Meeting: 998, Houston, Texas, SS 19A, Special Session on Algebraic Geometry

998-14-425 J. Maurice Rojas* (rojas@math.tamu.edu), Department of Mathematics, Texas A\&M
University, College Station, Texas 77843, and Casey Stella (casey.stella@math.tamu.edu), Department of Mathematics, Texas A\&M University, College Station, Texas 77843. A Complexity Threshold for Real Fewnomials. Preliminary report.
Consider a polynomial f in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with exactly m monomial terms. Let FEWFEAS be the following problem:
Decide whether f has a real root or not.
Arguably, FEWFEAS is the most fundamental problem of real algebraic geometry. However, other than the fact that FEWFEAS is doable in polynomial time for $m \leq n+1$, little is known about it's complexity. So we give a nearly sharp threshold for the set of m making FEWFEAS NP-hard: We show that for $m=O(n)$, FEWFEASE is NP-hard. The best previous bound was $O\left(n^{4}\right)$. (Received March 08, 2004)

