Suppose \(k \) is a field, and \(k[X] \) is a polynomial ring over \(k \), where \(X = [x_{ij}] \) is an \(r \times s \) matrix of indeterminates. Let \(I \) be the ideal generated by the maximal minors of \(X \). Interestingly, certain local cohomology modules \(H^i_I(R) \) that have been found to vanish by Peskine and Szpiro when \(i \) is strictly larger than the height of \(I \) and \(k \) has positive characteristic have been found to be nonzero when \(k \) has characteristic zero by Hochster, Bruns, and Schwänzl. However, in the characteristic zero case, very few of these modules have been computed: the calculation has seemed difficult. Using results of Lyubeznik on \(D \)-modules, as well as the invariant theory of linearly reductive groups, we will determine the structure of these local cohomology modules in the characteristic zero case, including for which \(i \) they are nonzero, what their associated primes are, complete information for \(i = rs - r^2 + 1 \) (the top non-vanishing one), and substantial information about the nonzero \(H^i_I(R) \) for other values of \(i \). (Received April 13, 2010)