a continuous chain of occupied edges is exactly 
the outbreak. Ultimately we will characterize the size and distrubtion of this occupied 
cluster. We begin by deriving the pgf for the distribution of occupied edges attached to a 
randomly chosen vertex as a function of the average transmissibility T. The probability 

that a vertex has m of its k edges occupied is simply 
k

m

!
"#

$
%&
T

m
1' T( )

k'm , which leads to a 

probability generating function for the occupied degree of a vertex of 

 G
0
x;T( ) = pk

k

m

!
"#

$
%&
T

m
1' T( )

k'm
x
m
= G

0
1+ x '1( )T( )

k=m

(

)
m=0

(

) .  (14) 

Analogously, the pgf for the excess occupied degree, that is, the number of occupied 
edges emanating from a vertex reached by following a randomly chosen edge is given by  

 G
1
x;T( ) = G1 1+ x !1( )T( ) . (15) 

 
Predicting the fate of a small outbreak 
In general, percolation theory describes the behavior of connected groups of vertices in a 
random graph, and thus can be applied to predict the size of the infected cluster, that is, 
the number of vertices reached via disease transmission along the edges in the network. 
For a fixed network, there typically exists a threshold transmission rate below which only 
small, finite-sized outbreaks occur and above which large-scale epidemics (comparable to 
the size of the entire network) are possible.  
 First we will consider Newman’s derivation of the epidemic threshold and the 
expected size of small outbreaks below the threshold. These calculations assume that 
mildly-contagious diseases spread in a tree-like fashion, causing only short transmission 
chains that do not loop back on themselves. Later, we relax this assumption and turn to 
diseases that lie above the epidemic threshold.  
 Let s denote the number of vertices contained in a small outbreak that begins at a 
randomly selected vertex and let H0

(x;T )  be the generating function for the distribution 
of outbreak sizes. Then 

 H
0
(x;T ) = P

s
(T )x

s

s

!  (16) 

where P
s
(T )  is probability that a single initial case sparks an outbreak of size s at the 

specified average transmissibility T. Let H
1
x;T( )  be the generating function for the size 

of the cluster of connected vertices at the end of a randomly chosen edge.  
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Figure 3. Future transmission diagram. When disease reaches an edge, we can 
consider all possible patterns of future transmission. The disease may not spread along 
the edge in the first place, it may spread along the edge but no further, it may spread 
along the original edge and then subsequently along another edge, it may spread along 
the original edge and then subsequently along two edges, etc. We can construct recursive 
equations to consider all possible outcome s .  

 
To solve for the average value of s, we consider an outbreak that originates with a 

transmission event along a randomly chosen edge. The set of vertices reached by 
occupied edges can be represented in graphical form as in Figure 3. There are many 
possible outcomes: the disease does not spread along the edge, it spreads along the edge 
but no further, or it spreads along the edge and then subsequently along one or more 
additional edges emanating from the destination vertex. This is captured in a recursive 
equation 

 H
1
x;T( ) = xG1 H1

x;T( );T( ) . (17) 
This is roughly interpreted to mean that the size of a cluster proceeding from a randomly 
chosen edge E is the equal to sum of the sizes of the clusters at the end of each occupied 
edge emanating from the vertex V at the end E plus one for the vertex V itself. Likewise, 
the cluster emanating from a random vertex is generated by 

 H
0
x;T( ) = xG0

H
1
x;T( );T( ) . (18) 

Consider now the average size 

� 

s  of an outbreak starting from a random vertex, which is 
given by 

 

s = sP
s
(T )

s

! = "H0
(1;T ) = 1+ "G0

(1;T ) "H1
(1;T )

= 1+
T "G0

1( )

1# T "G1 1( )
= 1+

T k

1# T k
2

k #1( )

 (19) 

where the prime denotes differentiation with respect to the first variable. Note that for 
any normalized generating function f x( ) , f 1( ) = 1 . The expression for 

� 

s  diverges 
when the denominator in Equation (19) is zero, and only predicts the expected size of the 
outbreak when the denominator is greater than zero. Thus the equation 
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 T !G
1
1( ) = 1  (20) 

marks the phase transition at which the size of an outbreak first becomes extensive. 
Hence an epidemic is only possible when the average transmissibility of a disease is 
greater than the critical transmissibility  

 Tc =
1

!G
1
1( )

=

kpk
k

"

k k #1( ) pk
k

"
=

k

k
2
# k

. (21) 

We call Tc the epidemic threshold. 
 
The basic reproductive rate 
Recall that the basic reproductive rate is the number of secondary infections caused by a 
single infected host in a completely naïve population. In the contact network framework, 
this is simply the average number of occupied edges emanating from a vertex, that is,  

 R
0
= !G

1
1;T( ) = T !G

1
1( ) = T

k
2 " k

k

#

$
%

&

'
( . (22) 

where 

� 

k  and 

� 

k
2  are the mean degree and mean square degree (respectively) of the 

network. Recall that Tc is the critical transmissibility value above which population is 
vulnerable to large-scale epidemics (but is not guaranteed to experience an epidemic) and 
below which only small local outbreaks occur. If the transmissibility of a disease equals 
the epidemic threshold (T=Tc), then R0=1. 
 Notice that the basic reproductive rate depends explicitly on the structure of the 
network (on 

� 

k  and 

� 

k
2 ). A single pathogen may therefore have very different 

transmission dynamics depending on the population through which it spreads. If two 
networks have the same mean degree, 

� 

k , then the one with the larger variance in 

degree, k2 ! k
2 , will be more vulnerable to the spread of disease. Estimates of R

0
that 

assume a mass-action model may therefore be invalid for populations with non-Poisson 
contact patterns, and in particular, underestimate the actual growth rate of the disease in 
highly heterogeneous networks. 
 
Probability and size of a large-scale epidemic 
When the transmissibility of a disease is larger than the epidemic threshold, then 
Equation (19) no longer indicates the size of the infected subpopulation. This is because 
transmission is so rampant that the chains of transmission are likely to loop back upon 
themselves, thus violating the assumption underlying the calculations depicted in Figure 
4. When we are above the epidemic threshold, in the region in which epidemics can 
occur, we would like to know two quantities: the probability that a large-scale epidemic 
occurs and the fraction of individuals that are infected in that case. In an undirected 
network, these quantities are equal to each other and to the fraction of vertices from 
which an extensive numbers of others can be reached by following occupied edges. In the 
language of percolation, this is the giant component defined by occupied edges.  

The probability of a full-blown epidemic, S, is derived by first calculating the 
likelihood that a single infection will lead to only a small outbreak instead of a full-blown 



 13 

epidemic, and then subtracting that value from one. Recall that H
0
x;T( )  is the 

generating function for the size of small outbreaks. Therefore H
0
1;T( )  is the total 

probability that a randomly chosen initially infected vertex will lead to a finite sized 
outbreak. The probability of a large-scale epidemic is then given by  

 S = 1! H
0
1;T( ) = 1!G0

u;T( )  (23) 
where u = H

1
1;T( ) . Thus u is the solution to the equation  

 u = G
1
u;T( ) . (24) 

In terms of the degree distribution, the probability of a large-scale epidemic and the 
expected fraction of the network infected during such an epidemic is 

 S = 1! pk 1+ u !1( )T( )
k

k

"  (25) 

where u is the solution to the self-consistency equation 

 u =

kpk 1+ u !1( )T( )
k!1

k

"

kpk
k

"
.  (26) 

We use numerical root finding methods to solve for u.  
 
Other useful epidemiological quantities 
We have recently extended Newman’s results [35] to provide insight into other 
epidemiological processes. In particular, we have derived the probability of becoming 
infected and sparking an infection as a function of the degree of a vertex, the probability 
of an epidemic starting from an outbreak that is already underway, and the residual 
structure of a network after an epidemic has run its course. 
 
The probability that an individual will spark an epidemic [41]. The probability !

k
 that a 

patient zero with degree k will start an epidemic is equal to the probability that 
transmission of the disease along at least one of the edges emanating from the original 
vertex will lead to an epidemic. For any one of its k edges, 

� 

1!T  is the probability that the 
disease does not get transmitted along the edge and Tu is the probability that even if 
disease is transmitted to the next vertex, it does not proceed into a full-blown epidemic. 
Thus  

 !
k
= 1" (1" T + Tu)

k . (27) 
 

 
The probability that a disease cluster will spark an epidemic [41]. The probability that an 

outbreak of size N will ignite an epidemic is 

� 

1! (1!"
k
i

)
i=1

N

#  where 

� 

k
i
 is the degree of 

individual i. This is just one minus the probability that none of the N infected individuals 
sparks an epidemic. If we know the number of current cases but not their contact patterns, 
then our best estimate for the probability of an epidemic is calculated similarly, with each 
of the 

� 

(1!"ki
)’s replaced with the probability that a typical infected individual does not 

spark an epidemic. The number of edges through which a typical infected individual can 
start an epidemic is given by the excess degree pgf, and the probability that one of those 
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edges will not give rise to an epidemic is 

� 

1!T + Tu. Thus the probability that none of 

those edges will be a conduit to an epidemic is 

� 

kpk (1!T +Tu )
k!1

k=1

"
#

kpk
k=1

"
#

$ 

% 

& 

& & 

' 

( 

) 

) ) 

, and the probability that 

an outbreak of size N sparks an epidemic is 

� 

1!
kpk (1!T +Tu )

k!1

k=1

"
#

kpk
k=1

"
#

$ 

% 

& 

& & 

' 

( 

) 

) ) 

N

. 

 
Individual risk of infection [41]. The probability !

k
 that an individual with degree k will 

become infected during an epidemic is equal to one minus the probability that none of his 
or her k contacts will transmit the disease to him or her. The probability that a contact 
does not transmit the disease is equal to the probability (1-u)(1-T) that the contact was 
infected but did not transmit the disease plus the probability u that the contact was not 
infected in the first place. Thus, a randomly chosen vertex of degree k will become 
infected with probability 

 !
k
= "

k
= 1# (1# T + Tu)

k . (28) 
 
Frailty and interference [55]. If hosts are immunized following infection, an epidemic 
will change the structure of the epidemiologically active network (the remaining 
susceptible nodes and the edges that connect them). We characterize the structural 
evolution of a network due to an epidemic in terms of frailty—the degree to which highly 
connected individuals are more vulnerable to infection, and interference—the extent to 
which the epidemic cuts off connectivity among the susceptible population that remains 
following an epidemic. For a vertex that never becomes infected during an epidemic, we 
can distinguish between its original degree k and its degree in the residual network 
consisting of all nodes that remain uninfected by the epidemic, kr. To understand the 
structural evolution of the network we derive two new network statistics: the mean 
original degree of individuals remaining in the residual network 

� 

k
r
 and the mean 

residual degree of the individuals remaining in the residual network 

� 

k
r r

.  
Recall that v

k
 is the probability that a randomly chosen vertex of degree k will 

become infected in an outbreak. The proportion of individuals with original degree k who 

remain in the residual network after an epidemic is given by qk =
pk (1! vk )

pj (1! vj )
j

"
, and thus 

the mean original degree in the residual network is given by  

 k
r
= kqk =

k

!
kpk (1" vk )!
pk (1" vk )!

. (29) 

To calculate the residual degree, we partition the original network into the 
vertices that are infected during the epidemic and those that remain uninfected, and then 
calculate the fraction of edges in the original network that begin and end in the uninfected 
set. Each edge in the network has two ends called stubs. Thus a node with degree k will 
have exactly k stubs attached to it, and the total number of stubs in the network is 
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N kpk!  where N is the number of nodes in the network. For every one of the 

approximately N pkvk!  nodes in the infected partition, disease transmission to that node 
will necessarily have occurred along an edge with both an origin and destination stub 
(with the exception of the first infection. For simplicity, we ignore this exception.)  Thus 
N pk k ! 2vk( )"  is the total number of stubs in the network excluding those that were a 
conduit for disease transmission during the epidemic. We refer to this quantity as the total 
number of uninfected stubs. The fraction of uninfected stubs attached to uninfected nodes 
is then 

kpk (1! vk )"
pk k ! 2vk( )"

. 

Assuming that the network is randomly connected with respect to the original 
degree distribution, the fraction of edges that connect uninfected nodes to each other is 
this quantity squared. Thus, the average residual degree in the residual network is this 
fraction multiplied by the total number of stubs and divided by the number of nodes in 
the residual network, 

k
r r

=
kpk (1! vk )"
pk (k ! 2vk )"

#

$
%

&

'
(

2

N pk (k ! 2vk )"
N pk (1! vk )"

#

$
%

&

'
( =

kpk (1! vk )"( )
2

pk (k ! 2vk )" pk (1! vk )"
. (30) 

 Finally, we define frailty to be the difference between the mean original degree in the 
original network and the mean original degree in the residual network, scaled by the 
mean original degree,  

 ! =
k " k

r

k
. (31) 

This parameter quantifies the extent to which high degree individuals are preferentially 
infected during an epidemic. We define interference to be the scaled difference between 
the mean original degree in the residual network and the mean residual degree in the 
residual network,  

 ! =
k

r
" k

r r

k
. (32) 

This quantity is the extent to which the epidemic has cut off connectivity among the 
remaining susceptible population. 
 
Epidemiological dynamics on random networks. All of the quantities above pertain to the 
final outcome of an outbreak or epidemic. Erik Volz has recently developed a system of 
nonlinear differential equations to model the dynamical progression of a disease 
spreading through a random network with arbitrary degree distributions [56]. His model 
considers the state of each edge and each stub (one end of an edge) in the network. An 
edge is considered occupied if it has ever been a conduit for disease transmission, 
refractory if it is connected to a recovered vertex and is not occupied, and susceptible if it 
is neither occupied nor refractory. The state of stub depends on the state of its edge and 
on which end of the edge it occupies. The four equations of the model track the changing 
distribution of edge and stub states as disease percolates through the network. This model 
provides important insight into the interaction between population structure and 
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epidemiological dynamics and will be an important tool for optimizing the timing and 
targets of control measures. 
 
Predictions on more complex contact networks 
Newman calculated the basic epidemiological quantities for random networks in which 
transmission rate is correlated with the degree of either the infecting vertex or the vertex 
becoming infected [35]. We have subsequently made similar calculations for bipartite 
[43] and semi-directed contact networks [42]. Let us briefly consider some interesting 
features of disease transmission on semi-directed networks.  

In a semi-directed network, each vertex has an undirected degree representing the 
number of undirected edges joining the vertex to other vertices as well as both an in-
degree and an out-degree representing the number of directed edges incoming from other 
individuals and outgoing to other individuals respectively. The undirected-degree and in-
degree indicate how many contacts can spread disease to the individual, and thus is 
related to the likelihood that an individual will become infected during an epidemic. The 
undirected-degree and out-degree indicate how many contacts may be infected by that 
individual should he or she become infected, and thus is related to the likelihood that an 
individual will contribute to an epidemic. The semi-directed degree distribution is the 
joint probability distribution 

� 

p jkm
 that a vertex has j incoming edges, k outgoing edges, 

and m undirected edges.  
Our derivations in [42] reveal that semi-directed networks are more complicated 

than undirected networks in two important respects. First, there can be two different 
distributions of transmission rates—one for the directed edges and one for the undirected 
edges. When these distributions differ, the epidemic threshold is no longer a single value 
but a line dividing the two-dimensional space of transmission rates into a region in which 
there are only small outbreaks that die out before reaching a sizable fraction of the 
population and another region in which an epidemic is possible.  

Second, recall that in an undirected network the probability of an epidemic and 
the expected fraction of the network infected during an epidemic are equal. In a semi-
directed network, however, when the in-degree and out-degree distributions differ, then 
so do the probability of an epidemic and the expected incidence should one occur. These 
quantities are equivalent to the fraction of vertices from which an extensive numbers of 
others can be reached by following occupied edges and the fraction of vertices contained 
in such an extensive interconnected group, respectively. In the language of percolation, 
these are the giant strongly connected component (GSCC) plus the giant in-component 
(GIN) and the GSCC plus the giant out-component (GOUT) defined by occupied edges. 
Figure 4 illustrates the component structure of semi-directed networks. The relative size 
of the region shaded in vertical lines indicates the probability that any single infection 
will lead to a widespread epidemic, and the relative size of the region shaded in 
horizontal lines indicates the expected fraction of the population that will become 
infected during such an epidemic. 
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Figure 4. Structure of a semi-directed network. The largest set of vertices in which 
you can move between any two by following edges in the correct direction is the giant 
strongly connected component (GSCC). The set of vertices not contained in the GSCC 
that can be reached by following edges in the correct direction from the GSCC is called 
the giant out-component (GOUT). The set of vertices not contained in the GSCC from 
which the GSCC can be reached by following edges in the correct direction is called the 
giant in-component (GIN). Vertices that are not in the GSCC, GIN, or GOUT but can 
either be reached from the GIN or can reach the GOUT are in the tendrils of the network. 
 
Evaluating control strategies 
A primary public health goal is to bring disease from above an epidemic threshold value 
to below the threshold value, thereby eliminating the threat of a large-scale epidemic. 
This can be achieved through interventions that either directly impact the infectiousness 
of the pathogen, modify patterns of interaction so that the pathogen cannot easily spread 
through the population, or immunize segments of the population. We call these three 
forms of intervention transmission reducing, contact reducing, and immunizing [57]. 
 Transmission reducing interventions introduce physical barriers to interrupt the 
spread of respiratory droplets or other infectious particles (e.g. face masks, gowns and 
gloves, hand hygeine, disinfection of animate objects). These interventions are modeled 
by reducing Tij – the probability of transmission from vertex i to vertex j – at an 
appropriate subset of vertices.  
 Contact reducing interventions include isolation of infected persons, quarantine of 
persons during their incubation period, patient and/or staff cohorting in hospitals, closing 
public spaces (e.g. schools). These interventions are modeled by removing appropriate 
edges between vertices. For example, one can model school closures in an urban contact 
network by removing all edges that represent contacts between students, teachers, staff, 
etc. that take place during school.  
 Immunizing interventions include prophylactic medication and diverse 
vaccination strategies (e.g. ring vaccination – vaccinating individuals in contact with the 
identified infected case, targeted vaccination – vaccinating specific groups of individuals 
based on risk factors such as age, health, and place of employment, and general 
vaccination). Vaccination prior to an outbreak is tantamount to removing the immunized 
individuals from the network entirely, and thus is modeled by removing vertices 
corresponding to those individuals. 
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To evaluate candidate control measures, we first modify the contact network 
accordingly, and then quantify the impact of these changes on the size of an outbreak and 
demographic distribution of infections, identify segments of the population where 
compliance is most critical to successful control, and predict the individual and social 
benefits of complying with control measures. We will conclude with two practical 
examples.  
 
Example 1: Controlling walking pneumonia outbreaks in closed settings 
Walking pneumonia is a relatively mild form of pneumonia that spreads rapidly in closed 
settings such as hospitals, nursing homes, military communities, and college campuses.  
As with many diseases, conducting human experiments to test control measures is often 
infeasible or unethical. In collaboration with U.S. Centers for Disease Control and 
Prevention (CDC) officials we built some of the first network-based models of health-
care settings with which we evaluated candidate strategies [43]. This work led the CDC 
to reject prior candidate strategies (including isolation of sick patients and antibiotic 
prophylaxis) in favor of the following intuitive yet previously overlooked strategy: upon 
the first diagnosis of walking pneumonia, reassign caregivers so that they limit their 
interactions to fewer wards. Although intuitive in retrospect, this insight came directly 
from analyzing disease transmission in a realistic model of the underlying network of 
interactions. 

Example 2: Optimal distribution of influenza vaccines 
Pandemic influenza is characterized by wide geographic person-to-person spread of a 
novel strain toward which the population has no immunity. The three major pandemics of 
the 20th century, in 1918, 1957 and 1968, collectively caused at least 600,000 deaths in 
the US and over 40 million deaths worldwide. Between major pandemics, the US 
experiences seasonal outbreaks of interpandemic flu that kill over 30,000 people 
annually.  
 The threat of an avian influenza pandemic and the 2004-2005 influenza vaccine 
supply shortage in the United States has sparked a debate about optimal vaccination 
strategies to reduce the burden of morbidity and mortality caused by the influenza virus. 
During the 2004-2005 shortage, the CDC restricted influenza vaccination to those most at 
risk for hospitalization and death — healthy infants, elderly, and individuals with chronic 
illnesses. These demographics, however, are not the primary spreaders of the influenza 
virus. Influenza outbreaks hinge, instead, on transmission by healthy school children [58-
61], college students, and employed adults who may have many daily contacts and are 
more mobile [62].  Thus epidemiologists have suggested an alternative approach: 
vaccinate school-age children to slow the spread of the disease and thereby indirectly 
decrease mortality [63-65]. Several empirical studies support this strategy [66, 67]. 
Recently, Longini et al. used mathematical models to show that vaccinating 80% of all 
school-age children is almost as effective as vaccinating 80% of the entire population 
[63]. School-based vaccination programs have the additional benefits of high coverage, 
high efficacy and minimal side effects [68]. In a similar spirit, others have suggested 
contact-based priorities that target individuals with the highest numbers of potentially 
disease causing contacts [69-71], although this strategy may be difficult to implement. 
 Using an urban contact network based on demographic data for the city of 
Vancouver (with 260,000 individuals in 100,000 households), we have quantitatively 
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compared four strategies for both interpandemic and pandemic influenza [72]: (1) a 
mortality-based strategy that targets demographics with highest mortality rates (infants, 
elderly, and health care workers for interpandemic flu; and infants, adults, and health-
care workers for pandemic flu); (2) a morbidity-based strategy, similar to the priorities 
suggested by Longini and Halloran [64] and Monto et al. [66], that targets school-aged 
children; (3) a mixed strategy that targets demographics with high attack rates (children) 
and high mortality rates (infants and elderly for interpandemic flu; infants and adults for 
pandemic flu); and (4) an idealized strategy that removes a fraction of the most connected 
individuals. For each of these strategies, we model immunization of 13% of the total 
population, based on reported coverage and efficacy levels for the targeted demographics 
[68, 73]. 
 In contrast to prior studies [63], this study considers a relatively large population and 
the entire spectrum of viral transmission rates estimated for various influenza strains. As 
illustrated in Figure 5, the optimal strategy appears to depend critically on the viral 
transmissibility (reproductive rate) of the virus, with morbidity-based strategies 
outperforming mortality-based and mixed strategies for moderately transmissible strains, 
while the reverse is true for highly transmissible strains. This result holds for both 
interpandemic flu and pandemic flu. Furthermore, delays in vaccination and multiple 
introductions of disease into the community decrease the relative effectiveness of 
morbidity-based strategies. Thus, mortality-based strategies may be the prudent choice 
for outbreaks of new or atypical strains of influenza, when public health officials may not 
have reliable estimates for all (or any) of the first three inputs, and vaccination may be 
delayed. When reliable estimates of the key inputs are available significantly prior to an 
outbreak, then this approach can be applied to design optimal (rather than just prudent) 
priorities.  

 
Figure 5. Expected mortality under different vaccination strategies for epidemic 
(left) and pandemic (right) influenza. Blue arrows mark transition between mildly-
contagious diseases which are better controlled by morbitidy-based interventions and 
more highly contagious diseases which are better controlled by motality-based 
interventions. The brown arrows along the x-axis give the range of transmission rates 
estimated from influenza data from annual epidemics (left) and the 1918 pandemic 
(right). 
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Conclusions 
Mathematical epidemiology continues to evolve, offering more detailed forecasting and 
more effective control. Much of the recent progress has been fueled by the importation of 
relatively simple ideas from dynamical systems, probability theory and statistical 
mechanics. Despite these steps forward, infectious disease control is more often that not, 
based on intuition rather than quantitative reasoning. This is particularly true for newly 
emerging diseases, for which we know little about the natural history and epidemiology 
of the pathogen. The variable public health response to SARS provides a compelling 
example of such uncertainty. When SARS emerged as a global threat in March 2003 [19], 
the WHO and other agencies issued travel warnings for affected cities. Hong Kong, 
Singapore and China closed schools [74]. A U.S. university denied attendance to students 
from China [75]. Public health authorities worldwide put thousands under quarantine 
[76]. Patients were strictly isolated [77] and specific hospitals in some cities were 
designated to receive SARS cases [78]. 
 Contact network epidemiology can provide quantitatively grounded guidance for 
public health officials facing newly emerging diseases like SARS and avian influenza. 
Consider the previously cited analysis of flu vaccine strategies [72]. In contrast to other 
published mathematical approaches to this problem, our analytical methods have two 
advantages. They simultaneously capture realistic diversity in contact patterns ignored by 
many compartmental models and shortcut the extensive computer simulations required by 
agent-based models. In general, these advantages enable highly detailed and systematic 
consideration across several disease strains and intervention strategies. In the case of flu, 
such a study yielded important insight. If faced with a limited vaccine supply for either an 
interpandemic or pandemic strain of flu, morbidity-based strategies (e.g., targeting school 
children) are predicted to outperform mortality-based strategies (e.g., targeting elderly 
and infants) for strains that are mildly contagious, while the reverse is true for moderately 
to highly contagious strains. Furthermore, mortality-based strategies are generally 
advisable for populations experiencing repeated introductions of disease from other 
communities or delayed vaccination. This suggests that the US Centers for Disease 
Control’s 2004 decision to prioritize the very young, the old, and the 
immunocompromised – those most at risk for complications from flu – is generally more 
prudent than the recently promoted alternative strategy of vaccinating school-children.  
 This methodology also sheds light on the incompatability between early estimates 
of R0 for SARS and the case count in China (discussed above). This likely stemmed from 
the anomalously high contact rates in the hospital and apartment building upon which the 
R0 estimates were based. Equation (22) clarifies that the basic reproductive rate of a 
disease is context dependent, that is, it fundamentally depends on the contact patterns of 
the population through which it spreads. Thus, while the SARS estimates may be valid 
for unusually crowded settings, they probably do not hold for typical rural or urban 
communities in general, like those through which SARS initially spread in China. 
 This example suggests that the emphasis on estimating the R0 for an infectious 
disease may be misguided. Estimating the average transmissibility T instead of R0 may be 
more valuable. This means reporting not just the number of new infections per case, but 
also the total estimated number of contacts during the infectious period of that case. 
Given the primary role of contact tracing in infectious disease control, the relevant data is 
often collected. Unlike R0, T can be justifiably extrapolated from one location to another 
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even if the contact patterns are quite disparate. We offer a simple example to illustrate the 
benefits of measuring T. Suppose we measure R0 =2.7 in a hospital where the average 
individual comes in close contact with 100 other individuals. Then the probability that an 
individual will catch the disease from an infected contact is just 2.7% or, in network 
terms, T=.027. Now suppose the typical individual in the general population has 10 close 
contacts that could potentially lead to the spread of a disease. If we extrapolate R0=2.7 to 
the general public, then we predict that, on average, 2.7 out of every 10 contacts or 27% 
of contacts become infected. However, if we extrapolate T=.027 to the general public we 
still have only 2.7% of contacts becoming infected, which gives us a much reduced 
expectation for the spread of the disease. 
 In closing, mathematical epidemiology is a rapidly developing field that thrives 
on collaborations among scientists, mathematicians, and public health officials. Contact 
network epidemiology is a particularly promising approach in which progress is fueled by 
both scientific curiosity and public health concerns. As demonstrated by the variable 
response to SARS, there is need for greater quantitative reasoning in public health. The 
onus is the modelers not only to make technical advances, but also to demonstrate the 
utility and accessibility of our models. 
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SMALL GAPS BETWEEN PRIME NUMBERS:

THE WORK OF GOLDSTON-PINTZ-YILDIRIM

K. Soundararajan

Introduction. In early 2005, Dan Goldston, János Pintz, and Cem Yıldırım [12] made a
spectacular breakthrough in the study of prime numbers. Resolving a long-standing open
problem, they proved that there are infinitely many primes for which the gap to the next
prime is as small as we want compared to the average gap between consecutive primes.
Before their work, it was only known that there were infinitely many gaps which were about
a quarter the size of the average gap. The new result may be viewed as a step towards the
famous twin prime conjecture that there are infinitely many prime pairs p and p + 2; the
gap here being 2, the smallest possible gap between primes1. Perhaps most excitingly, their
work reveals a connection between the distribution of primes in arithmetic progressions
and small gaps between primes. Assuming certain (admittedly difficult) conjectures on the
distribution of primes in arithmetic progressions, they are able to prove the existence of
infinitely many prime pairs that differ by at most 16. The aim of this article is to explain
some of the ideas involved in their work.

Let us begin by explaining the main question in a little more detail. The number of
primes up to x, denoted by π(x), is roughly x/ log x for large values of x; this is the
celebrated Prime Number Theorem2. Therefore, if we randomly choose an integer near
x, then it has about a 1 in log x chance of being prime. In other words, as we look at
primes around size x, the average gap between consecutive primes is about log x. As
x increases, the primes get sparser, and the gap between consecutive primes tends to
increase. Here are some natural questions about these gaps between prime numbers. Do
the gaps always remain roughly about size log x, or do we sometimes get unexpectedly large
gaps and sometimes surprisingly small gaps? Can we say something about the statistical
distribution of these gaps? That is, can we quantify how often the gap is between, say,
α log x and β log x, given 0 ≤ α < β? Except for the primes 2 and 3, clearly the gap
between consecutive primes must be even. Does every even number occur infinitely often
as a gap between consecutive primes? For example, the twin prime conjecture says that the
gap 2 occurs infinitely. How frequently should we expect the occurrence of twin primes?

Number theorists believe they know the answers to all these questions, but cannot
always prove that the answers are correct. Before discussing the answers let us address a

The author is partially supported by the National Science Foundation.
1apart from the gap between 2 and 3, of course!
2Here, and throughout, log stands for the natural logarithm.
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possible meta-question. Problems like twin primes, and the Goldbach conjecture involve
adding and subtracting primes. The reader may well wonder if such questions are natural,
or just isolated curiosities. After all, shouldn’t we be multiplying with primes rather than
adding/subtracting them? There are several possible responses to this objection.

Firstly, many number theorists and mathematical physicists are interested in under-
standing spacing statistics of various sequences of numbers occuring in nature. Examples
of such sequences are prime numbers, the ordinates of zeros of the Riemann zeta-function
(see [21] and [23]), energy levels of large nuclei, the fractional parts of

√
n for n ≤ N (see

[7]), etc. Do the spacings behave like the gaps between randomly chosen numbers, or do
they follow more esoteric laws? Our questions on gaps between primes fit naturally into
this framework.

Secondly, many additive questions on primes have applications to other problems in
number theory. For example, consider primes p for which 2p+1 is also a prime. Analogously
to twin primes, it is conjectured that there are infinitely many such prime pairs p and 2p+1.
Sophie Germain came up with these pairs in her work on Fermat’s last theorem. If there are
infinitely many Sophie Germain pairs p and 2p + 1 with p lying in a prescribed arithmetic
progression, then Artin’s primitive root conjecture — every positive number a which is
not a perfect square is a primitive root3 for infinitely many primes — would follow. For
example, if p lies in the progression 3 (mod 40), and 2p+1 is prime, then 10 is a primitive
root modulo 2p+1, and as Gauss noticed (and the reader can check) the decimal expansion
of 1/(2p+1) has exactly 2p digits that repeat. There are also connections between additive
questions on primes and zeros of the Riemann zeta and other related functions. Precise
knowledge of the frequency with which prime pairs p and p+2k occur (for an even number
2k) has subtle implications for the distribution of spacings between ordinates of zeros of
the Riemann zeta-function (see [1] and [23]). Conversely, weird (and unlikely) patterns in
zeros of zeta-like functions would imply the existence of infinitely many twin primes (see
[17])!

Finally, these ‘additive’ questions on primes are lots of fun, have led to much beautiful
mathematics, and inspired many generations of number theorists!

Cramér’s model. A useful way to think about statistical questions on prime numbers is
the random — also known as Cramér — model. The principle, based on the fact that a
number of size about n has a 1 in log n chance of being prime, is this:

The indicator function for the set of primes (that is, the function whose value at n
is 1 or 0 depending on whether n is prime or not) behaves roughly like a sequence of
independent, Bernoulli random variables X(n) with parameters 1/ log n (n ≥ 3). In other
words, for n ≥ 3, the random variable X(n) takes the value 1 (n is ‘prime’) with probability
1/ log n, and X(n) takes the value 0 (n is ‘composite’) with probability 1 − 1/ log n. For
completeness, let us set X(1) = 0, and X(2) = 1.

This must be taken with a liberal dose of salt: a number is either prime or composite,
probability does not enter the picture! Nevertheless, the Cramér model is very effective
in predicting answers, although it does have its limitations (for example, if n > 2 is prime

3That is, a generates the multiplicative group of residues modulo that prime.
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then certainly n + 1 is not, so the events of n and n + 1 being prime are clearly not
independent) and sometimes leads to incorrect predictions.

Let us use the Cramér model to predict the probability that, given a large prime p, the
next prime lies somewhere between p + α log p and p + β log p. In the Cramér model, let p
be large and suppose that X(p) = 1. What is the probability that X(p + 1) = X(p + 2) =
. . . = X(p+h−1) = 0 and X(p+h) = 1, for some integer h in the interval [α log p, β log p]?
We will find this by calculating the desired probability for a given h in that interval, and
summing that answer over all such h. For a given h the probability we seek is(

1− 1
log(p + 1)

)(
1− 1

log(p + 2)

)
· · ·

(
1− 1

log(p + h− 1)

) 1
log(p + h)

.

Since p is large, and h is small compared to p (it’s only of size about log p) we estimate
that log(p + j) is very nearly log p for j between 1 and h. Therefore our probability above
is approximately (1− 1/ log p)h−1(1/ log p), and since 1− 1/ log p is about e−1/ log p, this is
roughly

e−(h−1)/ log p
( 1

log p

)
.

Summing over the appropriate h, we find that the random model prediction for the prob-
ability that the next prime larger than p lies in [p + α log p, p + β log p] is

∑
α log p≤h≤β log p

e−(h−1)/ log p 1
log p

≈
∫ β

α

e−tdt,

since the left hand side looks like a Riemann sum approximation to the integral.

Conjecture 1. Given an interval 0 ≤ α < β, as x →∞ we have

1
π(x)

#{p ≤ x : pnext ∈ (p + α log p, p + β log p)} →
∫ β

α

e−tdt,

where pnext denotes the next prime larger than p. Here, and throughout the paper, the
letter p is reserved for primes.

We have deliberately left the integral unevaluated, to suggest that there is a probability
density e−t of finding (pnext− p)/ log p close to t. If we pick N random numbers uniformly
and independently from the interval [0, N ], and arrange them in ascending order, then,
almost surely, the consecutive spacings have the probability density e−t. Thus, the Cramér
model indicates that the gaps between consecutive primes are distributed like the gaps
between about x/ log x numbers chosen uniformly and independently from the interval
[0, x]. In probability terminology, this is an example of what is known as a ‘Poisson
process.’

There are several related predictions we could make using the random model. For
example, choose a random number n below x, and consider the interval [n, n + log n]. The
expected number of primes in such an interval is about 1, by the prime number theorem.
But of course some intervals may contain no prime at all while others may contain several
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primes. Given a non-negative number k, what is the probability that such an interval
contains exactly k primes? The reader may enjoy the pleasant calculation which predicts
that, for large x, the answer is nearly 1k

k! e
−1 — the answer is written so as to suggest a

Poisson distribution with parameter 1.
Conjecture 1 makes clear that there is substantial variation in the gaps between con-

secutive primes. Given any large number Λ we expect that with probability about e−Λ (a
tiny, but positive probability), the gap between consecutive primes is more than Λ times
the average gap. Given any small positive number ε we expect that with probability about
1− e−ε (a small, but positive probability), the gap between consecutive primes is at most
ε times the usual gap. Thus, two consequences of Conjecture 1 are

lim sup
p→∞

pnext − p

log p
= ∞,

and
lim inf
p→∞

pnext − p

log p
= 0.

Large gaps. Everyone knows how to construct arbitrarily long intervals of composite
numbers: just look at m! + 2, m! + 3, . . . , m! + m for any natural number m ≥ 2. This
shows that lim supp→∞(pnext − p) = ∞. However, if we think of m! being of size about x
then a little calculation with Stirling’s formula shows that m is about size (log x)/ log log x.
We realize, with dismay, that the ‘long’ gap we have constructed is not even as large as
the average gap of log x given by the prime number theorem. A better strategy is to take
N to be the product of the primes that are at most m, and note again that N + 2, . . . ,
N +m must all be composite. It can be shown that N is roughly of size em. Thus we have
found a gap at least about log N , which is better than before, but still not better than
average. Can we modify the argument a little? In creating our string of m− 1 consecutive
composite numbers, we forced these numbers to be divisible by some prime below m. Can
we somehow use primes larger than m to force N +m+1, N +m+2, etc., to be composite,
and thus create longer chains of composite numbers? In the 1930s, in a series of papers
Westzynthius [27], Erdős [8] and Rankin [25] found ingenious ways of making this idea
work. The best estimate was obtained by Rankin, who proved that there exists a positive
constant c such that for infinitely many primes p,

pnext − p > c log p
(log log p) log log log log p

(log log log p)2
.

The fraction above does grow4, and so

lim sup
p→∞

pnext − p

log p
= ∞,

as desired. We should remark here that, although very interesting work has been done on
improving the constant c above, Rankin’s result provides the largest known gap between

4although so slowly that, as the joke goes, no one has observed it doing so!
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primes. Erdős offered $10,000 for a similar conclusion involving a faster growing function.
Bounty hunters may note that the largest Erdős prize that has been collected is $1,000, by
Szemeredi [26] for his marvellous result on the existence of long arithmetic progressions in
sets of positive density.

What should we conjecture for the longest gap between primes? Cramér’s model sug-
gests that

(1) lim sup
p→∞

pnext − p

(log p)2
= c,

with c = 1. The rationale behind this is that the probability that X(n) = 1 and that the
next ‘prime’ is bigger than n+(1+ε) log2 n is about 1/(n1+ε log n), by a calculation similar
to the one leading up to Conjecture 1. If ε is negative the sum of this probability over all
n diverges, and the Borel-Cantelli lemma tells us that, almost surely, such long gaps occur
infinitely often. If ε is positive, the corresponding sum converges and the Borel-Cantelli
lemma says that almost surely we get these longer gaps only a finite number of times.
More sophisticated analysis has however revealed that (1) is one of those questions which
expose the limitations of the Cramér model. It appears unlikely that the value of c is 1 as
predicted by the Cramér model, and that c should be at least 2e−γ ≈ 1.1229 where γ is
Euler’s constant. No one has felt brave enough to suggest what the precise value of c should
be! This is because (1) is far beyond what ‘reasonable’ conjectures such as the Riemann
hypothesis would imply. An old conjecture says that there is always a prime between two
consecutive squares. Even this lies (slightly) beyond the reach of the Riemann hypothesis,
and all it would imply is that

lim sup
p→∞

pnext − p
√

p
≤ 4;

a statement much weaker than (1) with a finite value of c.
We cut short our discussion on long gaps here, since our focus will be on small gaps;

for more information on these and related problems, we refer the reader to the excellent
survey articles by Heath-Brown [18] and Granville [15].

Small gaps. Since the average spacing between p and pnext is about log p, clearly

lim inf
p→∞

pnext − p

log p
≤ 1.

Erdős [9] was the first to show that the lim inf is strictly less than 1. Other landmark
results in the area are the works of Bombieri and Davenport [3], Huxley [20], and Maier
[22], who introduced several new ideas to this study and progressively reduced the lim inf
to ≤ 0.24 . . . . Enter Goldston, Pintz, and Yıldırım:

Theorem 1. We have
lim inf
p→∞

pnext − p

log p
= 0.

So there are substantially smaller gaps between primes than the average! What about
even smaller gaps? Can we show that lim infp→∞(pnext − p) < ∞ (bounded gaps), or
perhaps even lim infp→∞(pnext − p) = 2 (twin primes!)?
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Theorem 2. Suppose the Elliott-Halberstam conjecture on the distribution of primes in
arithmetic progressions holds true. Then

lim inf
p→∞

(pnext − p) ≤ 16.

What is the Elliott-Halberstam conjecture? One valuable thing that we know about
primes is their distribution in arithmetic progressions. Knowledge of this, in the form of the
Bombieri-Vinogradov theorem, plays a crucial role in the proof of Theorem 1. To obtain
the stronger conclusion of Theorem 2, one needs a better understanding of the distribution
of primes in progressions and the Elliott-Halberstam conjecture provides the necessary
stronger input. Vaguely, the Goldston-Pintz-Yıldırım results say that if the primes are
well separated with no small gaps between them, then something weird must happen to
their distribution in progressions.

Given a progression a (mod q) let π(x; q, a) denote the number of primes below x lying
in this progression. Naturally we may suppose that a and q are coprime, else there is at
most one prime in the progression. Now there are φ(q) — this is Euler’s φ-function —
such progressions a (mod q) with a coprime to q. We would expect that each progression
captures its fair share of primes. In other words we expect that π(x; q, a) is roughly
π(x)/φ(q). The prime number theorem in arithmetic progressions tells us that this is true
if we view q as being fixed and let x go to infinity.

In applications, such as Theorem 1, we need information on π(x; q, a) when q is not
fixed, but growing with x. When q is growing slowly, say q is like log x, the prime number
theorem in arithmetic progressions still applies. However if q is a little larger, say q is of size
x

1
3 , then currently we cannot prove the equidistribution of primes in the available residue

classes (mod q). Such a result would be implied by the Generalized Riemann Hypothesis
(indeed for q up to about

√
x), but of course the Generalized Riemann Hypothesis remains

unresolved. In this context, Bombieri and Vinogradov showed that the equidistribution of
primes in progressions holds, not for each individual q, but on average over q (that is, for a
typical q) for q going up to about

√
x. Their result may be thought of as the ‘Generalized

Riemann Hypothesis on average.’
The Elliott-Halberstam conjecture says that the equidistribution of primes in progres-

sions continues to hold on average for q going up to x1−ε for any given positive ε. In
some ways, this lies deeper than the Generalized Riemann Hypothesis which permits only
q ≤

√
x.

We hope that the reader has formed a rough impression of the nature of the assumption
in Theorem 2. We will state the Bombieri-Vinogradov theorem and Elliott-Halberstam
conjecture precisely in the penultimate section devoted to primes in progressions.

The Hardy-Littlewood conjectures. We already noticed a faulty feature of the Cramér
model: given a large prime p, the probability that p + 1 is prime is not 1/ log(p + 1) but 0
because p + 1 is even. Neither would we expect the conditional probability of p + 2 being
prime to be simply 1/ log(p + 2): after all, p + 2 is guaranteed to be odd and this should
give it a better chance of being prime. How should we formulate the correct probability
for p + 2 being prime? More precisely, what should be the conjectural asymptotics for

#{p ≤ x : p + 2 prime}?
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The Cramér model would have predicted that this is about x/(log x)2. While we must
definitely modify this, it also seems reasonable that x/(log x)2 is the right size for the
answer. So maybe the answer is about cx/(log x)2 for an appropriate constant c.

Long ago Hardy and Littlewood [16] figured out what the right conjecture should be.
The problem with the Cramér model is that it treats n and n + 2 as being independent,
whereas they are clearly dependent. If we want n and n + 2 both to be prime, then they
must both be odd, neither of them must be divisible by 3, nor by 5, and so on. If we
choose n randomly, the probability that n and n + 2 are both odd is 1/2. In contrast,
two randomly chosen numbers would both be odd with a 1/4 probability. If neither n nor
n + 2 is divisible by 3 then n must be 2 (mod 3), which has a 1/3 probability. On the
other hand, the probability that two randomly chosen numbers are not divisible by 3 is
(2/3) · (2/3) = 4/9. Similarly, for any prime ` ≥ 3, the probability that n and n+2 are not
divisible by ` is 1− 2/`, which is a little different from the probability (1− 1/`)2 that two
randomly chosen integers are both not divisible by `. For the prime 2 we must correct the
probability 1/4 by multiplying by 2 = (1 − 1/2)(1 − 1/2)−2, and for all primes ` ≥ 3 we
must correct the probability (1− 1/`)2 by multiplying by (1− 2/`)(1− 1/`)−2. The idea
is that if we multiply all these correction factors together then we have accounted for ‘all
the ways’ in which n and n + 2 are dependent, producing the required correction constant
c. Thus the conjectured value for c is the product over primes(

1− 1
2

)(
1− 1

2

)−2 ∏
`≥3

(
1− 2

`

)(
1− 1

`

)−2

.

Let us make a synthesis of the argument above, which will allow us to generalize it. For
any prime ` let ν{0,2}(`) denote the number of distinct residue classes (mod `) occupied
by the numbers 0 and 2. If we want n and n + 2 to be both coprime to ` then n must
n must avoid the residue classes occupied by −0 and −2 (mod `), so that n must lie in
one of `− ν{0,2}(`) residue classes. The probability that this happens is 1− ν{0,2}(`)/`, so
the correction factor for ` is (1 − ν{0,2}(`)/`)(1 − 1/`)−2. As before, consider the infinite
product over primes

S({0, 2}) :=
∏

`

(
1−

ν{0,2}(`)
`

)(
1− 1

`

)−2

.

The infinite product certainly converges: the terms for ` ≥ 3 are all less than 1 in size.
Moreover, it converges to a non-zero number. Note that none of the factors above is zero,
and that for large ` the logarithm of the corresponding factor above is very small — it is
log(1− 1/(`− 1)2) ≈ −1/`2. Thus the sum of the logarithms converges, and the product
is non-zero; indeed S({0, 2}) is numerically about 1.3203. Then the conjecture is that for
large x

#{p ≤ x : p + 2 prime} ∼ S({0, 2}) x

(log x)2
.

Here and below, the notation f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1.
The conjecture generalizes readily: Suppose we are given a set H = {h1, h2, . . . , hk} of

non-negative integers and we want to find the frequency with which n + h1, . . . , n + hk
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are all prime. For a prime number `, we define νH(`) to be the number of distinct residue
classes (mod `) occupied by H. We define the ‘singular series’5

(2) S(H) =
∏

`

(
1− νH(`)

`

)(
1− 1

`

)−k

.

If ` is larger than all elements of H then νH(`) = k, and for such ` the terms in the product
are less than 1. Thus the product converges. When does it converge to a non-zero number?
If νH(`) = ` for some prime ` then one of the terms in our product vanishes, and so our
product must be zero. Suppose none of the terms is zero. For large ` the logarithm of the
corresponding factor is

log
(
1− k

`

)(
1− 1

`

)−k

≈ −k(k + 1)
2`2

,

and so the sum of the logarithms converges, and our product is non-zero. Thus the singular
series is zero if and only if νH(`) = ` for some prime ` — that is, if and only if the numbers
h1, . . . , hk occupy all the residue classes (mod `) for some prime `. In that case, for any
n one of the numbers n + h1, . . . , n + hk must be a multiple of `, and so there are only
finitely many prime k-tuples n + h1, . . . , n + hk.

The Hardy-Littlewood conjecture. Let H = {h1, . . . , hk} be a set of positive integers
such that S(H) 6= 0. Then

#{n ≤ x : n + h1, . . . , n + hk prime} ∼ S(H)
x

(log x)k
.

It is easy to see that S({0, 2r}) 6= 0 for every non-zero even number 2r. Thus the Hardy-
Littlewood conjecture predicts that there are about S({0, 2r})x/(log x)2 prime pairs p and
p+2r with p below x. Further, the number of these pairs for which p+2d is prime for some
d between 1 and r−1 is at most a constant times x/(log x)3. We deduce that there should
be infinitely many primes p for which the gap to the next prime is exactly 2r. Thus every
positive even number should occur infinitely often as a gap between successive primes, but
we don’t know this for a single even number!

For any k, it is easy to find k-element sets H with S(H) 6= 0. For example, take H to
be any k primes all larger than k. Clearly if ` > k then νH(`) ≤ k < `, while if ` ≤ k then
the residue class 0 (mod `) must be omitted by the elements of H (they are primes!) and
so once again νH(`) < `.

We make one final comment before turning (at last!) to the ideas behind the proofs
of Theorems 1 and 2. Conjecture 1 was made on the strength of the Cramér model,
but we have just been discussing how to modify the Cramér probabilities for prime k-
tuples. A natural question is whether the Hardy-Littlewood conjectures are consistent

5The terminology is not entirely whimsical: Hardy and Littlewood originally arrived at their conjecture

through a heuristic application of their ‘circle method.’ In their derivation, S(H) did arise as a series rather

than as our product.
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with Conjecture 1. In a beautiful calculation [11], Gallagher showed that Conjecture 1 can
in fact be obtained starting from the Hardy-Littlewood conjectures. The crucial point in
his proof is that although S(H) is not always 1 (as the Cramér model would have), it is
approximately 1 on average over all k-element sets H with the hj ≤ h. That is, as h →∞,

(3)
∑

1≤h1<h2<...<hk≤h

S({h1, . . . , hk}) ∼
∑

1≤h1<h2<...<hk≤h

1.

The ideas of Goldston, Pintz and Yıldırım. We will start with the idea behind
Theorem 2. Let k be a given positive integer which is at least 2. Let H = {h1 < . . . < hk}
be a set with S(H) 6= 0. We aspire to the Hardy-Littlewood conjecture which says that
there must be infinitely many n such that n + h1, . . . , n + hk are all prime. Since there
are infinitely many primes, trivially at least one of the numbers n + h1, . . . , n + hk is
prime infinitely often. Can we do a little better: can we show that two of the numbers
n+h1, . . . , n+hk are prime infinitely often? If we could, then we would plainly have that
lim infp→∞(pnext − p) ≤ (hk − h1).

How do we detect two primes in n + h1, . . . , n + hk? Let x be large and consider n
varying between x and 2x. Suppose we are able to find a function a(n) which is always
non-negative, and such that, for each j = 1, . . . , k,

(4)
∑

x≤n≤2x
n+hj prime

a(n) >
1
k

∑
x≤n≤2x

a(n).

Then summing over j = 1, . . . , k, it would follow that∑
x≤n≤2x

#{1 ≤ j ≤ k : n + hj prime} a(n) >
∑

x≤n≤2x

a(n),

so that for some number n lying between x and 2x we must have at least two primes among
n + h1, . . . , n + hk.

Of course, the question is how do we find such a function a(n) satisfying (4)? We would
like to take a(n) = 1 if n + h1, . . . , n + hk are all prime, and 0 otherwise. But then
evaluating the problem of evaluating

∑
x≤n≤2x a(n) is precisely that of establishing the

Hardy-Littlewood conjecture.
The answer is suggested by sieve theory, especially the theory of Selberg’s sieve. Sieve

theory is concerned with finding primes, or numbers without too many prime factors,
among various integer sequences. Some of the spectacular achievements of this theory are
Chen’s theorem [5] that for infinitely many primes p, the number p + 2 has at most two
prime factors; the result of Friedlander and Iwaniec [10] that there are infinitely many
primes of the form x2 + y4; and the result of Heath-Brown [19] that there are infinitely
many primes of the form x3 + 2y3. We recall here very briefly the idea behind Selberg’s
sieve.

Interlude on Selberg’s sieve. We illustrate Selberg’s sieve by giving an upper bound
on the number of prime k-tuples n+h1, . . . , n+hk with x ≤ n ≤ 2x. The idea is to find a
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‘nice’ function a(n) which equals 1 if n + h1, . . . , n + hk are all prime, and is non-negative
otherwise. Then

∑
x≤n≤2x a(n) provides an upper bound for the number of prime k-tuples.

Of course, we must choose a(n) appropriately, so as to be able to evaluate
∑

x≤n≤2x a(n).
Selberg’s choice for a(n) is as follows: Let λd be a sequence of real numbers such that

(5) λ1 = 1, and with λd = 0 for d > R.

Choose6

(6) a(n) =
( ∑

d|(n+h1)...(n+hk)

λd

)2

.

Being a square, a(n) is clearly non-negative. If R < x ≤ n and n + h1, . . . , n + hk are
all prime, then the only non-zero term in (6) is for d = 1 and so a(n) = 1 as desired.
Therefore we assume that R < x below. The goal is to choose λd so as to minimize∑

x≤n≤2x a(n). There is an advantage to allowing R as large as possible, since this gives
us greater flexibility in choosing the parameters λd. On the other hand it is easier to
estimate

∑
x≤n≤2x a(n) when R is small since there are fewer divisors d to consider. In

the problem at hand, it turns out that we can choose R roughly of size
√

x. This choice
leads to an upper bound for the number of prime k-tuples of about 2k · k!S(H)x/(log x)k.
That is, a bound about 2k · k! times the conjectured Hardy-Littlewood asymptotic.

Expanding out the square in (6) and summing over n, we must evaluate∑
d1,d2

λd1λd2

∑
x≤n≤2x

d1|(n+h1)···(n+hk)
d2|(n+h1)···(n+hk)

1 =
∑
d1,d2

λd1λd2

∑
x≤n≤2x

[d1,d2]|(n+h1)···(n+hk)

1,

where [d1, d2] denotes the l.c.m. of d1 and d2. The condition [d1, d2]|(n + h1) · · · (n + hk)
means that n must lie in a certain number (say, f([d1, d2])) of residue classes (mod [d1, d2]).
Can we count the number of x ≤ n ≤ 2x lying in the union of these arithmetic progres-
sions? Divide the interval [x, 2x] into intervals of length [d1, d2] with possibly one smaller
interval left over at the end. Each complete interval (and there are about x/[d1, d2] of
these) gives f([d1, d2]) values of n; the last shorter interval contributes an indeterminate
‘error’ between 0 and f([d1, d2]). So, at least if [d1, d2] is a bit smaller than x, we can
estimate the sum over n accurately. Since [d1, d2] ≤ d1d2 ≤ R2, if R is a bit smaller than7
√

x, then the sum over n can be evaluated accurately. Let us suppose that R is about size√
x and that the error terms can be disposed of satisfactorily. It remains to handle the

main term contribution to
∑

x≤n≤2x a(n), namely

(7) x
∑

d1,d2≤R

f([d1, d2])
[d1, d2]

λd1λd2 .

6Below, the symbol a|b means that a divides b.
7To be precise, R must be ≤

√
x/(log x)2k, say.
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The reader may wonder what f([d1, d2]) is. Let us work this out in the case when [d1, d2] is
not divisible by the square of any prime; the other case is more complicated, but not very
important in this problem. If p is a prime and we want p|(n + h1) · · · (n + hk) then clearly
n ≡ −hj (mod p) for some j, so that n lies in one of νH(p) residue classes (mod p). By
the chinese remainder theorem it follows that if [d1, d2]|(n + h1) · · · (n + hk) then n lies in∏

p|[d1,d2]
νH(p) residue classes (mod [d1, d2]). Thus f is a multiplicative function8, with

f(p) = νH(p).
The problem in Selberg’s sieve is to choose λd subject to the linear constraint (5) in

such a way as to minimize the quadratic form (7) (that would give the best upper bound
for

∑
x≤n≤2x a(n)). This can be achieved using Lagrange multipliers, or by diagonalizing

the quadratic form (7). We do not give the details of this calculation but just record the
result obtained. The optimal choice of λd for d ≤ R is given by

λd ≈ µ(d)
( log R/d

log R

)k

,

where µ(d) is the Möbius function.9 With this choice of λd the quantity in (7) is

≈ k!S(H)
x

(log R)k
≈ 2k · k!S(H)

x

(log x)k
.

The appearance at this stage of the Möbius function is not surprising, as it is very inti-
mately connected with primes. For example, the reader can check that

∑
d|m µ(d)(log m/d)k

equals 0 unless m is divisible by at most k distinct prime factors. When m = p1 · · · pk is
the product of k distinct prime factors it equals k!(log p1) · · · (log pk), and there is a more
complicated formula if m is composed of fewer than k primes, or if m is divisible by powers
of primes. Applying this to m = (n + h1) · · · (n + hk), we are essentially picking out prime
k-tuples! The optimum in Selberg’s sieve is a kind of approximation to this identity.

Return to Goldston-Pintz-Yıldırım. We want to find a non-negative function a(n)
so as to make (4) hold. Motivated by Selberg’s sieve we may try to find optimal λd as in
(5) and again choose a(n) as in (6). If we try such a choice, then our problem now is to
maximize the ratio

(8)
( ∑

x≤n≤2x
n+hjprime

a(n)
)/( ∑

x≤n≤2x

a(n)
)
.

We’d like this ratio to be > 1/k. Notice again that it is advantageous to choose R as large
as possible to give greatest freedom in choosing λd, but in order to evaluate the sums above
there may be restrictions on the size of R. In dealing with the denominator we saw that
there is a restriction R ≤

√
x (essentially) and that in this situation the denominator in (8)

is given by the quadratic form (7). We will see below that in dealing with the numerator

8These are functions satisfying f(mn) = f(m)f(n) for any pair of coprime integers m and n.
9µ(d) = 0 if d is divisible by the square of a prime. Otherwise µ(d) = (−1)ω(d) where ω(d) is the

number of distinct primes dividing d.



12 K. SOUNDARARAJAN

of (8), a more stringent restriction on R must be made: we can only take R around size
x

1
4 .
In any case, (8) is the ratio of two quadratic forms, and this ratio needs to be maxi-

mized keeping in mind the linear constraint (5). This optimization problem is more delicate
than the one in Selberg’s sieve. It is not clear how to proceed most generally: Lagrange
multipliers become quite messy, and we can’t quite diagonalize both quadratic forms si-
multaneously. It helps to narrow the search to a special class of λd. Motivated by Selberg’s
sieve we will search for the optimum among the choices (for d ≤ R)

λd = µ(d)P
( log R/d

log R

)
.

Here P (y) denotes a polynomial such that P (1) = 1 and such that P vanishes to order at
least k at y = 0. The condition that P be a polynomial can be relaxed a bit but this is
not important. It is however vital for the analysis that P should vanish to order k at 0.
Our aim is to find a choice for P which makes the ratio in (8) large.

With this choice of λd we can use standard arguments to evaluate (7) and thus the
denominator in (8). Omitting the long, technical details, the answer is that for R a little
below

√
x, the denominator in (8) is

(9) ∼ x

(log R)k
S(H)

∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy,

where P (k) denotes the k-th derivative of the polynomial P .
To handle the numerator of (8), we expand out the square in (6) and sum over x ≤ n ≤

2x with n + hj being prime. Thus the numerator is∑
d1,d2≤R

λd1λd2

∑
x≤n≤2x

[d1,d2]|(n+h1)···(n+hk)
n+hjprime

1.

How can we evaluate the inner sum over n? As we saw before, the condition [d1, d2] divides
(n+h1) · · · (n+hk) means that n lies in f([d1, d2]) arithmetic progressions (mod [d1, d2]).
For each of these progressions we must count the number of n such that n + hj is prime.
Of course, for some of the f([d1, d2]) progressions it may happen that n+hj automatically
has a common factor with [d1, d2] and so cannot be prime. Suppose there are g([d1, d2])
progressions such that n + hj is guaranteed to be coprime to [d1, d2]. For each of these
progressions we are counting the number of primes between x and 2x lying in a reduced
residue class10 (mod [d1, d2]). Given a modulus q, the prime number theorem in arithmetic
progressions says that the primes are roughly equally divided among the reduced residue
classes (mod q). Thus, ignoring error terms completely, we expect the sum over n to be
about

π(2x)− π(x)
φ([d1, d2])

g([d1, d2]).

10A reduced residue class (mod q) is a progression a (mod q) where a is coprime to q.
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The φ([d1, d2]) in the denominator is Euler’s φ-function: for any integer m, φ(m) counts
the number of reduced residue classes (mod m). Since π(2x)− π(x) is about x/ log x we
‘conclude’ that the numerator in (8) is about

(10)
x

log x

∑
d1,d2≤R

λd1λd2

g([d1, d2])
φ([d1, d2])

.

This is the expression analogous to (7) for the numerator.
Two big questions: what is the function g, and for what range of R can we handle the

error terms above? Let us first describe g. As with f let us suppose that [d1, d2] is not
divisible by the square of any prime. As noted earlier, if p is prime and p|(n+h1) · · · (n+hk)
then n lies in one of νH(p) residue classes (mod p). If we want n + hk to be prime, then
one of these residue classes, namely n ≡ −hj (mod p), must be forbidden. Thus there are
now νH(p) − 1 residue classes available for n (mod p). In other words, g(p) = νH(p) − 1,
and the chinese remainder theorem shows that g must be defined multiplicatively:

g([d1, d2]) =
∏

p|[d1,d2]

(νH(p)− 1).

We will postpone the detailed discussion on primes in arithmetic progressions which is
needed to handle the error terms above. For the moment, let us note that the Bombieri-
Vinogradov theorem (which is a powerful substitute for the generalized Riemann hypothesis
in many applications) allows us to control π(x; q, a) (the number of primes up to x which
are congruent to a (mod q)), on average over q, for q up to about

√
x. Since our moduli

are [d1, d2], which go up to R2, we see that R may be chosen up to about x
1
4 . Conjectures

of Montgomery, and Elliott and Halberstam (discussed below) would permit larger values
of R, going up to x

1
2−ε for any ε > 0.

Thus, with R a little below x
1
4 , the expression (10) does give a good approximation to

the numerator of (8). Now a standard but technical argument can be used to evaluate
(10). As with (9), the answer is

(11) ∼ x

(log x)(log R)k−1
S(H)

∫ 1

0

yk−2

(k − 2)!
P (k−1)(1− y)2dy.

Assuming that S(H) 6= 0, it follows from (9) and (11) that the ratio in (8) is about

(12)
log R

log x

( ∫ 1

0

yk−2

(k − 2)!
P (k−1)(1− y)2dy

)/( ∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy

)
.

This is the moment of truth: can we choose P so as to make this a little larger than 1/k?
Here is a good choice for P : take P (y) = yk+r for a non-negative integer r to be chosen

optimally. After some calculations with beta-integrals, we see that (12) then equals( log R

log x

)( 2(2r + 1)
(r + 1)(k + 2r + 1)

)
.
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This is largest when r is about
√

k/2, and the second fraction above is close to but less
than 4/k. Since we can choose R a little below x

1
4 , the first fraction is close to but less

than 1/4. Thus (12) is very close to, but less than, 1/k. We therefore barely fail to prove
bounded gaps between primes! Of course, we just tried one choice of P ; maybe there is
a better choice which gets us over the edge. Unfortunately, the second fraction in (12)
cannot be made larger than 4/k. If we set Q(y) = P (k−1)(y) then Q is a polynomial, not
identically zero, with Q(0) = 0; for such polynomials Q we claim that the unfortunate
inequality ∫ 1

0

yk−2

(k − 2)!
Q(1− y)2dy <

4
k

∫ 1

0

yk−1

(k − 1)!
Q′(1− y)2dy

holds. The reader can try her hand at proving this.
We now have enough to prove Theorem 2! If we can choose R a little larger than x

1
4

then for suitably large k the quantity in (12) can be made larger than 1/k as desired. If we
allow R = x

1
2−ε as the Elliott-Halberstam conjecture predicts, then with k = 7 and r = 1

we can make (12) nearly 1.05/k > 1/k. Thus, if we take any set H with seven elements
and S(H) 6= 0 then for infinitely many n at least two of the numbers n + h1, . . . , n + hk

are prime! By choosing a more careful polynomial P we can make do with six element sets
H rather than seven. The first six primes larger than 6 are 7, 11, 13, 17, 19, and 23, and
so S({7, 11, 13, 17, 19, 23}) 6= 0. Thus, it follows that — assuming the Elliott-Halberstam
conjecture — there are infinitely many gaps between primes that are at most 16.

What can we recover unconditionally? We are so close to proving Theorem 2 uncondi-
tionally, that clearly some tweaking of the argument must give Theorem 1! The idea here
is to average over sets H. For clarity, let us now denote a(n) above by a(n;H) to exhibit
the dependence on H.

Given ε > 0 we wish to find primes p between x and 2x such that pnext − p ≤ ε log x.
This would prove Theorem 1. Set h = ε log x, and let k be a natural number chosen in
terms of ε, but fixed compared to x. Consider the following two sums:

(13)
∑

1≤h1<h2<...<hk≤h

∑
x≤n≤2x

a(n; {h1, . . . , hk}),

and

(14)
∑

1≤h1<h2<...<hk≤h

∑
1≤`≤h

∑
x≤n≤2x

n+` prime

a(n; {h1, . . . , hk}).

If we could prove that (14) is larger than (13), it would follow that for some n between x
and 2x, there are two prime numbers between n + 1 and n + h, as desired.

Our analysis above already gives us the asymptotics for (13) and (14). Using (9) we see
that the quantity (13) is

∼ x

(log R)k

( ∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy

) ∑
1≤h1<h2<...<hk≤h

S({h1, . . . , hk}),
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and using Gallagher’s result (3) this is

(15) ∼ x

(log R)k

hk

k!

∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy.

Now let us consider (14). Here we distinguish two cases: the case when ` = hj for some
j, and the case when ` 6= hj for all j. The former case is handled by our analysis leading
up to (11). Upon using (3) again, these terms contribute

(16) ∼ k
x

(log x)(log R)k−1

hk

k!

∫ 1

0

yk−2

(k − 2)!
P (k−1)(1− y)2dy.

If we choose P (y) = yk+r as before, we see that (16) is already just a shade below (15), so
we need the slightest bit of extra help from the terms ` 6= hj for any j. If n + ` is prime
note that

a(n; {h1, . . . , hk}) =
( ∑

d|(n+h1)···(n+hk)

λd

)2

=
( ∑

d|(n+h1)···(n+hk)(n+`)

λd

)2

= a(n; {h1, . . . , hk, `}),

since the divisors counted in the latter sum but not the former are all larger than n + ` >
x > R and so λd = 0 for such divisors. This allows us to finesse the calculation by simply
appealing to (11) again, with k replaced by k + 1 and {h1, . . . , hk} by {h1, . . . , hk, `}.
Thus the latter class of integers ` contributes

∼
∑

1≤h1<h2<...<hk≤h

h∑
`=1
` 6=hj

x

(log x)(log R)k
S({h1, . . . , hk, `})

∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy.

Appealing to (3) again — we are now summing over k + 1 element sets but each set is
counted k + 1 times — this is

(17) ∼ x

(log R)k

hk

k!
h

log x

∫ 1

0

yk−1

(k − 1)!
P (k)(1− y)2dy.

This accounts for a factor of ε times the quantity in (15), and now the combined contri-
bution of (16) and (17) may be made larger than (15), proving Theorem 1!

Primes in arithmetic progressions. It remains to explain what is meant by the
Bombieri-Vinogradov theorem and the Elliott-Halberstam conjecture. Recall that we re-
quired knowledge of these estimates for primes in progressions while discussing the error
terms that arise while evaluating the numerator of (8).

Let us write
π(x) = li(x) + E(x),
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where li(x) stands for the ‘logarithmic integral’
∫ x

2
dt

log t , which is the expected main term,
and E(x) stands for an ‘error term’. The main term li(x) is, by integration by parts,
roughly x/ log x. As for the error term E(x), the standard proofs of the Prime Number
Theorem give that for any number A > 0 there exists a constant C(A) such that

|E(x)| ≤ C(A)
x

(log x)A
.

The argument generalizes readily for primes in progressions. Given an arithmetic progres-
sion a (mod q) with (a, q) = 1 let us write

π(x; q, a) =
1

φ(q)
li(x) + E(x; q, a),

where li(x)/φ(q) is the expected main term — the primes are equally divided among the
available residue classes — and E(x; q, a) is an ‘error term’ which we would like to be small.
As with the Prime Number Theorem, for every A > 0 there exists a constant C(q, A) such
that

|E(x; q, a)| ≤ C(q, A)
x

(log x)A
.

We emphasize that the constant C(q, A) may depend on q. Therefore, this result is mean-
ingful only if we think of q as being fixed and let x tend to ∞. In applications such a result
is not very useful, because we may require q not to be fixed, but to grow with x. For exam-
ple, in our discussions above we want to deal with primes in progressions (mod [d1, d2])
which can be as large as R2, and we’d like this to be of size x

1
2 and would love to have

it be even larger. Thus the key issue while discussing primes in arithmetic progressions is
the uniformity in q with which the asymptotic formula holds.

What is known about π(x; q, a) for an individual modulus q is disturbingly weak. From
a result of Siegel we know that for any given positive numbers N and A, there exists a
constant c(N,A) such that if q < (log x)N then

|E(x; q, a)| ≤ c(N,A)
x

(log x)A
.

This is better than the result for fixed q mentioned earlier, but the range of q is still
very restrictive. An additional defect is that the constant c(N,A) cannot be computed
explicitly11 in terms of N and A.

If we assume the Generalized Riemann Hypothesis (GRH) then we would fare much
better: if x ≥ q there exists a positive constant C independent of q such that

|E(x; q, a)| ≤ Cx
1
2 log x.

This gives a good asymptotic formula for π(x; q, a) in the range q ≤ x
1
2 /(log x)3, say.

11This is not due to laziness, but is a fundamental defect of the method of proof.
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Given a modulus q let us define

E(x; q) = max
(a,q)=1

|E(x; q, a)|.

We have discussed above the available weak bounds for E(x; q), and the unavailable strong
GRH bound. Luckily, in many applications including ours, we don’t need a bound for
E(x; q) for each individual q, but only a bound holding in an average sense as q varies. In
the application to small gaps, we want primes in progressions (mod [d1, d2]), but recall
that we also have a sum over d1, d2 going up to R. An extremely powerful result of Bombieri
and Vinogradov gives such an average estimate for E(x; q). Moreover, this average result
is nearly as good as what would be implied by the GRH.

The Bombieri-Vinogradov theorem. For any positive constant A there exist constants
B and C such that

(18)
∑
q≤Q

max
y≤x

|E(y; q)| ≤ C
x

(log x)A
,

with Q = x
1
2 /(log x)B.

The constant B can be computed explicitly; for example B = 24A + 46 is permissible,
but the constant C here cannot be computed explicitly (a defect arising from Siegel’s
theorem mentioned above). The Bombieri-Vinogradov theorem tells us that on average
over q ≤ Q we have E(x; q) ≤ Cx(log x)−A/Q = Cx

1
2 (log x)B−A. Apart from the power

of log x, this is as good as the GRH bound!
A straight-forward application of the Bombieri-Vinogradov theorem shows that as long

as R2 ≤ x
1
2 /(log x)B for suitably large B, the error terms arising in the Goldston-Pintz-

Yıldırım argument will be manageable. If we wish to take R larger, then we must extend
the range of Q in (18). Such extensions are conjectured to hold, but unconditionally the
range in (18) has never been improved upon12.

The Elliott-Halberstam conjecture. Given ε > 0 and A > 0 there exists a constant
C such that ∑

q≤Q

max
y≤x

|E(x; q)| ≤ C
x

(log x)A
,

with Q = x1−ε.

The Elliott-Halberstam conjecture would allow us to take R = x
1
2−ε in the Goldston-

Pintz-Yıldırım argument. It is worth emphasizing that knowing (18) for Q = xθ with any
θ > 1

2 would lead to the existence of bounded gaps between large primes.
Finally, let us mention a conjecture of Montgomery which lies deeper than the GRH

and also implies the Elliott-Halberstam conjecture.

12Although, Bombieri, Friedlander and Iwaniec [4] have made important progress in related problems



18 K. SOUNDARARAJAN

Montgomery’s conjecture. For any ε > 0 there exists a constant C(ε) such that for all
q ≤ x we have

E(x; q) ≤ C(ε)x
1
2+εq−

1
2 .

We have given a very rapid account of prime number theory. For more detailed accounts
we refer the reader to the books of Bombieri [2], Davenport [6], and Montgomery and
Vaughan [24].

Future directions. We conclude the article by mentioning a few questions related to the
work of Goldston-Pintz-Yıldırım.

First and most importantly, is it possible to prove unconditionally the existence of
bounded gaps between primes? As it stands, the answer appears to be no, but perhaps
suitable variants of the method will succeed. There are other sieve methods available
beside Selberg’s. Does modifying one of these (e.g. the combinatorial sieve) lead to a
better result? If instead of primes we consider numbers with exactly two prime factors,
then Goldston, Graham, Pintz, and Yıldırım [13] have shown that there are infinitely many
bounded gaps between such numbers.

In a related vein, assuming the Elliott-Halberstam conjecture, can one get to twin
primes? Recall that under that assumption, we could show that infinitely many permissible
6-tuples contain two primes. Can the 6 here be reduced? Hopefully, to 2? Again the
method in its present form cannot be pushed to yield twin primes, but maybe only one or
two new ideas are needed.

Given any ε > 0, Theorem 1 shows that for infinitely many n the interval [n, n+ ε log n]
contains at least two primes. Can we show that such intervals sometimes contain three
primes? Assuming the Elliott-Halberstam conjecture one can get three primes in such
intervals, see [12]. Can this be made unconditional? What about k primes in such intervals
for larger k?

Is there a version of this method which can be adapted to give long gaps between primes?
That is, can one attack Erdős’s $10,000 question?

Acknowledgments. I am very grateful to Carine Apparicio, Bryden Cais, Brian
Conrad, Sergey Fomin, Andrew Granville, Leo Goldmakher, Rizwan Khan, Jeff Lagarias,
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[9] P. Erdős, The difference between consecutive primes, Duke Math. J. 6 (1940), 438–441.
[10] J. Friedlander and H. Iwaniec, The polynomial X2+Y 4 captures its primes, Ann. of Math. 148 (1998),

945–1040.

[11] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 4–9.
[12] D. Goldston, J. Pintz and C. Yıldırım, Primes in tuples, I, preprint, available at www.arxiv.org.

[13] D. Goldston, S. Graham, J. Pintz and C. Yıldırım, Small gaps between primes and almost primes,

preprint, available at www.arxiv.org.
[14] D. Goldston, Y. Motohashi, J. Pintz and C. Yıldırım, Small gaps between primes exist, preprint,

available at www.arxiv.org.
[15] A. Granville, Unexpected irregularities in the distribution of prime numbers, Proc. of the Int. Congr.
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Probabilistically Checkable Proofs: A Primer

Madhu Sudan∗
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Abstract

Probabilistically checkable proofs are proofs that can checked probabilistically by reading
very few bits of the proof. Roughly ten years back it was shown that proofs could be made
probabilistically checkable with a modest increase in their size. While the initial proofs were a
little too complex, a recent proof due to Irit Dinur gives a dramatically simple (and radically
new) construction of probabilistically checkable proofs. This article explains the notion, presents
the formal definition and then introduces the reader to Dinur’s work and explains some of the
context (but does not reproduce Dinur’s proof).

1 Introduction

As advances in mathematics continue at the current rate, editors of mathematical journals in-
creasingly face the challenge of reviewing increasingly long, and often wrong, “proofs” of classical
conjectures. Often, even when it is a good guess that a given submission is erroneous, it takes
excessive amounts of effort on the editor/reviewer’s part to find a specific error one can point to.
Most reviewers assume this is an inevitable consequence of the notion of verifying submissions; and
expect the complexity of the verification procedure to grow with the length of the submission. The
purpose of this article is to point out that this is actually not the case: There does exist a format in
which we can ask for proofs of theorems to be written. This format allows for perfectly valid proofs
of correct theorems, while any purported proof of an incorrect assertion will be “evidently wrong”
(in a manner to be clarified below). We refer to this format of writing proofs as Probabilistically
Checkable Proofs (PCPs).

In order to formalize the notion of a probabilistically checkable proof, we start with a bare-bones
(computationally simplified) view of logic. A system of logic is described by a collection of axioms
which include some “atomic axioms” and some derivation rules. An assertion is a sentence, which
is simply a sequence of letters over the underlying alphabet. A proof of a given assertion is a
sequence of sentences ending with the assertion, where each sentence is either one of the axioms or
is obtained by applying the derivation rules to the previous sentences in the proof. An assertion
which has a proof is a theorem. We will use the phrase argument to refer to sequence of sentences
(which may be offered as “proofs” of “assertions” but whose correctness has not been verified).

∗CS & AI Laboratory (CSAIL), Massachusetts Institute of Technology, 32-G640, 32 Vassar Street, Cambridge, MA
02139, USA. http://theory.csail.mit.edu/˜madhu. This article supported in part by NSF Award CCR-0312575.
Views expressed in this article are those of the author, and not endorsed by NSF.
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While systems of logic come in many flavors and allow varying degrees of power in their inference
rules and the nature of intermediate sentences that they would allow, the “computational perspec-
tive” unifies all of these by using the following abstraction: It suggests that a system of logic is
given by a computationally efficient algorithm called the verifier. The inputs to a verifier is a pair
of sequences over some finite alphabet, an assertion T and evidence Π and accepts this pair if and
only if Π forms a proof of T in its system of logic. Such verifiers certainly capture all known systems
of logic. Indeed without the computational efficiency restriction, it would be impossible to capture
the spirit that theorems are often hard to prove, but once their proofs are given, they are easy to
verify. For our purposes, we associate the word “efficient” with the feature that the algorithm runs
in time polynomial in the length of its inputs. (As an aside, we note that this distinction between
the proving theorems and verifying proofs is currently a conjecture, and is exactly the question
examined under the label “Is P=NP?”.)

The notion that a verifier can perform any polynomial time computation enriches the class of
theorems and proofs considerably and starts to offer highly non-trivial methods of proving theorems.
(One immediate consequence is that we can assume theorems/proofs/assertions/arguments are
binary sequences and we will do so henceforth.) For instance, suppose we have an assertion A (say
the Riemann Hypothesis), and say we believe that it has proof which would fit within a 10,000 page
article. The computational perspective says that given A and this bound (10,000 pages), one can
efficiently compute three positive integers N,L,U with L ≤ U ≤ N such that A is true if and only
if N has a divisor between L and U . The integers N , L, and U will be quite long (maybe writing
them would take a million pages), yet they can be produced extremely efficiently (in less than the
amount of time it would take a printer to print out all these integers, which is certainly at most a
day or two). (This example is based on a result due to Joe Kilian, personal communication.) The
theory of NP-completeness could be viewed as an enormous accumulation of many other equivalent
formats for writing theorems and proofs. Depending on one’s perspective, this may or may not be
a better format for writing theorems and proofs. What is important for us is that despite the fact
that it differ radically from our mental picture of theorems/proofs - this is as valid a method as
any. Every theorem has a valid proof, and this proof in only polynomially larger than the proof
in any other system of logic, a notion referred to as “completeness”. Conversely, no false assertion
has a proof, a notion referred to as “soundness”.

The ability to perform such non-trivial manipulations to formats in which theorems and proofs
are presented raises the possibility that we may specify formats that allow for other features (that
one does not expect from classical proofs). The notion of PCPs emerges from this study. Here we
consider verifiers that vary in two senses: (1) The verifiers are probabilistic — they have access
to a sequence of unbiased independent coins (i.e., random variables taking on values from the set
{0, 1}); and (2) The verifiers have “oracle” access to the proof. I.e., to read any specific bit of the
proof the verifier is allowed direct access to this bit and charged one “query” for this access. (This
is in contrast to the classical notion of the Turing machine where all information is stored on tapes
and accessing the ith bit takes i units of time and implies access to all the first i bits of the proof.)
However, we will restrict the number of random bits that the verifier has access to. We will also
restrict the number of queries the verifier is allowed to make. The latter is definitely a restriction
on the power of the verifier (classical verifiers accessed every bit of the proof). The former does not
enhance the power of the verifier unless the verifier is allowed to err. So we will allow the verifier to
err and consider the question: It must be stressed at this point that we require the error probability
is bounded away from 1 for every false assertion and every supporting argument. (It would not
make any sense, given the motivation above to assume some random distribution over theorems
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and proofs, and this is not being done.) What is the tradeoff between the query complexity and
the error incurred by the verifier?

Theoretical computer scientists started to examine this tradeoff starting 1990 and have made some
remarkable progress to date. We review this history below. (We remark that this is just a history
of results; the notion of a probabilistically checkable proof itself evolved slowly over a long sequence
of works [17, 6, 9, 15, 4, 14, 3], but we will not describe the evolution of this notion here.) Results
constructing PCP verifiers typically restrict the number of random bits to be logarithmic in the
size of the probabilistically checkable proof. Note that this is an absolute minimum limit, or else
a verifier making few queries does not have a positive probability of accessing most of the bits of
the proof. They then asked the question: How small the can the PCP be (relative to the classical
proof) and how many bits needed to be queried? The first sequence of results [5, 4, 14] quickly
established that the number of queries could be exponentially smaller than the length of the proof
(e.g., in a proof of length n, the number of queries may be as small as say log2 n), while getting
nearly polynomial sized proofs (in fact, [4] obtained nearly linear sized PCPs.) The second short
sequence [3, 2] established what is now referred to as “The PCP Theorem” which showed that the
number of bits queried could be reduced to an absolute constant(!) independent of the length of the
theorem or the proof (given just the length of the proof), with PCPs of length just a polynomial in
the classical proof. This immediately raised the question: What is this universal constant — the
number of queries that suffices to verify proofs probabilistically. It turns out there is yet another
tradeoff hidden here. It is always possible to reduce the number of queries to three bits, if the verifier
is allowed to err with probability very close to (but bounded away from) one. So to examine this
question, one needs to fix the error probability. So, say we insist that arguments for incorrect
assertions are accepted with probability (close to) half, while proofs of valid theorems are accepted
with probability one. In such a case, the number of queries made by the verifier of [2] has been
estimated at around 106 bits - not a dramatically small constant, though a constant all right! The
third phase in the construction of PCPs [8, 7] attempted to reduce this constant and culminated
in yet another surprise. Hastad [18] shows that the query complexity could be essentially reduced
to just three bits to get the above error probabilities. Subsequent work in this area has focussed
on the question of the size of the PCP relative to the size of the classical proofs and shown that
these could be reduced to extremely blow-ups. (Classical proofs of length n are converted to PCPs
of length n · (log n)O(1) in the work of Dinur [12].)

A somewhat orthogonal goal of research in PCPs has been to find simple reasons why proofs ought
to be probabilistically checkable. Unfortunately, much of the above results did not help in this
regard. The results from the first sequence achieved the effect by a relatively straightforward but
striking algebraic transformation (by encoding information into values of algebraic functions over
finite fields). Later results built on this style of reasoning but got even more complex (see e.g., [25,
Page 12] for a look at the ingredients needed to get the PCP theorem of [18]). Recently, Dinur
and Reingold [13] proposed a novel, if somewhat ambitious, iterative approach to constructing
PCPs, which was radically different than prior work. While the idea was appealing, the specific
implementation was still hard, and did not lead to a satisfactory alternative construction of PCPs.
Subsequently, Dinur [12] finally made remarkable progress on this question deriving the right in-
gredients to give a dramatically simple proof of the PCP theorem.

This work of Dinur is the focus of the rest of this article. Our intent, however, is not to give Dinur’s
proof of the PCP theorem. This is already done quite satisfactorily in her work [12]. Instead we
will try to outline her approach and provide context to the steps taken in Dinur which may provide
further insight into her work (and highlight the novelty of the approach as well as the new technical
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ingredients developed in her work). The hope is that a reader, after reading this article, would be
motivated to read the original work, and upon doing so, appreciate the developments in her paper.

In what follows, we will start by formally describing PCPs and the PCP theorem. Readers uncom-
fortable with boring formalisms could skip this section. Next we describe a duality between PCP
verifiers and “approximations to combinatorial optimization problems”. We will use this duality to
switch our language from the “logical” theme of theorems and proofs, to a more “combinatorial”
theme. (A reader who chooses to skip this section would be lost thereafter.) In Section 4 we
then describe the high-level approach in Dinur’s paper and contrast it with the earlier approaches.
Dinur’s approach repeatedly applies two transformations to a “current verifier”, starting from a
classical (non-probabilistic) verifier of proofs. The end result is a probabilisitic verifier of proofs.
In Sections 5 and 6 we describe the two transformations in greater detail providing background
on these (in particular, we describe some simpler transformations one may consider, and why they
don’t work).

2 Definitions and formal statement of results

We start by recalling the notion of a classical verifier and introducing some notation.

First some general notation for the paper. Below R will denote the reals, Z the set of all integers,
and Z+ the set of positive integers. For x ∈ R, we let bxc denote the largest integer less than or
equal to x. For x ∈ R, let log x denote the quantity dlog2 xe where log2 denotes the logarithm of x
to base 2.

By {0, 1}∗ we denote the set of all finite length binary sequences. (We refer to such sequences
as strings.) For a string x ∈ {0, 1}∗, let |x| denote its length. For random variable X taking on
values in domain D and event E : D ∈ {true, false}, we let PrX [E(X)] denote the probability of the
event E over the random choice of X. We often use the shorthand “f(n)” to denote the function
n 7→ f(n). (In particular, it will be common to use “n” to denote the argument of the function,
without explicitly specifying so.) Examples include the functions n2, log n etc.

Later in the writeup we will need to resort to some “graph theory”. By a graph we refer to
symmetric pairwise relationships on some finite set. Formally a graph G is given by a pair (V,E)
with V being a finite set and E ⊂ V ×V is a symmetric relationship. If (u, v) ∈ E, then we refer to
v as being adjacent to u, or being a neighbor of u. The number of vertices adjacent to u is called
the degree of u. We say a graph has degree D if every vertex has degree D. A walk in a graph is
a finite sequence of vertices v0, . . . , v` such that vi−1 and vi are adjacent for every i ∈ {1, . . . , `}.
The distance between u and v is the length ` of the shortest walk v0, . . . , v` satisfying v0 = u and
v` = v.

We now move to notions related to proof verification. A verifier is a polynomial time algorithm
computing a function V : {0, 1}∗ × {0, 1}∗ → {0, 1}, with the association that V (T,Π) = 1 implies
that the assertion T is a theorem with Π being a proof. (Recall that a function is said to be
polynomial time computable if there exists an algorithm running in time bounded by a fixed
polynomial in the total length of its inputs to compute the function.) Given a polynomial p : Z+ →
Z+ and verifier V , let LV,p denote the set of theorems with “short” proofs of length at most p(n).
I.e., LV,p = {T ∈ {0, 1}∗|∃Π ∈ {0, 1}p(|T |) s.t. V(T,Π) = 1}. The class NP is the set of all such sets
{LV,p|V is a verifier and p is a polynomial }.

4



As mentioned earlier, we are going to enhance classical algorithms by endowing them with access
to random strings and oracles. We will denote random strings just like other strings. A oracle will
just be a function O : Q → A where Q is a countable set and A is finite. The most common version
is with Q = Z+ and A = {0, 1}. Algorithms are allowed to compute various queries q1, . . . , qt and
obtain answers O[q1], . . . , O[qt] to the queries. The number of queries made (t) is termed the query
complexity of the algorithm. Thus the computation of a probabilistic oracle algorithm A on input
x, random string R ∈ {0, 1}∗ and access to oracle O will be denoted AO(x;R). Notice that we
will always be interested in the distribution of this random variable AO(x;R) when R is chosen
uniformly from set {0, 1}` (while x and O will be fixed). With this notation in hand we are ready
to define PCP verifiers and the complexity class PCP.

Definition 1 For functions r, q : Z+ → Z+ an (r, q, a)-restricted PCP verifier is a probabilistic
oracle algorithm V that on input x ∈ {0, 1}n, expects a random string R ∈ {0, 1}r(n) and queries an
oracle Π : Z+ → {0, 1}a(n) at most q(n) times and computes a “Boolean verdict” V Π(x;R) ∈ {0, 1}.

Definition 2 For functions c, s : Z+ → [0, 1] with 0 ≤ s(n) < c(n) ≤ 1 for every n ∈ Z+, we
say that an (r, q, a)-restricted PCP verifier V accepts a set L ⊆ {0, 1}∗ with completeness c and
soundness s if for every x ∈ {0, 1}n the following hold:

Completeness: If x ∈ L then there exists a Π : Z+ → {0, 1}a(n) such that PrR[V Π(x : R) = 1] ≥
c(n).

Soundness: If x 6∈ L then for every Π : Z+ → {0, 1}a(n) it is the case that PrR[V Π(x : R) = 1] ≤
s(n). By PCPc,s[r, q, a] we denote the class of all sets L such that there exists an (r, q, a)
restricted PCP verifier accepting L with completeness c and soundness s.

Throughout this article we will assume that the queries of the PCP verifiers are made “non-
adaptively”. I.e., the exact location of questions does not depend on the responses to other ques-
tions. The responses only affect the accept/reject predicate of the verifier.

As described above the class PCP is significantly over parametrized. These different parameters
are useful when describing various (steps in) constructions of PCPs, but for now they are likely to
burden the reader. So lets discard a few to derive a simpler collection: All early PCP results were
phrased in terms of verifiers that achieved perfect completeness c(n) = 1; and soundness s(n) ≤ 1

2 .
They also fixed a(n) = 1 — i.e., oracles responded with one bit per query. Letting PCP[r, q]
denote the class of languages with such restrictions, the early results [5, 4, 14] could be described as
showing that there exist polynomials p1, p2 : Z+ → Z+ such that NP ⊆ PCP[p1(log n), p2(log n)].
The PCP Theorem, whose new proof we hope to outline later, may now be stated formally as.

Theorem 3 ([3, 2]) There exist a constant q such that NP = ∪c∈Z+PCP[c log n, q].

Finally, the state of the art result along these lines is that of H̊astad [18], which shows that for
every ε > 0, NP = ∪c∈Z+PCP1−ε, 1

2
+ε[c log n, 3].

One aspect we do not dwell on explicitly is the size of the “new proof”. It is easy to convert an
(r, q)-PCP verifier into one that runs in time 2r(n) × 2q(n), whose queries are always in the range
{1, . . . , 2r(n)+q(n)}. In other words one can assume “w.l.o.g.” that the proof is a string of size at
most 2r(n)+q(n). So in particular if the randomness and query complexity are bounded by O(log n),
then the PCP proofs are still polynomial sized, and so we won’t worry about the size explicitly.
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3 Optimization and approximation

As alluded to earlier, one of the principal motivations for studying proofs from a computational
perspective is that they shed light on the tractability of many computational tasks. For instance,
the theory of NP-completeness says that a vast collection of combinatorial optimization problems,
such as the “Travelling Salesman Problem” (TSP), (given an n× n matrix of distances between n
cities, find the smallest tour that visits all n cities), the “Independent Set Problem” (given a set
of n elements and a list of incompatible pairs, find the largest subcollection that consists no pair
of incompatible elements) or the “Knapsack Problem” (given the weights and values of n elements
and a bound C, find a subset of elements whose weight sums to less than C, while maximizing
the sum of their values), the theory of NP-completeness shows that finding optimal solutions is as
hard as finding “proofs” for generic theorems. Formally, given any assertion and a bound on the
length B of its proof, one can construct an instance of the NP complete problem, say TSP, and an
integer B′, such that any solution to the TSP of length at most B′ implies that the given assertion
is true and has a proof of length at most B. Thus an algorithm to find optimal tours is a generic
theorem prover which needs to only know the length of the proof to generate the proof. Indeed
much of the strength for the belief that P 6= NP may be attributed to the belief that we don’t
expect theorem-proving to be automated.

In this context it may make sense that a “probabilistic” notion of checking proofs may lead to some
further insight on the complexity of solving combinatorial optimization problems. This guess turns
out be true, and it turns out that the existence of PCP verifiers implies that for many of these
optimization problems finding “nearly optimal” solutions is as hard as finding optimal solutions.
This connection was first made by Feige et al. [14], who showed that the PCP theorem (then still a
conjecture) would imply that the independent set size could not be approximated to within constant
factors. Subsequently, many other optimization problems were shown to be hard to approximate
using the PCP theorem (cf. [2, 21]).

Remarkably, Irit Dinur’s proof uses a “folklore” reverse connection which shows that “reductions”
showing hardness of approximating some optimization problems can a folklore one) that shows that
“hardness of approximating yield PCP verifiers. We describe the optimization problem, used in
her proof next, and then explain why the inapproximability of this problem yields a PCP verifier
next.

Definition 4 (Constraint Satisfaction Problem (Max k-CSP-Σ)) For a finite set Σ and in-
teger k, an input to the problem Max k-CSP-Σ consists of m constraints C1, . . . , Cm on n vari-
ables X1, . . . , Xn, where a constraint Cj consists of a function fj : Σk → {0, 1} and k indices
i1(j), . . . , ik(j) ∈ {1, . . . , n}. An assignment 〈X1, . . . , Xn〉 ← 〈a1, . . . , an〉 ∈ Σn satisfies the con-
straint Cj if fj(α1, . . . , αk) = 1 where α` = ai`(j). The goal is to compute an assignment, given
C1, . . . , Cm, that maximizes the number of constraints that are satisfied.

Since Max k-CSP-Σ occupies a central role in this article, let us introduce some notation that will
be useful later. We often use φ to denote instances of Max k-CSP-Σ and ~a ∈ Σn to denote an
assignment to the n variables. For a pair φ,~a as above, we use the notation φ(~a) to denote the
number of constraints of φ satisfied by ~a. An instance φ of Max k-CSP-Σ is said to be satisfiable
if there exists an assignment satisfying all constraints. The unsatisfiability of the instance φ,
denoted UNSAT(φ), is the quantity min~a{1 − φ(~a)/m} i.e., the minimum fraction of constraints
left unsatisfied by any assignment.
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Max k-CSP-Σ problems arise naturally in the theory of NP completeness. The classical 3SAT
problem is easily captured as an instance of Max3-CSP-{0, 1} where the goal is to distinguish sat-
isfiable instances from instances that are not satisfiable. Similarly, the classical 3-coloring problem
(given a graph on n vertices, determine if it is possible to color the vertices with three colors
{R,G,B} such that no edge of the graph is monochromatic), can also be expressed as an instance
of Max2-CSP-{R,G,B}. Indeed it is a classical result [16] that for every k ≥ 2 and every Σ with
|Σ| ≥ 2, it is NP-hard to find optimal solutions to Max k-CSP-Σ.

However, the classical result does not say anything about solving the problem near-optimally. In
particular, the state of knowledge prior to the PCP theorem allowed for the possibility that some
polynomial algorithm could, on input φ for which there exists an assignment satisfying t out of m
constraints, always produce an assignment satisfying t(1− o(1)) constraints! Indeed this may be a
good point to introduce the notion of an approximation algorithm.

Definition 5 For α ≥ 1 An algorithm A that takes as input an instance φ and in polynomial time
outputs an assignments ~a ∈ Σn such that φ(~a) ≥ φ(~a′)/α for every other assignment ~a′ ∈ Σn is
called an α-approximation algorithm for Max k-CSP-Σ.

The PCP theorem rules out the possibility of α-approximation algorithms for Max k-CSP-Σ, unless
NP=P. The following proposition gives a weak version of this result.

Proposition 6 Let q be the constant from Theorem 3. If there is a (2−ε)-approximation algorithm
for Maxq-CSP-{0, 1} for any ε > 0, then P=NP.

Proof Sketch: Let A be a 2 − ε approximation algorithm for Maxq-CSP-{0, 1}. Let L be a
language in NP we wish to decide. Let V = VL be the (r(n) = O(log n), q)-PCP verifier for
this language as guaranteed by Theorem 3. Now consider a string x ∈ {0, 1}n for which we wish
to know if x ∈ L or not. Let ` ≤ 2r(n)+q denote the size of the PCP proof that V queries
to check membership of x ∈ L. Denote by X1, . . . , X` the Boolean variables representing the
oracle responses to the verifiers queries. Now for each random string R ∈ {0, 1}r(n) create a q-ary
constraint CR as follows: Let i1, . . . , iq be the q queries made by V on input x and random string R.
Furthermore, let f = f(A1, . . . , Aq) denote the verifier’s acceptance predicate on responses At to
query it. Let CR = (f, (i1, . . . , iq)) be the Rth constraint. Let φ = 〈CR〉R∈{0,1}r(n) be the instance
of Maxq-CSP-{0, 1} thus obtained.

It is easy to verify that UNSAT(φ) = 1−maxΠ{PrR[V Π(x;R)]}. Thus, if x ∈ L then φ is satisfiable
and if x 6∈ L then UNSAT(φ) ≥ 1

2 . Now consider running A on φ. If x ∈ L, then A(φ) produces
an assignment satisfying m/(2− ε) constraints, where m = 2r(n). On the other hand, if x 6∈ L, no
assignment satisfies more than m/2 constraints. Thus to decide if x ∈ L, all we need to do is to
count the number of assignments satisfied by A(φ) and accept iff this number is more than m/2.
Since the transformation of x to φ takes only polynomial time, and A runs in polynomial time, this
gives a polynomial time algorithm to solve a generic NP language L, thus yielding NP=P.

We use the phrase “inapproximable to within a factor of α” to denote that existence of an α-
approximation algorithm would imply P = NP .

The above proposition and proof only cover the case of Max k-CSP-Σ for some choice of k and Σ.
However standard reductions can then be used to show that Max k-CSP-Σ is inapproximable to
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within some constant α > 1 for every k ≥ 2 and every Σ with |Σ| ≥ 2. We will elaborate on this
later.

The proof above shows that to show that Max k-CSP-Σ is α-inapproximable, it suffices to produce
a reduction of the following form for some NP complete language L: The reduction should map, in
polynomial time, an instance x ∈ {0, 1}n to an instance φ of Max k-CSP-Σ such that φ is satisfiable
if x ∈ L and UNSAT(φ) ≥ 1− 1

α . The following proposition shows that any such reduction implies
the PCP theorem.

Proposition 7 Suppose there is a polynomial time reduction from an NP complete language L to
Max k-CSP-Σ mapping an instance x to φ such that φ is satisfiable if x ∈ L, and UNSAT(φ) ≥ ε
if x 6∈ L. Then L ∈ PCP1,1−ε[O(log n), k, log |Σ|].

Proof Sketch: The verifier for the assertion “x ∈ L” uses the reduction to produce an instance
φ of Max k-CSP-Σ. It then expects as proof an oracle Π giving the assignment satisfying φ. (So
Π[i] = ai where ~a = 〈a1, . . . , an〉 is the assignment satisfying φ.) To verify the proof, the verifier
picks a random constraint Cj of φ and verifies it is satisfied by Π. Notice thus that the verifier
makes k queries to the proof oracle, getting an element of Σ (which can be encoded by log |Σ| bits)
as response. It can also be verified that the verifier accepts with probability one if x ∈ L and with
probability at most 1− ε if x 6∈ L.

Dinur’s proof directly produces a reduction showing such a hardness. We state her main theorem
below.

Theorem 8 ([12]) There exists an NP complete language L, ε > 0, finite set Σ, and a polynomial
time reduction R, mapping instances x to φ of Max2-CSP-Σ such that φ is satisfiable if x ∈ L and
UNSAT(φ) ≥ ε if x 6∈ L.

Combined with Proposition 7 above, this yields the PCP theorem.

4 Overview of Dinur’s approach

Before moving on to describing Dinur’s approach to proving the PCP theorem, let us briefly describe
the prior approaches. The prior approaches to proving the PCP theorem were typically stated in the
“PCPc,s[r, q, a]” notation, but the effective equivalence with Max k-CSP-Σ allows us to interpret
them in the CSP notation, and we do so below.

One of the principal issues to focus on is the “Gap” in the unsatisfiability achieved by the reduction.
Notice that the reductions we seek achieve a significant gap in the unsatisfiability of the instances
achieved when x ∈ L (which should be 0) and the unsatisfiability when x 6∈ L (which should be
lower bounded by some absolute constant ε > 0). We refer to this quantity as the “Gap” of the
reduction.

Previous approaches were very careful to maintain large gaps in reductions. Since it was unclear
how to create a direct reduction from some NP complete language L to Max k-CSP-Σ for finite k
and Σ with a positive gap, the prior approaches considered allowing k and Σ to grow with n = |x|.
The results of Babai et al. [5, 4] and Feige et al. [14] used algebraic techniques (representing
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information as coefficients of multivariate polynomials and encoding them by their evaluations) to
get reductions from any NP-complete language L to Maxk(n)-CSP-Σ(n) where k(n), log |Σ(n)| ≈
(log n)O(1). Arora and Safra [3], observed an asymmetry in the behavior of the two parameters
k(n) and log |Σ(n)| and in particular observed that one could interpret existing PCP constructions
as techniques that reduce Max k-CSP-Γ(n) to MaxO(k)cspΣ(n) where |Σ(n)| � |Γ(n)|.

This motivated the search for new PCPs which maintained k to be some absolute constant, while
allowing Σ(n) to grow. Arora et al. [2] produced two such reductions, one of which reduced
Max k-CSP-Γ(n) to MaxO(k)-CSP-Σ(n) with log |Σ(n)| ≈ (log log |Γ(n)|)3, and another reduction
reducing Max k-CSP-Σ(n) to MaxO(k)-CSP-{0, 1} (but with the catch that the reduction took
time that was at least Σ(n), so one couldn’t afford to use it on large Σ(n)). Each one of these
reductions reduced the gap by a constant factor, but this was ok since one only needed to apply
these reductions a constant number (thrice in [2]) to reduce the alphabet size Σ(n) to an absolute
constant.

Thus the previous approach could be described as constructing PCPs by “alphabet reduction”,
subject to “gap preservation”. In contrast, Dinur’s approach seems to be quite the opposite. In her
approach, she starts with a reduction from the NP complete language L to Max k-CSP-Σ which has
minimal gap (producing only UNSAT(φ) ≥ 1/m when x 6∈ L), but where k and Σ are finite. She
then applies a sequence of iterations that ensure “gap amplification” while “preserving alphabet
size”. The following lemma, from which the main theorem follows easily describes the properties
of these iterations.

Lemma 9 (Main Lemma) There exists a finite set Σ, a positive constant ε > 0 and a linear
time reduction1 T transforming instances of Max 2-CSP-Σ to instances of the same problem such
that

Completeness φ is satisfiable ⇒ T (φ) is satisfiable.

Soundness UNSAT(φ) ≥ min{2UNSAT(φ), ε}.

The reduction above is totally novel in the PCP literature and already finds other applications
(other than providing alternate proofs of the PCP theorem) in Dinur’s paper (see [12, Section 7]).
Indeed a few iterations (logarithmically many) of the transformation above amplifies the gap of
any reduction from tiny amounts to an absolute constant, and thus yields the PCP theorem. The
following proof argues this formally.

Proof of Theorem 8: Given an NP complete language L and a string x ∈ {0, 1}n for which
we wish to decide membership, we first transform it to an instance φ0 of Max 2-CSP-Σ such φ0 is
satisfiable if and only if x ∈ L. (Notice such reductions, with effectively trivial gap, are classical.)
Let m denote the number of constraints of φ0. Now iterate the transformation T from Lemma 9
` = log m times, and let φi = T (φi−1). We claim that the reduction that maps x to φ` has the
properties claimed in the theorem.

First note that if x ∈ L, then φi is satisfiable for every i ∈ {0, . . . , `} satisfying the “completeness”
condition.

1I.e., there exist absolute constants c, d such that T (φ) takes time at most c|φ|+ d to compute. In particular, this
implies that |T (φ)| ≤ c|φ| + d.
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Next note that if x 6∈ L, then UNSAT(φ0) ≥ 1/m (since φ0 is not satisfiable). By induction (using
the Soundness condition in Lemma 9) we can now see that UNSAT(φi) ≥ min{2i

m , ε}. Thus, since
2` ≥ m, we have UNSAT(φ`) ≥ ε.

Finally, we need to argue that the entire reduction takes polynomial time. To do this it suffices
to argue that the size of the instance φ` is only polynomially larger than x. (The total running
time is then bounded by the time take to produce φ0 plus at most log m times some linear function
in |φ`|.) To argue this we use (in fact, need!) the fact that T is a linear time reduction and so
|T (φ)| ≤ c|φ|+ d. For simplicitly, assume d = 0. Then by induction, we see that |φ`| ≤ c` · |φ0| ≤
O(mlog2 c) · |φ0| ≤ (|φ0|)O(1) ≤ (|x|)O(1) as required.

Thus our focus now shifts to Lemma 9 and we start to peek into its proof. Dinur’s proves this Lemma
by combining two counteracting reductions. The first reduction amplifies the gap by increasing the
alphabet size. Since this is the main novelty in Dinur’s reduction, we will defer its proof to the
end. The second reduction is now in the classical style, which reduces the gap (somewhat), while
reducing the alphabet size. While it is clear that both reductions are opposing in direction, the
level of detail used above leaves it unclear as to what would happen if the two reductions were
applied in sequence. Would this increase the gap or reduce it? Would it increase the alphabet size
or reduce it (or preserve it)?

Part of the insight behind Dinur’s approach is the observation that both these reductions are
especially strong. The first allows gap amplification by any amount, subject to a sufficiently large
explosion in the alphabet size. The second reduction can reduce any alphabet to a fixed small
alphabet, while paying a fixed price in terms of the gap. These terms are articulated in the
assertions below.

Lemma 10 For every constant c <∞ and finite set Σ there exist constant ε1 > 0, finite set Γ and
a linear time reduction T1 from Max 2-CSP-Σ to Max 2-CSP-Γ such that:

Completeness φ is satisfiable ⇒ T1(φ) is satisfiable.

Soundness UNSAT(T1(φ)) ≥ min{c ·UNSAT(φ), ε1}.

(In other words, one can pick any amount to amplify by, and the reduction finds an appropriate
alphabet Γ to reduce to.)

Lemma 11 There exists a constant ε2 > 0, a finite set Σ such that for every finite Γ, there exists
a linear time reduction T2 mapping max 2cspg to max 2csps such that:

Completeness φ is satisfiable ⇒ T2(φ) is satisfiable.

Soundness UNSAT(T2(φ)) ≥ ε2 ·UNSAT(φ).

Notice that ε2 above — the loss in the gap — is independent of alphabet size. We will elaborate
more on this in the next section.

We defer the proofs of the two lemmas to the ensuing sections, but now show how the main lemma
follows from the above two.
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Proof of Lemma 9: Let Σ, ε2 be as in Lemma 11. Let c = 2 · ε2. Invoking Lemma 10 for this
choice of c and Σ, let ε1, Γ and T2 be as given by Lemma 11. Now invoke Lemma 11 for this choice
of Γ and let T2 be the reduction so obtained.

We claim Lemma 9 holds for Σ, ε = ε1 · ε2 and T being the composition of T2 with T1.

It is clear that T2(T1(·)) maps instances of Max 2-CSP-Σ to instances of the same problem. Since
both T1 and T2 are linear time reductions, it follows that so is T . Also since both preserve satis-
fiability, so does their composition. Finally the unsatisfiability of T (φ) may be lower bounded as
follows.

UNSAT(T2(T1(φ))) ≥ ε2 ·UNSAT(T1(φ)) ≥ min{ε2 · c ·UNSAT(φ), ε2 · ε1} = min{2 ·UNSAT(φ), ε}.

This concludes the proof of Lemma 9.

In the following sections we comment on the proofs of Lemmas 10 and 11. Since the former is the
more novel element, we defer discussion about it to the end. We start with Lemma 11.

5 Alphabet Reduction and Error Correcting Codes

In order to motivate the strength of Lemmas 11 and 10 we first describe some of the more elemen-
tary operations one can use to manipulate the parameters k and Σ. The results in the following
proposition are by now either considered “basic” or at least “standard” in the context of approxi-
mation preserving reductions. The reader is strongly encouraged to think about each individually
before reading the proof sketch, so as to gain some intuition into the assertions and their proofs.

Proposition 12 Fix integers `, k. There exist linear-time, satisfiability preserving reductions A1,
A2, and A3 such that

1. A1 reduces Maxk-CSP-{0, 1}` to Max(k · `)-CSP-{0, 1} with UNSAT(A1(φ)) = UNSAT(φ).

2. A2 reduces Maxk-CSP-{0, 1} to Max3-CSP-{0, 1} with UNSAT(A2(φ)) ≥ 1
2k+2 UNSAT(φ).

3. A3 reduces Maxk-CSP-{0, 1} to Max2-CSP-{0, 1}k with UNSAT(A2(φ)) ≥ 1
kUNSAT(φ).

Proof Sketch: We consider the items in sequence.

1. For the first part, given a Maxk-CSP-{0, 1}` instance φ with constraints C1, . . . , Cm on
variables X1, . . . , Xn taking values in {0, 1}`, we “encode” each variable Xi by a collec-
tion of ` Boolean variables Yi,j , j ∈ {1, . . . , `}, with the association that an assignment
~a = 〈a1, . . . , a`〉 ∈ {0, 1}` to Xi corresponds to the assignments Yi,j ← aj . A constraint Cj =
f(Xi1 , . . . , Xik) can now be naturally represented as a constraint C ′

j = f ′(Yi1,1, . . . , Yi1,`, . . . , Yik,1, . . . , Yik,`),
where f ′ is satisfied by an assignments to the Yi,j ’s if and only if the corresponding assignment
to the Xi’s satisfies f . It is easy to verify that the assignments to Xi’s are in 1-to-1 corre-
spondence with the assignments to Yi,j ’s with corresponding assignments satisfying exactly
the same number of constraints. This yield the reduction A1.

(The important aspect to note in this reduction is that its performance degrades with `.
Indeed this is one of the principal effects we will aim to remedy later.)
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2. For the second part, we hint that this is essentially similar to the classical reduction from
“SAT” to “3SAT”, whose approximability properties were clarified in [23]. In this reduc-
tion, when transforming an instance φ with constraints C1, . . . , Cm on variables X1, . . . , Xn,
one retains all the original variables, and adds for each constraint Cj = f(Xi1 , . . . , Xik)
a collection of K ≈ 2k “auxiliary” variables Yj,1, . . . , Yj,K and introduce K ternary con-
straints C ′

j,1, . . . , C
′
j,K on variables (Xi1 , . . . , Xik , Yj,1, . . . , Yj,K) such that an assignment to

(Xi1 , . . . , Xik) ← ~a satisfies Cj if and only if there exists an assignment (Yj,1, . . . , Yj,K) ← ~b

such that all the constraints C ′
j,1, . . . , C

′
j,K are satisfied by the assignment (~a,~b). It can be

seen that this reduction has the right properties.

3. This reduction, though also simple, is more “recent” than others, having been first brought
out by the work of Fortnow et al. [15]. Here, the idea is to lump together k bit strings
queried in various constraints as new single variables, but then to check their consistency
against the older single bit assignments. Formally, given k-ary constraints C1, . . . , Cm on
Boolean variables X1, . . . , Xn, we create an instance with km constraints {Cj,`} on n + m
variables X ′

1, . . . , X
′
n, Y1, . . . , Ym. If the constraint Cj = f(Xi1 , . . . , Xik), then the constraint

Cj,` applies to variables Yj and X ′
i`

and verifies that the k-bit assignment to f(Yj) = 1, that
X ′

i`
∈ {0k, 0k−11}, and that the last bit of X ′

i`
equals the `th bit of Yj . It is easy to see

that assignments to the X ′ variables can be interpreted as assignments to the X variables
and that the constraints C ′

j,1, . . . , C
′
j,k are all satisfied only if the corresponding assignment

to Xi’s satisfy Cj , which suffices to conclude that this reduction has the desired property.

To summarize, Proposition 12 suggests a number of obvious reductions between constraint satis-
faction problems. The upshot is that large gaps are hard to achieve when k and |Σ| are small. But
as it turns out the two parameters, k and log |Σ| are not totally similar in behavior. On the one
hand, one can tradeoff Σ for a smaller alphabet, by increasing the number of queries. But reversing
this tradeoff does not seem to be as obvious (and more involved results show that we do have to
lose something in the unsatisfiability).

Returning to our goal of Lemma 11, of reducing a large alphabet Γ to some small fixed alphabet
Σ, we see we could do this, if we were allowed to increase the number of queries (but we have to
keep this fixed to 2), or allow the unsatisfiability of the reduced instance to be much smaller than
(such as say 1/|Γ| times) the unsatisfiability of the source instance. But we wish to do better and
lose only a fixed constant.

Turns out the prior work on PCPs, in particular [2, Section 6], addresses precisely this issue (though
it was not conceived to be utilized as many times as in the current proof). The steps in the reduction
resemble the classical one (Proposition 12, Part 1) however each step is significantly different. Given
an instance φ of max 2-CSP-Γ with constraints C1, . . . , Cm on variables X1, . . . , Xn, we first produce
an instance of max 3-CSP-{0, 1} with the following steps:

1. First we “encode” each variable Xi taking values in Γ with a collection of Boolean variables
X ′

i,1, . . . , X
′
i,K (for some large constant K depending only on |Γ|). The classical reduction

did so by representing elements of Γ as binary strings and then using the new variables to
represent these binary strings (see the proof of Proposition 12, Part 1). Unfortunately this
representation is not robust, and loses 1/ log |Γ| factor in the gap simply due to the fact that
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two different elements of Γ may differ in only one bit in their respective binary encodings.
The reduction used to prove Lemma 11 in [12] gets around this loss by representing elements
of Γ in an “error-correcting code”: Specifically, we find a collection S of Γ strings in {0, 1}` for
an appropriate integer ` so that every pair of strings differ in, say, at least `/10 coordinates.
Such codes are well known to exist, though for our purposes it is more convenient to work
with special codes.

2. Next, for a constraint, Cj = f(Xi1 , Xi2), we introduce a new collection of variables {Yj,t}t and
a collection of constraints {C ′

j,t} on the variables {X ′
i1,1, . . . , X

′
i1,K}, {X ′

i2,1, . . . , X
′
i2,K}, {Yj,t}t.

We won’t be able to describe these constraints here, but they “enforce” two conditions: (1)
They enforce that the variables X ′

i1,∗, X ′
i2,∗ are close encoding of some strings in the code

S (e.g., changing fewer than `/5 variables X ′
i1,∗ yields a string in S). (2) They enforce that

the closest members of S correspond to assignments to Xi1 and Xi2 that satisfy Cj . The
special aspect of the new constraints is that even though we have an enormous number of
these constraints (growing with |Γ|), violating either of the conditions (1) or (2) would lead
to a constant (say 3ε2) fraction of the constraints {C ′

j,t}t being violated (whereas classical
reductions only violated a single constraint, when an original constraint was unsatisfied).

Finding the right code S, the number of auxiliary variables Yj,∗ and the right collection
of constraints C ′

j,∗ may be dismissed as a mere a “finite” search problem, if only we could
prove that they exist. Unfortunately, the only proofs that we know that such structures
exist, is the constructive one. And the constructive proof essentially amounts to building
a “finite” PCP-like object (where failure to satisfy some conditions are “visible” to many
local checks). Fortunately, these PCPs can afford to be much larger than the “polynomial
sized” PCPs we seek, and their constructions are significantly simpler. Dinur presents a very
compact such construction (see [12, Section 6]) while earlier constructions (e.g., [2, Section
6]) while being longer are still quite simple and natural. We remark that while the problem
is a very combinatorial one, the construction of these gadgets and their analysis does rely on
“algebraic” results over finite fields ([2]) or Harmonic analysis over the Boolean cube ([12]).

Once one has such a reduction from Max 2-CSP-Γ to Max3-CSP-{0, 1} one can apply a standard
reduction (Proposition 12, Part 3) to now reduce the problem further to max 2-CSP-{0, 1}3 yielding
Lemma 11 for Σ = {0, 1}3. The reader may look at [12, Section 6] for details.

6 Gap amplification

We now move to the technical centerpiece of Dinur’s proof of the PCP theorem. Before getting
into the specifics of this problem, we first describe the context of the result and its proof.

6.1 Background: Recycling Randomness

The underlying problem here, of amplifying gaps, plays a major role in the developing theory of
“randomized computation”. Since every essentially randomized algorithm errs with some positive
probability, a natural question is to investigate whether this error could be reduced.

For instance, consider one of the classical (randomized) algorithms to determine if an n-bit integer
is a prime. The early algorithms (cf. [22]) had the property that they would always declare prime
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inputs to be “prime”, but for any composite input they may declare it also to be “prime” with
probability half. The classical algorithm would need an n-bit long random string to perform this
test. Now, suppose we wish to reduce this error probability (of concluding that composites may be
“prime”) to say 1/128, one only needs to run the basic algorithm 7 times and declare a number to
be prime only if every one of the seven iterations declared it to be prime. One of the drawbacks of
this approach is that this process costs seven times the original cost in terms of randomness, as well
as running time. While the latter may be an affordable cost (esp. for settings other than primality
testing where no polynomial time deterministic algorithm is known), however, the increasing cost
of randomness may prove less affordable. (Unlike the case of processor speeds in computers which
under the empirically observed “Moore’s Law” keep doubling every three years, physical generation
of pure randomness does not seem to be getting easier over the years.) In view of this, one may ask
if there is a more “randomness-efficient” way to get the error probability down to 1/128 without
expending 7n random bits?

This task has been studied extensively under the label of “recycling randomness” [1, 11, 19] in the CS
literature, which shows that it suffices to use something like n+ ck bits, for some absolute constant
c, to reduce the error to 2−k (though the cost in terms of running time remains a multiplicative
factor of k). The most common technique for such “random-efficient” amplification, is to repeat
the randomized algorithm with related randomness. More formally, suppose A(x;R) denotes the
computation of a randomized algorithm to determine some property of x (e.g., A(x) = 1 if and only
if x is a prime integer). The standard amplification constructs a new algorithm A′(x;R′) where
R′ = (R1, . . . , Rk) is a collection of k independent random strings from {0, 1}n and A′(x;R′) = 1
if and only A(x;R1) = · · · = A(x;Rk) = 0. Now, given that each invocation A(x;Ri) only “leaks”
one bit of information about Ri, using independent random coins is completely inessential for
this process. Indeed it is easy to subsets S ⊆ {{0, 1}n}k of cardinality only 2(O(n+k) such the
performance of A′ where R′ is chosen uniformly from S is almost as good as when drawn from
the entire universe of cardinality 2nk. The computational bottleneck here is to produce such a
distribution/set S efficiently.

One popular approach to producing such a set efficiently uses the technique of “random walks”
on “expander graphs”. Here we create a graph G whose vertices are the space of random strings
of A (i.e., {0, 1}n) with the property that each vertex of G is adjacent to a fixed number, D, of
other vertices in G. For the application of recycling randomness it will be important that one can
enumerate in time polynomial in n all the neighbors of any given vertex R ∈ {0, 1}n, though for
the purpose of the PCP gap amplification it will suffice to be able to compute this in time 2O(n).
The “random walk” technique to recycling randomness produces R′ = (R1, . . . , Rk) by first picking
R1 ∈ {0, 1}n uniformly at random, and then picking R2 to be a random neighbor of R1, and R3 to
be a random neighbor of R2 and so on. In other words R′ is generated by taking a “random walk”
on G.

To understand the randomness implications of this process, we first note that this process takes
n + k log D bits of randomness. So it is efficient if D is small. On the other hand the amplification
property relates to structural properties of the graph. For instance, the reader can see that it
wouldn’t help if the graph had no edges, or were just a collection of 2n/(D + 1) disconnected
complete graphs of size D + 1 each! Indeed for the amplification to work well, the graph needs to
be an extremely well connected graph, or an “expander” as defined next.

Definition 13 For a graph G = (V,E) and subset S ⊆ V , let ES = {(u, v) ∈ E s.t. |{u, v}∩S| = 1}
denote the set of edges crossing from S to its complement. The expansion of the set S, denoted
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e(S), is the quantity
(
|ES |
|E|

)
/

(
|S|
|V |

)
. G is said to be a (γ, D)-expander if every vertex is adjacent

to exactly D other vertices, and every set S with |S| ≤ |V |/2 has expansion e(S) ≥ γ.

It is by now well-known in the CS literature that if R′ if generated by a k-step random walk
on a (γ, D)-expander, that the error probability reduces to 2−δk where δ is a universal constant
depending only on γ and D. (This result was first shown in a specific context by Ajtai et al. [1],
and then noted for its general applicability in [11, 19].) Furthermore, a rich collection of “explicit”
(γ, D)-expanders have been constructed, allowing for widespread application of this result. See [20]
for a survey.

6.2 Amplification of PCPs: Naive approaches

We now return to the issue of amplifying the gap in Max 2-CSP-Σ. The naive approach to this
problem would be to “iterate” the associated PCP verifier twice. The following proposition describes
this operation in the CSP language.

Proposition 14 There exists a quadratic time satisfiability preserving reduction A4 reducing Max 2-CSP-Σ
to Max4-CSP-Σ such that if UNSAT(φ) = ε then UNSAT(A4(φ)) = 1− (1− ε)2.

We leave it to the reader to verify the above proposition. The main aspect to notice is that the
variables of A4(φ) are the same as the variables of φ, while A4(φ) has a constraint C ′

ij for every
pair of constraints Ci, Cj of φ where C ′

ij represents the conjunction of the constraints Ci and Cj .

We move on to the problems with this reduction. First, this reduction takes quadratic time. More
significantly the size of the instance |A4(φ)| is really quadratic in |φ| and this is a price we can not
afford. (Logarithmically many iterations of this process would blow the instance size up from n to
nn, which completely destroys any hope of using this to construct PCPs.)

Fortunately, this is an aspect that is readily amenable to the “random walk on expanders” technique.
Specifically we can consider a better k-fold amplification reduction A5 reducing Max 2-CSP-Σ to
Max(2k)-CSP-Σ as follows: The variables of A5(φ) are the same as the variables of φ. Constraints
of A5(φ) are generated by first picking k constraints of φ by performing a k-step random walk on
a (γ, D)-expander G with m vertices (so the vertices of G correspond to constraints of φ) and then
taking the conjunction of all such constraints. The number of constraints now is only n ·Dk which
is linear in n if k, D are constant. The analysis used in the general setting of recycling randomness
can now be used to prove the following proposition.

Proposition 15 There exists a constant δ > 0 such that for every k, there exists a linear time
satisfiability preserving reduction A5 reducing Max 2-CSP-Σ to Max(2k) − -CSP-Σ such that if
UNSAT(φ) = ε then UNSAT(A4(φ)) = 1− (1− ε)δk.

The amplification effects of the above proposition, as well as the time complexity are now as we
would like. However there is still one, fatal, flaw with both reductions above. They do not reduce
“binary” constraint satisfaction problems to “binary” constraint satisfaction problems. Instead they
reduce them to (2k)-ary constraint satisfaction problems, which is also of no use in the iterative
approach. So we turn to the problem of preserving the “binary” nature of constraints.
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6.3 Background: Parallel Repetition

For this section it is convenient to switch to the PCP language. Consider a PCP verifier V that on
input x and random string R two queries q1(R) and q2(R) to an oracle Π : Z+ → Σ and accepts
if the responses a = Π(q1(R)) and b = Π(q2(R)) satisfy f(R, a, b) = 1 for some fixed predicate f
depending on x.

The naive amplification (corresponding to reduction A4 described earlier) corresponds to the fol-
lowing verifier V ′: V ′ picks two random strings R1, R2 from the space of the randomness of V and
issues queries q1(R1), q2(R1), q1(R2), q2(R2) to Π. If the responses are a1, b2, a2, b2 then V ′ accepts
if f(R1, a1, b1) = 1 and f(R2, a2, b2) = 1. The acceptance probability of the modified verifier V ′

(maximized over Π) is the square of the acceptance probability of V (maximized over Π), which is
good enough for us. However it makes 4 queries and this is the issue we wish to address in this
section.

One natural attempt at reducing the number of queries may be to “combine” queries in some
natural way. This is referred to as parallel repetition of PCPs. In the k-fold parallel repetition we
consider an new verifier V ||⊗k that accesses an oracle Π||⊗k : (Z+)k → Σk (with the association
that the k coordinates in the domain correspond to k queries to Π, and the k coordinates in the
range to the k responses of Π) and functions as follows: V ||⊗k picks k independent random strings
R1, . . . , Rk and queries Π||⊗k with (q1(R1), . . . , q1(Rk)) and (q2(R1), . . . , q2(R2)). If the responses of
Π||⊗k are (a1, . . . , ak) and (b1, . . . , bk) then V ||⊗k accepts if f(Ri, ai, bi) = 1 for every i ∈ {1, . . . , k}.

One may hope that the error in the k-fold parallel repetition goes down exponentially with k.
However, any such hopes are dashed by the following example, which gives a choice of (Σ, f, q1, q2)
such that the error of the k-fold parallel repetition increases exponentially with k.

Example: Let V work with Σ = {0, 1} and the space of random strings R be {0, 1}. Let qi(R) =
i + R and let f(0, a, b) = b, and f(1, a, b) = 1 − a. The reader may verify that for every oracle
Π : {1, 2, 3} → {0, 1} the acceptance probability of V is 1

2 . Furthermore there exist Π||⊗k for which
the acceptance probability of V ||⊗k is 1− 2−k.

The example illustrates some of the many problems with naive hopes one may have from parallel
repetition. In the face of the above example one may wonder if any amplification is possible at all
in this setting. After many works exploring many aspects of this problem, Raz [24] gave a dramatic
positive. He considers restricted verifiers whose “question” spaces (the image of q1(·) and q2(·))
are disjoint, and shows that for such verifiers, error does reduce exponentially with the number
of iterations, with the base of the exponent depending only on the acceptance probability of the
original verifier, and the answer size |Σ|. Furthermore, there exist reductions reducing any verifier
to a restricted verifier only a constant factor in the gap. (The reader may try to see how one such
reduction is implied by Proposition 12, Part 3.) Combined these two steps allow us to amplify the
gap in PCPs — but now we have lost the “linear time property”.

Is it possible to try parallel repetition while recycling randomness? Given the difficulty in analyzing
parallel repetition (Raz’s proof, while essentially elementary, is already one of the most intricate
proofs seen in the PCP setting) the task of combining it with recycling randomness appears for-
bidding. Remarkably enough Dinur [12] manages to combine the two techniques and achieve the
desired gap amplification, and does so with relatively simple proofs. Among other things, Dinur’s
realization is that even an example such as the above may not defeat the purpose. For the purposes
of Lemma 10 it suffices to show that the acceptance probability goes down, provided it was very
high to start with; and that in the remaining cases it remains bounded away from 1 (by say, 2k).
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Dealing with cases where the acceptance probability is very high (e.g., greater than 1−Σ−k) turns
out be easier than dealing with the other cases. We now describe Dinur’s gap amplification.

6.4 Gap amplification

To describe Dinur’s gap amplification lemma we switch back to the terminology of CSPs. Her main
idea is to consider the graph underlying a Max 2-CSP-Σ instance, and to impose some structure
on the graph on it, and then to generate instances of Max2-CSP-ΣK based on walks of length k on
this graph.

We start by describing the graph Gφ underlying a max 2csps instance φ. Gφ has n vertices cor-
reponding to the n variables of φ and (i, j) is an edge if there is some constraint (among the m
constraints of φ) on the pair of variables Xi, Xj . (As an aside, Dinur’s analysis relies essentially on
the feature that this graph is “undirected” i.e., (i, j) ∈ E ⇔ (j, i) ∈ E, which is in sharp contrast
to Raz’s setting which requires that (i, j) ∈ E implies that (i, i′) 6∈ E and (j, j′) 6∈ E for any i′, j′.)

As a first step, Dinur performs some preprocessing to ensure that Gφ is a (γ, D)-expander. If it
is not, she reduces, in linear time, the instance φ to a different instance φ̃ of Max 2-CSP-Σ so
that UNSAT(φ̃) ≥ ε3 · UNSAT(φ). This preprocessing reduction (from φ to φ̃) is achieved by first
transforming φ to φ1 so that Gφ1 has bounded degree, which also uses expanders in a technique
going back to the work of [23]. Next it transforms φ1 to φ̃ by imposing a collection of vacuous
constraints φ2 (which are always satisfied) such that Gφ2 is an expander. It may be verified that
if Gφ2 is a (2γ, D/2)-expander and Gφ1 has degree D/2, then the union of the two graphs yields a
(γ, D) expander. If one can amplify the gap of the instance φ̃ by c/ε3 factor, then the composition
of the two steps amplifies the gap of φ by a factor c. This (to simplify our notation) below we
assume that Gφ is an expander.

We now move to the crux of Dinur’s amplification. Given φ as above, let k correspond to the
number of repetitions we intend to attempt. For u ∈ V (Gφ), let B(u, k) denote the set of vertices
within a distance of at most k from u. Let K = maxu{|B(u, k)|} ≤

∑k
i=0 Di. Then the new

alphabet Γ = ΣK . The new instance φ′ will continue to have n variables (same as φ), where the
new variable X ′

u will be viewed as assigning an opinion on its value of the assignment to Xv for
every v that is within a distance of k from u in Gφ. (Notice that the number of such v’s for any
fixed u is at most K and so indeed an alphabet of size |Σ|K suffices to represent all these opinions.)
We use X ′

u(v) to denote the opinion of u about v.

Now for the constraints of φ′: For every walk w in Gφ starting at vertex u and ending at v of length
` ∈ [k/2, k] φ′ has Dk−` copies of the constraint F (X ′

u, X ′
v) which imposes the conjunction of all

constraints within balls of radius k of u and v. Specifically, (1) For every u′ ∈ B(u, k) ∩ B(v, k)
it must hold that X ′

u(u′) = X ′
v(u

′). (2) For u′ ∈ B(u, k) ∪ B(v, k) let O(u) = Xu(u′) or Xv(u′)
whichever is defined (notice by (1) that these are consistent). For every u′, v′ such that u′, v′ ∈
B(u, k)∪B(v, k) and f(u′, v′) is a constraint of φ, it must hold that f(O(u′), O(v′)) = 1. Notice that
the many copies of each constraint ensure that a randomly chosen constraint of φ′ will correspond
to a walk whose length is distributed uniformly over the interval k/2, . . . , k.

The above gives the complete description of the reduction essentially used in Dinur’s work. We
won’t be able to give the proof as to why it works here. Even worse, we won’t even be able to
motivate the reasons behind the many delicate choices made in the reduction above. (Why are the
new variables chosen as they are? Why do we create walks of so many different lengths? Why do
we replicate the constraints in this way?) All we can say is that these choices are not necessarily
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the first ones one may consider, but definitely make the proof of the amplification lemma very easy.
The reader is encouraged to followup by reading the original paper.

7 Conclusion

We hope the reader finds the above description to be somewhat useful, and motivating when reading
Dinur’s new approach to consruction of PCPs. We remark that the earlier algebraic approaches,
while technically much more complicated, do have some appealing high level views. The reader is
pointed to the work of Ben-Sasson and this author [10] to get a sense of some of the work in the
older stream.

Moving on beyond the specific proofs, and constructions used to get probabilistically checkable
proofs, we hope that the notion itself is appealing to the reader. The seemingly counterintuitive
properties of probabilistically checkable proofs highlight the fact the “format” in which a proof
is expected is a very powerful tool to aid the person who is verifying proofs. Indeed for many
computer generated proofs of mathematical theorems, this notion may ease verifiability, though in
order to do so, PCPs need to get shorter than they are; and they verification scheme simpler than
it is. Dinur’s work helps in this setting, but much more needs to be done.

And finally, moving beyond the notion of proofs, we also hope this article reminds the reader once
more of a fundamental question in logic, and computation, and indeed for all mathematics: Is
P=NP? Can we really replace every mathematician by a computer? If not, would it not be nice to
have a proof of this fact?
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[5] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.
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Symmetry and Neuroscience

Martin Golubitsky1

1 Introduction

We discuss the question: Is symmetry a useful tool in neuroscience? Even though symmetry
has been important in many aspects of physics and engineering, it may appear to be an
unlikely part of the structure of the nervous system. However, there are at least three rather
different areas of neuroscience where symmetry does have a role to play: animal gaits, the
visual cortex, and the vestibular system; and this talk will describe how symmetries enter
into the these areas. My point of view is the one discussed in The Symmetry Perspective [17].

As an overview Schöner, Jiang, and Kelso [32] and Collins and Stewart [10] point out that
standard quadrupedal gaits (walk, trot, pace, etc.) are highly stylized symmetric motions.
Collins and Stewart observe that these symmetries suggest a structure for locomotor central
pattern generators. Moreover, understanding these gaits leads to interesting mathematics
concerning the spatiotemporal symmetries of periodic solutions of ODEs.

Ermentrout, Cowan, and Bressloff [12, 5, 6] exploit symmetries in the connectivity of the
primary visual cortex to create models for this system, and use the symmetries to explain
the form that geometric visual hallucinations take. Finally, McCollum and Boyle [29] show
that the neuroconnectivity between the semicircular canals in the inner ear and the ring of
muscles surrounding the neck has octahedral symmetry.

In each of these examples, the symmetry group needs to be identified either through the
symmetries found in system outputs (gaits, hallucinations) or in the actual neurobiology
(primary visual cortex, vestibular system). In addition, in order to be useful in modeling,
the spaces on which these symmetries act must be identified — and usually these spaces
are understood using the phase spaces of coupled systems of ODEs [35, 23]. For example,
the simplest models for quadrupedal gaits are based on the group Z4 × Z2 acting on R8

(its right regular representation); the simplest model for orientation sensitivity in the visual
cortex is given by the planar Euclidean group E(2) acting on itself by group multiplication;
and the simplest model of the canal-neck projection of the vestibular system appears to be
the octahedral group (rotational symmetries of the cube) acting on R7.

How important are these symmetries? That remains to be determined. But, at the
very least, these are curious and interesting observations. We discuss each in turn. The
presentation on gaits follows [18, 17]; the presentation on the visual cortex follows [5, 16];
and the presentation on the vestibular system follows [22].

2 Animal Locomotion

The general phenomenology of symmetric networks can be illustrated in the context of
animal locomotion [7, 9, 10, 19, 20]. It has long been recognized that legged locomotion

1Department of Mathematics, University of Houston, Houston TX 77204-3008. E-mail: mg@uh.edu
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involves a variety of standard spatio-temporal patterns, in which the legs move periodically
in a particular sequence and with particular phase relationships. The case of quadrupeds
is especially familiar. For example, when a horse trots, diagonally opposed legs are syn-
chronized, but the two diagonals are half a period out of phase. When the horse walks,
the legs hit the ground in the sequence left rear, left front, right rear, right front (or its
left/right mirror image) at intervals of one quarter period. When a camel or giraffe paces,
its left legs are synchronous, its right legs are synchronous, but left and right are half a
period out of phase. More complex gaits, such as the gallop, have phase shifts that are not
such simple fractions of the period, leading to a distinction between primary gaits with very
rigid, simple phase shifts, and secondary gaits with more arbitrary and more flexible ones.
Figure 1 shows seven common quadruped gaits. Dogs tend to walk, trot, and transverse
gallop; squirrels bound; camels tend to pace and rotary gallop; and deer often pronk (all
legs moving in synchrony) when startled.
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Figure 1: Seven quadrupedal gaits. Numbers indicate the percentage of the time through
the gait when the associated leg first strikes the ground. Gaits begin when left hind leg
strikes ground.

The symmetry approach to gaits aims to provide a rationale for these patterns, and to
explain the distinction between primary and secondary gaits. It tackles these problems by
seeking the schematic form of the animal’s central pattern generator (CPG), see Kopell and
Ermentrout [28]. The CPG is a network of neurons that is widely believed to generate nerve
signals with the corresponding gait spatio-temporal rhythms. Its existence is supported by
much indirect evidence, see for example Grillner and Wallén [25], but significant information
on the detailed structure of the CPG is known only for a few animals, notably the lamprey,
see for example Grillner et al. [24]. For most animals even the existence of a CPG has not
been confirmed directly, though it is well established that the basic rhythms of locomotion
are generated somewhere in the spinal cord, not in the brain. It therefore makes sense to try
to infer qualitative information about the CPG from the gaits themselves. Such inferences
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must start by making some assumptions about the nature of the CPG and how it relates
to the gaits, and the consequent deductions are only as good as those assumptions.

We consider three issues: the spatiotemporal symmetries of periodic solutions to systems
of ODEs with examples given by quadruped locomotion, the structure that a minimal
network of coupled systems of ODEs must have in order to produce robustly periodic
solutions with prescribed spatiotemporal symmetries, and a prediction made by this minimal
model.

Coupled Cell Networks

For the purpose of this talk a coupled cell system is a collection of identical systems of ODE,
or cells, that are identically coupled. The network is a graph whose nodes are the cells and
whose arrows indicate which cells are coupled to which. The beginnings of a general theory
for the dynamics of coupled cell networks has been developed in [35, 23, 18].

The simplest coupled cell network is the two-cell one in Figure 2. We associate with
this network a class of differential equations, which we call admissible. For this network
the admissible differential equations are those of the form

ẋ1 = g(x1, x2)
ẋ2 = g(x2, x1)

(2.1)

where x1, x2 ∈ Rk are the state variables of the individual cells. Observe that a single
function g : Rk ×Rk → Rk defines the system.

1 2

Figure 2: Schematic of a two identical cell identical coupling network.

One consequence of the Z2 symmetry of this system is the existence of solutions in which
x1(t) = x2(t) for all t. This follows because the diagonal subspace {x : x1 = x2} is invariant
under the flow of the differential equation for all g. For all such solutions, the two cells
behave synchronously. In particular, there is a nonempty open set of functions g for which
these systems have synchronous periodic solutions.

Another consequence of symmetry is that there exists a non-empty open set of functions
g for which there is a periodic solution, with period T , such that x2(t) = x1(t + T/2) for
all t, see [21, 17]. That is, the two cells have the same periodic dynamics except for a
relative phase shift of half a period. The existence of these two types of periodic solutions
generalizes to the class of admissible vector fields for symmetric networks as follows.

Spatiotemporal Symmetries of Periodic Solutions

A symmetry of an ordinary differential equation (ODE) is a transformation that sends
solutions to solutions. More specifically, let γ : Rn → Rn be a linear map. A system of
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differential equations
ẋ = f(x) (2.2)

(where x ∈ Rn and f : Rn → Rn is smooth) has symmetry γ if γx(t) is a solution to (2.2)
whenever x(t) is a solution. It is straightforward to verify that γ is a symmetry if and only
if f satisfies the equivariance condition

f(γx) = γf(x) (2.3)

Suppose that the system (2.2) has a finite symmetry group Γ. We first note that
symmetry forces the existence of many flow invariant subspaces. Suppose that Σ ⊂ Γ is a
subgroup. Then

Fix(Σ) = {x ∈ Rn : σx = x ∀σ ∈ Σ}

is a flow-invariant subspace. (Proof: σf(x) = f(σx) = f(x) for each x ∈ Fix(Σ). Hence
f : Fix(Σ) → Fix(Σ).) In case Γ is the symmetry group of a network (that is, Γ is a
permutation group of the cells), the fixed-point subspaces are generalized diagonals and
flow-invariance implies synchrony.

Second, phase-locking is also a natural consequence of symmetry. Suppose that x(t) is
a T -periodic solution to (2.2) and that γ is a symmetry. Then either γx(t) is a different
periodic trajectory from x(t), or it is the same trajectory. In the latter case, the only
difference is a time-translation. That is, γx(0) = x(θ) for some θ, and uniqueness of
solutions implies that γx(t) = x(t + θ) for all t. Define

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symmetries
K = {γ ∈ Γ : γx(t) = x(t) ∀t} spatial symmetries

Note that since fixed-point subspaces are flow-invariant, K is an isotropy subgroup of the
action of Γ on Rn. In addition, for each h ∈ H, there is a phase shift θ(h) ∈ S1 such that
hx(t) = x(t + θ(h)). Moreover, θ : H → S1 is a group homomorphism with kernel K. It
follows that H/K is isomorphic to a finite subgroup of S1 and hence is cyclic.

Periodic solutions with spatiotemporal symmetries are classified as follows.

Theorem 2.1 (H/K Theorem [7, 17]) Let Γ be a prmutation group which is the symme-

try group of a coupled cell network in which all cells are coupled and the internal dynamics

of each cell is at least two-dimensional. Let K ⊂ H ⊂ Γ be a pair of subgroups. Then there

exist periodic solutions to some coupled cell system with spatiotemporal symmetries H and

spatial symmetries K if and only if H/K is cyclic and K is an isotropy subgroup.

Four Cells Do Not Suffice

The simplest model of a quadruped locomotor CPG has four identical cells, where it is
presumed that the output signal from each cell is sent to one leg. See Figure 3. We ask
whether it is possible to couple these four cells in such a way that network systems can
naturally produce rhythms associated with the three gaits walk, trot, and pace, and show
that it is not [7].

To justify this negative statement we discuss three points:
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Figure 3: Signal from cell 1 is sent to left hind (LH) leg, etc.

(a) Gaits rhythms are described by spatiotemporal symmetries.

(b) The symmetry groups of trot and pace cannot be conjugate.

(c) The symmetry group of trot and pace are always conjugate in any four-cell network
that also produces a walk.

(a) Collins and Stewart [10] observed that standard quadruped gaits are distinguished
by spatiotemporal symmetries, where the space symmetries are leg permutations. The
generators for the symmetry groups of trot, pace, and walk are listed in Table 1. In our
models we assume that gait rhythms are exact and robust. We also assume that the only
robust phase shifts of periodic solutions that are given in these models are those that are
described by symmetry.

Gait Generators of spatio-temporal symmetries Solution form

Trot ((1 2)(3 4), 1

2
) and ((1 3)(2 4), 1

2
) (x(t), x(t + 1

2
), x(t + 1

2
), x(t))

Pace ((1 2)(3 4), 1

2
) and ((1 3)(2 4), 0) (x(t), x(t + 1

2
), x(t), x(t + 1

2
))

Walk ((1 3 2 4), 1

4
) (x(t), x(t + 1

2
), x(t + 1

4
), x(t + 3

4
))

Table 1: Legs are numbered by the associated cells in Figure 3. The permutation (1 2)(3 4)
swaps left and right legs; the permutation (1 3)(2 4) swaps front and back legs; fractions
indicate phase shift as a fraction of a gait period.

(b) Experiments on dogs imply that trot and pace are not gaits that can be modeled
by conjugate solutions. Note that in a system of differential equations conjugate solutions
differ only by initial conditions and have the same stability. Blaszczyk and Dobrzecka [2]
indicate that the stability of pace and trot are not the same. In their experiment, a dog’s
legs are restrained so that they can use a pace at intermediate speeds, but not a trot, which
is the dog’s preferred gait. Different dogs are placed in this device for two to six months. In
post-restraint trials dogs that were in the shorter restraint period switched back to a trot
quickly with only occasional use of a pace. Occurrence of the pace was more frequent in the
animals that were restrained for a longer period, but the use of pace decreased with every
post-restraint experimental trial.

(c) It follows from (a) that if a four-cell network is coupled so that periodic solutions
with the rhythm of a walk occur naturally, then the permutation (1 3 2 4) must be a
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network symmetry. Suppose that the system also produces a pace solution. As indicated
in Figure 4, cells 1 and 3 and cells 2 and 4 must be synchronous. As illustrated in that
figure, applying the walk symmetry to that solution produces a solution in which cells 1
and 4 and cells 2 and 3 are synchronous — a pace. It follows that trot and pace solutions
are conjugate in any four-cell network that can produce a robust walk.

PACE TROT

1 2

3 4

1 2

3 4

Figure 4: Lines between cells indicate synchrony; no lines indicate half-period phase shifts.

The Eight-Cell Network

Golubitsky et al. [7, 20] make six assumptions, and deduce that for quadrupeds the only
possible symmetry class of CPG networks is the 8-cell network shown in Figure 5. The
details of the deduction are unimportant here, but they are explicit in the original paper.

2

4

6

8

1

3

5

7

Figure 5: Eight-cell network for quadrupeds. Dashed lines indicate contralateral coupling;
single lines indicate ipsilateral coupling.

This network has eight symmetries—permutations of the legs (more precisely, the leg
labels) that preserve the edges. There are two types of symmetry: contralateral symmetry
κ, which interchanges cells on the left with cells on the right, and ipsilateral symmetry
ω, which cyclically and simultaneously permutes cells on both left and right. Thus the
symmetry group of the eight-cell quadruped CPG is Γ = Z2〈κ〉 × Z4〈ω〉.

The H/K Theorem provides a classification of the possible spatio-temporal symmetries.
Primary states are characterized by all eight cells having the same waveform modulo phase
shift (that is, H = Γ) whereas secondary gaits involve more than one waveform (that is,
H ( Γ). It is straightforward to calculate the six subgroups K ⊂ H for which H/K is
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walk jump trot pace bound pronk

LF RF 3

4

1

4

1

2

1

2

1

2
0 0 1

2

1

2

1

2
0 0

LH RH 1

2
0 3

4

3

4
0 1

2
0 1

2
0 0 0 0

LF RF 1

4

3

4
0 0 1

2
0 0 1

2

1

2

1

2
0 0

LH RH 0 1

2

1

4

1

4
0 1

2
0 1

2
0 0 0 0

Subgroup K Z2(κω2) Z2(κ) Z4(κω) Z4(ω) D2(κ, ω2) Z2 × Z4

Table 2: Phase shifts for primary gaits in the eight-cell network.

cyclic and determine the primary patterns for the 8-cell network: see Table 2. There is an
analogous (but more complicated) classification of secondary gaits.

The fact that H = Γ implies that the signals xi(t) and xj(t) must be the same up to a
well defined phase shift. For example, suppose that K is generated by κ and ω2. Since κ
is a K symmetry the outputs from κ related cells must be identical; that is, x1(t) = x2(t),
etc. Since ω2 is a K symmetry, x1(t) = x5(t), etc. Since ω is an H symmetry that is not
in K, it corresponds to a half period phase shift and x1(t) = x3(t + 1

2
). For such a periodic

solution this model CPG sends synchronous signals to the hind legs, synchronous signals
to the fore legs, and the two sets of signals are a half period out of phase. This rhythm
corresponds to a bound. The other identifications with gait rhythms are found similarly.

A Prediction: The Jump

The patterns listed in the table correspond to standard primary quadruped gaits, with one
exception: the gait we have labelled ‘jump’. After performing the above analysis, the jump
gait was observed at the Houston Livestock Show and Rodeo. Figure 6 shows four video
frames of a bucking bronco, taken at equal intervals of time. The interval between the
footfalls is very close to 1/4 of the period of this rhythmic motion.

Indeed, approximately 200 frames of the rodeo video are coded in Figure 7. Dark regions
begin when the right hind leg is firmly on the ground and light regions begin when the right
fore leg is firmly on the ground. This figure indicates that the average time elapsed from
right hind to right fore leg ground strikes is approximately three times the average time
elapsed from right fore to right hind leg ground strikes. The primitive ricocheting jump of
a Norway rat and an Asia Minor gerbil also has the same pattern of phases as the jump
gait, Gambaryan [14].

3 The Primary Visual Cortex

The orientation sensitivity of neurons in the primary visual cortex appears to encode the
Euclidean group, acting on itself by group multiplication, as a group of symmetries of the
cortex, and these symmetries appear to characterize the kinds of geometric patterns de-
scribed by individuals undergoing drug-induced visual hallucinations. In earlier work, Bard
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Figure 6: Quarter cycles of bareback bronc jump at Houston Livestock Show and Rodeo.
(UL) fore legs hit ground; (UR) hind legs hit ground; (LL) and (LR) all legs in air.

Ermentrout and Jack Cowan [12] proposed explaining the geometric forms of hallucinations
by applying ideas from equivariant bifurcation theory to continuum models of the visual cor-
tex. In later work Cowan, along with Paul Bresloff, Peter Thomas, and Matt Wiener [5, 6],
proposed using the orientation sensitivity of neurons in the primary visual cortex to refine
the symmetry arguments and to obtain results that better coordinated the mathematically
generated patterns with the drug induced images.

A Short Review of Geometric Hallucinations

In the 1930’s Klüver classified geometric visual hallucinations into four groups of form

constants (see [27, p. 66]): honeycombs, cobwebs, tunnels, and spirals. Klüver states on
p. 71 “We wish to stress merely one point, namely, that under diverse conditions the visual
system responds in terms of a limited number of form constants.” Examples of the four
form constants are given in Figure 8.

Ermentrout and Cowan [12] pioneered an approach to the mathematical study of ge-
ometric patterns produced in drug induced hallucinations. They assumed that the drug
uniformly stimulates an inactive cortex and produces, by spontaneous symmetry-breaking,
a patterned activity state. The mind then interprets the pattern as a visual image —
namely the visual image that would produce the same pattern of activity on the primary
visual cortex V1. The Ermentrout-Cowan analysis assumes that a differential equation
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Figure 7: Average right hind to right fore = 31.2 frames (light region); average right fore
to right hind = 11.4 frames (dark region); 31.2

11.4
= 2.74.

governs the symmetry-breaking transition from an inactive to an active cortex and then
studies abstractly the transition using standard pattern formation arguments developed for
reaction-diffusion equations [21, 17]. Their cortical patterns are obtained by thresholding
(points where the solution is greater than some threshold are colored black, whereas all other
points are colored white). These cortical patterns are then transformed to retinal patterns
using the inverse of the retino-cortical map described below (see (3.3)), and these retinal
patterns are similar to some of the geometric patterns of visual hallucinations, namely,
funnels and spirals.

Orientation Sensitvity of Neurons in the Visual Cortex

It is now well established that neurons in V1 are sensitive to orientations in the visual
field. See [26, 15, 1, 3, 5] for more discussion. It is mathematically reasonable to assign an
orientation preference to each neuron in V1. Hubel and Wiesel [26] introduced the notion
of a hypercolumn — a region in V1 containing for each orientation at a single point in the
visual field (a mathematical idealization) a neuron sensitive to that orientation.

More recently, Bressloff et al. [5] studied the geometric patterns of drug induced hallu-
cinations by including orientation sensitivity. As before, the drug stimulation is assumed to
induce spontaneous symmetry-breaking, and the analysis is local in the sense of bifurcation
theory. There is one major difference between the approaches in [5] and [12]. Ignoring lateral
boundaries Ermentrout and Cowan [12] idealize the cortex as a plane, whereas Bressloff et

al. [5] take into account the orientation tuning of cortical neurons and idealize the cortex
as R2 ×S1. This approach leads to a method for recovering thin line hallucinations such as
cobwebs and honeycombs, in addition to the threshold patterns found in the Ermentrout-
Cowan theory. See Figure 9.

There are two types of connections between neurons in V1: local and lateral. Ex-
perimental evidence suggests that neurons within a hypercolumn are all-to-all connected,
whereas neurons in different hypercolumns are connected in a very structured way. This
structured lateral coupling is called anisotropic, and it is the bifurcation theory associated
with anisotropic coupling that is studied in Bressloff et al. [5, 4].
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Figure 8: Hallucinatory form constants from [6]. (I) funnel and (II) spiral images seen following
ingestion of LSD [redrawn from [33], (III) honeycomb generated by marihuana [redrawn from [8]],
(IV) cobweb petroglyph [Redrawn from [30]].
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Figure 9: Hallucinatory form constants generated by symmetry-breaking bifurcations on cortex
using the shift-twist representation of the Euclidean group, and viewed in retinal coordinates. From
[6]. Note the similarities with Figure 8.
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The Continuum Models

The Ermentrout and Cowan [12] model of V1 consists of neurons located at each point x
in R2. Their model equations, variants of the Wilson-Cowan equations [37], are written in
terms of a real-valued activity variable a(x), where a represents, say, the voltage potential
of the neuron at location x.

Bressloff et al. [5] incorporate the Hubel-Weisel hypercolumns [26] into their model of V1
by assuming that there is a hypercolumn centered at each location x. Here a hypercolumn

denotes a region of cortex that contains neurons sensitive to orientation φ for each direction
φ. Their models, also adaptations of the Wilson-Cowan equations [37], are written in terms
of a real-valued activity variable a(x, φ) where a represents, say, the voltage potential of the
neuron tuned to orientation φ in the hypercolumn centered at location x. Note that angles
φ and φ + π give the same orientation; so a(x, φ + π) = a(x, φ).

The cortical planform associated to a(x, φ) is obtained in a way different from the
Ermentrout-Cowan approach. For each fixed x ∈ R2, a(x, ·) is a function on the circle.
The planform associated to a is obtained through a winner-take-all strategy. The neuron
that is most active in its hypercolumn is presumed to suppress the activity of other neurons
within that hypercolumn. The winner-take-all strategy chooses, for each x, the directions
φ that maximize a(x, ·), and results in a field of directions. The two approaches to creating
planforms can be combined by assigning directions only to those locations x where the
associated maximum of a(x, ·) is larger than a given threshold.

A possible justification for the continuum model that idealizes a hypercolumn at each
cortex location is that each location is in fact surrounded by neurons sensitive to all of the
possible orientations. This fact suggests that the signal read from the primary visual cortex
V1 need not be limited to one orientation from each ‘physical’ hypercolumn. In V1 there
is a grid of physical hypercolumns that is approximately 36 × 36 in extent. (See [4] and
references therein.) It is reasonable to suppose that other layers of the visual cortex receive
much more information than a 36 × 36 matrix of orientation values.

Euclidean Symmetry

The Euclidean group E(2) is crucial to the analyses in both [12] and [5] — but the way
that group acts is different. In Ermentrout-Cowan the Euclidean group acts on the plane
by its standard action, whereas in Bressloff et al. the Euclidean group acts on R2 × S1 by
the so-called shift-twist representation, as we now explain.

Bressloff et al. [5] argue, based on experiments by Blasdel [1] and Eysel [13], that the
lateral connections between neurons in neighboring hypercolumns are anisotropic. That
anisotropy states that the strength of the connections between neurons in two neighbor-
ing hypercolumns depends on the orientation tuning of both neurons and on the relative
locations of the two hypercolumns. Moreover, this anisotropy is idealized to the one illus-
trated in Figure 10 where only neurons with the same orientation selectivity are connected
and then only neurons that are oriented along the direction of their cells preference are
connected. These conclusions are based on work of Gilbert [15] and Bosking et al. [3]. In
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particular, the symmetries of V1 model equations are those that are consistent with the
idealized structure shown in Figure 10.

The Euclidean group E(2) is generated by translations, rotations, and a reflection. The
action of E(2) on R2 × S1 that preserves the structure of lateral connections illustrated in
Figure 10 is the shift-twist action. This action is given by:

Ty(x, φ) ≡ (x + y, φ)
Rθ(x, φ) ≡ (Rθx, φ + θ)
Mκ(x, φ) ≡ (κx,−φ),

(3.1)

where (x, φ) ∈ R2 × S1, y ∈ R2, κ is the reflection (x1, x2) 7→ (x1,−x2), and Rθ ∈ SO(2)
is rotation of the plane counterclockwise through angle θ.

hypercolumn

lateral connections

local connections

Figure 10: Illustration of isotropic local and anisotropic lateral connection patterns.

Work on optical imaging has made it possible to see how the orientation preference
of cells are actually distributed in V1 [1], and a variety of stains and labels have made it
possible to see how they are interconnected [13, 3]. Figure 11 shows that the distribution
of orientation preferences in the Macaque. In particular, approximately every millimeter
there is an iso-orientation patch of a given preference.

Recent optical imaging experiments combined with anatomical tracer injections suggest
that there is a spatial anisotropy in the distribution of patchy horizontal connections, as
illustrated in Figure 12. It will be seen from the right panel that the anisotropy is particu-
larly pronounced in the tree shrew. The major axis of the horizontal connections tends to
run parallel to the visuotopic axis of the connected cells’ common orientation preference.
There is also a clear anisotropy in the patchy connections of Macaque, as seen in the left
panel.
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Figure 11: Distribution of orientation preferences in Macaque V1 obtained via optical imaging and

using color to indicate iso-orientation patches. Redrawn from [1].

Symmetry-Breaking Bifurcations on Lattices

Spontaneous symmetry-breaking in the presence of a noncompact group such as the Eu-
clidean group is far from completely understood. The standard approach is to reduce the
technical difficulties by looking only for solutions that are spatially doubly periodic with
respect to some planar lattice (see [17]); this is the approach taken in [12, 5] and in this
study. This approach is justified by the remarkable similarities between the geometric
patterns obtained mathematically in [12, 5] and the hallucinatory images reported in the
scientific literature [5, 6]. See Figures 8 and 9.

The first step in such an analysis is to choose a lattice type; say a square or hexagonal
lattice. The second step is to decide on the size of the lattice. Euclidean symmetry guaran-
tees that at bifurcation, critical eigenfunctions will have plane wave factors e2πik·x for some
critical dual wave vector k. See [4] or [17, Chapter 5]. Typically, the lattice size is chosen
so that the critical wave vectors will be vectors of shortest length in the dual lattice; that
is, the lattice has the smallest possible size that can support doubly periodic solutions.

By restricting the bifurcation problem to a lattice, the group of symmetries is trans-
formed to a compact group. First, translations in E(2) act modulo the spatial period (which
we can take to be 1 on the square lattice) and thus act as a 2-torus T2. Second, only those
rotations and reflections in E(2) that preserve the lattice (namely, the holohedry D4 for
the square lattice) are symmetries of the lattice restricted problem. Thus, the symmetry
group of the square lattice problem is Γ = D4+̇T2. Recall that at bifurcation Γ acts on the
kernel of the linearization, and a subgroup of Γ is axial if its fixed-point subspace in that
kernel is one-dimensional. Solutions are guaranteed by the Equivariant Branching Lemma
(see [21, 17]) which states: generically there are branches of equilibria to the nonlinear dif-
ferential equation for every axial subgroup of Γ. The nonlinear analysis in [4, 12] proceeds
in this fashion.
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Figure 12: Lateral Connections made by a cells in Macaque (Left panel) and Tree Shrew (Right

panel) V1. A radioactive tracer is used to show the locations of all terminating axons from cells in

a central injection site, superimposed on an orientation map obtained by optical imaging. Redrawn

from [34] and [3].

Retinal Images

Finally, we discuss the geometric form of the cortical planforms in the visual field, that is,
we try to picture the corresponding visual hallucinations. It is known that the density of
neurons in the visual cortex is uniform, whereas the density of neurons in the retina fall offs
from the fovea at a rate of 1/r2. Schwartz [31] observed that there is a unique conformal map
taking a disk with 1/r2 density to a rectangle with uniform density, namely, the complex
logarithm. This is also called the retino-cortical map. It is thought that using the inverse
of the retino-cortical map, the complex exponential, to push forward the activity pattern
from V1 to the retina is a reasonable way to form the hallucination image — and this is
the approach used in Ermentrout and Cowan [12] and in Bressloff et al. [5, 6]. Specifically,
the transformation from polar coordinates (r, θ) on the retina to cortical coordinates (x, y)
is given in Cowan [11] to be:

x =
1

ε
ln

(

1

ω
r

)

and y =
1

ε
θ (3.2)

where ω and ε are constants. See Bressloff et al. [6] for a discussion of the values of these
constants. The inverse of the retino-cortical map (3.2) is

r = ω exp(εx) and θ = εy (3.3)

In the retinal images, ω = 30/e2π and ε = 2π/nh = π/18, where nh is the number of
hypercolumn widths in the cortex, which is taken to be 36.
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4 The Vestibular System

In this section we discuss results of McCollum and Boyd [29] as described in Golubitsky,
Shiau, and Stewart [22] on the vestibular system, which is a system of tubes with sensors
that sense balance and motion. There are two main components: the otolith organs, which
sense linear acceleration of the head (translation), and the semicircular canals, which sense
angular acceleration of the head (rotation). Each ear contains three semicircular canals
arranged in three approximately mutually orthogonal planes. See Figure 13.

Figure 13: Structure and location of the semicircular canals (right ear). From Vilis [36].

We focus on one aspect of the vestibular system explored by McCollum and Boyd [29]:
the network of neurons that conveys signals from the canals to eight principal muscle groups
that control the position of the neck, known as the ‘canal-neck projection’. The precise struc-
ture of the canal-neck projection network appears not to be known, but there is sufficient
information to determine its connectivity and hence its symmetries, in an idealized form.
Indeed, McCollum and Boyle [29] show that the canal-neck projection has the symmetries of
the octahedral group O — the symmetry group of a cube. This group contains 48 elements,
of which 24 are rotations (in the usual action by rigid motions in R3) and the other 24
reverse orientation.

We rederive the symmetries in the disynaptic canal-neck projection discussed by Mc-
Collum and Boyle [29]. In this aspect of the vestibular system there are six semicircular
canals (three in each ear) that are connected to eight muscle groups in the neck.

Polarity Pairs of Canals

The three semicircular canals located in each ear are called horizontal h, anterior a, and
posterior p. We denote the six canals by lh, la, lp, rh, ra, rp, where l stands for left and r
for right. Canal hairs are arranged so that fluid flow in one direction in the canal stimulates
an excitatory signal and fluid flow in the opposite direction stimulates an inhibitory signal.
Moreover, the semicircular canals are paired (lh-rh, la-rp, lp-ra) so that when one member of
a pair is transmitting an excitatory signal, then the other member of that pair is transmitting
an inhibitory one. These pairs are called polarity pairs.
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The spatial arrangement of the canals is as follows. There are three (approximately)
mutually orthogonal planes. One of these planes is horizontal. The other two are vertical,
at an angle of 45◦ to the plane of left-right symmetry of the head. Each polarity pair
consists of two canals that are parallel to one of these planes: one canal in the left ear, one
in the right. These two canals are oriented in opposite directions in that plane and detect
rotations (actually angular accelerations) of the head about an axis perpendicular to that
plane. One member of the polarity pair detects acceleration in one orientation (clockwise
or counterclockwise) and the other member detects the opposite orientation.

Connections between Canals and Muscles

Each of the six canals can transmit signals to each of the eight muscle groups. The muscles
form four pairs, and if a canal is activated by the motion of the head then it sends an
inhibitory signal to one member of each pair and an excitatory signal to the other member.
Physiological investigations suggest that each muscle group is excited by a set of three
mutually orthogonal canals (that is, one from each polarity pair) and inhibited by the
complementary set of canals (the other members of the polarity pairs). We describe the
details of this arrangement.

Following McCollum and Boyle, the list of signals transmitted to a given muscle group
can be depicted as an ‘asterisk’, as in Figure 14. Continuous lines represent excitatory
signals and dashed lines represent inhibitory signals. Each asterisk has three solid lines
(excitatory) and three dotted lines (inhibitory) and diametrically opposite lines have op-
posite polarity. There are eight possible arrangements of this type. Because the asterisks
are drawn in two-dimensional projection, in a conventional orientation with lh between la
and lp, there appear to be two kinds of asterisks: two alternating (with excitation and
inhibition alternating) and six non-alternating (with three contiguous excitatory canals).
We will shortly see that under a suitable action of the octahedral group, all eight asterisks
are equivalent.

lh rh

la ra

lp rp

lh

la ra

lp rp

lh

la ra

lp rp

lh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

la ra

lp rp

lhrh

rh

rh rh

Figure 14: Eight asterisk patterns from six semicircular canals. Continuous lines represent
excitatory signals and dashed lines represent inhibitory signals.
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The eight neck muscles are shown in Figure 15 and consist of two flexors in the front,
two extensors in the back, and four side (shoulder) muscles. The side muscles are alternat-
ing or directed. McCollum and Boyle [29] discuss the innervation patterns between canal
neurons and muscle motoneurons—how the six canal neurons connect to the eight muscle
motoneurons, and whether the connection occurs via an excitatory synapse or an inhibitory
one. The pattern of connections to each muscle is given in Figure 16. It is important to
understand that in Figure 16 an asterisk represents a list of the connections from canals to
muscle groups, and type of signal that is transmitted along each connection.

Left Alternating (LA=1)      Left Directed (LD=7) Right Directed (RD=8)       Right Alternating (RA=2)

Left Flexor (LF=3)   Right Flexor (RF=6)

  Right Extensor (RE=4)  Left Extensor (LE=5)

Figure 15: Location and numbering of eight muscle groups.

lh rh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

rhlh

la ra

lp rp

rhlh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

LA LD RD RA

LF RF

RELE

Figure 16: Innervation patterns corresponding to eight muscle groups.

Observe that the muscle groups also partition into four polarity pairs:

{LA,RA} {LF,RE} {LE,RF} {LD,RD}.

If one muscle in a polarity pair can and does receive an excitatory signal from a canal, then
the other muscle in that polarity pair can and will receive an inhibitory signal from that
canal.
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We illustrate the same information in another way. McCollum and Boyle [29] consider
only the disynaptic pathway from the six vestibular nerve afferents (‘canal nerves’) to the
eight neck motoneurons (by way of the corresponding vestibulospinal neurons). They re-
mark that almost always ‘the motoneurons of each tested muscle responded to stimulation
of all six canal nerves’. The responses were classified as either excitatory or inhibitory,
as indicated by solid or dotted lines for the relevant arm of the asterisk. This description
makes it clear that their Figure 4 is a diagram determining these connections.

Octahedral symmetry of canals and muscles

McCollum and Boyle [29] show that the symmetry group of the canal-neck projection is the
48-element octahedral group O, consisting of the 24 rotations and the 24 reflections of the
cube.

It is convenient to employ a geometric image in which the canals are identified with the
six faces of a cube, and the muscles with the eight vertices. The group O acts naturally
on this picture by rigid motions of the cube in R3. The canals are identified with faces so
that the canal polarity pairs are identified with pairs of opposite faces. Up to symmetry
there is precisely one way to make this identification. Each vertex of the cube is in the
intersection of exactly three faces. We identify a vertex with the asterisk whose excitatory
signals correspond to the three adjoining faces. For example there is a unique vertex that is
in the intersection of the three left canals (see Figure 17). We identify this vertex with the
left direct muscle LD in Figure 16, since that muscle responds to excitatory signals from
the three left canals.

lh

lp

la

LA

RA

RF

LF

LDLE

RE

Figure 17: Identification of polarity pairs and muscle groups to the cube.

Figure 17 can also be used to construct a schematic for the connections from canals
to muscle groups. Each face of the cube (a canal) is connected to the four muscle groups
corresponding to a vertex on that face by a connection that innervates that muscle group
when an excitatory signal is sent from the canal. The four muscle groups corresponding to
vertices on the opposite face are innervated by inhibitory signals sent from that canal. It
follows that any symmetry of the cube permutes canals with canals and muscle groups with
muscle groups in such a way that it preserves connections and their types. Thus, in this
sense, the octahedral group is the group of symmetries of the canal-neck projection.
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A Minimal Phase Space for Dynamics

As we saw with the examples of gaits and the visual cortex, any mathematical analysis
based on symmetry can proceed only after the symmetry group and its action on phase
space have been identified. The McCollum-Boyle construction determines the symmetry
group of the canal-neck projection. As discussed in [22] there is a guess as to the simplest
reasonable phase space for the dynamics of this projection and hence for the representation
of O on that phase space.

The simplest possible phase space is 14-dimensional consisting of one dimension for
each canal and one dimension for each muscle group. However, the states of the canal-neck
system lie in a subspace of R14 = R6×R8. In particular, it is reasonable to identify the ith
canal variable ωi with the angular acceleration measured by that canal. Suppose that the
first and second canals form a polarity pair. Since polarity pairs of canals measure opposite
accelerations, we have that ω2 = −ω1. Similarly, it is reasonable (because of symmetry)
that states of polarity pairs of muscle groups have values that are the negative of each other.
Thus, the minimal state space of the canal-neck projection is R3 ×R4 ≡ R7.

Note that the octahedral group has the form O = S4 ⊕Z2(−I), where the permutation
group S4 corresponds to the rotational symmetries of the cube. The discussion above
suggests that −I should permute polarity pairs of canals and muscles and multiply the
result by −1. It follows that the fixed-point subspace Fix(−I) of the action of −I on R14

is the 7-dimensional state space we have just described. Since S4 commutes with −I, S4

acts on Fix(−I). It is a curious fact that the only nontrivial irreducible representation of
S4 acting on the polarity pairs of muscle groups is the standard action of the rotation group
of the cube acting on R3.

The Physiological Role of the Muscle Groups

Finally, for purposes of interpretation, we adopt a caricature of the anatomy of the muscle
groups, illustrated in Figure 18. Here we assume that the principal effect of a muscle group
being activated is to pull the head in the indicated direction. Six muscle groups effectively
form a ‘hexagon’ and their effect is to tilt the head in various directions. The other two, LA
and RA, rotate the head about the vertical axis (as sensed by the horizontal canals lh, rh).
There is some redundancy here: the hexagon includes three pairs of muscle groups but the
three associated directions are linearly dependent. However, the use of six muscles makes
the head position more stable, so there may be physiological reasons for this redundancy.
McCollum and Boyle [29] call this hexagon the central dial.

It remains to be seen whether the octahedral symmetry that is present in the canal-neck
projection of the vestibular system can be used to shed light on some of the functions of
that system. However, symmetry is rarely an accident.
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Figure 18: Caricature of effect of activation of muscle groups.
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