998-60-151 **Jose Alfredo Lopez-Mimbela*** (jalfredo@cimat.mx), Apartado postal 402, 36000 Guanajuato, Gto., Mexico. Existence of local time and Tanaka formula for a two-type superprocess.

Consider a superprocess $X=(X_t)_t$ whose values are finite measures on $S=\{1,2\}\times R^d$, and $Ee^{-\int_S \phi(z)X_t(dz)}=e^{-\int_S u_t(z)\mu(dz)}$, where μ is a given finite measure on S, $\phi:S\to[0,\infty)$ is bounded and measurable, and u_t solves the equation $\partial_t u_t(i,x)=Au_t(i,x)-C_iu_t^2(i,x)$, $u_0=\phi$. Here $C_i>0$, $A\phi(i,x)=\Delta_{\alpha_i}\phi(i,x)+V_i\sum_{j=1}^2(m_{ij}-\delta_{ij})\phi(j,x)$, $(i,x)\in S$, Δ_{α_i} denotes the generator of the symmetric α_i -stable process, $V_i>0$ and $m_{ij}>0$ with $\sum_{j=1}^2 m_{ij}=1$, i=1,2. We prove that X has local time if $d<2\min\{\alpha_1,\alpha_2\}$ and μ has bounded density with respect to a reference measure on S. We also give a Tanaka formula-like representation of the local time. (Received February 23, 2004)