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The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 2003, is an
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interesting current developments in mathematics, pure and applied. The wonderful tradition
of the Bourbaki Seminar is an inspiration, but we aim for more accessible treatments and a
wider range of subjects. I've been the organizer of these sessions since they started, but a
varying, broadly constituted advisory committee helps select the topics and speakers.
Excellence in exposition is a prime consideration.

A written exposition greatly increases the number of people who can enjoy the product of the
sessions, so speakers are asked to do the hard work of producing such articles. These are
made into a booklet distributed at the meeting. Speakers are then invited to submit papers
based on them to the Bulletin of the AMS, and this has led to many fine publications.

I hope you'll enjoy the papers produced from these sessions, but there's nothing like being at
the talks -- don't miss them!

David Eisenbud, Organizer
Mathematical Sciences Research Institute
de@msri.org

For PDF files of talks given in prior years, see
http://www.ams.org/ams/current-events-bulletin.html.
The list of speakers/titles from prior years may be found at the end of this booklet.
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Materials from mathematics
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Abstract. I survey some examples of materials whose recent discov-
ery was based in an essential way on mathematical ideas. The main
idea concerns “compatibility” — the fitting together of the phases of a
material. Some of the emerging materials have the ability to change
heat directly into electricity, without the need of a separate electrical
generator.
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1 Mathematics and materials science

Metallurgy in the early 20" century was mainly concerned with the
understanding of the phase diagram of steel and its use in designing
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processing treatments. It blossomed into materials science at mid cen-
tury. From the beginning mathematicians have been interested. A
touchstone for the aficionados is von Neumann’s one page discussion
in 1952 of Cyril Stanley Smith’s paper, “Grain shapes and other met-
allurgical applications of topology”[55], where he discovered the n — 6
law for grain growth!. C. S. Smith replies, “The discussion of Dr. von
Neumann is much appreciated, and his conclusions are as remarkable
as they are nonobvious on first consideration of the problem.”?. But
the fascination of using mathematical reasoning to understand materi-
als goes back much further. In his 1745 paper, “Physical investigations
on the smallest parts of matter” Euler [25] reasons about how, owing
to the presence of elemental molecules, bodies of different material can
exhibit different masses and differing responses to gravity.

Today, largely due to the extreme forms of nonlinearity encountered
in the behavior of materials, mathematics and materials science enjoy a
healthy interaction. The mutual respect for certainty is pleasing. Like
some theorems, the discovery of a spectacular new material represents
an unmistakable advance, not clouded by shades of meaning.

In this paper we survey some recent developments and open prob-
lems in a central subfield of materials science: phase transformations.
More precisely, our discussion concerns the mathematical theory that
underlies the synthesis of materials that undergo phase transformations.
What elements does one use, in what proportion, and with what pro-
cessing, to achieve unprecedented behavior? Our behavior of interest
will concern the hysteresis and reversibility of phase transformations.

The line of research surveyed here draws on, and owes much to,
the work of many mathematicians and materials scientists. The au-
thor would particularly like to acknowledge the critical contributions
of J. Ball, K. Bhattacharya, X. Chen, S. Conti, J. Cui, I. Fonseca, G.
Friesecke, D. Kinderlehrer, R. Kohn, A. Ludwig, M. Luskin, S. Miiller,
F. Otto, E. Quandt, N. Schryvers, H. Seiner, Y. Song, V. Srivastava, I.
Takeuchi, M. Wuttig, G. Zanzotto, J. Zhang and B. Zwicknag].

1See also Mullins’ reinterpretation [44].

2To which C. S. Smith adds, “It is greatly to be hoped that he, or some other
mathematician, will be able to deduce similar relations in three dimensions...”, a
hope that would have to wait 55 years for fulfillment [41].



2 Phase transformations, hysteresis and
reversibility

The types of phase transformations we consider are called structural
or martensitic transformations. These are solid-to-solid phase transfor-
mations in which there is a change of crystal structure. The simplest
example is a cubic-to-tetragonal phase transformation. In this case the
unit cell of the high temperature cubic phase spontaneously elongates
(or shrinks) along one of the four-fold axes upon cooling to the trans-
formation temperature 6., changing the cubic unit cell to a tetragonal
one (Figure 2 below). By symmetry, there are three four-fold axes, and
so three variants of the tetragonal phase. The high temperature, often
high symmetry, phase is called austenite and the low temperature, low
symmetry, phase martensite. The change from the cubic to one of the
three tetragonal cells involves a deformation, but no diffusion, i.e., no
switching of atom positions, so these transformations can happen quite
fast. Also — and this is probably the feature of greatest interest in ma-
terials science — the electronic structure or bonding pattern can change
drastically during the transformation, because these aspects are sensi-
tive to the geometry of the unit cell. For this reason the two phases can
have very different properties. For example, one phase can be a strong
magnet while the other phase is nonmagnetic, a feature we will exploit
below in Section 8.

For a given material the identification of a particular transformation
temperature 6, is an oversimplifi- \
cation. In fact, one has to cool the
material to a temperature 6~ < 6,
before transformation occurs, and
similarly, upon heating, one has

/ /

Resistivity (for example)

to heat the material to 6% > 6. hysteresis

(The meaning of . then becomes >
M, M A, A

unclear, and we shall return to Temperature

this later.) This phenomenon is
called hysteresis and is one of the
main features we will discuss here.
Even in transformations that have a big distortion, it can range from
100s of degrees C to 1 degree C. The difference 7 — 6~ is a measure
of the hysteresis. In cases that the transformation is not so abrupt
people measure a property such as electrical resistance vs. temperature
by steadily heating, then steadily cooling, the material and they fit

Figure 1: Hysteresis loop.



the resulting graph by a parallelogram (Figure 1). The width of the
parallelogram is then a measure of the hysteresis.

At first sight it is difficult to notice anything very different about
a material with 100° C hysteresis vs. one with 1° C hysteresis. The
first can be a bigger or smaller transformation than the second by any
obvious criterion: size of the distortion (measured in various norms),
size of the latent heat, stiffness. There is also no obvious correlation
with the elements used in making the alloys, or their proportions. One
might think that it would correlate with the volume change — bigger
volume change means bigger hysteresis — but this is also not true in
general.

Hysteresis is interesting partly because in applications, such as the
one described in Section 8, it is synonymous with loss, and thus it is
desirable to make it as small as possible. It is also fascinating from the
viewpoint of mathematical theory. Usually, loss would be associated
with the “damping terms”, i.e., processes of viscoelasticity or viscosity,
as embodied say in the Navier-Stokes equations. The expectation from
scaling the energy equation of the Navier-Stokes equations is that, if one
shears a fluid back and forth and measures some the overall displace-
ment vs. some overall force, the resulting hysteresis loop will shrink to
zero as the rate of shearing (at fixed amplitude) gets lower and lower?.
But the hysteresis loops in phase transformations, as far as we can tell,
do not shrink to zero as the rate of change of temperature or force
tends to zero. Rather, there is a limiting loop at zero rate. This is
called rate-independent hysteresis. So, studying the effect of damping
terms is not the right idea.

Reversibility is a general term that is usually quantified experimen-
tally by passing back and forth through the phase transformation many
times, by say periodically changing the temperature, and measuring
some property each cycle. A good property to measure is latent heat,
since it is proportional to the amount of material that actually trans-
forms. Solid-solid phase transformations have a latent heat that is
absorbed on heating through the phase transformation (just like wa-
ter boiling on the stove) and released on cooling. It is measured by
calorimetry. A phase transformation is seen to be lacking reversibility
if the latent heat decreases each cycle. Often in these cases nonre-
versibility is also seen more dramatically as a complete failure of the

3Here, the analogy to phase transformations is closer than it may seem. Phase
transformations can often also be induced by applying a cyclic force, leading again
to a hysteresis loop as in Figure 1, but with “temperature” replaced by force and
“resistivity” by displacement. See Section 7.
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Figure 2: Cubic to tetragonal phase transformation. The red axis represents
temperature 6. There is no diffusion, only distortion.

material after a certain number of cycles. A highly nonreversible phase
transformation is the [ to «a transformation in the element tin, that
occurs a little below room temperature. Transformation upon cooling
just once a shiny bar of §-tin a little below room temperature yields a
pile of gray powder of a-tin.

3 Theory of phase transformations

We start with the simple cubic-to-tetragonal phase transformation men-
tioned above. A crystal (such as BaTiOs, Fe;Pds, In,Tl, MngCu,
NigsAlss, NigMnGa) transforms upon cooling somewhat below 6. (be-
cause of hysteresis) by elongating along one of the four-fold cubic axes,
to yield the three variants of martensite. To obtain the variants of
martensite from the cubic structure, one applies linear transformations
Uy = diag(nz, m,m), Uz = diag(ny,n2,m), Us = diag(ny,m1,12) to the
cubic lattice, here written in an orthonormal cubic basis.

Two elementary points should be emphasized. First, the red and
blue balls in Figure 2 indicate this is an ordered alloy, but, gener-
ally speaking, and consistent with the nonstoichiometric composition
of some of the alloys given above, there can be a certain probability
of finding an atom on a certain site, for example, a body center. For
example, the nonstoichiometric alloys Mn,Cu;_, (0.8 < z < 0.95) all
undergo cubic-to-tetragonal phase transformations, and all the compo-
sitions listed at the beginning of this section can be perturbed within
limits. Second, let us number, left to right, the variants 1, 2, 3 in Figure
2. All the variants are exactly the same up to rigid rotation. For ex-
ample, variant 1 can be rotated to look exactly like variant 2 by a rigid
rotation [;/ of angle /2. That does not mean that they are the same:
what matters crucially here is the deformation, and these are of course
different, R, /U, # U,. However, for an appropriate rigid rotation R €
SO(3), the two deformations y;(z) = Uiz and yo(z) = RUsx do agree
on a lower dimensional set, and this observation will be relevant to our
study of hysteresis.

We begin with a lattice model of the phase transformation. In



the simplest case we consider a Bravais lattice such as any one of the
lattices shown in Figure 2. This is the set of points L(ey,eq,e3) =
{vle; + viey + vez : (V1,12 13) € Z3} where ey, ey, €3 are given lin-
early independent vectors in R?, called lattice vectors. In Figure 3 the
lattice vectors can be chosen as the vectors from a blue
atom to two nearest blue atoms, together with a vec-
tor to the red atom (Figure 3). Let e; = aéy, 9 = aéy
where €1, €5, €3 = €1 X éy are orthonormal and a > 0.
We can consider various tetragonal Bravais lattices
defined by lattice vectors aéy, aéa, a(éy + éa +7€3) /2,
with v > 0. (The constants «a, vy that quantify the dis-
tances between atoms are called lattice parameters).
The value v = 1 gives the BCC lattice. A famous
observation of Bain is that there is exactly one other
choice of v > 0 in which the associated Bravais lat-
tice is cubic, that being v = /2, which gives the
face-centered cubic lattice (FCC). In fact quite a few
phase transformations can be viewed as perturbations of the BCC to
FCC (or the reverse) transformation, obtained by moving v from 1 to
V2 and changing a a bit.

Many lattices of interest in phase transformations are not simply
Bravais lattices. Rather, they are general periodic structures, i.e., the
periodic extension of a finite number of atomic positions. These can
be viewed as the union of a finite number of Bravais lattices, all made
with the same lattice vectors, that is,

Figure 3: Lat-
tice vectors for
the BCC lattice
(with  so-called
B2 ordering).

£(61762763;x17"‘7xM) - {I‘k+£(61,€27€3) ik = 17"‘7M}7 (1)

where the base points x1, ... are given points in R®. Conventionally,
a description is chosen with smallest M, in which case we speak of
e1,6e2,e3 as a set of primitive lattice vectors. A completely ordered
lattice assigns a certain species to all positions with the same value of
k. The lattice vectors ey, 5, e3 can now also be interpreted as defining
the periodicity. During a phase transformation in a complex lattice, the
lattice vectors can change, the base points can change, and typically
even the number M of base points changes. In its low temperature
phase an important alloy discussed later ZnysAusyCuss consists of M =
18 Bravais lattices.

Of course at positive temperature the atoms are vibrating about
average positions, and phenomena such as the release of latent heat are
intimately related to these vibrations. Nevertheless, it is convenient



to use a kinematics of periodic lattices based say on these averaged
positions.

It would seem to be an easy matter to decide which atom goes
where during a phase transformation. Already, that decision has been
made tacitly by drawing Figure 2 and assigning U;,Us,Us. But in
fact, especially with complex lattices, this is a nontrivial problem.
Currently, there is no experimental method that can follow individ-
ual atoms during a phase transformation, i.e., the pathway, though
there are some possibilities on the horizon. To determine the path-
way, Bain [1] favored minimizing a measure of “strain” defined from
mappings between the parent and transformed lattices, but he did not
specify a norm. Mathematically, the difficulty can be appreciated by
noticing that L(e;) = L(ule;), where (1)) € GL(3,Z). (Here, equal-
ity of two Bravais lattices means that they consist of the same infinite
set of points, and GL(3,Z) is the set of real 3 x 3 matrices of inte-
gers with determinant £1. Also, we use the summation convention:
ple; = Zj’:l ple;.) In fact, a classical theorem of crystallography (eas-
ily proved) says that L(ey, ez, e3) = L(f1, fa, f3) for linearly independent
vectors fi, fa, f3 if and only if f; = 23:1 wle; for some p € GL(3,Z).
So, many different choices of lattice vectors implies many possible path-
ways?.

Many transformations between phases involve complex lattices. Em-
pirically, in the notation of (1), the often accepted mechanism of trans-
formation is that a Bravais sublattice of austenite with lattice vectors
vle;, with v/ € Z¥® but with detv > 1, is transformed to a primitive
lattice of martensite®. As in [37], this again gives rise to integer min-
imization problems for which rigorous algorithms can be devised that
converge to a minimizer in a finite number of steps. An example using
a particular measure of strain (different than [37]) is given in [16], and
software can be found at http://www.structrans.org.

Really, determination of the pathway should be the province of first
principles calculations, and many examples are being explored in this
context [51, 67]. To describe a typical approach, consider the cubic
to tetragonal transformation of Figure 2, with cubic lattice vectors
e, e5, €5, such as those shown in Figure 3 (relabeled). Schematically,
a typical procedure is the postulation of a one-parameter family of

4Recently, using a reasonable measure of strain, Muehlemann and Koumatos [37]
prove that the Bain mechanism for BCC to FCC gives the smallest strain.

5Always, in this case detv has a value such that the volume of the unit cell
associated to vje; is about the same as a primitive unit cell of the martensite
phase.



unit cells, say defined by linear transformations of the cubic unit cell
F(£),0 < ¢ <1, with F(0) = I, F(1) = U;. Then, density func-
tional theory calculations of periodic lattices defined by lattice vectors
Fef, Fes, Fes are carried out, and optimized using the nudged elastic
band method (see [62] for a mathematical description of this method
in a different context). This method in principle gives the lowest sad-
dle on a pathway F'(£) between cubic and tetragonal phases. But, on
further contemplation, it misses a critical aspect of phase transforma-
tions which is central to this article: microstructure and compatibil-
ity! In fact, even in a near perfect single crystal, transformation never
proceeds by a homogeneous deformation. Rather, the new phase nu-
cleates and then grows. Inhomogencous pathways® must have lower —
likely much lower — saddles. The experimental evidence is that in many
cases the highly inhomogeneous austenite/martensite interface (whose
energy cannot be represented by a one-parameter ansatz of the type
described here) represents the lowest saddle. It is a big challenge to
have a first principles method that could cope with even the simplest
microstructures, but well worth investigating. What is a few-parameter
first principles anzatz that captures the austenite/martensite interface?

With this atomistic background we give a brief summary of a contin-
uum theory of phase transformations [4, 9] we will use, while pointing
out some deficiencies along the way. We do this first in the simplest
case of transformations between Bravais lattices.

We assume that lattice vectors for the austenite are ef, e§, e§ and,
for martensite, ef*, ef’, e5'. We wish to encompass also elastic deforma-
tions of both lattices, so we use the notation ey, ey, e3 for generic lattice
vectors. Eventually we will have to specify a domain, but for now we
just assume preservation of orientation, (e; X eg) - e3 > 0. A general
atomistic model will generate a free energy per unit volume once the
lattice and temperature are prescribed, so we assume such free energy
P(eq, e, e3,0) defined for (e; X e2) - e3 > 0 and temperature 6 > 0.

This free energy ¢(eq, €2, e3,0) is subject to basic symmetries. We
have frame-indifference, ¢(Rey, Res, Res, 0) = ¢(eq, ea, €3, 60) for all R €
SO(3) and € > 0, and the condition that the free energy should only de-
pend on the lattice £(ey, e, e3) and not otherwise on the lattice vectors:
o(plej, phej, phei, 0) = @(eq, ea, e3,0) for (u!) € GL(3,Z) and 6 > 0.

The function ¢(eq, ey, €3, ) assigns a value of free energy to a perfect

6Given a smooth F(¢), F(0) = I, F(1) = Uy, an interesting relevant mathemat-
ical problem that relies on the Cauchy-Born rule described below is to solve, under
weak conditions of regularity, Vy(z) = R(z)F({(z)) for y : @ - R3 R: Q —
SO(3), £€: 92— (0,1), where Q is a domain in R3.



Bravais lattice L(eq, eq, €3) at temperature 6. But we would like to treat
more complex structures than perfect lattices, such as the microstruc-
tures shown in Figures 4, 9, 10. Locally, near most points, they look
almost like perfect lattices. This suggests that we think of the austen-
ite lattice as a reference lattice and define, for linear transformations F'
from R3 to R3 with det F' > 0,

o(F.6) = (det F) p(Fef, Fes, Fes, 6). (2)

(The presence of det F' converts the free energy per volume of L(ey, €2, e3)
to a free energy per volume of the reference lattice L(ef,e$,e%).) For
a smooth mapping v : © — R?® the gradient Vy is the local linear
transformation, and therefore suggests a passage to continuum theory

inf / ©(Vy(z),0)dx. (3)
yeA Jq

This cornerstone of the theory (2), (3) is the Cauchy-Born rule [24].
It can be approached in a simple but rigorous way [13] via the “large
body limit”, e.g., the asymptotics as ¢ — 0 of y. : /e — R? given
by y.(x) = (1/¢)y(ex), which has the feature of making Vy.(x/c) more
and more constant, and therefore representing a more perfect lattice,
on a bigger and bigger collection of atoms near z/¢ as ¢ — 0. A com-
plete understanding of the Cauchy-Born rule likely involves difficulties
beyond the already insanely difficult “crystallization problem” [60, 26].
Nevertheless, by making clever but realistic assumptions, many inter-
esting papers shed light on its successes and failures [28, 14, 66].

The unspecified A in (3) raises another issue. Normally in the cal-
culus of variations, A would be chosen to match the growth conditions
on ¢. But the symmetry G(ule;, phe;, the;, 0) = @(er, eq, es,0) rules
out any of the usual growth conditions that would put finite energy
deformations y in a reasonable Sobolev space. Note that a relevant
choice of (u!) in GL(3,7Z) is, for arbitrary large m € Z,

(1)) = (4)

O O =
_ o O

m
1
0

Of course, we could brutally assign strong growth conditions for ¢, but
then we would violate the symmetry, which is supposed to preserve
the energy. Another disturbing fact is that a deformation gradient F
satisfying Fe? = p/e? with i/ as in (4), and say m = 1, if imposed on a
crystal, is likely to cause either failure of the crystal or massive plastic

9



deformation, phenomena that are not so relevant to the study of phase
transformations.

These observations suggest a resolution due to Ericksen [24] and Pit-
teri [49]: cut down the symmetry @(1e;, phe;, phe;, 0) = @ler, eg, e3,0)
to a subgroup, excluding exactly those p/ in GL(3,Z) that would cor-
respond to massive plastic deformation, and at the same time cut down
the domain of ¢ to be invariant under exactly these symmetries (and
frame-indifferent), and, with luck, include in the domain the tetragonal
or other lower symmetry phases that are of interest.

Such a domain D can be found [4, 9, 50]. In the simplest case the
answer is the following. The energy density ¢ : D x (0, 00) satisfies

RDH = D and @(RFH,0)=p(F,0),
for all F € D, R € SO(3), H € G*, (5)

where

G* ={Q € S0(3) : Qef = pjej, i =1,2,3,for some 1l € GL(3,7)}.
(6)
Hence, as indicated by the notation, the austenite phase dominates the
symmetry. From its definition G* is a finite, crystallographic group of
rotations, i.e., one of the 11 Laue groups.

These discrete and continuous symmetries imply an energy-well
structure, that also is assumed to change with temperature in a way
that is consistent with the phase transformation. A symmetric, positive-
definite transformation stretch matriz Uy is given, and its orbit under
the symmetries (5), (6) is SO(3)U; U ---U SO(3)U,,. The free energy
@ is assumed to be smooth on D x (0,00) and a typical energy-well
structure is

0 > 0. ¢(,0) minimized on SO(3)
0 < 0. ¢(-,0) minimized on SO(3)U; U---USOB)U,, (7)

where {Uy,...,U,} = {QU:QT : Q € G*}. In fact, it can be seen that
the Laue group of the martensite is G™ = {Q € G* : QU,QT = U,},
which also shows, by Lagrange’s theorem, that n = order G*/order G™.
From a practical viewpoint the restriction QU;QT = U, for all Q € G™
is very useful, since these groups are often easily known from an X-ray
measurement, but direct determination of U; is hampered by the issue
raised above about knowing where atoms go.

We shall use the theory in the form above, but in some cases ap-
plying it to lattices that are more complex than Bravais lattices. In
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the case of a general lattice of the form (1) one expects an atomistic
free energy” $(eq, eq, €3, Ty — T1,T3 — T1, ..., Tm — T1,0), together with
a Cauchy-Born rule of the form

O(F 81, Sm—1,0) = @(Fel, Fes, Feg, s1,82,...,8m-1,0), (8)

with again F' replaced by Vy(z), and s1(z),...,sm-1(z), x € Q, as
unconstrained functions. Under suitable hypotheses for the resulting
problem in the calculus of variations, we could minimize out the func-
tions sq1(z),. .., sm_1(x), leading back to a theory somewhat like that
given above, with potentially a significant lack of smoothness due to
intersections of branches of minimizers. These possibilities are interest-
ing, but it is disgraceful that, as of late 2017, we do not have a complete
theory of symmetry for the more general multilattice case®.
For definiteness we will put ¢(7,6.) = 0 in this paper.

4 Microstructure and nonattainment

As can been seen by the many examples presented in the article by C.
S. Smith [55] mentioned at the beginning of this paper, small bubbles of
a soap froth disappear and big ones grow, and the grains of a polycrys-
talline metal coarsen over time. As in the simplest linear elliptic and
parabolic equations, there is a strong tendency to simplify and smooth.
Exactly the opposite often happens in a martensitic phase transforma-
tion. One begins with a uniform crystal of austenite and, upon cooling
through the transformation, one gets a plethora of fine microstructures
of martensite. The mathematical origins of the spontaneous formation
of fine structure comprise a fascinating and ongoing chapter of nonlin-
ear analysis that began with the work of L. C. Young [65, 64, 63]. For
a broad overview see the article of S. Miiller [43].

We should clarify the distinction between grains (which collectively
are often also called “microstructure”) and the microstructure result-
ing from a phase transformation. The theory presented above is for
a single crystal, when in its austenite phase, modeled by the uniform
lattice L(ef,e5,e%). When it transforms, say by cooling, it forms mi-
crostructure, due to the tendency arising from energy minimization of
the deformation y : Q — R3? to have a gradient Vy near the energy wells

"The presence of the differences z; — x; arises from the translation invariance of
&.
8The state-of-the-art is the last chapter of Pitteri and Zanzotto [50], especially

Section 11.7.
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SO(3)Uy, ..., SO(3)U,. But often the materials (both metals and ox-
ides) that undergo phase transformations are studied as polycrystals,
with differently oriented grains. Then one has to rewrite the theory
presented in Section 3 for a polycrystal, which is easy to do [11]. The
“fighting between the grains” during transformation has consequences:
single crystals and polycrystals of the same material do exhibit some-
what different macroscopic response. Usually, phase transformations in
polycrystals are studied at lower temperatures, in which case the grains
do not coarsen during normal time scales.

The simplest relevant example of nonattainment is the following.
Let A # B € R¥3 with rank(B — A) =1, i.e., B— A = a®n. Make
the drastic and unphysical simplification that the free energy density
is smooth on R3*3, independent of temperature, and satisfies

p(A) = ¢(B) =0 < p(F), F¢{A B} (9)

We have brutally omitted all the symmetries and retained only the
structure of having energy wells, and then only two. However, we
have made them “rank-1 connected”, a feature which is shared by the
tetragonal phase in the model described above: there exists R € SO(3)
such that rank(RU; — U;) = 1 (see Lemma 5.1 below). Assume ¢
satisfies the mild growth conditions of being bigger than a positive
constant outside a sufficiently large ball |F'| > p > 0, and also assume
that Q C R? is open, bounded and has a Lipschitz boundary. Let
0 < A <1 and consider

inf Tu(2) da.
y € WH(Q,R?), ‘é@(y(ﬁ (10)

y(x) = (AB+ (1 —N)A)zx, xz € 00

This example exhibits nonattainment of the infimum by a mechanism
that is common in martensitic crystals, and the proof is simple but
typical. We first show that the infimum is 0. We define the 1-periodic
function y, : R — R by

1= i <s<it A, .
XA(S)‘{—A itA<s<it1, 'SF (11)

Note that the integral of x, over one period is zero. Then, for k =
1,2,... we define

y®(x) = (AB + (1 —\)A)z + (%/0 X,\(s)ds) a. (12)
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By differentiation, Vy*)(x) takes the values B and A on alternating
layers of width X and 1 — A, and y*) converges uniformly to the linear
map (AB 4 (1 — A)A)z on R? as k — co. Thus, y* is uniformly close
to satisfying the boundary conditions. It can be made to satisfy them
exactly by introducing a smooth function 1. : R?* — [0, 1], depending
on the small parameter ¢ > 0, and satisfying

wlo)={ o Bi\q, IVUl<2e (13)

where Q. = {z € Q : dist(z, 0§2) > ¢}. (One can replace §2 by a slightly
smaller interior domain, choose 1. to be proportional to the distance
to the boundary of that domain (or 1), and then mollify, choosing the
various scales appropriately.) Then, the function

Yre(@) = Ce(2)y™ (@) + (1 = ¥e(2) AB + (1 = N A)z), €, (14)
(

satisfies the boundary conditions yj .(z) = (AB + (1 — X\)A)z, x € 0L
Also, Vyy.(x) takes the values A and B on (). and

|vyk,e<m)| = Wja (Vy(k) - (/\B + (1 - )‘)A))
+(y(k)(x) —(AB+(1- )\)A):c) ® V|
< |B—Al+ %cj (15)

Choosing, say, € = 1/k we have sequence with bounded gradient that
satisfies the boundary conditions, whose gradient takes the values A and
B on larger and larger fractions of (2 as £ — oo. Thus, the infimum in
(10) is zero.

To show nonattainment, we note that by the growth conditions,
any minimizer § would have to lie in W1°°(£2,R3) and give zero energy
density,

Viye{A B} ae. Q. (16)

Extend ¢ to all of R® by making §(z) = (AB + (1 — A)A)z on R?\ ,
and note that § is in WH*(R3,R?). On Q we can write

Vi(zx) =n(x)B+ (1 —n(x)A=A+n(x)a®n, where n(x) € {£1}.

(17)
Thus z(z) = §(z) — Ax satisfies Vz(z)nt = 0 on Q and, in fact, on
all of R3, and for all n* - n = 0. This we can integrate on R? to get
z(x) = f(x - n). The function f is completely determined by its value
outside ), and therefore it must be f(z) = A(n - x)a. Hence,

glx) =Ar+ z(x) = (A+Xa®@n)zr = (AB+ (1 —N)A)z (18)
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Since 0 < A < 1, AB+ (1 — A\)A is in no cases equal to A or B, and
therefore we have reached a contradiction with (16).

This type of example can be generalized to cases that satisfy the
symmetries [4, 12, 8, 40] but still, known results of this type are quite
special. In fact the main important examples of this article, and the
concept of supercompatibility, illustrate the subtlety in trying to prove
some kind of general result on non-attainment. Much more can be said,
and in particular the Young measure is a beautifully simple tool to learn
more about the structure
of minimizing sequences
without explicitly calcu-
lating them.

One is led by these
results to study minimiz-
ing sequences, as well as
minimizers, and to un-
derstand their relation to
observed microstructures.
The most important mi-
crostructure in marten-
site becomes an imme-
diate target: the classic
austenite/martensite in-
terface. This microstruc-
ture is shown in Figure 4. It is widely seen as the interface between
austenite and martensite at the finest level. When first observed in
detail in the 1950s, it was puzzling because, when people measured
the normal m to the interface (by viewing one such interface on two
inclined free surfaces, such as at a corner), they found that it was, in
the language of materials science, “irrational”. That is, when m was
expressed in the orthonormal cubic? basis of austenite, the components
were not small integers. How could such an beautifully planar interface
be noncrystallographic, i.e., not apparently have any relation to the
adjacent crystal lattice of austenite?

The study of minimizing sequences for the austenite/martensite in-
terface explains this irrationality and, quantitatively, the observed nor-
mal m as well as other features of Figure 4. Given the minimizing
sequence constructed above, is is very easy to find a related one mod-
eling the austenite/martensite interface. Consider an energy density of

Figure 4: Austenite-martensite interface in
Cugg.5Alo7Ni3 5. The banded structure on the
left is martensite, and the uniform phase on
the right is austenite (Courtesy of C. Chu).

9In many cases, including that of Figure 4, the austenite is cubic
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the type given in (5-(7), and choose A, B from the martensite wells, e.g.
A= RU, and B = Uy, with R € SO(3). Here we are using the freedom
of an overall rotation of say Figure 4 to omit a possible rotation matrix
in front of U;. In fact, as already mentioned, it will be seen from results
presented in Section 6 that there is often a choice of R such that

RUQ—U1:a®n, (19)

a,n € R3. Equation 19 is called the twinning equation. We assume
(19), choose A = U; and B = RU, and repeat the construction (11)-
(12) verbatim. The steps (13) to (14) can also be repeated, except now,

say,

w€<x>={ Lozom<—e gy cofe, (20)

0, x-m >0,

where, without loss of generality, we have put the origin on the austenite-
martensite interface. On the austenite z-m > 0 we choose an arbitrary
deformation gradient from the austenite well R € SO(3), so (14), (15)
are replaced by

ykﬁ(x) = ¢5($)y(k) (l’) + (1 - ¢E($))Rx7
V(@) = [v(Vy™ - R)
+ (AB+(1—-NA)x — R'2) ® V.|, (21)

but now, in the crucial last term, Rz has only to agree approximately
with (AB 4 (1 — A\)A)z when —e < - m < 0. This gives the sufficient
(and necessary, for any reasonable choice of 1.) condition

RTAB+(1—-\NA)=T+bxm. (22)

Rewriting (22) and (19) in a common notation and, without loss of
generality, replacing R € SO(3), by R, we obtain the equations of the
crystallographic theory of martensite:

RU,—Ui=a®n, RARU,+(1—-NU)=I+bom  (23)

Since (19) will be solved below, it is easiest to think of f?, Uy, Us; as given,
consistent with the first of (23), and so the unknowns are the volume
fraction A\, R € SO(3) and b,m € R3. As noted, m usually comes out
irrational in the sense of materials science. The reason is clear: (23)
embodies a geometric as well as a crystallographic restriction. Using
(19), (23) can also be written

RU, — U, =a®n, RU +Xa®@n)=1+b®m (24)
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The solutions (R, A\,b® m) of (24) have been checked against observed
values of these quantities many times, with amazing success [61].

This is one kind of minimizing sequence, but there are many more.
If one looks at almost any martensitic microstructure, one can guess
a minimizing sequence or, in some cases, a minimizer, and one can
learn about this microstructure. One can get very good at this kind of
guessing, then filling in many details by rather simple calculations, and
it is certainly very informative. However, it is not really predictive of
the microstructure that will result under such-and-such conditions.

The austenite-martensite interface, as for example shown in Figure
4, is produced by cooling a free crystal (no loads). Thus, nominally,
the associated minimization problem is (3) with no imposed boundary
conditions and ¢ = 6.. But this minimization problem has a much
simpler minimizer: y(x) = z, i.e., all austenite. Thus, one can say that
there exists a minimizer, but Nature prefers a minimizing sequence,
Figure 4. Of course, somehow, during cooling, the material has to
go from austenite to martensite, and the crystallographic theory of
martensite provides an obvious low energy pathway (“a zero limiting
energy pathway”). But, at least in the normal pursuit of solutions
of the calculus of variations, if one finds an absolute minimizer, one
usually quits and does not then seek a minimizing sequence!

There are several features of Figure 4 that are not predicted by the
crystallographic theory of martensite. Obviously, the bands on the left
are not infinitely fine. There are also more bands near the interface
than far from the interface — a branching phenomenon can be noticed,
and this is quite common in martensites. By careful examination, 4-5
generations of branching can be seen in Figure 4. However, the mea-
sured the volume fraction \ predicted by the crystallographic theory!?
agrees closely (e.g., within 2-3%) with that measured on Figure 4 ei-
ther close or far from the austenite interface. These observations are
believed to be a consequence of a small regularization which has been
studied mathematically in simpler models (see [34] for a survey, and
[52, 15]). The consequences of this regularization will be critical for
our understanding of hysteresis. We return to this in Section 5.

Oguitably modified to represent the volume fraction of bands on the image y()
and measured on a window that contains at least about 10 bands.
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5 Hysteresis

What causes hysteresis? There are diverse thoughts about this in a
large literature !, some of which are in fact inconsistent with the ob-
servation of rate-independent hysteresis. Ideas also include the pinning
of interfaces by defects [59] and spin flips in an Ising model mediated
by disorder [54]. There is also a deep mathematical literature on the
modeling of hysteresis, which is not so much concerned with its origins,
but rather with the accurate simulation of hysteresis loops [42]. These
kinds of simulations have been used in industry, for example to quantify
whether the hysteresis of a new batch of material is the same as that of
the last batch, but they are not so useful for the discovery of materials.

The concept we will explore is related to the ubiquitous austen-
ite/martensite interface, the crystallographic theory of martensite, and
regularized models. As explained in Section (4), the austenite/martensite
interface is a low energy structure modeled by a minimizing sequence,
leading to the algebraic problem (24). We also noted some discrep-
ancies between theory and experiment, notably the nonzero scale of
the twin bands on the left of Figure 4. This is believed to be re-
lated to a small interfacial energy on the boundaries of these bands.
Finer and finer bands (at fixed volume fraction A) reduce the elastic
energy in the transition layer near the austenite/martensite interface,
but have more and more interfacial energy. Coarse bands, on the other
hand, have little interfacial energy but unacceptable elastic energy in
the transition layer. People believe that what you see in Figure 4 is a
compromise between these two tendencies, that in fact is captured by
regularized models [34, 36, 35]. The story is subtle: many regularized
models assert that the transition layer is delocalized, and is accompa-
nied by branching of the bands as seen in Figure 4. “Delocalized”’
means that the elastic energy arises not from a layer parallel to the
austenite/martensite interface, as in (20), but rather arises from the
martensite bands having normals slightly perturbed away from n, due
to the branching. In martensites in hard materials, one pays a big
energetic penalty for perturbing n. More on this below.

So, there are two sources of energy, both positive, that are missed by
the minimizing sequence: the interfacial energy on the boundaries of the
martensite bands, and the elastic energy in the transition layer. We can
imagine that this sets up an energy barrier. On cooling from the austen-
ite

Hgee Section 1.4 of [10] for a broad summary
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phase, as soon as a nucleus of martensite (such
as that seen in Figure 5) forms, it is accom-
panied by extra interfacial and transition-layer
energy. For it to grow, a lowering of the temper-
ature below 6, is required in order that the low-
ering of the martensite well with temperature
compensates for the barrier. A similar process
could happen upon heating. As soon as austen-
ite forms, it must be accompanied by transition-
layer and interfacial energy, and another barrier
is set up, requiring a increase of temperature to
above 6.. Hence, hysteresis. Figure 5: Schematic

Mathematically, the identification of energy nucleus —of marten-
barriers is not part of the usual calculus of vari- site, b.ounded by.two
ations. Linear stability analysis, e.g., the study gustemte/ martensite
of the loss of positivity of the second variation as interfaces.

a parameter 6 is varied, identifies energy barri-

ers, but clearly the study of the second variation would miss the barrier
identified here. The “nucleus” shown in Figure 5 is missed by lineariza-
tion about the undistorted austenite phase: it is a large, localized dis-
turbance. More precisely, at the measured temperature 6 < 6., on the
shoulder of the hysteresis loop (Figure 1) where the martensite begins
to grow, the second variation at the ambient austenite phase is strongly
positive-definite. Promising emerging methods [32], [33] not based on
linearization exploit the fact that the nucleus has small support, to-
gether with the energy well structure and compatibility. Otherwise,
the time honored method is: make a clever ansatz. Numerically, one
can collect a zoo of ansatzes, but, without insight from experiment, this
does not seem hopeful. Fortunately, in the present case, one can make
a reasonable ansatz, Figure 5.

This ansatz has been studied in some detail [69, 70]. First, one
notes that there are no singularities at the ends and the curvature
of the interface plays an insignificant role: one may as well study the
energy of two parallel austenite/martensite interfaces, as the width w of
the nucleus is varied. Of course, one needs to include interfacial energy
per unit area on the boundaries of the bands as well as the transition-
layer energy, both of which can be included in the context of an ansatz.
Sure enough, there is a barrier when 6 < .. When w is small, the
interfacial /transition-layer energies dominate leading to an increase of
energy with w. When w is large, the bulk energy dominates, due to
©(U1,0) = o(RU,,0) < (R, 6) in the notation of (19)-(24), leading to
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a linear decrease of energy with w. For the state-of-the-art, see [70].
If this barrier is indeed responsible for hysteresis, there is obvious
experimental test. It is related to an elementary lemma.

Lemma 5.1 [3] Let the symmetric 3 x 3 matriz have ordered eigen-
values 0 < Ay < Ay < A3 and corresponding orthonormal eigenvectors
e1,ea,e3. A necessary and sufficient condition that there exists (Q €
SO(3) such that QUy — I = b®m is Ay = 1. The solutions are express-
ible in the form

As(1 = \y) A(As — 1)
N €1 +o N — €3

m = %(%) (—\/1—7)\161+0\/ﬁ63>. (25)

where 0 € 1 and p # 0.

Proof. Operate (QU,)T(QU,) = U2 = (I+m®b)(I+b®m) on bxm to
see that one eigenvalue of U is 1, then write UZ = (I+m®b)(I+b®m)
in the eigenvector basis of U; to show it is the middle eigenvalue, and
also that \s = 1 is sufficient.

The experimental test is at hand, when one realizes that QU; — I =
b ® m is necessary and sufficient that there is a continuous function
y : © — R3 taking the values QU; (martensite) and I (austenite). (Note
also that the matrices Uy, ..., U, all have the same eigenvalues.) For
examples, see the pictures at f = 0,1 in Figure 7. So, if Ay = 1, there
is no need of the fine bands, no need of the transition layer. We can
transform by passing a single plane separating austenite and martensite
through the material, at least for a single crystal. In principle, there
could be a small interfacial energy on this plane but, essentially, the
barrier is gone. This is also seen by specialization of the results in
(69, 70] to the case \y = 1.

How can this be an experimental test? The matrix U; (and therefore
Us, ... U,) are properties of the material. While it is difficult to change
the symmetries (5) and (6) of a material, the transformation stretch
matrix U; does change with composition. So, start with a material
having U; with a middle eigenvalue reasonably close to 1, and tune the
composition to make A\, exactly 1. When this was done'?, the results

12first, primitively, in the lab of the author
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were astonishing. Later, people who do combinatorial synthesis'?® tried
this and, in fact, these studies very much highlighted the importance of
“combi-methods”. A collection of measurements done with both combi
and bulk methods is shown in Figure 6. Each marker is a different
alloy. One can see that the hysteresis can be reduced to near zero by
tuning the composition to make Ay = 1, some of these alloys being
exceptional. The perfect interfaces of “Ay = 1 alloys” have been seen in
transmission electron microscopy [23], and in fact the angle in @) and
b,m can be measured from the micrographs, showing nice agreement
with Lemma 5.1. This is not at all restricted to NiTiX alloys. Today,
there is a lively ongoing effort to make new low hysteresis alloys this
way.

a)

b)

O/

Figure 6: Measured width of the hysteresis of alloys in the NiTiX system
([21, 69, 68]). Each marker is a different alloy. Panel b) is a close-up of a)
near Ao = 1. Note that the width of the hysteresis loop can be reduced to
near zero.

There is another interesting consequence that is revealed by combi
methods [21]. The X-ray measurement that gives values of A\, for the
many alloys, also gives measurements of \;, A\3. The product A\ A3 is
the volume ratio of the two phases. If A A\2A3 # 1 and the new phase
nucleates on the interior, it grow up in a hole of the wrong volume.
Changing the volume of the hard material requires a lot of energy,
and one would think this would set up an energy barrier. However,
when hysteresis is plotted vs. A\ A3 for combinatorial library, unlike
in Figure 6, there is no clear correlation. In fact, some of the alloys
with the biggest hysteresis and some with the smallest hysteresis have
A A2A3 = 1. Perhaps nucleation does occur from the boundary?

Bnotably 1. Takeuchi and A. Ludwig and their groups
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The NiTiX system is the most intensely studied transforming ma-
terial system. In recent years it has been the most intensely studied
system among all metal alloys [47]. People have made many thousands
of NiTiX alloys and characterized them. How did they miss the obvious
sharp drop of Figure 67 The reason is that Ay is extremely sensitive
to composition (see Fig. 1 of [17]). When people previously made their
alloy series, they always jumped over the composition at which Ay = 1.
Without a theory, it can be hard to find a singularity.

6 Supercompatibility

We can appreciate from these results on hysteresis, that a) for some as-
pects of material behavior, there really is a difference between minimiz-
ing sequences and minimizers in the problem (3), b) regularized models
reveal this difference quite clearly, and c) degeneracies like Ay = 1 have
an important effect on hysteretic behavior. By satisfying Ao = 1 we
also disrupt the balance between bulk and interfacial energy. From
a practical viewpoint, in a “Ao = 1 material” we might still expect
to see a compatible interface in a 100nm (or even 10nm) crystal (or
grain) , but if Ay is not extremely close to 1 we are unlikely to see an
austenite/martensite interface at these scales.

It seems unlikely that there is any further lowering of the energy
barrier between austenite and martensite that is possible than by having
a perfect, untwinned austenite/martensite interface implied by Ay = 1.
But there is the potential to find degeneracies that allow many possible
low energy ways to mix austenite and martensite. Such conditions
could remove barriers that form when, say, several Ay = 1 interfaces
are forced to meet, such as at a grain boundary. One such degeneracy
is embodied in the cofactor conditions [30].

The cofactor conditions are degeneracy conditions of the crystal-
lographic theory of martensite, which we have reduced to (24). We
suppose as above that the twinning equation RUy — Uy = a ®n has
been satisfied. To solve this for R € SO(3), a,n € R? one can recast
it in the form of Lemma 5.1 or use the Proposition 12 from [17]. This
proposition states, under the conditions that the 3 x 3 matrix U; is sym-
metric and positive-definite and U, = QU QT for some Q € SO(3) (all
of which are assumed above), there is a solution R € SO(3), a,n € R3
of RU, — Uy = a ® n if and only if there is é € R3,|é| = 1, such that

Upy=(—IT+2é@e)U(—1+2é®eé), (26)
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Formulas for é,a,n are given in [17] (see (10) and (A.1)-(A.6) there).
We note that there are usually lots of 180 degree rotations (—1+2é®é)
in the Laue group G“, so lots of pairs of matrices U; and Uj;, not just
1 = 2,75 = 1, satisfy the twinning equation, and can be the basis of
constructing austenite/martensite interfaces.

Given R, a,n we now turn to the second condition R(Uy+Xa®n) =
I +b® m of the crystallographic theory of martensite, to be solved for
R € S0(3),0 <X <1,and b,m € R®. Following [3] we eliminate R by
calculating (I +b® m)T(I +b® m) to get the necessary condition

GAN)=U1+mea) (Ui +ra@n)=IT+meb(+bxm). (27)

This condition is sufficient for the existence of R € SO(3) if det(/ +b®
m) = 14+b-m > 0. This follows from the polar decomposition theorem
and the fact that det(-) is rank-1 affine, and so det(U; + Aa ® n) =
det(ARU, 4 (1 — \)Uy) = det Uy > 0. One can further notice that (27)
is related to Lemma 5.1, and therefore is solvable with 1 +b-m > 0 if
and only if the 0 < A < 1 can be chosen so that the middle eigenvalue
of G(A) is 1.

Hence, we seek 0 < A < 1 such that the middle eigenvalue of G(\)
is 1. If so, necessarily, det(G(\) — I) = 0. This looks like a 6th order
polynomial in A, but, due again to the fact that det(-) is rank-one
affine, it is actually quadratic and symmetric about 1/2. Thus, aside
from the issue of whether the resulting eigenvalue = 1 of G(\) is the
middle one (an inequality given below), the crystallographic theory of
martensite reduces to the question of whether a particular symmetric,
quadratic function has roots 0 < A* < 1 and 1 — A*. In fact, if one
uses the matrices U; and U, (appropriately selected!) for the alloy
Cugg 5Alo7Nis 5 shown in Figure 4, one does in fact have such roots and
the resulting solution agrees nicely with Figure 4, with the qualifications
mentioned above.

The quantity det(G(A\) — I) can of course be evaluated for any ma-
terial that undergoes a phase transformation and has an energy well
structure with the symmetries of Section 3. Materials with an appre-
ciable value of |U; — I| for which det(G(\) — I) has no roots are usually
not reversible.

For a “Ay = 1 material” as discussed in Section 5, necessarily we
have solutions of the crystallographic theory because the second of (24)
is satisfied at A = 0,1. That is, the symmetric, quadratic function
det(G(N) — I) satisfies det(G(0) — I) = det(G(1) — I) = 0, and, of

course, the roots 0,1 give middle eigenvalues of G(\).
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In this framework an obvious degeneracy presents itself: the func-
tion det(G(\) — I) could be identically zero. Then, assuming the roots
obtained give middle eigenvalues of G(\), we would have solutions of

(a) austenite/martensite with Type I twins

(b) austenite/martensite with Type II twins

Figure 7: Zero elastic energy austenite/martensite interfaces possible under
the cofactor conditions, from [17]. Red is austenite and blue/green are two
variants of martensite. These pictures exhibit large deformations, zero elastic
energy and perfect fitting of the phases, under continuous variation of the
volume fraction f. For Type II twins the cofactor conditions imply that the
twin boundaries are parallel to the austenite/martensite interface, which
clearly makes for easy construction of zero elastic energy microstructures.

the crystallographic theory for every 0 < A < 1. A quadratic function,
symmetric about 1/2, is identically zero if and only if its value at 0
and its derivative at 0 are zero. These two conditions, together with
an inequality that is necessary and sufficient that the eigenvalues = 1
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obtained are the middle ones, are the cofactor conditions [30, 17]:

2, (2

No=1, a-Upcof(Ui—I)n=0, trU}—detU; — % > 2. (28)
We review the known alloys that have been tuned to satisfy the cofactor
conditions in Section 7.

The cofactor conditions depend on the “twin system” a,n. It is
easily seen by operating Q... Q7 on (27), Q@ € G*, that its satisfaction
for one twin system implies its satisfaction for other twin systems, and
there can be further multiplicities of this type [17], depending on the
symmetries.

The cofactor conditions imply a plethora of additional austenite/
martensite interfaces modeled by minimizing sequences, but it is not
obvious that they provide additional zero elastic energy structures be-
yond those guaranteed by Ay = 1. It seems from the results of Section 6
that elimination of the elastic energy altogether might be most impor-
tant. But, as degeneracy gets piled on degeneracy, there can be other
unexpected accidents, and that is the case here. Some but not all of
these are collected in Figure 7. Briefly, to understand this figure, one
needs to know that

there is a classification of solutions of the twinning equation into
Type I, Type IT and Compound twins. (In microstructures with austen-
ite and compound twins it is not known if one can eliminate the elastic
energy.) The details can be found in [17]. Not pictured are zero elastic
energy curved austenite/martensite interfaces, and zero elastic energy
mechanisms for nucleation. There may well be other famlies of zero en-
ergy microstructures, and a compete understanding is lacking. It will
be shown in Section 7 that unprecedented behavior is seen in the two
known alloys that satisfy the cofactor conditions.

We should mention that there is potentially a completely different
interpretation of the cofactor conditions. This concerns the relaxed en-
ergy [38]. The relaxed energy is the limiting energy of the lowest energy
minimizing sequence having a given weak limit. From a materials sci-
ence viewpoint: fix the average deformation, find a (possibly complex)
microstructure that minimizes the energy and has this given average
deformation. That is, assume 1 < p < oo and 2 bounded and open,
with a Lipschitz boundary. Let y € W? be given, and for sequences

y9 —~y in I and VyY) — Vy in LP (29)
minimize the energy:
Eracro(y) = inf {lim inf/ o(VyW, 6,) d:v} : (30)
{y(])} J—00 Q
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It is known [38] (see also [27]) that if p(F,60.) > c¢|F|P, ¢ > 0, when |F|
is large, then E,,..-, is representable in terms of a macroscopic energy
density ¢ by

Ennaro(y) = / B(Vy(a)) d. (31)

Properties of ¢ are given by Kristensen [38]. Of interest here is its
zero level set. Does it suddenly get larger when the cofactor conditions
are satisfied? Naively, one would think “yes”, since the new austen-
ite/martensite interfaces, exhibited for example in Figure 7, should
enlarge the flat region present on ¢.

Our vague sense is rather that the presence of the zero elastic energy
minimizers, which disrupts the delicate balance between elastic and in-
terfacial energy, is perhaps most important consequence of the cofactor
conditions. Therefore, by supercompatibilty we shall mean degeneracy
conditions like Ay = 1 or the cofactor conditions that permit the phases
to fit together with finite interfacial area and without stressed transi-
tion layers. Another interesting recent example is [20]. With a good
collection of examples one can hope for a general theory of supercom-
patibility.

7 Reversibility

Two alloys have been found that accurately satisfy the cofactor con-
ditions: ZIl45All3()CU.25 [56] and Ti54.7Ni30.7CU12.3COQ'3 [18] Brieﬂy,
they both exhibit exceptional reversibility of the phase transformation.
They are quite different alloys both chemically and structurally: the
ZnAuCu alloy undergoes a cubic to monoclinic transformation while
the TiNiCuCo alloy undergoes a cubic to orthorhombic transforma-
tion. The ZnAuCu alloy was found by systematic alloy development:
make a specimen starting from high purity elemental Zn, Au and Cu in
the right proportions, check for changes of composition that may have
occurred by loss to the environment during melting, measure accurately
the lattice parameters of both phases by X-ray methods, calculate the
quantities in (28) and repeat. After several specimens, one develops
the relation between (28) and composition, from which satisfaction of
(28) to high accuracy is possible. The TiNiCuCo alloy was made by
thin'# film sputtering methods, removal the substrate and polishing the
boundary of the specimen. Both specimens were made to undergo stan-

“actually quite thick, so it would be considered more like bulk material
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dard heat treatments after synthesis. Further information on synthesis
and processing can be found in [18, 29

To understand reversibility, a nice test to do is the shape memory
effect: cool the material from austenite, deform the material in the
martensite phase (which rearranges the variants) leaving the material
with a large overall deformation, heat it up and it returns to its starting
shape as the martensite transforms back to austenite. But this heating
and cooling would take too long for thse highly reversible alloys, i.e.,
for these materials such tests would take years.

(a) Zn45AU3ocu25 [467 56]

(b) Tis4.7Nigp.7Cuy2.3C02.3 [18]

Figure 8: Stress-induced transformation in ZnAuCu and TiNiCuCo.
See text. (a) is reprinted with permission from [46], copyright 2016,
American Chemical Society. (b) is from [18] and is reprinted with
permission from AAAS.

Another test, which in many ways is even more demanding of the
material but can be done in a matter of weeks, is stress-induced trans-
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formation. In the simplest case — say the stress is a uniaxial tension in
the direction e, |e] = 1, with stress ¢ > 0 — this corresponds mathemat-
ically to the study of the a modified energy minimization problem

inf /(@(Vy(x), 0) —oe-Vye)dx. (32)
yeA 0

In the case of these two alloys the main effect of this particular stress
is to raise the transformation temperature, which can be easily under-
stood by solving'® (32). Thus, one can do stress-induced transformation
by fixing the temperature above 6. and increasing the stress o until the
material transforms. This is seen as a flat region on the measured
stress-strain curve.

Basic information on reversibility is seen in Figure 8. The ZnAuCu
alloy shows nearly the same response after 100,000 cycles, under de-
manding conditions of almost 7% strain each cycle and peak (com-
pressive) stresses of more than 500 MPa. The TiNiCuCo alloys is in
many ways more impressive: even though the strain is lower (almost
2%) these tests were done in tension (more demanding) and the stress-
strain curve at cycle 1 is extremely close to that at cycle 10 million. In
both cases the material was made to undergo nearly complete transfor-
mation to martensite each cycle. For mathematicians not familiar with
these units, a typical value of the yield stress of the steel that holds
up a department of mathematics is 300 MPa. Several other measure-
ments test reversibility in other ways. For example, ZngsAusyCusgs has
a remarkably low thermal hysteresis (e.g., Figure 1), as low as 0.2°C.

In general martensites widely exhibit a high degree of repeatability
of the pattern of microstructure on heating and cooling [54]. Trans-
form a typical martensitic material by cooling and one sees a pattern
of microstructure. Heat to austenite (which wipes out the microstruc-
ture) and cool again: the pattern is very nearly the same. Often, in a
polycrystal, plates of martensite appear by growing out of a defect or
triple junction in the same way each cycle.

Thus, it comes as a striking observation that, when ZngsAugyCuss
is heated and cooled back and forth through the transformation, the

15This is easily done under mild growth conditions on (. To see the simplest
asymptotic result quickly, let K = SO(3)Uy U- - -U SO(3)U,, assume that (-, 0) rises
steeply from the energy wells, note that one can minimize the integral by minimizing
the integrand, and therefore reduce the problem to minpecsoyur (fa(€)Xsos) +
fm(@)xx — oe - Fe). The energy wells for the ZnCuAu alloy can be found in the
supplement of [56].
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microstructure is completely different each cycle!®. See Figure 9 or,
for the full video, the supplement of [56], or, at a bit lower resolution,
http://www.aem.umn.edu/~james/research/. How can such a highly
reversible alloy behave in such a highly nonrepeatable way? Is it that,

(a) cycle 1 (b) cycle 2

(c) cycle 3

Figure 9: Three successive transformation cycles at the same location in a
grain showing the non repeatability of microstructure in ZngsAusoCuos.

by satisfying the cofactor conditions, we have so flattened its infinite-
dimensional energy landscape that the material can take any path?
Sounds good at first, until one recalls that, in an ordinary marten-
site, the plates of martensite tend to emerge from triple junctions and
defects. Shouldn’t the defects then even more strongly bias the mi-
crostructure with an otherwise flat energy landscape?

These and related questions have inspired mathematicians to look
more critically at this video. We collect two observations that are par-
ticularly interesting. One is due to J. M. Ball and F. Della Porta [22]
and is illustrated by Figure 10. It is as if the microstructure is already
set behind a blanket, and one moves the blanket aside to reveal it.
That is, there is very little further relaxation once the microstructure

167t should be mentioned that every effort was made in the heating/cooling device
to give a periodic temperature profile vs. time.
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appears. Perhaps this also can be rationalized by a very flat energy
landscape — or, anthropomorphically, wherever you are, there is lit-
tle driving force to push you elsewhere. Upon reflection, it is clear
that this is a very strong restriction on the microstructure: previously,
it was compatible with the austenite across a (possibly irregular) in-
terface [22] and, after that, it did not change. In general, this kind
of restriction, which embodies the idea that there must have been a

(a) frame 1 (b) frame 2

(c) frame 3

Figure 10: The process of transformation in ZnssAuzoCuss seen in three
consecutive frames. Austenite is dark gray. Notice that once the mi-
crostructure appears there is very little further relaxation.

low energy pathway to an observed energy minimizing state, has not
been studied much, and also relates to the study of barriers mentioned
above. For another interesting barrier see the wonderful experiment of
H. Seiner [6].

A fascinating observation on ZngsAuzoCuss due to Noemi Barrera
and Giovanni Zanzotto [7] relates to power-law behavior [45, 19] and the
theory of self-organized criticality [39]. It is known that the martensitic
phase transformation often takes place through abrupt strain events
(“avalanches”) even when the temperature or loading is smoothly chang-
ing [48, 2]. Figure 11 shows a plot of the empirical probability of
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avalanche sizes, where size S refers to the number of pixels in a con-
nected domain that undergoes an austenite-to-martensite switch of
color between successive frames. They note [7] that the empirical
avalanche statistics of ZnysAusgCugs (labelled CC1 + CC2) have an
exceedingly good power-law character, to a degree that is rare in ma-

P(S) S,

min

S

Figure 11: Empirical probability P(S) for the size S of transformation
avalanches during the video (supplement, [56]), where S is the number of
pixels in connected domains where there is an austenite-martensite switch
of color. The plot (blue) shows power-law behavior with exponent near 2 over
a remarkable range of 6 orders of magnitude for Zngs AugyCug; (CC1+CC2).
The control plot (blue) is measured in the same way on a generic alloy. The
inset shows the values of the power-law exponent o for CC1+CC2 (black) vs.
the generic control (blue), determined by the maximum likelihood method
[19] as a function of the lower cutoff imposed to the data.

terials science. Qualitatively, this lack of one or more characteristic
scales indicates that ZnysAusgCugs can perform a much wider and more
efficient collection of adjustments of microstructure to environmental
changes. It is a striking example of this type, that includes sand piles,
earthquakes, stick-slip friction, the firing of neurons, and fluctuations
in financial markets. Of course, it would be good to relate this behavior
to the theory given above; see [5] for a model in this direction and [53]
for recent diverse perspectives on the origins of behavior such as that
shown in Figure 11.
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8 The direct conversion of heat to elec-
tricity

We finish this article with a few brief remarks about one of the most
interesting!” applications of reversible transforming materials. It con-
cerns the use of these materials for the direct conversion of heat to
electricity in the small temperature difference regime. Here, “direct”
means that the material itself creates the electricity without a sepa-
rate electrical generator. The “small temperature difference regime”
is the regime 10 — 200° C, for which there does not currently exist a
reasonable energy conversion device. Sources in this regime are ubiq-
uitous: concentrated solar-thermal sources, data centers (which now
consume ~ 3% of the energy budget in the US), waste heat from indus-
trial sources, desktop and laptop computers, air conditioning systems,
power plants, and even hand-held electronic devices'®

There are at several ways that transforming materials can be used
for the direct conversion of heat to electricity, and we will mention
two of them. They are enabled by the abrupt change of magnetoelec-
tric properties that can occur in materials with big first order phase
transformations, like those discussed here. The two cases are based on
magnetism and ferroelectricity. In the first case one uses a material for
which the low temperature phase is non-magnetic and the high temper-
ature phase is strongly magnetic. For an example of such a material,
which also has A2 quite close to 1, see [58].

One heats the material through the phase transformation. If left
alone it would demagnetize itself'? by forming domains, so we place
it on top of a permanent magnet to bias it. This biasing can be well
understood from the theory of micromagnetics. As it transforms to the
strongly magnetic phase as we heat it up, it magnetizes. We can think
of magnetization as a time-dependent vector field M : Q x [0,¢;) — R3
satisfying |M(z,t)| = Xa,@)(x)Ms on the region 2 occupied by the
material. Here, Q;(t) C Q, Q1(0) =0, Q4 (¢1) = ©, much like the frames
in Figure 10 run backwards. By heating we increase f, M(z,t)dz.

7in the opinion of the author

Bfor which, of course, the generated electricity would be used to help recharge
the battery. In some of the computer examples mentioned, it is in fact a significant
technological obstacle to get rid of the heat.

Bgince it is a soft magnet, which means, from the point of view of energy mini-
mization, that its static behavior is well predicted by absolute energy minimization
based on the theory of micromagnetics.
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Ferromagnetism is governed by a well-known dipolar relation®’

B = po(H + M) (33)

as well as the Maxwell equations

divB =0, curlE = —a—B. (34)
ot
Interpreted physically, the latter means that, if the material is sur-
rounded by a coil, a current will be generated, or, briefly, induction. In
fact, one gets a current of opposite sign on cooling back through the
phase transformation.

This is the barest explanation, but there are many subtle aspects.
For example, the presence of the field of the permanent magnet changes
the transformation temperature, since there is an effect of magnetic field
on transformation temperature. Moreover, the current induced in the
coil modifies this field in an important way. The effect on heating and
cooling is different, and one gets two transformation temperatures. This
splitting of the transformation temperature turns out to be terribly
important to the efficiency and power output of such a device. Of
course, minimizing the hysteresis is also critical. See [57] for a basic
model.

As one can see from (33) and (34) the rapidly changing M is par-
titioned between B and H, but it is 0B/0t that creates the electricity.
This partitioning is well-known to mathematicians who work in mi-
cromagnetics. A study of this partitioning reveals a deficiency of this
method: the good shape of Q for a favorable 9B /0t seems to be a bad
shape for the also crucial aspect of heat transfer. This dilemma sug-
gests that, in fact, the ferroelectric case (with capacitance, instead of
induction) is preferred, as will be explained in forthcoming work.

Acknowledgment. This work was supported by ONR (N00014-14-1-
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HOW COMPLICATED ARE POLYNOMIALS IN MANY
VARIABLES?

CRAIG HUNEKE

ABSTRACT. The title question refers to systems of polynomial equations in
many variables over a field. The question can be made precise in many ways,
for example, through the complexity of detecting whether a given polynomial
can be expressed as a linear combination (with polynomial coefficients) of other
polynomials.

Another sense in which the question can be made precise is through compar-
isons of numerical data about the ideal generated by the polynomial equations,
which generalize the numbers of generators and relations. Such additional nu-
merical data was originally introduced in the 1890’s by David Hilbert to count
the number of polynomial invariants of the action of a group (this was the work
that “killed” invariant theory for a brief time!). In the last two years, three
long-standing problems about these numerical invariants have been solved.

These notes are the basis of my talk at the Current Events session, JMM,
2018, and will introduce the main themes in this story: Hilbert functions, free
resolutions, projective dimension, Betti numbers, and regularity.

1. INTRODUCTION

What do the following have in common? Counting the number of k-colorings
of a finite simple graph; finding the number of integer lattice points in kP as we
dilate a polytope P by an integer k; finding the number of n by n magic squares
with line sums k; counting the maximal number of unattacked squares in an n by
n chess board after placing & queens on the board; determining the nature of the
function that sends an integer k£ to the number of faces of dimension k + 1 in a
given finite simplicial complex; counting the number of invariants of a fixed degree
for a group acting linearly on a polynomial ring; and finding the lowest degree of
a nonconstant morphism from a projective nondegenerate curve to the projective
line?

The obvious answer is that all these problems involve finding numerical infor-
mation. The non-obvious answer is that all of these problems can be analyzed
and described by sets of polynomial equations. In practice this means that the
numerical information being sought is given by the Hilbert function of a graded
commutative algebra, or in some cases through the finer numerical information
provided by graded Betti numbers. Our second section introduces these concepts.
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2 CRAIG HUNEKE

The Hilbert function measures the vector space dimensions of the graded pieces of
a graded commutative ring. It is the first in a series of finer and finer measurements
one can make to analyze a wide variety of problems. This finer data, which is
connected to free resolutions, is the main topic of this talk.

Three fundamental conjectures concerning the numerical invariants attached to
the free resolutions of a quotient ring of a polynomial ring over a field have been
resolved, one negatively, within the last two years. These notes will introduce the
basic concepts and statements of the conjectures, and give at least a partial sense
of the solution of one them.

All three of the conjectures deal with data associated to ideals in polynomial
rings. Throughout these notes, S = k[z1,...,z,] denotes a polynomial ring over
the complex numbers (or in general an algebraically closed field k of characteristic
0). Although some of the results hold in more generality, it is simpler to focus
on this case. We say a polynomial f(z1,...,z,) is homogeneous of degree d if
fltzy, ... tx,) = tif(xq,...,2,). For example, 23 + 4wox374 is homogeneous of
degree three, but x? + x5 is not homogeneous. The set of all homogeneous poly-
nomials of degree d, including the identically zero polynomial, is a k-vector space.
In this way S decomposes as a sum of vector spaces S = ® 54, where Sy con-
sists of all polynomials of degree d, and such that S; - S; C S;4;. Evidently, Sq4
is finite-dimensional, having as a basis all monomials x]* ---z%* where the a; are
nonnegative integers whose sum is d. A simple combinatorial argument shows that
the number of such monomials in degree d is exactly (":ﬁ;l).

The generating function for the sequence of the dimensions of Sy, namely Hg(z) =
>, dimg(Sq)z%, can then be directly computed:

B e

d

Observe that the generating function is a rational function.

Remark 1.1. It is not difficult to prove that the following two conditions concern-
ing the generating function of a sequence of complex numbers h(d), d > 0, are
equivalent:

(1) Xaso h(d)z? = (1}3_(3 , where P(z) € C[z] is a polynomial of degree at most

n —1; and
(2) h(d) is a polynomial function of d of degree at most n — 1.

We also observe that in these equivalent cases, h(d) is a polynomial of degree

exactly n — 1 with leading coefficient % if and only if P(1) # 0.

Counting polynomials of degree d in n variables is rather easy. But can we simi-
larly count the number of polynomials of degree d with certain imposed restrictions
or identifications, e.g., count the degree-by-degree dimensions of quotients of poly-
nomials ring, or modules over such rings? These are the questions that pertain to

our original set of counting problems.

Definition 1.2. A subset I of S which is closed under addition and arbitrary
multiplication by polynomials in S is called an ideal. An ideal I is said to be
homogeneous if I = @4(I N .Sy) as vector spaces. A generating set {f; : j € J} for
I is a set of polynomials f; € I such that every polynomial g € I can be written
g = Zj r;f; for some (not necessarily unique) polynomials r;. In this case, we
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write I = (f; : j € J). We say that [ is finitely generated if it is generated by
finitely many polynomials.

Whenever an ideal I is given, we can form a quotient ring of cosets R = S/I in
which the images of the elements of I become 0. Moreover, if I is homogeneous,
then the elements of R inherit the degrees from S, and R becomes a graded ring
itself: R = ®Rq4, and R; - R; C R;y;. Most of the counting problems in our orginal
list have an equivalent interpretation as finding either explicitly or implicitly the
dimensions of the graded components Ry for suitably chosen I.

2. HILBERT’S METHOD

Hilbert wrote two monumental papers [Hil90, Hil93a] in the early 1890s which in
some sense answered many of the classical problems of invariant theory, but in a
way which dissatisfied some mathematicians at the time. These papers established
the foundations of commutative algebra by proving what are now known as the
Hilbert Basis Theorem, Hilbert’s Nullstellensatz, and the Hilbert Syzygy Theorem.
The last-named theorem gave Hilbert a method to package the generating function
of the degree dimensions of a ring of invariants, in other words to count the number
of invariants of a given degree.

This section defines the basic objects whose study occupies the rest the paper.

The basis of Hilbert’s method is the method of syzygies, and to get this method
off of the ground one needs to know that polynomials rings are Noetherian, i.e.,
that every ideal is finitely generated. This is the famous Hilbert Basis Theorem:

Theorem 2.1. Every ideal in the polynomial ring S = kl[z1,...,x,] is finitely
generated.

To describe Hilbert’s syzygy theorem, we need to expand the scope of our dis-
cussion to include modules over the polynomial ring S. In fact, we also need a
stronger version of the Hilbert Basis Theorem, namely that submodules of finitely
generated free S-modules are also finitely generated.

Definition 2.2 (Hilbert Function/Series). Let M denote a finitely generated S-
module, We call M graded if it can be written M = @iez M; where each M; is
a k-vector spaces with S; - M; C M,4;). The Hilbert function hp : Z — Z> is
defined by

The Hilbert series Hy;(z) is the generating function associated to hjs:

dez
We write M (e) for the shifted module having M(e); = M,y;. It follows that
hareey(i) = har(i 4 e). The most important case of a shifted module is the module
S(—d). This is simply a copy of the ring S, but in which we set d to be the degree
of the generator 1 € Sy = S(—d)4. The Hilbert series of S(—d) is exactly %
since this module simply shifts the degrees by d. The utility of this notation is
given by the example below.
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Example 2.3. Let f be a non-zero homogeneous polynomial of degree d in S. We
compute the Hilbert series of the graded ring R = S/(f). There is a short exact
sequence

OHSLSHR—)O

in which the first map is multiplication by f. To keep track of the various graded
components, it is more convenient to shift the degree of the generator of the first
copy of S by d so that the map becomes homogeneous of degree 0. Thus, in our
graded setting, the “correct” short exact sequence is

0—S(—d) 158 —R-—0

This short exact sequence upon restriction to an arbitrary fixed degree yields
short exact sequences of vector spaces on which dimension is an additive function.
Translating this additivity to the generating function gives that that Hg(z) =

Hs(z) — Hg(—a)(2) = (1—12)" — (151)” = &:j;n, a rational function. It follows that
) . . i+n—1 i—d+n—-1
hR(z):hS(z)—hS(z—d):< n 1 )—( no1 ),

which is a polynomial for large 4 (in fact for ¢ > d), as predicted by Remark 1.1.

Our goal is to understand the Hilbert series of cyclic S-modules, namely, the
Hilbert series Hgr(z) in the case R = S/I with I a homogeneous ideal of R. An
obvious approach is to try to lift this calculation back to the polynomial ring S.
This can be done as follows: There is a short exact sequence of S-modules,

0—I—S—R—0
This restricts degree by degree to short exact sequences of vector spaces,
0—1I;— Sqg—Rs—0

which gives hg(d) = h;(d) + hr(d), and therefore

HR(Z) = Hs(z) - H[(Z) = # - H](Z)
1=z

On the face of it, we have only made a tautological change in the goal of com-
puting Hg(z) by replacing it by H;(z). However, as the example above illustrates,
this seemingly tautological strategy can actually work in some cases if we know
enough about the generators of the ideal I. We then at least have a chance to ex-
plicitly compute the polynomials in I of degree d. Hilbert’s fundamental realization
is that even without any information about the generators, we can “unwind” the
structure of R one step at a time by repeating the same idea, and at least discover
fundamental properties of the Hilbert function. This is the reason modules come
into the story.

The ideal I is finitely generated by Hilbert’s Basis Theorem. As a consequence,
we can map a finitely generated free graded S-module onto it by sending the stan-
dard basis of the free module to the generators of I. Explicitly, let {f1,..., fi}
generate I. Suppose their degrees are di,...,d;. We map a graded free S-module
F=5(—d)@---®S5(—d;) onto I by sending the basis element e; = (0, ..., 1,...0),
with 1 in the ith component, to f;. The “shift” —d; gives e; degree d; so that the
map is a graded map of graded modules. The kernel of this map is called a syzygy.
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We repeat the process: we have a short exact sequence
0—N—F—I1—70
where N is the kernel of the map defined above, giving that Hy(z) = Hp(z) —

t di
HN(Z) = Zi:o (1z—7z)" — HN(Z)
In general, consider a short exact sequence of finitely generated graded S-modules,

0—K-1sMm-2%N—0

We assume that the homomorphisms all have degree zero, f(K;) C M; for all i € Z,
and similarly for the map g from M to N. It follows that we also obtain short exact
sequences of finite dimensional vector spaces,

0— N, — M, — K; — 0,
yielding hy (i) = har(é) + hx (7), and therefore

Hilbert’s discovery was that this process of moving back one syzygy at a time
actually stops, allowing for computation:

Theorem 2.4 (Hilbert’s Syzygy Theorem). If M is a finitely generated graded
S-module, then there exists a finite graded free resolution

(2.1) 0O—F, —F, 41— —F —F—M-—0.

In his notes [Hil93b] he mentions that this theorem is “very difficult to prove”.

We write F; = ¢y S(—j)Pui. Tt is true that a priori these numbers 3; ; are
not uniquely determined by M, but the free resolution can be suitably pruned to
make them unique. This pruned resolution is called minimal. After this pruning
we call the multiplicities 8; ; = 8;;(M) the graded Betti numbers of M. Using a
bit more homological algebra, one can prove the characterization that

Bi,j = CllIIl]C TOI‘?(M, k)7

The collection of all such Betti numbers is called the Betti table of M. Here we
think of 7 as the homological degree, and of j as the internal degree of the syzygies.
Observe that the length of this resolution is at most n, the number of variables.

The Hilbert function, and the Hilbert series of M can all be read off from the
Betti table of M. We have

1=0 j
and

() = > C(=1)18y) ‘ZJ.
(1—2)"
An immediate consequence is the remarkable fact that the Hilbert series of any
finitely generated graded S-module is a rational function. An equivalent statement
is contained in the following corollary of Hilbert’s Syzygy Theorem.

Theorem 2.5. If M is a finitely generated graded S-module, then there exists a
polynomial pps(t) with rational coefficients, such that par(i) = hay(3) for sufficiently
large values of 1.

The polynomial py; is called the Hilbert polynomial of M.
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Example 2.6 (The Koszul complex). If we take R equal to k = S/(z1,...,2x),
the residue field, then its minimal graded free resolution takes the form:

0— S(—n)(Z) —_— S(fi)(?) — e — S(-1)"— S — k—0.
The graded Betti numbers are given by
0 J# i

R (1) G

This resolution of k£ can be thought of as a homological realization of the binomial
expansion (1—2)" = 1—nz+(})2%—...4(—1)"z", since computing the Hilbert series
17nz+(72’)227...+(71)"’z" _

=" =

of k (which just 1) from the resolution gives exactly that
Hyp(t) = 1.

The resolution of the residue field is a special case of a Koszul complex. More
generally, one can define the Koszul complex K (fi, ..., fp; S) on p-elements fi, ..., fp
to be the graded algebra ASP = @ A’ SP, whose ith graded piece is F; = A'SP. If
we let eq,...,e, be the standard basis of SP, then as a basis of F; we can choose
the set of all {e;}, where J runs through i-tuples 1 < j; < jo < ... < j; < p,
and ey is the exterior product e;; A --- Aej,. This basis element sits in degree
>_jesdeg fj. The maps of K(fi,..., fp;S) are described by taking e; € F; to the
element Y-, . ;(=1)""" fie; ;3 € F;—1. With this notation, the Koszul complex
resolving k is K (21, ..., n; S). However, the Koszul complex on arbitrary elements
is not always exact. See Example 3.5 below for more on this point.

The graded Betti numbers of a module are recorded into the Betti table, where
the entry in row ¢ and column j is B; ;4;:

[0 1 2

0| Boo Bipx Pop2
1| Bogx P2 B23

The Koszul complex in Example 2.6 has Betti table
o1 2 .. i - n—1 n

R R

Important invariants of R, and more generally of S-modules, are encoded in the
Betti table. Although each of these invariants has other definitions and meanings,
the statements below can be taken as definitions.

(1) Dimension:
dim(M) = deg(pn) + 1.
We will also need the codimension of an ideal [ in .S, namely
codim(I) = dim(S) — dim(S/I).
(2) Multiplicity or Degree:
deg(S/I) = (dim(S/I) — 1)! - (leading coefficient of pg/).
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(3) Projective dimension:
pd(M) = length of the Betti table (the index of the last non-zero column).
(4) Regularity.

reg(M) = width of the Betti table (the index of the last non-zero row).

Example 2.7. We have seen one explicit example, namely the Koszul complex. To
see these concepts in another example, let ' = C[z, y] be the polynomial ring in two
variables with complex coefficients. We let the cyclic group of third roots of unity
act linearly on T by sending x to wx and y to wy, where w is a primitive third root of
unity. Let R be the ring of invariant polynomials under this action, namely the set of
all polynomials f(x,y) such that f(z,y) = f(wz,wy). It is not difficult to prove that
R is generated as an algebra over C by all the homogeneous polynomials of degree
3, namely R = Clz? 2%y, 2y?, y?]. If we map a polynomial ring S = Cl[s, t,u,v]
in four variables onto R by sending s — 23t — 22y, u — 2y%,v — y3, then the
relations on these invariants are exactly the ideal I in S = C[s, ¢, u, v] generated by
three quadrics, namely sv — tu,t?> — su,u? — tv. These three quadrics themselves
have two relations, and the free resolution of R over S takes the form

0— S(-3)2 —5(-23—S—R—0

We can read off important invariants from this data: the regularity of R over S is
1, and the projective dimension is 2. The Betti table is:
01 2
of1r . .
1 3 2
The Hilbert series
22 -322+1  2z+1
H =Hg_ — Hg(_ - H = = .

R(Z) S( 2)3(2) S( 3)2(’2) S(Z) (1 — Z)4 (1 — Z)
Expanding the Hilbert series gives Hgr(z) = Y_,(3t + 1)2* from which we deduce
the Hilbert function is hgr(t) = 3t + 1.

One can think of a hierarchy of levels of information which enable one to study
the ring R = S/I. At the first level is its Hilbert series giving the degrees of the
various graded pieces. A second level is provided by the graded Betti numbers
Bi,; which give finer information; the Hilbert series can be recovered from these
integers. A third level would be understanding in more detail the structure of
the maps within the resolution, or relationships between the graded Betti numbers.
See [BET77] for structural information on free resolutions, and [BS08], [ES09] for the
development of Boij-Soderberg theory, which gives structure to the Betti table. See
also the recent Bulletin article [FMP16] for many other problems about resolutions
and their structure. A yet finer-grained analysis can be done by putting an algebra
structure on the resolution itself compatible with the maps in the resolution. The
scope of this article is the second level of trying to understand bounds on the actual
Betti numbers.

Example 2.8 (Gonality). As an example of what finer information can be provided
by the Betti table, as opposed to the Hilbert function, we consider the notion of
gonality. Let C' be a smooth complex projective curve of genus g > 2. The gonality
of C, gon(C), is the least degree C — P! of a branched covering. Let L be a very
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ample line bundle of degree d on C' defining an embedding C' C P(Hy(C, L)) = P".
Mark Green [Gre84] first studied connections between the geometry of C' and L and
their syzygies. Write S = Sym(Hy(C, L)) for the homogeneous coordinate ring of
projective r-space, and let R = @®,, Ho(C, L™) be the graded S-module, the ring of
sections of L. If L is normally generated, then R = S/I for the homogeneous ideal
of C in P". We let 3,4 be the graded Betti numbers of R over S. A conjecture
of Green, proved in [EL15] for line bundles of sufficiently high degree, states that
the gonality can be read off of the resolution of I by looking for the longest linear
strand of the resolution: explicitly, 5, p+1 7 0 if and only if 1 < p < r — gon(C).

The three conjectures mentioned in the introduction are the Eisenbud-Goto con-
jecture, the Buchsbaum-Eisenbud-Horrocks conjecture, and Stillman’s question. All
three have been solved within the last two years, one negatively (although a case
of great interest is still open). The Buchsbaum-Eisenbud-Horrocks conjecture was
first in print in 1977, the Eisenbud-Goto conjecture was made in print in 1984,
while Stillman’s question was first made informally around 2000, and did not ap-
pear in print until a few years later. Combined, these conjectures resisted about
90 years of attempts to solve them. All three can be stated using data from Betti
tables as they deal with regularity, total Betti numbers, and projective dimension
respectively. In the next section we concentrate on the statement and solution of
Stillman’s conjecture. In a last section we give a short summary of the first two of
these conjectures.

3. STILLMAN’S QUESTION

The Hilbert Syzygy Theorem proves that the number of variables, IV, is a bound
for the projective dimension of an arbitrary ideal in S = k[z1,...,2n]. Around
2000, Michael Stillman had the vision to ask if Hilbert’s bound was actually the
best if one fixed data about the ideal. Stillman’s conjecture asks if there exists a
bound independent of the number of variables, provided the number and degrees
of generators are fixed.

Conjecture 3.1 (Stillman’s Question). Fiz positive integers di, ...,d,. Consider
all ideals J in an arbitrary polynomial ring k[zq,...,zn] = S, with N wvarying,
generated by n homogeneous polynomials of degrees dy, ...,d,. There a bound to the
projective dimension, pds(J), depending only on dy, ..., d,,.

In theory, unwinding the structure of the ideal J through its free S-resolution
could become long and complicated, even have length N — 1. In theory, the reso-
lution could also involve equations of larger and larger degree. The meaning of the
conjecture is that this worst-case scenario cannot ever occur. Not even close. One
can ask a similar question for regularity, but Giulio Caviglia proved that bounding
the projective dimension independent of the number of variables is equivalent to
bounding the regularity independent of the number of variables!

We let b(dy,...,d,) be the best possible bound for the projective dimension of
S/J for all ideals J in an arbitrary polynomial ring k[zq,...,zn] = S, with N
varying, that are generated by n homogeneous polynomials of degrees dy,...,d,.
Through the work of Tigran Ananyan and Melvin Hochster [AH16], we now know
that b(dy,...,d,) < oo in general, i.e., that Stillman’s conjecture is true. In this
section we sketch some of the ideas in their proof.
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Example 3.2. There are some cases in which Stillman’s conjecture can be proved.
If n =1, then we only have one polynomial f of degree d, and we’ve already seen
that R := S/(f) has a free resolution,

0—>S(—d)i>S—>R—>O

showing that its projective dimension is one regardless of the degree of f. If n = 2,
then the fact that polynomial rings are unique factorization domains can be used
to prove that the projective dimension is at most 2, which is sharp provided N > 2.
It was shown by Diana Taylor in 1966 [Tay66] that the projective dimension of n
monomials of arbitrary degrees can be at most n. If the ideal I is generated by
linear polynomials, then a minimal generating set is given by linear polynomials in
I which form a basis of I7, and the resolution of these generators is given by their
Koszul complex, which has length exactly the number of them.

These relatively elementary examples might encourage one to hypothesize that
the projective dimension of S/I is always bounded by the number of generators of
I. As more “evidence” for this naive guess, if fi,..., f, are chosen randomly with
p < N, then they form a complete intersection (see Example 3.5 below). However,
whenever fi, ..., f, form a complete intersection, the Koszul complex K (f1, ..., fp; S)
gives a free resolution of length p.

The first case not covered by these elementary considerations is n = 3 and
di = do = d3 = 2, with the ideal having codimension 2. However, the ideal
I = (zy,uv, xu + yv) generated by three quadrics has the free resolution

0 — S(—6) — S(=5)* — S(—4)° — S(-2)* — S — S/T — 0

showing that its projective dimension is at least 4. In other words, b(2,2,2) > 4.
In fact, b(2,2,2) = 4. In turns out that 3-generated ideals can be as complex as
arbitrary ideals: Winfried Bruns [Bru76] proved that basically every possible free
resolution is the resolution of a 3-generated ideal up to shifting degrees. However,
the degrees of the generators must increase as one applies his construction to in-
crease the length of the resolutions. One of the few sharp bounds known is that
n-quadrics generating an ideal of codimension 2 has projective dimension at most
2n — 2 [HMMS13].

Life quickly becomes hard. Even the value of b(3, 3,3, 3) is not known.

Example 3.3 (The Smooth Case). An important case to consider geometrically is
the case in which the ideal I = (fy, ..., f) is a homogeneous ideal in S = k[z1, ..., 2]
defining a smooth projective variety. This means that the ring S/I has an isolated
singularity at the origin. The answer was provided in a 1981 paper of Gerd Falt-
ings [Fal81] long before Stillman asked his question. Faltings proved that either
I is a complete intersection (see Example 3.5 below) in which case the projective
dimension of S/I is at most n, or N < 3n, in which case the projective dimension
is at most 3n. In either case, there is a bound depending only on the number of
polynomials f;, not even depending on their degrees. We will soon see that this
dichotomy of either knowing an ideal is a complete intersection or bounding its
singular locus is a crucial insight in the solution of Stillman’s conjecture.

Remark 3.4 (A Grobner Approach). For those familar with Grobner bases, there
is seemingly a “natural” line to approach Stillman’s conjecture. In this discussion
we assume familarity with the fundamentals of Grobner bases.
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A famous paper of Bayer and Stillman [BS88] in 1984 proved that if I is a
homogeneous ideal of a polynomial ring S, the projective dimension and regularity
of its generic initial ideal Gin([) in the revlex order are the same as that of I. Thus
Stillman’s question is equivalent to asking about the projective dimension of the
generic initial ideal of a homogeneous ideal generated by forms of degrees dy, ..., d,,.
Of course, the initial ideal is generated by monomials, and as mentioned above,
the projective dimension of an ideal of monomials is bounded above by the number
of monomials in their generating set. Thus the projective dimension of I will be
bounded by the number of generators in Gin(/). The problem is that taking a
Grdbner basis can vastly increase the number of generators. However, in revlex,
the projective dimension of a generic initial ideal is simply the total number of
variables which appear in any generator.

Buchberger’s algorithm provides a method to compute the Grébner basis of an
ideal by repeated S-pairs. One might try to solve Stillman’s conjecture by showing
that from a fixed number of polynomials of fixed degrees in generic coordinates,
one can only get initial terms involving a bounded number of variables. Proving
this is equivalent to proving Stillman’s conjecture. However, this idea seems to go
nowhere, at least at the present time.

In 2012, Ananyan and Hochster [AH12] settled Stillman’s conjecture for ideals
generated by quadrics. Their upper bound for the projective dimension of n
quadrics in that paper is approximately 2n2". They proved this case by chang-
ing the question in a fundamental way. In 2016 [AH16], the same authors provided
a full solution for arbitrary degrees. Their proof is a remarkable journey through
six theorems nested by an induction. The new ideas in 2016 even provide a much
better bound for quadrics. A full description of their method is beyond the scope
of these notes, and we will instead concentrate on one key aspect of their proof.
To describe some of the main ingredients, we first need to take a closer look at the
all-important case of complete intersections.

Example 3.5 (Complete intersections). We say the homogeneous elements f1, ..., f,
in a polynomial ring S = k[x1, ..., 2,] which generate an ideal I form a complete
intersection if the codimension of I is exactly p, where codim(I) is by definition
n—dim(S/I). The sense of being a complete intersection is that each f; cuts down
the dimension by as much as possible, i.e. the vanishing loci of the polynomials meet
transversally in some sense. For example, if f; = z129 and fo = x3x4, then they
form a complete intersection, while f; = z1x9 and fo = zox3 are not a complete
intersection. An important point for our discussion is that whenever f,..., f, is a
complete intersection, the Koszul complex K(f1, ..., fp;S) is acyclic, and is a free
resolution of S/(f1, ..., fp). In particular, as noted above, the projective dimension
is just p, the number of f;, or equivalently the projective dimension of I is p — 1.
More critically, even more is true: if we let A = k[f1, ..., fp] be the subring of S
generated by elements f1, ..., f, which form a complete intersection, A is isomorphic
to a polynomial ring in p variables (in other words, any polynomial g(Y7,...,Y})
vanishing at fi, ..., f, is identically zero), and the containment of A into S makes
S into a free A-module! The freeness of S as an A-module has an important
consequence for the solution of Stillman’s conjecture. Namely, suppose that J is
an ideal in A. By the Hilbert Syzygy Theorem, since A is itself isomorphic to a
polynomial ring in p variables, the projective dimension of A/J is at most p. So
there is a free A-resolution of A/J of length at most p. When one extends the
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ring and this resolution to S (by tensoring with S over A), the A-free resolution
of A/J becomes an S-free resolution of S/JS. Thus, if we are given polynomials
in S which are in fact polynomials in a complete intersection of much smaller
cardinality, we can bound their projective dimension by the number of polynomials
in that complete intersection.

Remark 3.6. By itself, the fact that S is a free A-module is not quite enough for the
proof. Ananyan and Hochster prove a variety of extension-type results in passing
from A to S. One of the more surprising ones is that if the ideal generated by the
complete intersection f,..., f, in S is a prime ideal, then every prime ideal of A
extends to a prime ideal of R. This fact, and others of similar nature, are crucial
in their proof.

This all-important base-change principle is a simple generalization of the some-
what obvious remark that if g1, ...g, are polynomials which only involve variables
Z1,..., Lp, then the projective dimension of the ideal they generate is at most p —1,
regardless of what other variables are in the ambient polynomial ring. What the
discussion in the above paragraph shows is that if g1, ..., g, can be written as poly-
nomials in auxiliary polynomials f1, ...., f, which form a complete intersection, then
it is still the case that the projective dimension is bounded by p — 1.

The discussion above provides a strategy to attack Stillman’s conjecture: given
homogeneous polynomials f1, ..., f, of degrees d1, ..., dp,, suppose we can find a num-
ber of auxilliary forms, say ¢i, ..., gm, where m only depends on the number and
degrees of the f;, such that fi,..., f, € k[g1, ..., gm], and such that g1, ..., g, form a
complete intersection in the original polynomial ring S. The discussion above then
proves that the projective dimension of the S/(f1, ..., fp) is at most m.

One of the fundamental insights of Ananyan and Hochster is that trying to write
polynomials in terms of simpler polynomials, or polynomials of lower degree, is
closely connected with the codimension of the singular locus of those polynomials.
The following is a quote from their paper [AH16]:

“We define a nonzero homogeneous polynomial F' of positive degree in S to have
a k-collapse for k an integer, if F is in an ideal generated by k elements of strictly
smaller positive degree, and we define F' to have strength k if it has a k+ 1-collapse
but no k-collapse. Nonzero linear forms have strength oo, and a form has strength
at least 1 if and only if it is irreducible. One of the main themes here is that F' has
a “small” collapse if and only if the singular locus of F' has small codimension.”

Remark 3.7. The “only if” direction of this quote is explained as follows: if F' =
Zle G;H;, the partial derivatives of F' are in the ideal (Gu,..., Gk, Hy, ..., Hy).
Since an ideal defined by m equations has at most codimension m, the partials of
F', whose vanishing locus is the singular locus of F', have “small” codimension at
most 2k. The “if” part of their approach is extremely difficult.

They extend this notion of strength to include entire vector subspaces of poly-
nomials: We say that a k-vector subspace of S is k-strong if all of the nonzero
homogeneous polynomials in it are k-strong.

Their proof winds through a nested induction of six different theorems. In some
respects the punchline for Stillman’s question is provided by the following theorem
that is Corollary B in their paper (the notation is changed slightly from their paper):
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Theorem 3.8 (Ananyan-Hochster). There is a function B(n,d), independent of
k and N, such that for all polynomial rings S = klx1, ..., xN] over an algebraically
closed field k and all graded vector subspaces V' of S of dimension at most n whose
homogeneous elements have positive degree at most d, the elements of V are con-
tained in a subring A = k|G, ...,Gg], where B < B(n,d) and G1,...,Gg form a
complete intersection of forms of degree at most d.

Evidently as described above, this theorem immediately implies that the pro-
jective dimension of S/I is at most B(n,d), where I is the ideal generated by the
forms in V, giving a positive answer to Stillman’s conjecture.

To give a sense of their proof, the next subsection will outline their proof when
the ideal is generated by quadrics. This case is considerably easier, though details
must still be supressed.

3.1. The Quadric Case. We begin with a basic result about matrices of linear
forms. This result will then be applied to the Jacobian matrix associated with given
quadratic forms. One of the difficult problems in extending the proof from quadrics
to the general case is that the Jacobian matrix no longer consists of linear forms,
but rather higher degree terms.

Lemma 3.9. Suppose that A is an n X N matriz of linear forms in a polynomial
ring over an infinite field with n < (<<)N. Further assume that the codimension
of the ideal generated by the entries of a general row is at least h. Then the ideal
generated by the n by n minors of A has codimension at least h —n + 1.

A consequence is the following fundamental principle:

FEither the original set of quadrics having codimension ¢ is a complete inter-
section, or some linear combination of any c of the quadrics is contained in a
polynomial subring of S in 2c-variables.

To see why, we apply Lemma 3.9 to the Jacobian matrix of an ideal I of codimen-
sion ¢ minimally generated by n quadrics in a polynomial ring S with N-variables.
We assume that n > ¢, else I is a complete intersection and has projective di-
mension ¢ — 1. Choose c of the quadrics. Suppose that a generalized row of their
Jacobian matrix has height at least 2c + 1. Then the height of the actual Jacobian
ideal of these ¢ quadrics in the polynomial ring S is at least 2c+1—c+1 = c+ 2,
which forces the ideal of those ¢ quadrics to be codimension ¢, in other words forces
the quadrics to be a complete intersection. Even more, the Jacobian criterion of
smoothness proves that the ideal generated by those ¢ quadrics is a prime ideal!
But then the entire set of our original quadrics is generated by those c-quadrics
since otherwise the codimension would increase, a contradiction. This contradicts
our assumption that n > c.

The above discussion proves that some linear combination of any ¢ of the quadrics
has its partial derivatives generating an ideal of codimension at most 2c. But an
ideal J generated by linear forms having codimension at most 2¢ must be contained
in a polynomial ring of at most 2¢ variables, namely the linear forms that give a
basis of the graded piece J;. But even more is true: the quadric whose partials are
those linear forms can be written as a polynomial in those variables. For example,
if f = xz+ yz+ zu+ yu, then the partials are generated by the linear forms
z 4w and x + y, and letting a = z + u,b = = + y, we can change variables so that
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f = ab € Kla,b]. Thus, after a change of variables, we can assume that the last
quadric, say f,, can be written with only the variables x1, ..., Ta..

On the face on it, there is now an easy induction: without loss of generality we
may assume that f,, € k[z1, ..., za.]. By induction we can then assume that the first
fis ooy fno1 € klo1, .., gm], where g1, ..., g, are a complete intersection in S and m
is bounded by a function only depending on n — 1. Then all of the quadrics are in
a subring k[z1, ..., Z2c, g1, -y ). Since the x; are simply variables, we presumably
have that the sequence 1, ..., T2, g1, ---, gm form a complete intersection in S. Not
so fast! Unfortunately, the last statement is not true.

This last difficulty then requires rather intricate manipulations which go be-
yond what we can do in this manuscript. The notion of strength comes into play.
Ananyan and Hochster basically start the process over by including the notion of
strength from the beginning. If our original n quadrics are (n — 1)-strong then they
must be a complete intersection. If not, one of them can be written in terms of
2n — 2 linear forms and n — 1 quadrics. If the strength of the remaining quadrics
is at least 3n — 4, then they prove that the remaining forms must be a complete
intersection modulo the linear forms. If not, one of the remaining quadrics can be
written as a polynomial in (2n—2)+2(3n —4) = 8n — 10 linear forms. They iterate
this process until either all the quadrics are gone, or are sufficiently strong to be a
complete intersection. Analyzing this process, in the special case of quadrics they
prove the following theorem:

Theorem 3.10 ([AH16]). A wvector space of quadrics of dimension n in a poly-
nomial ring S is contained in a polynomial subring generated by a sequence of
polynomials of at most 2"T1(n — 2) + 4 linear and quadratic forms which form a
complete intersection in S. Hence, the projective dimension of S/I, where I is the
ideal generated by these forms, is at most 2"T(n — 2) + 4.

This result is probably far from sharp. The worst-case scenario now known for
the projective dimension of n-quadrics is about nt.

Remark 3.11. The work of Ananyan and Hochster is being used to prove many
other results of similar type. In [ESS17], combining the techniques of Ananyan and
Hochster with the ideas of Draisma on twisted commutative algebra [Dral7], Daniel
Erman, Steven Sam and Andrew Snowden give large classes of numerical functions
on graded ideals which are similarly bounded. They only require that the function
have certain properties such as being weakly upper semi-continuous in families, and
what they call cone-stable, meaning that the numerical value attached to an ideal
I'in S is the same as that of the extension of I in S[t], where ¢ is a new variable.

4. THE OTHER CONJECTURES

In this section we introduce the other two conjectures. One deals with a conjec-
tured bound on the regularity of prime ideals in polynomial rings, while the other
gives a lower bound for the sum of all the Betti numbers.
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4.1. The Eisenbud-Goto Conjecture. The two gross invariants which measure
the complexity of a set of polynomials equations which generate an ideal I in a
polynomial ring S are the length and width of a minimal “rectangle” enclosing the
Betti table of S/I. The length is exactly the projective dimension of S/I, while the
width is exactly the regularity of S/I. One might hope that ideals generated by
polynomials of small degree might have small regularity. The following sequence
of examples by Giulio Caviglia show that even simple examples can have high
regularity.

Example 4.1. Let S = k[x1, 2,23, 24], and let I be the ideal generated by the
three polynomials of degree d, x{, ¢, 1291 — 2923, Then the regularity of S/I is
approximately d?. For example the free resolution of S/I when d = 5 is quite short
(by Hilbert’s syzygy theorem), but the Betti table is very thick. The resolution
without the shifts seems innocent enough:

0—8t—810 8% 85 6 5/ T—0

However, the degrees of the generators of the syzygy modules become large quickly.
The regularity is 23. The Betti table is too big to print here.

In fact, famous examples of Mayr-Meyer [MMS82], as reworked by Bayer and
Stillman in [BS88], show that the regularity can become doubly exponential in the
number and degrees of the generators. These papers show that there are ideals T
in a polynomial ring with 10n + 1 variables generated by quartics such that the
regularity of the quotient ring defined by I is at least 22" + 1. It was known that
there exists a doubly exponential bound on the regularity of any ideal [BM93],
[CS05], so this type of growth is the worst possible. However these examples were
unsatisfying from the point of view of algebraic geometry in that the ideals are very
far from irreducible. These considerations led Eisenbud and Goto to the following
conjecture:

Conjecture 4.2 (Eisenbud-Goto Conjecture). Suppose that the field k is alge-
braically closed. If P is a homogeneous prime ideal of S = k[x1,...,x,] that does
not contain a linear form, then

reg(P) < deg(S/P) +n — dim(S/P) + 1.

A positive answer to the Eisenbud-Goto conjecture would yield a positive answer
to the following weaker question: Suppose that the field k is algebraically closed. If
P is a homogneous prime ideal of a polynomial ring S over k, that does not contain
a linear form, then the largest degree of any minimal generator of P is bounded by
the degree of S/P.

Jason McCullough and Irena Peeva recently used the original examples of Mayr-
Meyer in a remarkable construction which yields homogeneous prime ideals which
give a counterexample to the Eisenbud-Goto conjecture. Their methods also yield a
counterexample to the weaker question. Their work makes it clear that there is huge
gap in what we know about regularity and resolutions. In particular, their coun-
terexamples prove that no polynomial bound for regularity exists. An exposition
of their construction is given in [Swal7].

It is of great interest to find geometric conditions that would give the Eisenbud-
Goto bound; for example the conjecture is not known for either smooth or toric
varieties. It has been proved for irreducible curves by Gruson-Lazarsfeld-Peskine
[GLP83], for smooth surfaces by Lazarsfeld [Laz87], and for most smooth 3-folds
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by Ran [Ran90]. Finding optimal bounds on regularity for all prime ideals is a
challenge. In particular, the question of whether there is a singly exponential bound
was implicitly raised in an influential paper of Dave Bayer and David Mumford
[BM93].

4.2. The Buchsbaum-Eisenbud-Horrocks Conjecture. A famous technique
in algebraic geometry is reduction to the diagonal. This technique can be used
to study intersections of algebraic varieties, and rests on a process which converts
information about intersections to the case in which one of the algebraic varieties
is defined by linear polynomials and so has a Koszul complex as its free resolution.
This process suggests that a typical resolution should be at least as complicated
as the Koszul complex. In the 1970s, through completely different means, one
avatar of this idea was formulated independently by Geoffrey Horrocks and by
David Buchsbaum and Eisenbud. The Buchsbaum-Eisenbud-Horrocks rank con-
jecture says roughly that the Koszul complex is the smallest possible minimal free
resolution. The conjecture was formulated by Buchsbaum and Eisenbud in [BE77,
p. 453] and, independently, the conjecture is implicit in a question of Horrocks
[Har79, Problem 24].
The strong form of this principle is still open:

Conjecture 4.3 (Strong Form). Let S = k[x1,...,x,] be a polynomial ring over a
field k, and let M be a non-zero S-module having finite dimension as a vector space
over k. For any finite free resolution

0—F, — - —F—F—M—70
of M we must have that the rank of F; is at least (T;)

The ranks of the free modules F; in a minimal resolution are called the Betti
numbers of M; in the graded case, these are the sums of the graded Betti numbers
in homological degree i.

A weaker form of the orginial questions asks instead about the sum of the ranks
of the free modules:

Conjecture 4.4 (Weak Form; the Total Rank Conjecture). Let S = k[x1, ..., 2]
be a polynomial ring over a field, and let M be a graded S-module having finite
dimension as a vector space over k. Then the sum of all the Betti numbers of M
is at least 2™.

Notice that the free resolution of k itself is the Koszul complex, and the sum of
all the Betti numbers is exactly > (7) = 2".

Although several special cases of this conjecture were settled (for example, see
[AB93]), there was very little progress on it for many years. Thus, it was a great
surprise when Mark Walker [Wall7] gave a marvelous proof of the weaker form
of the conjecture (except in characteristic 2), and in far greater generality. His
methods come from the use of Adams operations on complexes and algebraic K-
theory, and are beyond the scope of these notes. Specifically, he proves the following
theorem:

Theorem 4.5 (M. Walker). Assume R is a local (Noetherian, commutative) ring
of Krull dimension n and that M is a non-zero R-module of finite length and finite
projective dimension. If either
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(1) R is the quotient of a regular local ring by a sequence of elements forming
a complete intersection and 2 is invertible in R, or
(2) R contains Z/pZ as a subring for an odd prime p,

then the sum of all the Betti numbers of M is at least 2™.

Our title question was “how complicated are polynomials in many variables?”
The message delivered by the solutions to these three conjectures is somewhat
mixed. The proof by Ananyan and Hochster of Stillman’s question shows that
polynomials are perhaps not as complicated as one might think, while Walker’s
proof of the Buchsbaum-Eisenbud-Horrocks conjecture shows that there are really
no special sets of polynomials that behave better than the variables. However,
the negative solution to the Eisenbud-Goto conjecture by McCullough and Peeva
teaches us that there is a long way to go in understanding exactly how complicated
polynomials can be.
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FROM NEWTON TO NAVIER-STOKES, OR HOW TO
CONNECT FLUID MECHANICS EQUATIONS FROM
MICROSCOPIC TO MACROSCOPIC SCALES

ISABELLE GALLAGHER

ABSTRACT. In this survey we present an overview of some mathematical results
concerning the passage from the microscopic description of fluids via Newton’s
laws to the macroscopic description via the Navier-Stokes equations.

1. INTRODUCTION AND PLAN OF THE SURVEY

The mathematical description of fluids is an intricate process which depends on
the scale of observation:

e at a microscopic level one sees atoms, and the gas may be described by
a classical mechanics picture via Newton’s ordinary differential equations:
this procedure is presented in Section 2.1;

e at a macroscopic scale one is interested in an average behaviour modeled
by PDEs such as the Navier-Stokes equations, which are described in Sec-
tion 2.2;

e an intermediate regime, called “mesoscopic scale” can also be used and the
corresponding Boltzmann PDE is presented in Section 2.3.

Our goal in this survey is to explain how these apparently very different descriptions
(ODEs vs PDEs, reversible vs irreversible dynamics...) can be related one to the
other from a mathematical point of view: this question goes back to Hilbert (see
Section 2.4) and has known quite a lot of progress in the recent years. In Section 3
we present some mathematical attempts to justify the passage from one scale to
the other by a limiting process, and we show the limitations of those approaches
which prevent from solving the full problem: justifying nonlinear fluid mechanics
PDEs from the microscopic ODEs. Section 4 describes one situation where the
full problem does have an answer, in a linear setting. Finally in Section 5 e few
questions are presented.

2. MICROSCOPIC, MESOSCOPIC AND MACROSCOPIC SCALES IN FLUIDS

2.1. Newton: a microscopic point of view.

2.1.1. The equations. A gas is made of a very large number of particles evolving and
interacting in a d-dimensional space domain. Throughout this survey we assume
that the space dimension is d > 2 and we denote by N > 1 the number of particles.
Typically N is larger than the Avogadro number 6.02 - 1023,

Key words and phrases. kinetic equations, fluid dynamics, particle systems, Boltzmann equa-
tion, Navier-Stokes equation, Boltzmann-Grad limit, low density limit.
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A number of simplifying assumptions will be made throughout this survey, con-
cerning the space domain, the types of particles considered, and their interactions.
These are listed below, and comments on these assumptions can be found in the
concluding section:

e The particles are all identical spheres of mass 1 and diameter £ > 0;

e The particles evolve in a periodic box of size 1 denoted T? := [0, 1]¢;

e The particles interact elastically at each binary collision and there is no
other type of interaction nor forcing.

We label by integers i € {1,..., N} each particle — note that the particles are
undistinguishable so this labelling is arbitrary and all the functions we shall con-
sider will be symmetric with respect to permutations of the labels. We denote
by (x;,v;) € T4 x R? the position and velocity of particle i for 1 < i < N. Due to
the fact that the particles are hard-spheres, the non-overlapping condition holds

|.T¢*£Ej‘>€.

We denote by Zn := (z1,...,2n) the set of configurations of the particles, with for
each particle z; := (z;,v;). We also denote in the following by Xy := (z1,...,2n)
the set of positions and by Vi := (v1,...,vx) the set of velocities of the particles.
The positions and velocities of the system of N particles obey the Newton laws,
which are the following equations of motion

2.1 ] — —
(2.1) Viell,...,N], o vi(t), o 0,

provided that the exclusion condition |z;(t) — x;(t)| > € is satisfied for all j # i.
The flow takes therefore place in the domain

(2.2) = {ZNerNdeN/Vi;éj, |z — ] >g}.

We further have to prescribe a reflection condition at the boundary of Dg;: if there

exist j # i such that [z; — x;] = € then the incoming velocities vj", v" are related

to the outgoing velocities v¢%t v;“t through the relations

7 9

U@n — Uout — b (vqut _ ,Uqut) YY)
(2 3) % i i 7
' in __ ,out 0,5 . (,out _ ,out\ . i,j
vt =" + v (v v vt
where
yid . i T T5
|lzi — ;]

Note that incoming velocities are defined by the fact that

VeI (v — v;") <0,

meaning that incoming velocities are precollisional, and similarly

Vi,j A (,U;)ut _ ’U?Ut) > 0’

meaning that outgoing velocities are postcollisional.
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2.1.2. Solving the Newton equations. It is not obvious to check that the Newton
equations (2.1)-(2.3) define global dynamics. Indeed this is not a simple consequence
of the Cauchy-Lipschitz theorem since the boundary condition is not smooth, and
even not defined for all configurations. We call pathological a trajectory such that

e cither there exists a collision involving more than two particles, or the
collision is grazing (meaning that v - (vi" — v;”) = 0) hence the boundary
condition is not well defined;

e or there are an infinite number of collisions in finite time so the dynamics
cannot be globally defined.

In [1, 2], it is proved that outside a negligible set of initial data there are no
pathological trajectories.

Proposition 2.1. Let N,e be fixred. The set of initial configurations leading to a
pathological trajectory is of measure zero in T x RN

Sketch of proof. Let us recall briefly the proof given in [34], following [1, 2]. For
any integer s € N* and any R > 0, we denote

By :={V. e R®, |V;| < R}

where | - | is the euclidean norm. Now let us fix R > 0, § < /2 (recall that ¢ is the
diameter of the particles) and ¢ > 0 and assume ¢/ is an integer. Then it is easy
to see that the set

{ZN € BY x BY /one particle will collide with two others on the time [0, 6]}

has measure smaller than C(N,e, R)§?. Moreover up to removing a measure zero
set of initial data each collision on [0, §] is non-grazing. We can repeat this argument
starting again at time ¢ since the measure is invariant by the flow, so repeating the
procedure ¢/§ times produces a subset I5(t, R) of BY x BY, of measure

‘Ié(t7 R)| < C(N7 R7t7€)§7

such that for any initial configuration in B x BY outside that set, the flow is well-

defined up to time ¢. The intersection I(¢, R) := ﬂ I5(t, R) is of measure zero, and
6>0
any initial configuration in BY x BY outside I(t, R) generates a well-defined flow

until time ¢. Finally any initial configuration in T4 xR outside I := U I(t,, Ry,)

where t,, and R,, go to infinity, generates a globally defined flow. The proposition
is proved. O

2.2. Euler and Navier-Stokes: a macroscopic point of view.

2.2.1. The equations. The history of the mathematical study of fluids goes back
many centuries, but one can probably date to the mid-eighteenth century the first
equations describing fluid flows. In 1748, the Academy of Sciences in Berlin an-
nounced a Mathematics Prize for 1750, regarding the resistance of fluids when a
rigid body is immersed in the fluid. J. d’Alembert took part in the competition and
submitted a manuscript [3] which was revolutionary in many aspects: in particu-
lar for the first time the movement of a fluid was described by Partial Differential
Equations acting on the velocity fluid. This model was close to being correct, and
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the final equations were coined by L. Euler in [32]: if u is the time and space depen-
dent, three component vector field denoting the velocity of the fluid, then it solves
the following system of PDEs:

Ou+u-Vu=—-Vp
®

(2.4) divu =0,

where p is the pressure of the fluid, also an unknown, guaranteeing that the fluid
remains incompressible (meaning div u = 0) for all times. The first equation in (E)
translates the conservation of momentum while the second one stands for the con-
servation of mass.

However d’Alembert quickly realized that a solid body placed in a fluid whose
velocity satisfies those equations can evolve without suffering any resistance, which
is obviously contrary to intuition and physical experiments. This is known as
“d’Alembert’s paradox”. To understand why a solid body is submitted in general to
a force tending to slow it down, one needs to take into account friction phenomena,
at a molecular level: as it evolves, the fluid will have a tendency to dissipate energy
under the form of heat. This phenomenon is absent from the Euler equations.
L. Navier [53] had the idea, in 1820, of introducing an additional term to the
Euler equations, intended to represent this dissipation of energy. Followed among
others by G. Stokes in 1845 ([62]), he suggested the following model to describe the
evolution of a viscous fluid:

O+ u - Vu —vAu = —-Vp
(NS) { divu =0.

The parameter v > 0 is the fluid’s viscosity, and measures the discrepancy between
a viscous and a perfect fluid.

2.2.2. Solving the Navier-Stokes equations. The question of the resolution of (NS)
is not the topic of this survey. It is however useful to go through rapidly its main
properties and recall the main results concerning its solutions. The most important
property of (NS) relates to the conservation of energy. Formally if one computes
the scalar product of v with the momentum conservation equation in (NS), noticing
that

1
(u-Vul|u). = —i/divu|u\2dm20 and (Vp|u). =—(p|divu),. =0
one finds that
d
5 llu@®)llzz + vIIVu(t)|z. = 0.

After integration in time this implies that for all ¢ > 0, the solution u(t) associated
with the initial data ug satisfies (formally)

1 ¢ 1
Sl +v [ [Fu@)]3 dt = 3 fuols.
0

This implies in particular that the map ¢ — ||u(t)||r2 is decreasing. Moreover
this equality shows the “smoothing effect” induced by viscosity since as soon as
the initial data is of finite energy (meaning that it lies in L?) then the solution is
instantaneously smoother in the sense that Vu belongs to L?(RT; L?).
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Another important property of (NS) is its scale invariance: if u solves (NS)
on [0,7] x R4, then for any A > 0

ux(t, ) == Au(\2t, \z)
solves (NS) on [0, A\72T] x R? (for the rescaled data Aug(Axr)).

The issue is now to use those properties to solve the equations: given an initial
data g, is there a solution to (NS) associated with this initial data, is it unique, does
it exist globally in time? Unfortunately to this day there is no complete, satisfactory
answer to this question in general. If the flow has one invariant direction (which
is often physically unrealistic) then it has been known since the fundamental work
of J. Leray ([49]) in 1934 that the equations are wellposed in the sense that for
any finite energy initial data there is a unique, global in time solution, which has
decreasing energy. In three space dimensions on the other hand the situation is
less clear. One can solve the equations (uniquely and globally in time) if the initial
data is small enough, where the smallness is measured in a function space invariant
under the scaling of the equations — see for instance [33, 41, 17, 57, 42]. If the data
is large there are (possibly non unique) global solutions of finite energy [48], which
solve the equation in the sense of distributions, but uniqueness and smoothness
are only known to hold for a short time. We shall not describe more in detail the
numerous contributions on the question of the resolution of the (NS) equations but
rather refer to [5, 46, 47] for surveys on the Cauchy problem for (NS).

2.3. Boltzmann: a mesocopic point of view.

2.3.1. The equations. L. Boltzmann’s equation goes back to 1872. It can be un-
derstood as an intermediate step in the analysis of fluid motion, between Newton’s
microscopic approach and the Navier-Stokes macroscopic description. The idea is
to place the description at a more statistical level, describing the “number”, or
density, of microscopic particles which at a time ¢ have position z and velocity v.
Denoting this quantity by the probability density f = f(¢,x,v), Boltzmann’s equa-
tion (introduced in [13, 14]) states that f evolves following

B)  Of+v-Vof = aQ(f, f),
—_— —_—
free transport localized binary collisions

where the parameter « is the inverse of the mean free path of the microscopic
particles and keeps track of the collision rate. The Boltzmann collision operator
present in the right-hand side of (B) is the quadratic form, acting on the velocity
variable, associated with the bilinear operator

a0 = (1= (o= o) )., donde
where we have used the standard abbreviations
(2.5)  f=ftao), f=ftan), fi=ftzv), fi=[ftz ),
with (v',v]) given by

V=vtw (v —v)w, vi=v1—w- (v —v)w.

The Boltzmann collision operator can be split into a gain term and a loss term
(see [18, 66])
QUL =Q (£, /) —Q~(f. /).
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The loss term counts all collisions in which a given particle of velocity v will en-
counter another particle, of velocity vy, and thus will change its velocity leading
to a loss of particles of velocity v, whereas the gain term measures the number
of particles of velocity v which are created due to a collision between particles of
velocities v’ and v].

2.3.2. Solving the Boltzmann equation. We shall not detail all the mathematical
literature concerning the resolution of (B) but merely recall its main properties. It
is important to notice that formally for any test function ¢, there holds with the
notation (2.5),

1

Jaupedo = [1£5= 171+ 01— ¢ = 60) (0= ) ), dodoad.

In particular,

/ QUf, f)pdv =0

for all regular enough f, if and only if ¢(v) is a collision invariant, i.e. ©(v) is
a linear combination of {171)1, ey Ud, \v|2}. Thus, successively multiplying the
Boltzmann equation (B) by the collision invariants and then integrating in velocity
yields formally the local conservation laws

1 v
v VU
875/ f 5 dv+V, - f 5 dv=0.
R | PI® U
2 2

This provides a link to a macroscopic description of the gas.

The other very important feature of the Boltzmann equation comes also from
the symmetries of the collision operator. Disregarding integrability issues, we
choose ¢ = log f and find

D(f)i=~ [ QU.H1os fie

1 o F1 - .
_4/qrdede‘f1(f fi = ff1)log h (v =w1)-w), dvdvidw > 0.

The so-defined entropy dissipation is therefore a nonnegative functional.

This leads to Boltzmann’s H-theorem, also known as second principle of ther-
modynamics, stating that the entropy is (at least formally) a Lyapunov functional
for the Boltzmann equation.

(2.6) Bt/ flog fdv+V, / flog fvdv <0.
R4 R4

As to the equation Q(f, f) = 0, it is possible to show that it is only satisfied by
the so-called Maxwellian distributions M, . ¢, which are defined by

P _lv—ul?
Mpup(v) == 7€ %,
2
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where p € Ry, u € R? and § € R, are respectively the macroscopic density, bulk
velocity and temperature, under some appropriate choice of units. In the following
we set

B\ a2
Mpg(v) == (27T> e~ 2 and M(v):= Mi(v).
Concerning the Cauchy problem, the theory is from being complete, similarly to the
three dimensional Navier-Stokes equations recalled in the previous section: global
existence of weak (actually renormalized) solutions is known to hold [27] but unique-
ness is only known in the case when the initial data is small enough (and decaying
sufficiently fast at infinity in velocity space), see for instance [63, 64].

2.4. Hilbert’s Sixth Problem. At the second International Congress of Mathe-
maticians held in Paris in 1900, D. Hilbert presented his famous list of twenty-three
open questions [39]. Some of those questions have since been solved, and some
remain open to this day. Among these, we are interested here in the following
question: to develop “mathematically the limiting processes [...] which lead from
the atomistic view to the laws of motion of continua”.

Our aim in this survey is to present some some mathematical progress that has
been made recently on this question. Note that an answer to this question contains
in particular an explanation to the appearance of irreversibility when passing from
one description to the other, since the system of hard spheres (2.1)-(2.3) is time-
reversible while the Boltzmann equation (B) and the Navier-Stokes equations (NS)
are not.

3. SOME MATHEMATICAL ATTEMPTS AT RECONCILING SCALES

3.1. Introduction. In the large IV limit, individual trajectories become irrelevant,
and our goal is to describe an average behaviour. This average is of course over
particles which are indistiguishable. Because we have only a vague knowledge of the
state of the system at initial time, we average over initial configurations. At time 0,
we thus start with a distribution f$(Zy), where we use the notation introduced in
Paragraph 2.1, and we define a probability fx = fn(t, Zn), referred to as the N-
particle distribution function. We assume that it satisfies for all permutations o
of {1,..., N},

(3.1) IN(t Zo(nvy) = IN(t, ZN),
with Z,(n) = (o (1), Vo(1)s - - - » To(N)s Vo(n))- Since [ is an invariant of the particle
system, the Liouville equation relative to the particle system (2.1) is
N
(3.2) Oifn+ Y iV fn =0
i=1

on the domain D5, defined in (2.2), with the boundary condition
IN(ZY) = It Z3")

meaning that on the part of the boundary of D% such that |z, — z;| = ¢, there
holds
(3.3) It v xj,v;)“t, )=t ol .a:j,v;»”, on)

where the ingoing and outgoing velocities are related by (2.3).
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3.2. A direct approach from microscopic to macroscopic scales. A natural
approach to derive fluid mechanics equations from particle systems is to start with
the following empirical distributions acting on Rt x T%:

1 N
pN(t7 :Z:) = N ; 51—%(15) )
1 N
UN(t,x) = N ;ui(t)éz_m(t) ,

N
1
EN(t,I) = ﬁ Z ‘Ui(t)|26x7:z:i(t) s
=1

and to try to use laws of large numbers or large deviation principles to obtain their
limiting behaviour as N goes to infinity. This has been achieved successfully in some
asymptotic regimes, in the case when noise is added to the microscopic system. We
refer for instance to [56] for a derivation of the Euler equations when the momenta of
nearby particles are exchanged stochastically (with a noise of very small amplitude)
or to [31, 59] for a derivation of the incompressible Navier-Stokes equations. We
shall not give more details here as our goal is to derive fluid mechanics equations
from deterministic particle systems, and to this day the direct approach starting
from empirical distributions, with no additional randomness, seems out of reach.

3.3. From mesoscopic to macroscopic scales. Starting from the Boltzmann
equation (B), it is possible to derive formally a number of (though not all classes
of) fluid mechanics equations. The formal method goes back to Hilbert [39] and
Chapman and Enskog [21] and consists in looking for asymptotic expansions in
terms of a. More precisely expanding the solution f to (B) under the form

f(t’ Z) = Z ainfn(ta Z)

n>0

recalling that z = (x,v), plugging the expansion into (B) and identifying powers
of a formally gives rise the Euler equations as well as the weakly viscous incom-
pressible Navier-Stokes equations at the next order (but also at higher orders other
equations such as the Burnett model). Using truncated asymptotic expansions, it
has been possible [16, 43] to obtain a a rigorous justification of the compressible
Euler limit up to the first singular time for the solution of the Euler system, and
similarly for the Navier-Stokes system [22]. In [6, 7], Bardos, Golse and Levermore
devised a program for deriving weak solutions of the Navier-Stokes equations (NS)
from the DiPerna-Lions solutions of the Boltzmann equation (B). One of the fun-
damental ideas behind this program is that the proof should only require a priori
estimates coming from physics (namely mass, energy and entropy bounds). The
difficulty in the approach however lies in the very poor understanding of renormal-
ized solutions. Nevertheless F. Golse and L. Saint-Raymond [36, 37] were able to
achieve this program in the diffusive scaling limit. The precise statement, in three
space dimensions, is the following.
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Theorem 3.1 ([36, 37]). Consider a family (fa.0)a>1 of initial data, the relative
entropy of which satisfies, uniformly in o,

1 a,
J/faﬁolog (C\;) dxdv < Cy

and such that as « goes to infinity the following limits hold in the sense of distri-
butions:

éP/fmo vdv = ug  and é/(fa,o - M)(é|v|2 —1)dv— 6y,
where P denotes the projection onto divergence free vector fields.
If fo = M(1+4 Ega) 18 an associate family of renormalized solutions to the scaled
Boltzmann equation
L0 +v-Vef = aQ(f f).
then go is relatively weakly compact in L}, (dtdx; L' ((1+ |[v]?)Mdv)) as a goes to

loc
nfinity, and any limit point g of go can be written as

[v]* =3

g=p+u-v+6

where u satisfies the incompressible Navier-Stokes equations with data ug and p,0
are linked by the Fourier system

00 +u-V0—rA0 =0, 6O—o=0y, and V(p+0)=0.
The viscosities can be explicitly computed.

The proof of this result is difficult will not be described in these notes. Let us
simply mention that it relies on an approach known as the “moment method” going
back to [7] and [50], and one of the main difficulties to implement this method is to
control large velocities while gaining some equi-integrability properties in the space
variable. That is the main achievement of [36, 37], following an idea of [60].

In Paragraph 4 we describe the proof of a considerably simpler result, going
from a linear scaled Boltzmann equation to the heat equation: this is by no means
intended as an explation of the proof of Theorem 3.1, but will give an idea of the
reason why a diffusive equation appears as an asymptotic regime for the Boltzmann
equation.

3.4. From microscopic to mesoscopic scales. The previous paragraph showed
that it is possible to derive the incompressible Navier-Stokes equations from the
nonlinear Boltzmann equation as a goes to infinity, in diffusive times (see The-
orem 3.1). The question is now to derive the Boltzmann equation from particle
systems, as putting both arguments together should provide a complete derivation
of the incompressible Navier-Stokes equations from particle systems. As we shall
see in this paragraph, this part of the program remains largely unsolved.

We shall present the strategy of Lanford [44], which is essentially the only one
known to this day (we refer the interested reader to a variant introduced in [52]
via a semi-group approach to the study of the probability of trees). It consists in
studying the asymptotics of the first marginal f](\,l) of the distribution function fy,
defined by

fz(vl)(t’zl) = /fN(t,ZN)dZQ...dzN.
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More generally we define the marginal of order s € [1, N] by

NS) t, Z /fN t ZN ngJ’_l .dzn

Lanford’s theorem is the following.

Theorem 3.2 ([44]). Consider a system of N hard spheres of diameter € on the d-
dimensional periodic box T? = [0,1]¢ (with d > 2), initially “independent” in the
sense that

(34) fNO ZN Z HfO 24 ]‘_[]-|a:;c zj|>e>
i=1 k#j
where fy is a continuous density such that

(35) 1o D+ 20|y < 1.

for some B > 0, € R. We have denoted by Zy the partition function, that is the
normalizing constant for fn o to be a probability.

In the limit N — oo with Ne~1 = a, the one particle distribution fj(vl) converges
almost everywhere to the solution of the Boltzmann equation (B) with initial data fo,
on a time interval [0,t* /«] where t* depends only on the parameters [3, i1

Remark 3.3. e The statement and main steps of the proof of Theorem 3.2 go
back to [44]. We refer also to [19, 20] and [34] for details of the proof.

o The limit N — oo with Ne?~! = « is known as the Boltzmann-Grad, or
low density, limit (see [38]). It corresponds to a dilute gas since the volume
occupied by the gas Ne? goes to zero as N goes to infinity. On average a
particle of given speed has O(a) collisions in a given time.

e The main drawback of the statement lies of course on the time interval on
which the convergence is proved. Recall indeed that our aim is to take the
limit & — oo to recover fluid mechanics equations, and that is impossible
with Theorem 3.2 since the life span shrinks to zero in that limit.

Sketch of proof of Theorem 3.2. Let us explain the strategy of the proof, which is
due to [44]. The details are rather long and technical and we refer the interested
reader to [34] for instance.

It is not difficult to check that f (1)(25 x1,v1) satisfies the equation
(3.6) O + 01V, £V = Craf
where
Ci,2 :sz —Cf,2
and
(¢ L2 1(\,2))(z1) = (N - 1)5‘1*1/ f](\?)(xl,vl,xl + ew, v2)
(3.7) g1 xRd

X (w - (v2 —v1))+ dwdvg,

the index + corresponding to post-collisional configurations and the index — to
pre-collisional configurations. The boundary condition (3.3) imposes that

(CHfP) (1) = (V — 1)et= / FO (a1, 0l 2 + e, v))
S¢=1 xRd

X (w - (vg — 1))+ dwdvy

(3.8)
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where
vii=v —w- (v —v)w, vhi=ve—w- (v —v)w.

On the other hand after a change of variables w — —w one finds

Caf(Z) = (N =0t [ @ o - )
' S{xRd
X (w - (vg — 1))+ dwdvg

so that

(Cl’gf](\?))(zl) = (N — 1)5d_1/ (f](\?)(xl,v'l,xl + ew, vy )
(3.9) 877 xR

— ﬁ)(ml,vl,ml — ew,vl))(w “(vg — v1))4 dwdvy .

Notice that the process of transforming (3.7) into (3.9) may seem arbitrary but it

is actually not since the value of fj(\? ) at outgoing configurations is prescribed by
the boundary condition (3.3) so the transformation (3.8) is actually not optional.

Assuming that fj(vl) has a limit f when N — oo under the Boltzmann-Grad

scaling Ne?~! = «, and similarly for f](\,z) (which we denote f(?)), we find that
formally

Onf +v1- Vo, f =CF o f®
where
Clo=Cih —Ci5
with
(V5 ) (2) = /Sflde (FP (@1, 0}, 21, 0) — FO (21,01, 21, v2))
X (w - (v2 — v1)) 4 dwdvs .

To conclude one now assumes that

(3'10) f(2)(l‘1,111,l‘2,112) = f(l‘1,111)f($2,’02)

which is known as the propagation of chaos assumption, and the Boltzmann equa-
tion (B) appears immediately.

The difficulty in transforming the above argument into a rigorous proof lies
in the justification of the different limits taken above, as well as the propagation
of chaos (3.10). Let us explain Lanford’s main ideas (which were subsequently
developed and precised by, among others, [19, 20, 23, 34, ?, 61]). First since the

equation (3.6) on ](Vl ) involves fj(\,?), one needs to write the whole hierarchy of
equations known as the BBGKY hierarchy

(311) atfl(\?)—’— Z vlvzlf](\/?) :Cs,s+1f](\}g+1)a

1<i<s

where as above one can write

S
Conr1 =D Clo
i=1
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the index i referring to the index of the interaction particle among the s “fixed”
particles, with the notation

o)) = =9t [ (o ),

vz

(s+1) ’
X ( N (zl,...,mi,vi,...,zs,xi+5w,vs+1)f 5y Ty — €W, Vgt1) |dwdvgyy .

Denote by W,(t) the s-particle flow associated with the hard-spheres system,
and by S; the associated solution operator:
Ss(t):  fEeL®(DGR) = f(¥s(—t,-)) € L(DGR).

The time-integrated form of equation (3.11) is

O, 20) = S, (00, 2,) /s (t = 7)Cors1 f$T (7, Z4) dr .

Notice that actually the only way to make sense of the collision operators is to use
the above Duhamel formulation consisting in applying a transport operator to lift
the singularity of the collision integral (where a trace on a hypersurface is taken);
we refer to [34] for details. The total flow and total collision operators S and Cy
are defined on finite sequences G = (gs)1<s<n as follows:

Vs <N, (S(t)Gn), = Ss(t)gs,
VSSN*l, (CNGN)S S:C575+1gs+1, (CNGN)NSZO.
We finally define solutions to the BBGKY hierarchy to be solutions of

(3.12)

FN(t)_S(t)FN(O)+/OtS(tT)CNFN(T) dr,  Fn=(f)i<s<n.

The main idea is then to define a limit hierarchy by formally taking the limit N — oo
under the Boltzmann-Grad scaling Ne?~! = . We thus define the limiting collision

operators
Coot1 = ZFHH
with
L f 0 Z) = a [ (@ (- w),
X (f(SJrl)(t,o:l,vl, T Vg e Ty Uy Ty Uy ) — f(SJrl)(t, Zs, 15, vs+1))dwdvs+1 .

Similarly to (3.12), we can then define the total Boltzmann flow and collision op-
erators S? and C° as follows:

Vs> 1, (S°(1)G) . :=8S%t)gs,
(3.13) =1 ( (E ) )S 0 ()
Vs>1, (C G)s = Cy s1195+1
so that solutions to the Boltzmann hierarchy solve
(314)  F(t) = /s° PCOF(r)dr,  F=(f)1.

The crucial point is to notice that if

FN Z0) = Hf(t,zi)
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(meaning f(*)(t) is tensorized) then f satisfies the Boltzmann equation (B). Tt
follows that the chaos property (3.10) will be automatically satisfied if one proves
the convergence of one hierarchy to the other, as well as uniqueness for the limit
hierarchy.

It turns out that the restriction on the time interval on which Theorem 3.2 holds
is precisely due to the proof of the wellposedness of the hierarchy. Indeed the proof
relies on a Cauchy-Kowalevskaya type argument (in the spirit of [54, 55, 65]) which
completely misses the structure of the collision operators, which are dealt with as if
the nonlinear term in the Boltzmann equation was f2 instead of Q(f, f). We refer
to [34] for details.

The main difficulty in the proof of the convergence of one hierarchy to the other
lies in the possibility of recollisions in the BBGKY flow, meaning that two particles
that have collided in the past (directly or indirectly via collisions in chain with
other particles) may collide again in the future and be deflected one by the other.
This type of situation is impossible in the Boltzmann hierarchy, where each Cg”i 11
term in the Duhamel formulation corresponds to a collision of a particle labeled i
with a “fresh” particle labeled s+ 1, and in between each collision there is free flow
— particles finding themselves at the same place at some moment simply continue
their trajectory without being deflected. Eliminating recollisions is possible thanks
to geometric arguments which are valid as long as

e there are not too many particles at play (of the order of log N at most):
it is therefore necessary to truncate the Duhamel sum, which expresses
the number of particles that have actually interacted at time ¢, directly or
indirectly. This is done thanks to the wellposedness of the hierarchy, which
provides the necessary a priori bounds on the Duhamel series;

e the velocities of the interacting particles are under control (at most of
size O(log N)): truncating velocities is possible thanks to the a priori
bounds;

e collision times are not too close, namely in the iterated Duhamel for-
mula |t; — t;41] > § where 0 scales like a power of e: this is possible thanks
to a Lebesgue dominated convergence argument.

We refer to [34] fo more details. O

4. BOTH LIMITS RECONCILED: LINEAR MODELS OF FLUIDS

Summarizing the two previous paragraphs, the limit from the mesoscopic to the
macroscopic description of fluids corresponds to taking @ — oo in the Boltzmann
equation (B) (and rescaling time), and is known in some situations — namely near
equilibrium or for weak solutions. On the other hand the limit from the microscopic
to the mesoscopic description corresponds to taking N — oo with Ne?~! = «, and
is known for small times only, of the order of a~!. This prevents from combining
both limits to go from particles to fluids.

There are however some (linear) cases where much progress on the Hilbert pro-
gram has been made, we refer for instance to the works [15, 25, 26, 35]. The full
program we are after has been achieved recently in two linear contexts [10, 11],
namely in deriving the linear heat and Stokes-Fourier equations. We describe
briefly the case studied in [10] in this paragraph: in the case of a tagged parti-
cle in a background at equilibrium, it is proved in [10] that its distribution satisfies
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a heat equation at the limit N — oo, using the linear Boltzmann equation as an
intermediate step (with a parameter a going slowly to infinity with V). The precise
result is the following.

Theorem 4.1. [10] Consider the initial distribution

1
IN(Zn) = ?Npo(xl)M[?N(VN) H Loy —a,)>e
"y

with Zx the normalizing constant. Assume that p° belongs to C°(T?). Then for

allT > 0 and all T € [0,T), the distribution fj(vl)(aT,m,v) remains close for the L -
norm to p(r,x)Mg(v) where p(T,z) is the solution of the linear heat equation

Orp—kplap=0 in T pr_g=p",
and the diffusion coefficient kg is given by

(4.1) Kg 1= E vL™ v Mg(v)dv,
d Jra

where L is the linear Boltzmann operator (4.3) and L™ is its pseudo-inverse defined
n (KerL)*. More precisely,

(4.2) || (ar,z,v) — p(T, ) Mp(v) —0

||L°°([O,T]><'Jl‘d><Rd)

in the limit N — oo, with a = Ne@=1 going to infinity much slower than \/loglog N.
In the same asymptotic regime, the process Z(1) = x1(a7T) associated with the
tagged particle converges in law towards a Brownian motion of variance kg, initially
distributed under the measure p°.

This is an extension of the works [9, 45] where the linear Boltzmann equation
was derived for long times. We shall not describe further those results here, but
simply mention that the main achievement consists in deriving the linear Boltzmann
equation for an arbitrarily long time (contrary to the Lanford theorem which only
holds for times of the order! a~!) thanks to the use of the maximum principle
associated with this very special type of initial data. To conclude this paragraph we
shall merely explain why the linear Boltzmann equation does have the heat equation
as an asymptotic regime. Compared with Theorem 3.1 this can be considered as an
exercise, but we feel it has some interest as it at least gives a flavor of the reason why
a transport-type equation like (B) can lead asymptotically to a diffusive equation.

The linear Boltzmann equation is defined by linearizing the Boltzmann equa-
tion (B) around a Maxwellian Mz and in dropping two of the four terms appearing
in the linearization of the collision integral: factoring out the Maxwellian leads to
the equation

Otpa + V- Ve = —aLipg
Lpa (v // ©a (V) = @a (V)] Mg(v1) ((v —v1) -w)+ dnw .

It is not difficult to prove that as soon as the initial data belongs to L°°, then there
is a unique global solution to (4.3), which remains uniformly bounded in «, for all
times. The precise result describing the limit @ — 0o of ¢ in diffusive times is the
following.

(4.3)
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Proposition 4.2. Consider p° a continuous density of probability on T¢ and let v,
be the associate solution of (4.3) with initial data p°. There holds for all T € [0,T]

(4.4) sup sup Mg (v)(palar, z,v) — p(r, x))‘ -0, a— oo,

7€[0,T] (z,v)€TE xR

where p solves
Orp—kplap=0 in T, p_og=p",
and the diffusion coefficient kg is given by (4.1).
Main steps of the proof. Let us define
balT,m,0) == pa(ar,z,v),

which satisfies
(4.5) 0P+ v - VuPo + LGy =0.
Notice that by the maximum principle on the heat equation, we may assume without
loss of generality that p° is smooth. As recalled above, the formal Hilbert expansion
consists in writing an asymptotic expansion of @, in terms of powers of a~?

~ ~ 1. 1
@a(ﬂxav) = p0(7—7xav) + EPI(TJ%U) + ;pQ(Tax7v) +.o.,

in plugging that expansion in Equation (4.5), and in canceling successively all
the powers of a. This gives formally the following set of equations, keeping only
the O(1), O(c) and O(a?) terms

'Cﬁo = 07
(4.6) v-Vapo+Lp1 =0,
a-,—ﬁ()+1}'vrﬁ1 +£,32 =0.

In order to find the expressions for p; and pa, as well as the equation on py (which we
expect to be the heat equation), it is necessary to be able to invert the operator L.
It is known (see [39]) that £ is invertible on the set of functions

{g € L*(R% agMgadv), / g(v) Mg(v)dv = O} ,
Rd

where

ag(v) = / Mg(vy) ((v—v1) -w)+ dwdvy .

Sd—1 xR
The first equation in (4.6) therefore reflects the fact that py does not depend on wv.
We next define the vector b(v) = (bx(v)), ., with / b(v) Mg (v)dv = 0, by
< Rd
(4.7 Lb(v) :=v.
Returning to (4.6), we have
p1(T,z,0) = p1(7,2,v) + Py (T, 2),

with
p1(r,z,v) == =b(v) - Vypo(r,z) and p; € KerL.
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Next we consider the last equation in (4.6) and we notice that for ps to exist it is
necessary for 9, pg +v -V p1 to belong to the range of L. Since py does not depend
on v, this means that

(4.8) O-po + / v- Ve (7, z,0v)Mg(v)dv = 0.
Rd
We then define the diffusion matrix D(v) = (Dk’g(’l)))k 1<q PY
(4.9) LD(v) :==v® b(v) — / v ® b(v) Ma(v)dv.
Rd

From the symmetry of the model, one can check (see [24] for instance) that there
is a function v such that

b(v) =(|v[)v.
The end of the formal proof is an easy computation, noticing that by symmetry

of b ) )
= vl v Mg(v)dv = 7/ (o)) [v]? Mg(v)dv.
d Rd d Rd

Turning these formal arguments into a proof of convergence is not difficult and

follows from the maximum principle. We refer for instance to [8, 10] for details. O

5. CONCLUSION AND OPEN PROBLEMS

In this survey we have presented some recent mathematical results concerning
the derivation of fluid mechanics equations from the fundamental laws of mechanics
and shown that the full derivation of the Navier-Stokes equations from Newton’s
laws is still widely open, due in particular to our lack of understanding of the
derivation of the Boltzmann equation for large times. One of the reasons that this
derivation fails to hold for large times (or large «) is that to this day we are unable
to use the fundamental property of the Boltzmann equation — namely the entropy
dissipation — at the level of particles.

This problem set aside, there are still many other open problems even in the
short-time derivation of the Boltzmann equation.

e We have assumed that the particles are all identical spheres of mass 1 and
diameter € > 0. This assumption could be slightly relaxed to masses of
comparable size, however if the masses, shapes and sizes of the particles
differ substantially then some different phenomena may appear (see [12,
28, 29, 30, 40] for instance).

e We have assumed that the particles evolve in a periodic box of size 1 de-
noted T¢ = [0,1]¢. Other situations could be considered, like the whole
space R? — the absence of boundaries simplifies substantially the analysis.
In particular although the passage from Boltzmann to Navier-Stokes does
hold in the presence of boundaries [51], essentially nothing is known in the
derivation of the Boltzmann equation in a domain with boundaries — except
of course if the problem can be reduced to the whole space or to a periodic
box by symmetry.

e We have assumed that the particles interact elastically at each binary col-
lision and there is no other type of interaction nor forcing. The case when
more than two particles collide at the same time can be neglected rather
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easily (see Proposition 2.1). The case of more general interaction poten-
tials is of course very interesting and physically relevant but to this day
this has only been considered under very stringent conditions on the po-
tential [4, 34, 58].

Finally we have focussed on the derivation of the incompressible Navier-Stokes

equations, but almost all remains to be done concerning the first limit of Boltzmann
when a@ — oo (without rescaling in time), namely the compressible Euler equation
— we refer to Section 3.3 for some comments.
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THE CAP SET CONJECTURE, THE POLYNOMIAL METHOD,
AND APPLICATIONS (AFTER CROOT-LEV-PACH,
ELLENBERG-GIJSWIJT, AND OTHERS)

JOSHUA A. GROCHOW

ABSTRACT. The cap set problem is the question of how large a subset of
(2/3Z)™ can be and contain no lines. This problem was motivated by deep
questions about structure in the prime numbers, the geometry of lattice points,
and the design of statistical experiments. In 2016, Croot, Lev, and Pach solved
the analogous problem in (Z/47Z)™, showing that the largest set without lines
had size at most ¢” for some ¢ < 4. Their proof was as elegant as it was unex-
pected, being a departure from the tried and true methods of Fourier analysis
that had dominated the field for half a century. Shortly thereafter Ellenberg
and Gijswijt leveraged their method to resolve the original cap set problem.
This expository article covers the history and motivation for the cap set prob-
lem and some of the many applications of the technique: to relations between
polynomials, to rigidity of matrices, and to algorithms for matrix multiplica-
tion. The latter application turns out to give back to the original problem,
sharpening our understanding of the techniques involved and of what’s needed
to show that the current bounds are tight. Most of our exposition assumes only
familiarity with basic linear algebra, polynomials, and the integers modulo N.

1. INTRODUCTION

The published proof [32] of the Cap Set Conjecture is so elegant, elementary, and
short—and others have already provided expositions of it [51], 112} T20]—that we
can hardly do better here. Although we’ll include the quick proof in Section [2] our
main purpose here is to provide motivation for the conjecture, put it in its proper
historical context, and discuss some of the consequences of the new technique.

The Cap Set Conjecture is that the largest subset of (Z/3Z)™ which contains no
lines—that is, no three points x, y, z such that x +y = 2z, or equivalently (mod 3),
T + y + z = 0—has size at most ¢ for some c strictly less than 3.

If you are an (additive) combinatorialist, you may find this problem intrinsically
interesting and immediately fall in love with it. For the rest of us, however, it is
natural to wonder how one arrives at this conjecture. Why were people studying
such questions in the first place? What connections does it have to other areas of
mathematics? As is often the case in mathematics, if we take the time to get to
know the problem a bit better—take it to dinner, ask about its history, its family,
what kind of recreational activities it enjoys—we find that these questions have
good answers, and we come to appreciate a problem who’s upbringing is perhaps
not so much like our own. My main goal in this exposition is to share some of the
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answers to these questions. And, okay, sure, I'll show you the proof, too—how can
I resist?

One final note before diving in: I have attempted to make this exposition acces-
sible to as wide an audience as possible, say starting from the early undergraduate
level. As this may well include students who haven’t seen group theory before, or
have little exposure to combinatorics, I spell out (nearly) all the details for exposi-
tory purposes, including some combinatorial arguments that are easy exercises once
you’ve seen a bit of combinatorics. We ask for a little patience from our readers for
whom such arguments are too standard to be worth writing down. In the few cases
where I wanted to make some remark that was difficult to make under these con-
ditions, footnotes are there to help the reader along; if such remarks confuse you,
you ought to be able to skip over them and still understand the rest of the article.
Conversely, if such footnotes annoy you, you ought to be able to skip over them
without losing much. But my hope is that the footnotes will help entice readers
with less background to learn new and exciting things!

1.1. A frivolous and fun motivation. The popular imagination is perhaps drawn
to this problem because of its connection with the card game SET®). The SET®
deck consists of 81 cards, which look like this:

F1GURE 1. A Set in the popular card game.

Each card has four attributes, each of which can take three values: color (values:
red, green, purple), shape (diamond, oval, squiggle), number (1,2,3), and fill (solid,
shaded, open). A “Set” is a collection of three cards such that, in each attribute, ei-
ther all cards have the same value, or all cards have distinct values. Figure [I]shows
a Set in which, in each attribute, all the cards are distinct (they have three different
colors—or, if you're reading this in black and white, are all the same color—three
different shapes, three different numbers, and three different fills). As another exam-
ple, the cards (red,diamond,1,solid), (red,diamond,2,shaded), (red,diamond,3,open)
also form a Set. Twelve cards are laid face up, and players compete to find Sets as
fast as possible. When the players agree there is no Set on the table, three more
cards are laid face up—or just one, if you're feeling lucky—until someone finds a
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Set. This raises the natural question: How many cards can be on the table with no
Set?

If we identify the values of each attribute with the elements of the integers mod 3,
then each card corresponds to a point in (Z/3Z)*, and a Set is precisely a collection
of three points Z, 7, Z € (Z/37)* such that &+ 7+ Z=0 (mod 3) (exercise for the
reader). Since 2 = —1 (mod 3), this is the same as saying ¥ — & = 2 — ¢ (mod 3),
in other words, that the points Z, ¥, Z lie on a line. Our question thus becomes:
How large can a subset of (Z/3Z)* be and still contain no line? If we generalize
this from dimension 4 to arbitrary dimension n, we get the cap set problem.

In dimension four, the answer turns out to be 20 [86]. Note that this answer
was found three years before Marsha Jean Falco invented the game—to help her
visualize the combinatorics of genes related to epilepsy in German Shepherds [100]—
and almost 20 years before the game was made public. Why were people looking
at such questions? Our next motivation is older and quite a bit deeper.

1.2. Motivating additive combinatorics with the primes. Additive combi-
natorics is the study of the additive structure of sets (duh!—wait, what? Wasn’t
that circular?). To give some meaning to the notion of “additive structure” and
why it might be interesting, let’s start with the example of the natural numbers
N ={1,2,3,...}. In terms of just addition, it seems pretty simple: Start from 1,
and just keep adding 1. It looks like a (discrete) line, heading off in one direction. In
terms of just multiplication, it looks a bit more complicated, but not so much more:
Every number can be written uniquely as a product of primes. This implies that the
multiplicative structure of N looks like the additive structure of the set of sequences
of elements of Ny := N U {0}, only finitely many of which aren’t zero (which we
denote N5 *°): To any such sequence of natural numbers (a1, as, ..., aq4,0,0,0,...),
we may associate the number 2%13925% ... po® where pq is the d-th prime number.
This identification shows that the multiplicative structure of N is isomorphic to the
additive structure of N§*°, an infinite-dimensional grid, as regular as can be.

When we consider both the multiplicative and additive structure of N together
though, something remarkable happens. Note that our notion of “size” in N is
essentially additive: how many times you need to add 1 to get to a given number.
Thus, the two simplest questions we can ask that mix the additive and multiplicative
structures on N are:

(1) How big is the n-th prime p,? (Additive structure of a multiplicatively-
defined sequence)

(2) What is the factorization of n? (Multiplicative structure of an additively-
defined sequence)

These also turn out to be some of the deepest questions about the interaction
between additive and multiplicative structure. The first will be traditionally rec-
ognized as deep, leading quickly to the Prime Number Theorem and the Riemann
Hypothesis. The depth of the second can already be glimpsed in the techniques
used in algorithms for factoring numbers [82] 88 [75], [16], [102] (see, e. g., [74), [8IL 118]
for surveys).

The algorithmic viewpoint adds evidence for the idea that it is the mizture
of the additive and multiplicative structure that leads to complexity. When we
represent numbers in, say, base 10, adding them is relatively easy but factoring them
seems to be difficult, or at least a much deeper problem. But when we represent
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numbers as their prime factorizations, multiplying them becomes as easy as adding
them was before (just add up the exponents), but adding them becomes equivalent
to factoring numbers written in base 10 [23]. The lesson is that, regardless of
whether we view the multiplicative structure of N through an additive lens or its
additive structure through a multiplicative lens, we run into the same, much deeper
complexity than if we only considered one structure at a time.

We may also ask the next questions along these lines:

(1) What is the additive gap p,+1 — pn between successive primes?
(2") What is the relationship between the factorization of n and that of n + 1?7

Only in 2013 was it shown that there is a universal constant C' such that p,+1—p, <
C for infinitely many n [121]; C' was eventually improved to 246 [79] [87], and the
Twin Prime Conjecture is that C can be lowered all the way to 2. The relationship
between the factorization of n and n + 1 leads to notoriously difficult problems like
the Collatz Conjecture [83], about which Erdés famously said, “Mathematics may
not be ready for such problems” [59, p. 330] (see also [81]). Guy’s chapter [59,
Problem E16] and Lagarias’s annotated bibliography [70] are excellent sources of
references on this difficult problem.

Now, a zeroth-order heuristic for questions (1’) and (2') is that the answer to
both is essentially random: The factorizations of n and n + 1 are “independent”
of one another, and the prime gap p,4+1 — p, jumps around “randomly.” There is
some truth in this heuristic. But along with the randomness, there is also significant
structure present, as evidenced already by the aforementioned results.

We may thus ask, for example, what further additive structure is there to the
prime numbers? A natural generalization of (1’) is to ask for structure in the
differences between several primes (not necessarily consecutive). Here, perhaps the
simplest structure to ask for would be for a set of primes with a common distance
between them, that is, which form an arithmetic progression p,p + r,p + 2r,p +
3r,...,p+dr. A classical folklore conjecture, going back perhaps a century or more,
is that the primes contain arithmetic progressions of every length—quite a lot of
additive structure for a multiplicatively defined set!

Green and Tao [56] proved this theorem in 2008, but we will see that the his-
tory of this theorem provides motivation and impetus for many topics in additive
combinatorics, including our main topic, the Cap Set Conjecture.

1.3. Additive combinatorics more generally. As a young boy, Erdés (re)proved
that Zp prime 1 /p = 00, and it has been postulated by several authors that this early
exciting mathematical experience, in combination with the long-standing conjecture
about arithmetic progressions in the primes, led to:
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Conjecture 1.1 (Erdds, 1940s or 1950s7, see [33], [34] [35] 103]E[). If A C N satisfies
Y onca % = 00, then A contains arbitrarily long arithmetic progressions.

In his 1976 talk, Erdés [34] offered $3000 USD for its resolution—the highest
prize he had ever offered at that point—and in 1996 he upped the prize to $5000
USD [36], which I believe was his third-largest everE| As pointed out by Soifer [T03]
p. 354], the high prize and the frequency with which he raised this conjecture in
his talks and writings suggests it was one of his favorite.

Gowers [50] points out that Erdés’s conjecture is “morally” about sets A such
that the density of A in {1,..., N} is around 1/log N. For if the density is 1/log N
then the sum diverges, while if the density is, say, 1/(log N (loglog N)?), then it
converges. Now, of course, arbitrary subsets need not have a density function that
varies so smoothly as a function of N. But Erdés’s conjecture is sandwiched between
two statements about sets of a certain density. Forif ) _, 1/n diverges, then there
are infinitely many N such that |A N {1,...,N}| > 1/(log N(loglog N)?), so to
prove the conjecture it suffices to show that subsets of density 1/(log N (loglog N)?)
contain arbitrary long arithmetic progressions; to disprove the conjecture, it suffices
to find a set of density 1/log N that does not contain arithmetic progressions.
Nonetheless, the conjecture is what it is. It remains open even to prove that a set
A satisfying the hypothesis contains 3-term arithmetic progressions.

However, before Erdés put forth this conjecture, he was indeed thinking about
the density of sets. In his 1936 paper with Turdn [39], they conjectured:

Conjecture 1.2 (Erdés and Turén [39)). If A C N has positive upper density—that

is, limsupy_, o w > 0—then A contains infinitely many k-term arith-

metic progressions, for every k.

While the primes do not have positive upper density—indeed the Prime Number
Theorem states that their density up to N is ~ 1/log N, so their upper density is

1Regarding the date of this conjecture, the earliest written reference I could find for the case
of 3-term arithmetic progressions was a 1973 seminar report [33] Conjecture 1.2], and for general
arithmetic progressions was a talk from 1976 [34]. This conjecture is often attributed to Erdés and
Turdn’s 1936 paper [39], but the conjecture does not appear there in print—even as a question—
and in his later writings, including a touching tribute to Turdn [34] p. 40], although Erd8s raises
the problem in connection with his work on the primes with Turan, he refers to it as an “old
conjecture of mine” (emph. added). Soifer [I03] p. 355] found references in a 1982 talk in which
Erdés says it was more than 40 years old, and a 1986 talk in which Erdés said it was “about 30
years ago,” so we conclude with Soifer that the conjecture was made sometime between the early
1940s and mid 1950s.

Regarding its motivation from arithmetic progressions in the primes, we have at least the
following evidence. In [33], Erdds relates it with Goldbach’s Conjecture—which, in particular,
implies that for any prime p, 2p = p1 + p2 for some other primes p1, p2, and hence that the primes
have infinitely many 3-term arithmetic progressions—and Chowla’s unconditional result [I8] that
there are infinitely many 3-term arithmetic progressions in the primes. (The earlier paper of van
der Corput proving the same [116] was apparently forgotten until later.) In his 1977 paper [34]
he writes down the conjecture as stated here, that is, for arbitrarily long arithmetic progressions,
and points out that, in particular, it would imply arbitrarily long arithmetic progressions in the
primes, and therefore resolving the conjecture should be quite hard. In 1981, he restates the
conjecture yet again [35, p. 28], this time explicitly “in connection” with the problem of showing
arbitrarily long arithmetic progressions in the primes.

2The only larger Erdds prizes I'm aware of are $10,000 USD to show that p,41 — pn is “large”
infinitely often, and $25,000 USD to show there are only finitely many consecutive pairs of primes
Ppn such that p, < %, though he offered only $100 USD for a disproof; see [69] for details
on these large prizes and a list of other Erdés prizes.
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zero—this conjecture turned out to be a crucial step towards proving that there are
arbitrarily long arithmetic progressions in the primes. Szemerédi [107] proved the
Erdés—Turan conjecture, and Szemerédi’s proof was a crucial ingredient in Green
& Tao’s proof [56] that the primes contain arbitrarily long arithmetic progressions.

When encountering a difficult conjecture, two natural tactics are to consider
special subcases or to consider analogous conjectures in slightly different settings.
First, instead of arbitrarily long arithmetic progressions, let’s ask for any nontriv-
ial arithmetic progressions at all. By “nontrivial” we mean consisting of at least
three distinct points. Okay, great: We'll focus on 3-term arithmetic progressions
for a bit. Historically, this has indeed been a good place to start; for example,
two decades before Szemerédi’s Theorem was proved, in 1953 Roth [90] proved the
analogous result for 3-term arithmetic progressions, by a significantly easier argu-
ment. (Szemerédi himself proved the k = 4 case in 1969 [106], before proving the
general case.) In terms of arithmetic progressions in the primes, it’s trivial to show
existence of a 3-term arithmetic progression (3,5,7), and almost 70 years before
Green and Tao, van der Corput [I16] showed there were infinitely many 3-term
arithmetic progressions in the primes. But even the existence of infinitely many
4-term arithmetic progressions in the primes remained open until Green & Tao’s
result. Moreover, while 3-term arithmetic progressions have a nice formulation in
terms of convolutions of Fourier transforms, 4-term arithmetic progressions do not;
a conundrum which eventually led to higher-order Fourier analysis (see, e.g., [119]
for a nice discussion of this difficulty and how it was overcome). Okay, fine, 4 is a
lot harder than 3, so let’s stick with 3-term arithmetic progressions.

And now, instead of only considering subsets of N (or Z), let’s consider subsets
of arbitrary abelian groupsﬂ These are, arguably, the most natural setting in which
the notion of “additive structure,” makes sense, since these are precisely the sets
which have a notion of additionﬁ As a start, it should be clear that if we have
A C N and we consider AN{1,..., N}, then from the point of view of arithmetic
progressions, this is essentially equivalent to considering A as a subset of Z/NZ,
the integers mod N. If we're considering 3-term arithmetic progressions, maybe
we should instead consider A as a subset of Z/3NZ, just to make sure there’s
no accidental wrapping around, but philosophically, and even mathematically, this
turns out to make little difference. And note that we can indeed rephrase, for
example, Szemerédi’s Theorem in terms of AN {1,...,N}: For all k € N, > 0,
there exists Ny such that if N > Ny and |[AN{1,...,N}| > &N, then A contains a
k-term arithmetic progression. Okay, great, so other abelian groups might be good
models for the phenomena we’re interested in, but considering only cyclic groups
(the integer mod m) seems to really be considering the same phenomena, rather
than phenomena in analogous settings.

At the “opposite end” of some sort of natural spectrum, we might consider n-
dimensional vectors over the integers modulo m, for small m and n — oo, viz.
(z)2Z)",(Z/3Z)™,(Z/AZ)™. To what extent can we use results about arithmetic

31f you don’t know what an abelian group is, don’t be scared! The integers Z, the integers mod
a number Z/NZ, and vectors of such (Z/mZ)™ are all abelian groups. In fact, these are almost
the general case, so just keep these in mind as your examples and you should have smooth sailing.

4Okay, technically maybe we should consider abelian semigroups. But many semigroups can
naturally be embedded into groups, and those which can’t have an addition operation which differs
quite substantially from our intuition for addition: for example, if z + z + x = z + = but = # 0,
then our addition operation seems to be somewhat far from our main interest, namely N.
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progressions in these sets, which look more like vector spaces (and indeed, when m
is prime, are vector spaces), to understand arithmetic progressions in N?

There are two answers to this question, one historical and one formal. Histori-
cally, it’s been useful to first consider the vector spaces (Z/pZ)™ (p prime), where
we have lots of substructures to play with and induct on. To transfer results from
this setting to Z/NZ, one fruitful approach is to use so-called Bohr sets, which
are kind of an “approximate subspace” (in some Fourier-analytic sense). For any
given result, however, this transference remains somewhat of an art, but has been
very effective in the past. The papers [52, [IT9] are entirely devoted to the analogy
between vector spaces over finite fields and Z.

Formally, there is also a tool for comparing the additive structure of subsets
in one abelian group with subsets of another abelian group which I can’t resist
mentioning: Freiman homomorphisms [43] (for a textbook treatment, see, e.g.,
[114, Section 5.3]). For me, when I first learned of this notion, it helped clarify
what we mean by “additive structure” in general; I hope it has the same effect for
you. Let’s define an additive set to be a pair (A, Z) where Z is an abelian group
and A C Z, and let’s say that it’s “k-additive structure” is completely determined
by all equalities of the form a3 +ag +---+ar = aj +ab+ - - -+ a}, where a;,a] € A.
For example, the 2-additive structure captures any k-term arithmetic progressions:

ai,as,0as,...,a form an arithmetic progression if and only if a;41—a; = a;42—a;1
for all ¢+ = 1,...,k — 2, which we can rewrite entirely additively as a; + a;4+2 =
Qi1+ Qig1-

Definition 1.3 (Freiman homomorphism). A Freiman k-homomorphism between
additive sets (A4, Z), (B, W) is a function f: A — B such that, for all a;,a} € A

ai+-tap=d +--+ar = flar)+--+ flax) = f(a}) + -+ f(a}).

A Freiman k-isomorphism is a bijective Freiman k-homomorphism whose inverse
is also a k-homomorphism; equivalently, we require f to be a bijection such that
the one-way implication above becomes two-way: a1 +---+ap = a} +--- +aj, if
and only if f(a1)+ -+ f(ar) = f(a}) + -+~ + f(a},).

Although this is not how many of the results were transferred from finite fields
to the integers, in principle this notion could let us transfer (some) results about
arithmetic progressions in one abelian group, such as (Z/mZ)™, to another abelian
group, such as Z. At any rate, as I said, I think this notion helps clarify what we
mean by “additive structure.”

1.4. The Cap Set Conjecture. Now, for arithmetic progressions, (Z/2Z)™ isn’t
interesting, as it only has trivial arithmetic progressions (of length two): if z,y, z
form an arithmetic progression, then z = y + (y — ) = x, because we're work-
ing modulo 2. So the simplest interesting “toy model” to consider in our family
(Z/mZ)™ is (Z/3Z)™. By a similar argument, because 3 = 0 in (Z/3Z)", it has no
arithmetic progressions of length larger than 3 (which are proper, that is, consisting
of all distinct elements). But that’s alright, because 3-term arithmetic progressions
were where we wanted to start anyways. So (Z/3Z)" has the simultaneous virtues
of (1) being analogous to but not the same as our original question(s) in N, (2)
among such analogous structures, being the simplest one which is still interesting,
and (3) forcing us to focus our attention on the smallest case, namely that of 3-
term arithmetic progressions, without having to worry about any “higher” additive
structure.
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Before getting into the Cap Set Conjecture itself, let’s return to history to moti-
vate it from two other angles. The first angle is geometric. Harborth [60] introduced
the function s(m,n) to be the smallest number s such that any s distinct points
in Z™ contains a subset of size m whose centroid also has integer coordinates. It is
not hard to see that this is equivalent to the smallest s such that any sequence of
s elements in (Z/mZ)™ contains a subsequence of length m whose sum is zero. For
m = 3, note that this is nearly the same as the largest subset of (Z/3Z)"™ which
contains no 3-term arithmetic progression, since modulo 3 we have that x,y, z form
an arithmetic progression if and only if x +y = 2z if and only if x + y + 2z = 0 (the
only difference is that s(m,n) allows sequences with repeated elements). Alon and
Dubiner [3| 4] were perhaps the first to raise this question for m = 3 explicitly, but
their primary interest in those papers was the case of small n and large m, which is
closer to our original motivation of Z/NZ than to our new toy model of (Z/37Z)".
For general m,n, the current best bounds are still those due to Harborth [60]:

(m—1)2"+1<s(m,n) <(m-—1)m"+1.

(Note that the upper bound is larger than the size of (Z/mZ)"™: The question is
about sequences of elements which need not be distinct.) Alon and Dubiner [3], [4]
asked whether there was some ¢ < 3 such that s(3,n) < ™.

Finally, a third motivation. When studying the design of statistical experiments,
Bose in 1947 [12] was led to study subsets of the projective geometry P(Fy) over
a finite field F, that contained no 3 collinear points, which are called caps. In
particular, he was interested in the size of the largest caps. This question was taken
up by Segre, who provided upper and lower bounds on the maximum size of a cap
[98, @9, and has been well-studied since (e.g., a quick search for on MathSciNet
reveals at least a dozen papers in the last five years alone). Over F3 = Z/3Z, for
whatever reasons caps are called “cap sets,” and a cap set is essentially the same as
a set of points in (Z/3Z)™ containing no 3-term arithmetic progression; indeed, the
extremal sizes of these two objects have identical asymptotic behavior as n — ooE|

With these motivations in mind, let us recall what’s known about 3-term arith-
metic progressions in Z/NZ and in (Z/3Z)"™. For any abelian group Z, let r3(Z)
be the size of the largest subset of Z without 3-term arithmetic progressions. If
we think of 3-term arithmetic progressions as some of the simplest nontrivial ad-
ditive structure a set could have, r3(Z) is an upper bound on the size of (mostly)
“unstructured” subsets of Z.

Figure[2shows the history. Since we want to compare Z/NZ against (Z/3Z)", we
will always use N to denote |Z|. Lower bounds on r3(Z) come from constructions
of sets without 3-term arithmetic progressions. In Z/NZ, the current best bound
is due to Elkin [30], who constructed such a set of size > N(log N)'/4/ecVIgs N for
some ¢ > 0 (improving on Behrend’s classic bound [8] by v/log N; see [568] for a
shorter, albeit less constructive, proof). In (Z/3Z)", the current best bound is due
to Edel [28], who constructed a cap set of size > N0-724851-- n case you're a little
rusty on your asymptoticsﬁ N/eOWoeN) grows faster than N'~¢ for arbitrarily
small € > 0, but slower than N/(log N)¢ for arbitrarily large c¢. In contrast, Edel’s
lower bound is of the form N972.

51f you aren’t familiar with how to compare the asymptotic behavior of two functions f,g: N —
N, it’s not hard, but now would be a good time to consult Appendix
6What’s the sound of an analytic number theorist drowning? “Log log log log log log...”
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It is thus natural to ask where the truth lies for (Z/3Z)™: Does r3((Z/3Z)")
grow more quickly than (3")17¢ for all ¢ > 0, or is there some ¢ < 3 such that
r3((Z/37)") < ¢"? While this was raised as a question by several authors [3] 4] [17]
28], and it seems plausible that other experts may have believed the upper bound to
be ¢™ for some ¢ < 3, the earliest reference we can find in which someone explicitly
expressed the belief that r3((Z/3Z)™) < ¢ for some ¢ < 3 is from 2004 [52]; other
authors expressed the opposite belief [T10].

- 52— ryz/n52) ||
= ra((Z/32)") |

o(N) |
N/(log N7 | 1900

N/O((log N)'/2) 1 i
N/O((log N)*/3) | )
N/(log N)3/4=e() | [94] -
N/O(log N) | .
N/(log N)1+e |- 1)

Lower bound on e [30, [§]

N (log N)/4/ exp(Q(v/Iog V)

NO-922783. | 1 ver bound on m 28] 32w |
NO-724851... | i
| | | | | | |
1950 1960 1970 1980 1990 2000 2010 2020
FIGURE 2. History of upper bounds on r3(Z/NZ) and

r3((Z/3Z)™). In all cases, € denotes some constant strictly be-
tween 0 and 1/2, but each use of & denotes a different constant.
The O hides terms of the form (loglog N)¢ or smaller. Note that
Behrend’s [8] and Elkin’s [30] lower bounds on r3(Z/NZ) grow
faster than N1~=¢ for any ¢ > 0. If Bloom’s N(loglog N)*/log N
[11] could be improved to N loglog N/log N (see, e. g., [50, p. 273)),
it would imply a theorem of Green [53], known as “Roth’s theorem
in the primes.”

Conjecture 1.4 (Cap Set Conjecture [52] (cf. [3 4, 17, 28]). r3((Z/3Z)™) < ™
for some ¢ < 3.

Before we come to its resolution, let’s pause to discuss the lower bounds known
on the cap set problem. Within Z/37Z, we have that the set {0,1} is a cap set; it
follows that {0,1}™ is a cap set of size 2" in (Z/3Z)"™, for x +y+ 2z = 0in (Z/3Z)"
if and only if x; + y; + z; = 0 for each coordinate 1 < i < n. Similarly, if we have a
cap set C of size s in (Z/3Z)?, then we get a cap set of size s"/¢ in (Z/3Z)" (when
d divides n) by partitioning the n coordinates into n/d groups of d, and considering
the cap set C™/?. Table [1| shows the bounds achieved using this idea.

Note that this technique always produces lower bounds of the form ¢” for some
¢ < 3. The only hope to disprove the conjecture this way would be to find an infinite
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| d] r3((2/32)7) > | 13((2/32)") > |
1 2 2"
3 9 [12] /3 ~ 2.08"
4 20 [86] 20"/* ~ 211"
5 45 [27] 4575 ~ 2.14™
6 112 [17, 29] 1127/6 ~ 2,19
62 | 2(2-11210 +2.10-1127 - 12) [2§] ~2.21"

TABLE 1. Lower bounds on r35((Z/3Z)™). The bounds for d < 5
are tight. The current best bound, due to Edel [2§], uses a recursive
construction to build a cap set of size ~ 2.57 x 10%! in (Z/37Z)%?
(N ~ 3.18 x 10%9).

family of better and better such constructions, and given the level of complexity
of Edel’s construction, finding such an infinite family (of course, before we knew it
was impossible) seemed like a tall order.

Given the lack of consensus on which way this conjecture should have been
resolved, it was then quite a surprise to see it resolved (positively) in 2016. All
the previous upper bounds on r3((Z/3Z)™) had used Fourier analytic techniques,
and several people had speculated on ways to extend these techniques to get better
bounds (e.g., [I10, 49]). Then in 2016, Croot, Lev, and Pach [22] left Fourier
analysis behind and introduced a beautiful new use of the polynomial method to
show that 73((Z/4Z)™) < (4™)%-926--_ Shortly thereafter, and nearly simultaneously
with one another, Ellenberg and Gijswijt leveraged the Croot—-Lev—Pach technique
to give a positive resolution to the Cap Set Conjecture [32]. This exponentially
small upper bound on 73((Z/3Z)™) was all the more surprising because it shows a
striking asymptotic difference between arithmetic progressions in Z/NZ and those
in (Z/3Z)™. Moreover, while Fourier methods work in both settings, the Croot—
Lev—Pach use of the polynomial method only yields trivial bounds for Z/NZ.

Such a strong upper bound is also tantalizing in its connection with the integers.
Since the density of primes in {1,..., N} is ~ 1/log N (the Prime Number Theo-
rem), if the upper bound on r3(Z/NZ) could be improved from its current record
of N(loglog N)*/log N [11] to, say, N loglog N/log N, it would immediately imply
Roth’s theorem in the primes (a theorem due to Green [53], with improved bounds
by Helfgott and de Roton [62]). With the upper bound on cap sets being so small,
it perhaps provides renewed hope that the upper bound on r35(Z/NZ) could at
least be improved this seemingly tiny amount to give a pure density proof of Roth’s
theorem in the primes.

Even for cap sets, there is still an exponential gap between the upper bound
of 2.756™ [32] and the lower bound of 2.217™ [2§], and closing this gap is an in-
teresting problem. Improving the lower bound “just” requires a new construction;
the smallest dimension in which a finite construction could get within .01 of 2.756
isd = 42E| We’ll see in Section through its connection with algorithms for

8Calculated by assuming the bound [9, Theorem 4] is tight for relatively small values of d,
namely that r3((Z/3Z)%) < %3‘1. We know asymptotically that this bound isn’t tight, since
it was already beat out for sufficiently large d by Bateman and Katz, and now by Ellenberg and
Gijswijt, but we haven’t calculated exactly when those asymptotics kick in. If the Bierbrauer—Edel
bound isn’t tight for d up to 42, then the smallest useful dimension would only be larger.
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matrix multiplication (of all things!), that the Croot—Lev—Pach—Ellenberg—Gijswijt
technique extends from sets without arithmetic progressions to so-called “tricolored
sum-free sets,” and that in the tricolored setting the upper bound of ~ 2.756™ is
indeed tight [66]. Thus any attempt to improve the upper bound must differ sub-
stantially enough to not extend to the tricolored setting. Alternatively, to improve
the lower bound one might try to turn the Kleinberg—Sawin—Speyer construction
of a tricolored sum-free set [66] into an ordinary cap set of the same size, but this
too seems difficult. See the end of Section [Bl for a more detailed discussion of the
difficulties in improving the upper bound.

2. PROOF OF THE CAP SET CONJECTURE

The method introduced by Croot, Lev, and Pach [22], which ultimately led to
the resolution of the Cap Set Conjecture [32], is an application of the polynomial
method. In general, the polynomial method is the application of algebraic geometry
to combinatorics (and other fields that, at first blush, seem unrelated to algebraic
geometry). In particular, natural combinatorial structures can often be defined
in terms of polynomial equations, and then by reasoning about these systems of
polynomial equations (the domain of algebraic geometry) we can often learn about
the original combinatorial structures. In addition to the Cap Set Conjecture, the
polynomial method was also instrumental in the recent solution of another long-
standing combinatorial problem, the finite field Kakeya problem [24] (see also [26]
for nearly tight bounds, again using the polynomial method). For general intro-
ductions to the polynomial method see [63, Chapter 16] (in the context of extremal
combinatorics), [114, Chapter 9] (in the context of additive combinatorics), and
[I11] for a recent tutorial and survey.

The version of the Ellenberg—-Gijswijt proof we will follow here is the “symmetric”
version due to Tao [I12]. The idea is essentially the same as Ellenberg—Gijswijt,
only the syntax is different. In the original proof [32], when studying solutions to
the equation x 4+ y + z = 0—which is clearly symmetric in all three of z, y, and
z—they single out two of the variables and consider the rank of a matrix of the
form M, , = f(z +y) for some polynomial(s) f. What makes Tao’s version more
symmetric is that each of the three variables are put on an equal footing.

2.1. Tensors. Since we want to consider solutions to the equation z+y+2z = 0 with
x,y,z € (Z/3Z)", we will consider three-variable functions F': X XY x Z — Z/3Z,
where XY, Z C (Z/3Z)". Just as we could visualize a two-variable function on a
finite domain F: X x Y — Z/3Z as a |X| x |Y| matrix with entries from Z/3Z,
when X, Y, Z are finite sets we may visualize a three-variable function as a three-
dimensional array of numbers (see Figure [3))—sometimes called a 3-tensor—where
the rows are indexed by the elements of X, the columns by the elements of Y, and
the “depths” (the row-like thing, but in the third dimension) by the elements of Z:

We thus refer to | X|, |[Y|, and |Z] as the side lengths of the 3-tensor F.

The first observation is that if A C (Z/3Z)™ is a cap set, then the function

1 z4+y+2=0

F(z,y,2) = do(z +y+2) = {0 otherwise

when restricted to A x A x A, looks like a three-dimensional version of the identity
matrix. Flaxaxa(z,y,z) = 1if and only if © = y = z, and is zero otherwise. If
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(v

X F
FIGURE 3. Visualizing a three-variable function F': X XY x Z —
Z/3Z as a three-dimensional array or “3-tensor.”

the only nonzero entries in a tensor I’ are those for which x = y = 2z, we call F a
diagonal tensor (see Figure [4)).

FIGURE 4. Cap sets correspond to diagonal tensors; in this pic-
ture, the only nonzero entries are along the body diagonal D.

Continuing the analogy with matrices, what we would like is some notion of
“rank” for 3-tensors such that

(1) diagonal tensors have rank equal to their side length (just as diagonal ma-
trices do), but

(2) the function g (on all of (Z/3Z)™ x (Z/3Z)" x (Z/3Z)™) has rank expo-
nentially smaller than its side length 3™, and

(3) the rank of a tensor is always at least the rank of any of its sub-tensors,
gotten by restricting F': X XY x Z — Z/3Z to X' xY' x Z' for X' C
XY CY,Z' CZ.

Given such a notion of “rank,” we quickly prove the Cap Set Conjecture:

Proof of the Cap Set Conjecture, assuming a notion of “rank” satisfying (1)—(3).
Let F(z,y,z) = do(z + y + z) be the tensor above. Then for any cap set A:

|[A] = “rank”(F|axaxa) by property (1), since F|axaxa is diagonal
< “rank”(F) by property (3)
< " for some ¢ < 3, by property (2).
And that’s it! O

The following notion is a direct generalization of the rank of matrices, which
we’ll see has the desired properties. Showing that it satisfies properties (1)—(3)
above will then turn the above “proof” of the Cap Set Conjecture into a Proof.

Definition 2.1 (Tao [112]). Given a 3-tensor F': X xY x Z — Z/3Z, its slice rank
is the least r such that F' can be written as the following sum of r terms:

F(z,y,2 Zfl )9i(y, 2 Zfz y)gi(z,2) Zfz 2)gi(z,y)-

i=a+1 i=b+1
Any such expression for F', even with r not minimal, is called a slice decomposition.
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This notion was introduced by Tao [112] in developing this symmetric version
of the Ellenberg—Gijswijt proof, and following [10] we call it “slice rank.” Further
properties of slice rank were elaborated in [I0} [I13].

A 3-tensor of slice-rank one thus has the form f(z)g(y, z) (or any of its symmetric
versions, gotten by permuting the variables). In terms of our three-dimensional
array visualization, we may think of ¢g(y, z) as a matrix placed on a horizontal slab
coming out of the page, and then the function f(x)g(y, z) consists of stacking up a
bunch of scalar multiples of this slab on top of one another.

Property (3), that slice rank cannot increase when passing to sub-tensors, is the
easiest to see:

Observation 2.2. For any tensor F: X XY x Z — Z/37Z, and any X' C X, Y’ C
Y, 7' C Z:
slice-rank(F|x/xy x z/) < slice-rank(F).

Proof. Given a slice decomposition for F' with functions f;(e), g;(e, ), we get a slice
decomposition for F'|x/xy/xz by restricting each f; and g; to the primed subsets.
That is, for f;: X — Z/3Z, we restrict it to f! = fi|x/: X' — Z/3Z, and restrict
gilYXZ—)Z/3ZtOgi|y/><Z/ZY/XZ/—>Z/3Z. ([

Property (1), that the slice rank of diagonal tensors is maximal, can be shown
by induction from the 2-variable (i.e., 2-tensor, i.e., matrix) case, which we leave
as an exercise:

Lemma 2.3 (Tao [I12]). The slice rank of a diagonal tensor is equal to its number
of non-zero entries.

Finally, Property (2), the exponential upper bound, brings us to the key idea of
the proof, which is an application of the polynomial method.

2.2. Key idea of the proof. The following lemma is the key idea from Croot—
Lev—Pach and Ellenberg—Gijswijt, which unlocks the whole proof. Since a polyno-
mial F(Z,7,Z) on ((Z/3Z)™)3, is, in particular, a function F: (Z/3Z)" x (Z/3Z)" x
(Z/3Z)" — Z/3Z, we may view it as a 3-tensor of side length 3". In the language
of slice rank we have:

Lemma 2.4 (Croot-Lev—Pach [22], slightly generalized by Ellenberg—Gijswijt [32]).
IfF(z1, .., Tny Y1y« -5 Yny 21y - - - Zn) 18 @ polynomial over Z /37 of degree < d, then,
when viewed as a 3-tensor of side length 3™ as above, we have:

n!
alble!”

slice-rank(F) < 3 Z

a,b,c>0
a+b+c=n
b+2c¢<d/3

’ ’ " ”
€1 .2

Proof. Each monomial m in F has the form m = 2{'x5? - - - a8yt -y 2yt - 207,
where the exponents satisfy > ,(e; + e; + €)) < d. If we consider the degrees of
this monomial in the s, the y’s, and the 2’s separately, namely d,(m) := )" e;,
dy(m) =", e;, d.(m) =", e/, then for each monomial m, at least one of d,(m),
d,(m), and d.(m) must be < d/3.

Now, let M, be the set of monomials for which d,(m) < d/3, let M, be the
set of monomials for which dy(m) < d/3, and define M, similarly. Although not
strictly necessary, it will make things simpler if M, M,, M, are disjoint, so let’s



14 J. A. GROCHOW

remove from M, anything in M,, and then remove from M, anything in M, or in
M,. Then we can write I as:

F(z,y,z) = Z m+ Z m+ Z m.

me My meM, meM,

The key trick here is to rewrite each of these three sums by factoring out the relevant
variables, viz. factor out the z variables as much as possible from M, T

dYoom= D awarg., ., 0, 2)
me Mg €1,...,en >0
>, ei<d/3
where the g., . —are precisely what they need to be to make this equality hold;
but the only fact we need about the g’s is that they only depend on ¥, 2, and not
on 7, as then the right-hand side here is a slice decomposition of the left-hand side.
(The g’s here are overlined because we’re about to replace them.)

The next thing to note is that we can also restrict the e; so that they are all at
most 2. For any o € Z/3Z, note that a® = «, and thus the polynomial 23, as a
function on Z/37Z, computes the same function as the polynomial 2. This lets us
reduce the degree of each variable in each monomial until it is strictly less than 3.
We are then left with:

_ €1 .62 e, =
§ : m = § : L1 Lo ~«.1'n'bgel ~~~~~ en(y,z)

meM, e1,...,en€{0,1,2}
2o ei<d/3

The g’s here may be combinations of some of the §’s from before, but again, all we
care about is that they do not depend on #. Thus

slice-rank ( Z m) < H(e1,...,en) € {0,1,2}™: Zei < d/3}|.

meM, i
By swapping the role of Z, 4, and 2z, we get the same bound on ZmeMy m and

> menr. M, and thus have

(2.1) slice-rank(F) < 3|{(e1,...,en) € {0,1,2}" : Zei < d/3}|.

All that remains is to show that the set on the right-hand side has the size
claimed in the statement of the lemma. Given (eq,...,e,) € {0,1,2}™, let a be the
number of e; that are 0, b be the number of e; that are 1, and ¢ be the number of
e; that are 2. Then

(2.2) a+b+c=n,

for each e; takes exactly one of these three values. Also, we have that ) . e; =
a-0+b-14c-2,50 ), e; <d/3if and only if

(2.3) b+2c<d/3.

Thus we can rewrite as:

(2.4) slice-rank(F) <3 Y [{(e1,...,en) with a 0s, b 1s, and ¢ 2s}|.

a,b,c>0
a+b+c=n
b+2c<d/3
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Finally, given values of a, b, ¢ satisfying the constraints and ., we need
to know how many vectors (el7 ...,en) have a 0s, b 1s, and c 28 Every such vector
comes from permuting the coordinates of the vector (0,0,...,0,1,1,...,1,2,2,...,2)
(with a Os, b 1s, and ¢ 28). There are n! such permutations. However, this is sig-
nificantly overcounting, since if we permute only those coordinates with the same
value, we get back the same vector. Thus we have overcounted by a factor of a!blc!,
so our final count is:

|
(2.5) {(e1,...,en) € {0,1,2}" : there are a Os, b 1s, and ¢ 2s}| = '7; E
alble!
Combining (2.4) with (2.5)) yields the lemma. O

2.3. Finishing it off. We now use the key Lemma to prove Property (2) for
slice rank, which will thus complete the proof of the Cap Set Conjecture.

Observation 2.5. Let Fy: (Z/3Z)" — 7Z/3Z be any function. Then the 3-tensor
F:(Z/3Z)" x (Z/3Z)" x (Z/3Z)" — Z/3Z defined by F(z,y,z) = Fo(x +y + 2)
has degree at most 2n.

Proof. The idea is to use interpolation to write the function Fj as a polynomial.
More formally, for o € Z/37Z, we can write the indicator function (), which is 1
if and only if x = a, and 0 otherwise, as

Sa(z)=1—(z — )

Then for any & € (Z/37Z)", we can write the indicator function dz(%) as

6&(93'):1:[1 H (z — a)?).

i=1

Note that degdsz < 2n. Thus we can write any function Fy as a polynomial of
degree at most 2n:

Fo(E)= > 6a(@)Fo(d),
ae(z/3zym

]

In particular, since the 3-tensor we care about, F(z,y, z) = do(x+y+ 2), has the
form in the preceding observation, we may apply the key Lemma to a function
of degree < 2n. And now, we come to the crucial estimate.

Lemma 2.6 (Key numerical estimate).

ST B < a7s6.. i),

lbl | —
a,b,c>0
a+b+c=n
b+2c<2n/3
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Proof. Stirling’s Formula says that, for large n, n! ~ (%)n v2mn. Thus, if a+b+c =

n, then
i~ O E) 6O Ve
aldble! e a b c 8m3abe
T aebbec \ An2abe

1 n" 1+o0(1)
T oon (aabbcc)

(If you’re not familiar with the o(1) notation in the exponent, now might be a good
time to quickly check Appendix )

Now, since a + b + ¢ = n, and we want to consider the behavior as n — oo, it’s
useful to rescale these three to get a probability distribution that essentially doesn’t
depend on n: For a = a/n, 8 =b/n,v = ¢/n, we have a, 8,7 > 0 and a+ 5+~ = 1.
With this notation, we then have

nl 1 1\tew
alblel 27r<a“ﬁb'yc>

1
= or (exp (—(aloga + blog B + clogy

))1—‘1-0(1)

= 5 (e (~n(aloga -+ flog§ +7log7) (1-+o(1)

= % exp (nh(a, 8,v)(1 4 o(1)))

where h(a, §,7) can be recognized as the Shannon entropy of a probability distri-
bution.
Our sum can thus be rewritten asymptotically as

~o 0 epnhla/nbn,c/n)(1 +o(1))).
a,b,c>0

a+btc=n

b+2¢<2n/3
Since this is a sum of exponentials, and the sum only has O(n?) terms, as n gets
large this will be dominated by the single largest exponential: For if the largest is
¢“" and the next largest is e“"”, with C’ < C, then even if all the remaining terms
had magnitude e, they would still only add up to O(n2e€™) < eC'n(i+o(1)
which is still o(e“™).

To find the single largest term, we need to maximize the entropy h(c,,7)
subject to the constraints that «, 3, form a probability distribution satisfying
B+ 2y < 2/3. A routine Lagrange multiplier calculation will find the exact
values of a, 8,7 (see [112]), but since entropy is convex, simple numerical hill-
climbing will also yield the correct maximum value. The largest value of h(«, 5,7)
subject to these constraints is ~ 1.013455, resulting in an upper bound of ~
exp(1.013455 ... n(1 + 0(1))) = 2.756 . . .»(1+e() O

This completes the proof of the Cap Set Conjecture. Here are the bread crumbs
of the proof (this how I remember it):



THE CAP SET CONJECTURE, THE POLYNOMIAL METHOD, AND APPLICATIONS 17

(1) Observe that a cap set corresponds to a diagonal 3-tensor, which is a sub-
tensor of F(z,y, z), the indicator function of z + y + z = 0. Since diagonal
3-tensors are like diagonal matrices, the size of the cap set is the slice rank
of the diagonal 3-subtensor, which is therefore upper bounded by the slice
rank of F itself.

(2) Write the indicator function F' as a polynomial. Note that it has degree
< 2n (it’s a product of n indicator functions, each of which has degree 2).

(3) Pigeonhole the monomials by degree, d = 2n pigeons into 3 holes (one for
each of xz,y, 2).

(4) Group together the monomials which have z-degree < d/3, (resp., y-degree,
resp., z-degree)

(5) Count monomials and estimate the growth rate using entropy maximiza-
tion.

3. TRICOLORED SUM-FREE SETS AND THE QUESTION OF TIGHT BOUNDS

For both r3(Z/NZ) and r3((Z/3Z)™) there is still a gap between the best up-
per and lower bounds known: In the former case, between N/(log N)1*¢ [I1] and
N/ecVieg N=(1/4)loglog N [3() [8] and in the latter between 2.756™ [32] and 2.21™ [28].
In both cases, however, if we broaden our scope to slightly more general objects,
we find essentially tight bounds.

3.1. Tight bounds in the integers? An arithmetic progression is a sequence of
integers satisfying x4z = 2y. In the case of the integers (or Z/NZ), if we generalize
to other translation-invariant linear equations—that is, of the form Zle a;x; =0
where >, a; = 0—we find essentially tight bounds. Translation-invariance is a
natural condition here, as we want to consider subsets of Z satisfying some condition
on their relative differences z; — x;, which are unaffected by translating the entire
subset by an additive constant.

Just last year Schoen and Sisask [97] (following [96], who showed the k = 6 case)
showed that any subset A C {1,...,N} of size > N/exp(c(log N)'/7) contains
distinct elements x4, ..., x4 such that

T, + 29 + x3 = 314.

Behrend’s construction for arithmetic progressions adapts easily to this setting, re-
sulting in essentially tight bounds for the preceding linear equation: The difference
is only between 1/2 and 1/7 in the exponent of the exponent (sic!).

In fact, their argument works for any translation-invariant with at least four
terms. As x +y = 2z is of this form with only three terms, four here cannot
be improved without showing that Behrend’s construction is essentially tight for
r3(Z/NZ). It’s worth noting, given our discussion above, that their techniques
also give similar bounds for such equations over finite fields (but over finite fields
no construction as large as Behrend’s is known for k& = 4, even though such a
construction is not ruled out by the Cap Set Conjecture). In fact, they first present
the argument over finite fields as it’s simpler, and then use Bohr sets to extend the
argument to the integers, as discussed above.

This result has the following interesting implication. Either their result extends
to the k = 3 case, in which case Behrend’s bound is essentially tight for r3(Z/NZ),
or showing a significantly better upper bound—say, N/(log N)¢ for some ¢ > 1,
which would show that Bloom’s upper bound is nearly tight—must use techniques
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that are sensitive to the difference between 3-term linear equations and 4-term
linear equations. We note that, although the difference here is between 3-term
and 4-term linear equations, this situation actually seems quite different than the
syntactically-similar difference between 3-term and 4-term arithmetic progressions.
In particular, since 3-term arithmetic progressions can be captured by a single
equation, they are relatively easy to analyze using Fourier analysis; since 4-term
arithmetic progressions require two equations (z1 + 23 = 229 and x5 + x4 = 2x3),
there is no single Fourier expression that captures them, thus necessitating the
“higher-order Fourier analysis” suggested by Gowers [47, [48] and developed by
Green, Tao, and Ziegler [57]. In contrast, for both the k¥ = 3 and k = 4 cases
considered in this section, they are still just a single equation and so are—at least
in principle—amenable to standard Fourier-analytic techniques. The difference, if
any, between 3-term and 4-term linear equations is apparently more subtle.

3.2. Tight bounds in vector spaces over finite fields? In the case of (Z/3Z)",
a slightly different generalization yields 2.756™ as a tight bound, matching the
Ellenberg—Gijswijt upper bound. This generalization was motivated by algorithms
for matrix multiplication (see Section 7 but our starting point here will be a
simple observation about slice rank, which generalizes the fact that the rank of a
matrix is invariant under change of basis. Given a tensor F': X XY x Z — F and
an invertible |X| x |X| matrix S, |Y] x |Y| matrix T, and |Z| x |Z| matrix U, we
may use these as change of basis matrices on FX, FY, and F#, resulting in a new
tensor F'(2',y",2") =32, S(z,2")T(y,y")U(z,2")F(z,y,2).

Observation 3.1. If F,F': X XY x Z — F are two 3-tensors that differ by a
change of basis (as above), then slice-rank(F') = slice-rank(F").

Proof. Suppose slice-rank(F') = r; then there is a slice decomposition

F(z,y,z Zfz r)gi(y, 2 Z fi(y)gi(z, 2) Z fi(2)gi(z,y).

i=a+1 1=b+1
Given a change of basis (S,T,U), let us apply it to the preceding decomposition.
Now, for simplicity, let’s just consider the first summation ), f;(x)gi(y, z) of the
slice decomposition of F, and how it appears in the expression for F’. The other
two summations will be handled similarly (one advantage of the symmetry of the
notion of slice rank). We have

Z S(I,x/)T( (2, 2 Zfz 7)gi(y, 2

T,Y,2

—ZZSIZ )fil@ ZTy, (2,2")9i(y, 2)
—Zf ACRESE

where f/(z') =", S(x, z') fi(x), which indeed only depends on z’, since we sum
over all values of z. Similarly, g;(y', ) = >_, . T(y,y")U(z,2")g:(y, 2) only depends
on 7/, z’. Thus our first sum can be written after the change of basis using exactly
as many slice-rank-one terms as before. Similarly for the second and third sums.
Thus slice-rank(F') = slice-rank(F”). O
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Although this may seem a rather trivial consequence of the definition, note that
when we considered a cap set A C (Z/3Z)", it at least felt important that we
were using values from the same set A for all three variables x,y, z. But the above
change-of-basis observation says that we can change basis in X independent from Y
independent from Z. In particular, if we change bases using permutation matrices,
this corresponds to simply re-ordering the elements of (Z/3Z)™ in each of X,Y, Z.
What does a diagonal sub-tensor of our favorite tensor, F(z,y,z) = do(z + y + 2),
look like after permuting basis elements? It’s a restriction of F' to A x B x C with
A,B,C C (Z/3Z)" such that F(a;,bj,ck) = 1 if and only if i = j = k, where
A={a1,...,a4} and similarly for B, C. This leads to the following notion:

Definition 3.2 (Tricolored sum-free set [5, [10]). A tricolored sum-free set in an
abelian group Z consists of three subsets (a1, ...,ax), (b1,...,bx), (c1,...,cp) € Z*
such that

(Vz,],k)[al—kbj—kck =0<=1i= :k]
(The indexing is only relevant for identifying the matching between A, B, and C'.)

Cap sets are examples of tricolored sum-free sets, but they are far from the only
ones.
From our observations above, we thus have:

Lemma 3.3. In any abelian group Z, the slice-rank of do(x +y + 2) (v,y,2 € Z)
is an upper bound on the size of any tricolored sum-free set in Z.

Proof. From the discussion above, tricolored sum-free sets yield diagonal subtensors
in some basis. Apply Observation [3.I] and Lemma[2.3] O

Finally, we see that for tricolored sum-free sets, the Ellenberg—Gijswijt bound is
essentially exactly tight:

Theorem 3.4 (Kleinberg—Sawin—Speyer [66], with a lemma from Norin [84] and
Pebody [85]). Let 0 be the base of the exponent in the Ellenberg—Gijswijt bound,
that is, r3(Z/NZ) < §"(+°() 9 ~ 2.756. There is a tricolored sum-free set in
(Z/3Z)" of size > gm(1=o()),

To me, one of the really cool things here is not just that they achieved a
tight bound, but the method of proof: They use a “pull-back” of Behrend’s con-
struction in the integers! Namely, they essentially choose three random mappings
hi,ha, hs: Z™ — Z/pZ for a prime p ~ exp(cn) for some ¢, use the Behrend (/Elkin)
construction to get a large set S C Z/pZ without arithmetic progressions, and then
build their tricolored sum-free set as a large subset of {(a,b,c) € (Z/3Z)™ : hi(a) =
ha(b) = hs(c) € S}. The o(1) in the exponent of the preceding statement hides a
factor which is nearly exactly the density of the Behrend/Elkin construction relative
to the prime p.

Finally, let us return to the question of tight bounds on r5((Z/37Z)™). Of course,
we may take Theorem as some indication that the Ellenberg—Gijswijt bound is
already tight for cap sets. At the end of Section [[.4] we began discussing what is
needed to improve the lower bound. But with a little bit about the proof of Theo-
rem we may take some inspiration: Perhaps by taking pull-backs of Behrend’s
construction, we can indeed get an infinite family of better and better cap sets in
(2./37)? for d — oo that would meet the Ellenberg-Gijswijt bound.
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To improve the upper bound, the key barrier to be avoided (at the moment) is
the use of slice rank itself. (This is not particular to Tao’s symmetric formulation;
rather, any technique, such as Croot—-Lev—Pach or Ellenberg—Gijswijt, which yields
a slice rank upper bound falls prey to this limitation.) For slice rank upper bounds
the size of tricolored sum-free sets, and Theorem [3.4] says that these bounds cannot
be further improved. Thus, to improve the upper bound what is needed is a method
that is somehow sensitive to the difference between a tricolored sum-free set and
a cap set, or equivalently, between a diagonal tensor in arbitrary bases versus a
diagonal tensor in three identical bases. Said another way, one needs a property
of 3-tensors that is invariant under change of bases of the form (S, S,5), but not
invariant under change of bases of the form (S,T,U).

4. APPLICATIONS AND EXTENSIONS

Next we come to the question of the relationship between the Cap Set Conjecture
and other problems, or even other areas of mathematics. In this section we’ll
cover several applications of the Croot-Lev-Pach polynomial method, as well as
extensions of the Cap Set Conjecture motivated by other questions. Since Croot,
Lev, and Pach first posted their preprint, progress on these applications happened
very rapidly, and there are more than we can possibly cover in this short space. 1
will cover the ones with which I am most familiar. Here are a few I know of that
are left out (I cannot hope to be exhaustive): relations between polynomials, viz. a
polynomial Sarkozy’s Theorem [55], sum-sets as unions of sum-sets of subsets [31],
subsets containing no right angles [45], and ordered tricolored sum-free sets [65].
As our purpose here is just to highlight a few of the many connections the Cap Set
Conjecture has with other areas of mathematics, we won’t be quite as expository in
this section as we’ve been so far, but will point the reader to the relevant literature
for further details. We will, however, give at least some motivation for each of the
problems considered.

4.1. Sunflowers. If you thought addition and lines were pretty basic mathematical
objects, let’s leave them behind for a moment to get even more basic: we’ll just
consider sets and their intersections. A sunflower is a collection of sets Ay, ..., Ay
such that their pairwise intersections are the same as their k-wise intersection:
AiNA; =AiNAyn---NAg for all ¢ # j. (If you draw the Venn diagram of
such a collection of sets, you’ll see where the name comes from.) This notion was
introduced by Erdds and Rado [37] in 1960 as a generalization of Dirichlet’s box
argument, and has since found many uses in combinatorics, number theory, and
computer science (see the introduction to [5] for many excellent references).

Dirichlet’s box argument says that for any finite list zo, . . ., Z,2 of a®+1 elements,
there is a sublist of size (a + 1) such that either all the elements of the sublist are
equal, or all are distinct from one another. This should sound a little familiar, as
x4+y—+2z=0inZ/3Z if and only if z =y = z or x,y, z are all distinct from one
another. We'll see that the connection between sunflowers and cap sets is very tight
indeed.

Theorem 4.1 (Erdds and Rado [37]). Let F be a family of sets each of size s. If
|F| > (k — 1)®s! then F contains a k-sunflower.

Conjecture 4.2 (The Sunflower Conjecture [37]). For every k > 0, there is a
constant ¢y, such that “(k —1)®s!” in the above theorem can be replaced by “cj.”
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This conjecture itself has also had many applications in extremal graph the-
ory, the construction of Ramsey graphs, and circuit complexity (again, see [5] for
references).

A slight variant of the Sunflower Conjecture, which will bring us even closer to
cap sets, is:

Conjecture 4.3 (The Erdds—Szemerédi Sunflower Conjecture [38]). There is a
constant ¢ < 2 such that any family F of subsets of [n] = {1,...,n} of size |F| > "
contains a 3-sunflower.

The difference between this conjecture and the preceding one is that this one
doesn’t require every set in JF to have the same size, it does depend on the size
of the ambient set from which F is built, and it only posits the existence of a
3-sunflower (instead of k-sunflowers for arbitrary k).

In connection with the complexity of matrix multiplication (see Section ,
Alon, Shpilka, and Umans [5] studied the Sunflower Conjecture and several of its
variants, showing implications and equivalences between them. They introduced
the following notion, which draws out the connection with cap sets.

Definition 4.4 (Sunflowers in (Z/mZ)" [5, Definition 2.7]). A k-sunflower in
(Z/mZ)"™ is a collection of k vectors vi,...,vx € (Z/mZ)" such that for every
coordinate ¢ € [n], either all the v; have the same value in their i-th coordinate or
these values are all distinct. Equivalently, for each ¢, [{(v1)i, (v2), ..., (V)i }| must
be either 1 or k.

This is equivalent to a k-sunflower of sets (the usual notion) if the ambient set
is partitioned into n pairwise disjoint blocks of size m, and every set in F contains
exactly one element from each block.

Observation 4.5. A 3-sunflower in (Z/3Z)™ is the same as a cap set.

Conjecture 4.6 (Sunflower conjecture in (Z/mZ)™ [5, Conjecture 2.8]). For every
k, there is a constant by, such that for all m,n, any set of > by vectors in (Z/mZ)™
contains k vectors forming a k-sunflower.

While this sounds different from the original Sunflower Conjecture, Alon, Sh-
pilka, and Umans showed that the two are actually equivalent [5, Theorem 2.9].

By Observation [£.5] the Cap Set Conjecture thus resolves the k = 3 case of a
weak form of Conjecture 4.6 in which we also restrict m to be 3. We’ll see in the
next section that the same method used to resolve the Cap Set Conjecture can be
applied to resolve the full Sunflower Conjecture.

4.2. Algorithms for matrix multiplication, and tricolored sum-free sets
in other abelian groups. Multiplying matrices—and its computationally equiv-
alent sibling, solving linear systems of equations—is a fundamental linear algebra
primitive used throughout the algorithmic world. Understanding its complexity is
a central question in algebraic complexity theory that has led to new insights and
conjectures in the representation theory of finite groups and algebraic geometry
(see, e.g., Landsberg [71] and references therein).

The naive method of multiplying two n x n matrices takes O(n3) steps, which
was thought to be optimal until Strassen showed [105] that this could be done in
only O(n?81) steps. This led to the introduction of the exponent w of matriz
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multiplication, namely
w = inf{w : n x n matrices can be multiplied in O(n" <) steps Ve > 0}.

The best lower bound known [72] is only a constant multiple of the obvious (n?):
Any algorithm must at least read all 2n? entries of the input matrices. Currently the
best algorithm known takes O(n2-372%-) steps [73], and it is a folklore conjecture
that w = 2. Closing this gap is a major open problem in algebraic complexity
theory.

Starting in 1969 with Strassen’s result, there was a relatively steady stream of im-
provements to the best upper bound for w. This culminated in 1990 when Copper-
smith and Winograd [21] used the Salem—Spencer construction [92] of arithmetic-
progression-free sets to develop an infinite family of matrix multiplication algo-
rithms, whose exponent limited to 2.375477.... This was the first hint of a rela-
tionship between matrix multiplication and arithmetic progressions. Then progress
on w hit a standstill for 20 years.

Although improvements in the upper bound on w would wait until 2010, in 2003,
Cohn and Umans [20] introduced a new approach to algorithms for matrix multipli-
cation, which will draw out just how deep the connection is between such algorithms
and arithmetic progressions. Briefly, their approach requires finding finite groups
with only low-dimensional irreducible representations and containing three subsets
satisfying a certain condition (see Definition below). In 2005, with Kleinberg
and Szegedy [19], they showed how to use this approach to develop new algorithms,
and to capture the Coppersmith—Winograd algorithm as a Cohn—Umans-style con-
struction in abelian groups of bounded exponent (that is, an infinite family of finite
abelian groups such that every element of every group in the family had order
< b). Starting in 2010, by analyzing higher tensor powers of the basic object used
by Coppersmith and Winograd, Stothers [104], then Vassilevska Williams [T17],
and finally Le Gall [73] made improvements, resulting in the current world record
w < 2.3728639. ... However, it was then shown [6] that this particular technique—
analyzing higher tensor powers of Coppersmith—Winograd—could get an exponent
no better than 2.3078....

Shortly after the resolution of the Cap Set Conjecture [32], Blasiak—Church—
Cohn—Grochow—Nasland—Sawin-Umans [10], and independently N. Alon, showed
that Cohn—Umans-style constructions in an abelian group yielded not cap sets, but
tricolored sum-free sets (first introduced in connection with matrix multiplication in
[5], elaborated in [I0]). To get a sense for where these come from, let’s see how Cohn
and Umans proposed using a finite group to multiply matrices. The idea is that the
group algebra C[G] is a direct sum of matrix algebras C[G] = My, (C)&--- My_(C),
where the d; are the dimensions of the irreducible representations of G. If we could
somehow embed n x n matrix multiplication into C[G] with n > max{d;}, then we
could recursively multiply the smaller d; x d; matrices in order to multiply n x n
matrices, thereby getting a nontrivial algorithm. One then gets a nontrivial upper
bound on w as the infimum of w falsifying the inequality n* < . d¥ [20].

To embed a matrix product larger than any of the d; into a group algebra, Cohn
and Umans proposed the following construction. If we want to multiply A- B = C,
we'll use three subsets S,T,U C G, such that A is an |S| x |T'| matrix and B is
a |T'| x |U| matrix. We embed A into the group algebra as t1(A4) = >, ; az-jsitj_l
and B into the group algebra as 12(B) =}, bjktjuy . We would like to be able
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to read off the entries of C' as the coefficients of the group elements siulzl in the
product t1(A)ia(B). When we perform this multiplication, however, we end up
with Zm.’j,ﬁk ai,jbjf,ksitgltj/ugl. If the only way that a group element sitjfltj/ul;l
can be of the form s;u;," is with i =4/, j = j/, and k = &/, then indeed we get that
the coefficient of siu,zl in the product is precisely Zj a; jbjr = cik, as desired.
Rewriting this condition we have:

Definition 4.7 (Triple product property (TPP) [20]). Given a group G, three
subsets S, T, U C G satisfy the triple product property if

sy sity tug fug =1 <= i =14 and j = j" and k = k'

In fact, the constructions of [I9 21} 104} [I17) [73] are all instances of a gen-
eralization of this called the simultaneous triple product property—in which one
embeds several independent copies of matrix multiplication simultaneously—but
the preceding definition is already enough to give us the flavor of the connection
with tricolored sum-free sets. For if we write Q(S) = S™15 = {s71s' : 5,8 € S},
then the TPP can be rewritten as: for all ¢1 € Q(S5), g2 € Q(T), q3 € Q(U),

Nep=l—=qa=@p=q9@p=1
This condition is precisely the nonabelian generalization of the defining condition of
a tricolored sum-free set (the nonabelian version is sometimes called a “multiplica-
tive matching” [1l 95]). And here, we finally see where this notion of “tricolored”
came from: It’s because we wanted three different sets to index the rows of A, the
rows of B, and the columns of C.

Blasiak et al. [10] extended the Ellenberg—Gijswijt bound from vector spaces
(Z/pZ)™ to (Z/mZ)™ for arbitrary m, and even more generally to abelian groups
of bounded exponent. This generalization implies the (Z/mZ)™ Sunflower Conjec-
ture [£.6] which was previously shown equivalent to the original Sunflower Conjec-
ture [6]. Additionally, using the connection between TPP constructions and
tricolored sum-free sets, they showed:

Theorem 4.8 (Blasiak, Church, Cohn, Grochow, Nasland, Sawin, & Umans [10]).
One cannot show that w = 2 using simultaneous TPP constructions in families of
abelian groups of bounded exponent.

This includes and goes significantly beyond the class of Coppersmith—Winograd-
style algorithms [211 [104], 117, [73]. Thus, if w = 2, proving so requires significantly
new techniques.

4.3. Triangle removal. Szemerédi’s Regularity Lemma is a powerful tool in graph
theory, essentially giving the structure of an arbitrary graph. A well-known conse-
quence of the regularity lemma is the following (whose origin is a bit murky, but
from Green [54] this should be attributed to some combination of Szemerédi &
Ruzsa [109, [01]):

Theorem 4.9 (Triangle Removal Lemma, Szemerédi & Ruzsa [109] 91]E[). If a
graph G on n vertices contains only o(n3) triangles, then by removing only o(n?)
edges one can make the resulting graph triangle-free. More precisely, if G has < dn>
triangles, then one can remove £(8)n? edges, where £(§) — 0 as § — 0.

9t’s not exactly clear where this now-well-known version of the lemma was first stated; see
[54] for a discussion of the history.
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While on the surface this seems to have little to do with arithmetic progressions
and cap sets, we note that the Triangle Removal Lemma can be used to give a
very simple proof [91] of Roth’s result [90] that r3(Z/NZ) < o(N). To see the
connection, we give the brief proof here:

Proof of Roth’s Theorem from the Triangle Removal Lemma [91]. Suppose A C [N]
has size |A] > eN. We build a graph G as follows: Its vertex set V will be the
disjoint union of three sets Vj, Vs, V3, each of size 3N, which we identify with
[BN] (so |[V| = 9N). The edges are as follows: (i,j) € V4 x Vo is an edge if
and only if j —i € A; (j,k) € Vo x V3 is an edge if and only if k — j € A, and
(k,i) € V3 x V4 is an edge if and only if %% € A. There are no other edges.
Then (i,j,k) € V1 x Vo x V3 form a triangle if and only if j —¢ = a; € A and
k—j=a3 € Aand k;i = ay € A if and only if a1, as, az is an arithmetic progres-
sion in A, for we have as — a1 = % — j = a3z — az. Note that this also allows the
trivial arithmetic progression (a, a,a), as nothing here forces the difference k;’ —J
to be nonzero. For each i € [N] and each a € A we get a triangle corresponding to
the trivial arithmetic progression (a, a, a), namely the triangle with vertices ¢ € V7,
i+a € Vo, and i + 2a € V3. Since |A] > eN, we thus have at least |A||V;] > 3e N2
triangles in G. Furthermore, these triangles are all disjoint from one another, so
to make G triangle-free would require removing at least 3s N2 edges (one for each
such triangle). As this is not o(|V]?) = o(81N?) = o(N?), it must not be the case
that G has only o(IN?3) triangles, by the Triangle Removal Lemma. In other words,
there is some § > 0 that depends only on € (but not on A nor N) such that G
contains at least §|V|3 = 7295 N3 triangles. However, the total number of triangles
corresponding to the trivial arithmetic progressions is |A||V1| < 3N2, so at least
7290 N2 — 3N? of the triangles correspond to proper arithmetic progressions in A.
In particular, since ¢ is independent of N, for sufficiently large N it must be the

case that A contains at least one proper arithmetic progression of length 3. (]

With this connection in mind, it is natural to define a triangle in an abelian
group Z to be three elements z,y, z € Z such that x +y + z = 0.

Theorem 4.10 (Green [54]). Let Z be an abelian group of order N. If A C Z has
only o(N?) triangles, then by removing only o(N) elements from A one can make
the resulting set triangle-free.

As with the original Triangle Removal Lemma, we can rephrase this in terms of
d,e. Unfortunately, the best quantitative upper bound was that 1/§ was of the form

22" where the height of this tower was log(1/¢) [40]. But with the techniques
used to resolve the Cap Set Conjecture (and the result of [10]), Fox and Lovész
showed a tight bound, dropping this from an exponential tower all the way down to
a polynomiall They also generalized it from a single set A to a tricolored version:
given A, B,C C Z, we say (a,b,c) € A x B x C form a triangle if a + b+ ¢ = 0.

Theorem 4.11 (Fox and Lovasz [41]). For each prime p there is a constant C,, such
that the following holds. If A, B,C C (Z/pZ)™ have only SN? tricolored triangles
where § = (¢/3)% (and N = p", as usual), then by removing only eN elements
from AU BUC one can make the resulting set triangle-free. Furthermore, this is
essentially tight, in that it only holds with § < e“r—°(1)
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Continuing the recurring theme of the relationship between (Z/pZ)"™ and Z/NZ,
Aaronson [I] extended this connection between tricolored sum-free sets and triangles
to Z/NZ.

4.4. Matrix rigidity. A natural question in computational complexity is, for a
fixed matrix A, how hard is it to compute the function z +— Axz? The naive
approach, for n x n matrices, takes O(n?) arithmetic operations. There are several
famous matrices for which this number is reduced, most notably Fourier matrices,
which can be applied in only O(nlogn) operations, nearly linear in the size of the
vector space. Aside from a few other highly structured classes of matrices, very
little is known about this question in general. (And if we can’t even answer this
question with modern techniques, what hope do we have of proving P # NP?) Two
natural properties of a matrix A that make the corresponding linear function easy
to compute are: (1) sparsity, that is, if A has only very few nonzero entries, or (2)
low rank. And any two such “easy” cases can be added together. That is, if an
n X n matrix A is the sum of a matrix A’ with only s nonzero entries and a matrix
A" of rank r, then 2 — Ax can be computed in O(s + rn) arithmetic operations.
For a given matrix A, this raises the question of how few entries you need to change
in order to make the difference have low rank.

Definition 4.12 (Matrix rigidity [115]). The rank-r rigidity of a matrix A, denoted
R4(r), is the least number s such that A is the sum of a matrix A’ with < s nonzero
entries and a matrix A” of rank < r.

Perhaps the most natural way to express the computation of an n-dimensional
linear function z — Az is with a linear circuit: a sequence of instructions g1, ..., ge
of the form g; = z; for some coordinate z; of the input, or a linear combination
gi = 195 + 02g;, for constants aj;, and previous instructions ji,j2 < j. The
“output” of such a sequence is its last n values. The size of the linear circuit is the
number ¢ of instructions. The O(nlogn)-step algorithm for the Fourier transform,
for example, translates into a linear circuit of size O(nlogn). To any such linear
circuit we may naturally associate a directed acyclic graph on vertex set [¢], with
arrows from g; — g; if g; appears as a summand in the instruction g;. The depth
of a linear circuit is the length of the longest directed path in this graph.

Theorem 4.13 (Valiant [115]). For every n, let A, be an n X n matriz over a
field. If Ra, (n/loglogn) > Q(n'™¢) for some € > 0, then for sufficiently large n,
the linear function A,, cannot be computed by linear circuits of size O(n) and depth
O(logn).

It is not hard to see that Ra(r) < (n — r)? for all r, and Valiant proved that
almost all matrices are at least this rigid. However, to date, the best lower bound on
any explicit matrix A is Ra(r) > Q("T2 log %) [44, [10T]. Other techniques that have
been used to study rigid matrices include elimination theory [68], degree bounds
[T, [76], spectral methods [64], and algebraic geometry [46]; for a mostly up-to-date
survey, that also includes relations to other areas, see [7(8]. For a long time it was
believed that the Hadamard matrices were sufficiently rigid to apply Theorem |4.13
but this was recently disproved [2].

And now, we can add to this list of techniques the Croot—Lev—Pach polynomial
method:



26 J. A. GROCHOW

Theorem 4.14 (Dvir and Edelman [25]). Let p be a fized prime, and € > 0. For
any function f: (Z/pZ)" — Z/pZ, let N = p™, and let My be the N x N matriz
Ms(xz,y) = f(x +y). Then there is a 6 > 0 such that for all sufficiently large n,
RMf(Nl_‘;) < N'*¢. In particular, such matrices are not rigid enough to apply

Theorem [{.13,

5. CONCLUSION AND OUTLOOK

Originally motivated by trying to find structure in the prime numbers, we were
led to study arithmetic progressions in vector spaces over Z/pZ as a model for
arithmetic progression in the primes or in Z. This turns out to be quite a fruitful
toy model, and the Cap Set Conjecture was developed as a keystone problem,
whose solution was expected to unlock the mysteries of many other problems in
combinatorics and number theory. And indeed, as evidenced by the long list of
applications already, the technique used to resolve the Cap Set Conjecture had
precisely the desired effect! (It may be worth noting that almost none of these
applications follow as corollaries of the result itself, they only followed by using the
Croot-Lev—Pach technique.)

Of course, Erdés’s Conjecture on arithmetic progression (Conjecture stands
out as one of the most significant open problems we’ve discussed. Closing the gap
between the best known upper and lower bounds for r3(Z/NZ) and r5((Z/pZ)") is
also an interesting open problem. On the one hand, closing the gap for r3((Z/pZ)™)
may seem like somewhat of a “clean-up operation,” given how close the bounds now
are. On the other hand, the discussion in Section [3| reveals that closing these gaps
seems to require really novel methods, and one might hope that such new methods
would have other applications.

Along the way, we’ve discussed many constructions of additive sets with various
properties [8, B0, (8|, 12, 86, 27, 17, 29, 28|, [66]. Are these constructions native to
the groups they were designed for? Or can they be used in other groups as well?
It may be fruitful to study this question from the following angle. Along with the
notion of Freiman isomorphism, for any additive set (A, Z) there is a notion of a
universal ambient group for that additive set:

Definition 5.1 (Universal ambient group (see, e.g., [I14, Section 5.5]). Let (A, Z)
be an additive set and k € N. An abelian group U is a universal ambient group
(of order k) for A if there is a Freiman k-isomorphism (4, Z) = (A’,U), and every
Freiman k-homomorphism (A’,U) — (B, W) extends to a unique group homomor-
phism U — W.

Lev and Konyagin [67] showed that universal ambient groups always exist. As
a way of getting at the preceding questions, I think it would be interesting to
develop a generalization of Freiman homomorphisms for “multi-colored additive
sets” (whatever that ought to mean), and to determine the universal ambient groups
for the constructions mentioned in this exposition.

Finally, given all the applications of the Croot—Lev—Pach technique after just one
year, what other applications of the polynomial method are waiting to be explored?
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APPENDIX A. ASYMPTOTIC GROWTH

We will be considering many quantities as a function of some (usually integer)
parameter N, as N — oo. This allows us to get at the essence of certain con-
structions and bounds—and to compare different constructions with one another—
without getting caught up in the details of their ezact sizes (which can often be
hard to compute) or how large N must be before one sees a difference between two
techniques.

The most common notations we will be using are:

e f(N)~ g(N): limy_ oo % =1, and we say that f and g are asymptot-
ically equal. The advantage of this notation is that it lets us focus on the
highest-order terms only.

o f(N) <O(g(N)): thereis a constant ¢ > 0 such that for all sufficiently large
N (that is, “there is an Ny such that for all N > Ny”) f(N) < cg(N). For
most purposes, it is equivalent to say that limy_, o % is finite (these are
not entirely equivalent as there are functions f, g such that this limit doesn’t
exist, yet nonetheless f(N) < O(g(N)), but I don’t think we encounter any
such pathologies here).

Similarly, we may use the notation O(g(/N)) in a formula to denote an
unspecified function f such that f < O(g), e.g. O(n?)e"™. The advantage
of this notation is that it lets us focus on the highest-order terms and
not worry about multiplicative constants, that are independent of N. For
example, N and 100N are both O(N), even though N 4 100N.

e f(N) <o(g(N)): for all ¢ > 0, for all sufficiently large N, f(N) < cg(N).
Equivalently, lim,,_, % = 0. If you think of O as the asymptotic version
of <, then o is the asymptotic version of <. Again, we may use o(g(N)) in
a formula to denote an unspecified f such that f < o(g).

e 0o(1): A particular case of the preceding that shows up frequently, namely
an unspecified function of N that goes to zero as N goes to infinity. This
is especially useful when it appears in exponents, such as ¢"(1to(1)  For
example, ¢"n? = ¢*H1oge 2 = n(1+(1/n)log, 2) — n(1+o(1))  The advantage of
this notation is that it lets us focus on the exponential growth rate without
worrying about lower-order multiplicative terms (even when they depend
on N). For we have that ¢ < d if and only if ¢"(1+°(1) = o(dn(1+°(1)) " even
if the two o(1) terms are different: let f(N),g(N) < o(1), then

o (1 (n) _ O RN
A ) T <d1+g<n>>
. c\"™
= i (3) =0

The jump from the first to second line here is allowed because if ¢ < d, then
there is some g9 > 0 such that if 0 < & < gy, we have ¢!*t¢ < d'*¢, and
there is some ng such that for all n > ng, we have f(n), g(n) < eo.

Here is a list of the most frequent growth rates we’ll be considering and the relations
between them. If you haven’t seen these before, working out the relations for
yourself is a nice but not terribly difficult exercise, that helps acquaint you with
these growth rates. They are listed in strictly increasing order, so that if you see
f(N),g(N) in this list, it means that f(N) < o(g(V)).
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(log N)'/2 1og N, (log N)2, (log N)3,...,v/N,N*™ N ,N? N3 ... 101N 2N N 3N

Indeed, (log N)¢ < o((log N)?) for constants ¢,d > 0 if and only if ¢ < d, and
similarly N¢ < o(N?) and exp(cn) < o(exp(dn)) if and only if ¢ < d. In particular,
for exponentials of the form ¢V (¢ > 1), the base of the exponent matters: ¢V < dv
if and only if 1 < ¢ < d.

Furthermore, for growth rates that are exponentially separated, altering constant
exponents never changes this, viz. (loglog V)¢ < o((log N)¢) for any constants ¢ >
0,e > 0, no matter how large c is and how small € is. Similarly (log N)¢ < o(N¢),
and N¢ < o((14¢)") for all ¢ > 0, > 0.
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