83rd Josiah Willard Gibbs Lecture

Wednesday, January 13, 2010

8:30 PM

JOSIAH WILLARD GIBBS 1839–1903

Photograph by Pictorial Mathematics
Scripta Mathematica
Yeshiva College, New York, 1942
Josiah Willard Gibbs Lecture

Wednesday, January 13, 2010
8:30 PM

Main Lecture Room
Moscone Center West
San Francisco, CA

Quantum Channels and Their Capacities

Peter W. Shor
Massachusetts Institute of Technology

To commemorate the name of Professor Gibbs, the American Mathematical Society established an honorary lectureship in 1923 to be known as the Josiah Willard Gibbs Lectureship. The lectures are of a semipopular nature and are given by invitation. They are usually devoted to mathematics or its applications. It is hoped that these lectures will enable the public and the academic community to become aware of the contribution that mathematics is making to present-day thinking and to modern civilization.
Abstract

A quantum state in an n-dimensional quantum system about which we have complete knowledge can be described by a vector in n-dimensional Hilbert space. However, quantum states about which we have less than complete knowledge are described by a density matrix, which is a positive semidefinite $n \times n$ matrix with trace 1. A quantum channel encapsulates the most general transformation that the laws of physics allow one to apply to a quantum state. There are several equivalent definitions of quantum channels, which we will explain in this lecture. Quantum channels are interesting mathematical objects which can be described solely using linear algebra, but about which there is still much to be discovered. We concentrate on the question of how much information can be transmitted over a quantum channel. The answer to this question for classical channels was given in 1948 by Shannon’s famous capacity theorem. In the quantum case, several different capacities can be defined; these are closely related to measures of entanglement. We will present several recent discoveries about these capacities.
Peter W. Shor

Peter Shor received a B.S. in Mathematics from Caltech in 1981, and a Ph.D. in Applied Mathematics from M.I.T. in 1985. After a one-year postdoctoral fellowship at the Mathematical Sciences Research Institute in Berkeley, Shor took a job at AT&T Bell Laboratories. He stayed with AT&T until 2003, when he joined the Mathematics Department at M.I.T. as the Morss Professor of Applied Mathematics.

Until 1994, Shor worked mainly on algorithms and combinatorics. His results during this period included the discovery, with Ken Clarkson, of the class of randomized incremental algorithms for computational geometry problems and, with Jeff Lagarias, of a counterexample to Keller’s 1930 conjecture on cube tiling. In 1993, Shor saw a talk by Umesh Vazirani about quantum computing. This inspired his discovery a year later of an algorithm for the prime factorization of large integers on a (still hypothetical) quantum computer. Since then, most of his research has been the investigation of quantum computing and quantum information theory.

Shor has received the Nevanlinna Prize, the International Quantum Communications Award, the Gödel Prize, the Dickson Prize in Science, a MacArthur Fellowship, and the King Faisal International Prize in Science. He is a member of the National Academy of Science.
Gibbs Lectures

1. February 1924, New York City; Professor Michael I. Pupin, Columbia University; Coordinating, Scribner’s Magazine, v. 76, no. 1, pp. 3–10 (1925).

7. December 1929, Des Moines, Iowa; Professor Irving Fisher, Yale University; The applications of mathematics to the social sciences, Bulletin of the American Mathematical Society, v. 36, no. 4, pp. 225–243 (1930).

15. December 1939, Columbus, Ohio; Professor Theodore von Kármán, California Institute of Technology; The engineer grapples with nonlinear problems, Bulletin of the American Mathematical Society, v. 46, no. 8, pp. 615–683 (1940).

18. November 1944, Chicago, Illinois; Professor John von Neumann, Institute for Advanced Study; *The ergodic theorem and statistical mechanics*.

22. December 1948, Columbus, Ohio; Professor Hermann Weyl, Institute for Advanced Study; *Ramifications, old and new, of the eigenvalue problem*, Bulletin of the American Mathematical Society, v. 56, no. 2, pp. 115–139 (1950).

24. December 1950, Gainesville, Florida; Professor G. E. Uhlenbeck, University of Michigan; *Some basic problems of statistical mechanics*.

26. December 1952, St. Louis, Missouri; Professor Marston Morse, Institute for Advanced Study; *Topology and geometrical analysis*.

33. January 1960, Chicago, Illinois; Professor Julian Schwinger, Harvard University; *Quantum field theory*.

35. January 1962, Cincinnati, Ohio; Professor C. N. Yang, Institute for Advanced Study; *Symmetry principles in modern physics*.

36. January 1963, Berkeley, California; Professor Claude E. Shannon, Massachusetts Institute of Technology; *Information theory*.

37. January 1964, Miami, Florida; Professor Lars Onsager, Yale University; *Mathematical problems of cooperative phenomena*.

5

40. January 1967, Houston, Texas; Professor Mark Kac, Rockefeller University; *Some mathematical problems in the theory of phase transitions*.

46. January 1973, Dallas, Texas; Professor Jürgen Moser, Courant Institute of Mathematical Sciences, New York University; *The stability concept in dynamical systems*.

47. January 1974, San Francisco, California; Professor Paul A. Samuelson, Massachusetts Institute of Technology, *Economics and mathematical analysis*.

49. January 1976, San Antonio, Texas; Professor Arthur S. Wightman, Princeton University; *Nonlinear functional analysis and some of its applications in quantum field theory*.

52. January 1979, Biloxi, Mississippi; Professor Martin Kruskal, Princeton University; “*What are solitons and inverse scattering anyway, and why should I care?*”

53. January 1980, San Antonio, Texas; Professor Kenneth Wilson, Cornell University; *The statistical continuum limit*.

6

58. January 1985, Anaheim, California; Professor Michael O. Rabin, Harvard University, Cambridge, Massachusetts and Hebrew University, Jerusalem, Israel; *Randomization in mathematics and computer science*.

59. January 1986, New Orleans, Louisiana; Professor L. E. Scriven, University of Minnesota; *The third leg: Mathematics and computation in applicable science and high technology*.

60. January 1987, San Antonio, Texas; Professor Thomas C. Spencer, Courant Institute of Mathematical Sciences, New York University; *Schrödinger operators and dynamical systems*.

63. January 1990, Louisville, Kentucky; Professor George B. Dantzig, Stanford University, Stanford, California; *The wide wide world of pure mathematics that goes by other names*.

65. January 1992, Baltimore, Maryland; Professor Michael E. Fisher, Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland; *Approaching the limit: Mathematics and myth in statistical physics*.

66. January 1993, San Antonio, Texas; Professor Charles S. Peskin, Courant Institute of Mathematical Sciences, New York University; *Fluid dynamics and fiber architecture of the heart and its valves*.

68. January 1995, San Francisco, California; Professor Andrew J. Majda, Princeton University; *Turbulence, turbulent diffusion, and modern applied mathematics*.

69. January 1996, Orlando, Florida; Professor Steven Weinberg, University of Texas, Austin; *Is field theory the answer? Is string theory the answer? What was the question?*

73. January 2000, Washington, DC; Professor Roger Penrose, Mathematical Institute, Oxford University; *Physics, computability, and mentality*.

74. January 2001, New Orleans, Louisiana; Professor Ronald L. Graham, University of California, San Diego; *The Steiner problem*.

76. January 2003, Baltimore, Maryland; Professor David B. Mumford, Division of Applied Mathematics, Brown University, Providence, RI; *The shape of objects in two and three dimensions: Mathematics meets computer vision*.

77. January 2004, Phoenix, Arizona; Professor Eric S. Lander, Professor of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; *Biology as information*.

78. January 2005, Atlanta, Georgia; Professor Ingrid Daubechies, Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey; *The interplay between analysis and algorithms*.

79. January 2006, San Antonio, Texas; Professor Michael A. Savageau, Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis, California; *Function, design, and evolution of gene circuitry*.

80. January 2007, New Orleans, Louisiana; Professor Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, New York, New York; *Mathematics and physics*.

81. January 2008, San Diego, California; Professor Avi Wigderson, Institute for Advanced Study, Princeton, New Jersey; *Randomness—A computational complexity view*.

83. January 2010, San Francisco, CA; Professor Peter Shor, Massachusetts Institute of Technology; *Quantum channels and their capacities*.