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Introduction to the Current Events Bulletin 
 
Will the Riemann Hypothesis be proved this week?  What is the  Geometric 
Langlands Conjecture about?  How could you best exploit a stream of data flowing by 
too fast to capture?  I love the idea of having an expert explain such things to me in a 
brief, accessible way.  I think we mathematicians are provoked to ask such questions 
by our sense that underneath the vastness of mathematics is a fundamental unity 
allowing us to look into many different corners -- though we couldn't possibly work in 
all of them.  And I, like most of us, love common-room gossip. 
 
The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 
2003, is an event where the speakers do not report on their own work, but survey 
some of the most interesting current developments in mathematics, pure and applied.  
The wonderful tradition of the Bourbaki Seminar is an inspiration, but we aim for more 
accessible treatments and a wider range of subjects.  I've been the organizer of these 
sessions since they started, but a broadly constituted advisory committee helps select 
the topics and speakers.  Excellence in exposition is a prime consideration. 
 
A written exposition greatly increases the number of people who can enjoy the 
product of the sessions, so speakers are asked to do the hard work of producing such 
articles.  These are made into a booklet distributed at the meeting.  Speakers are 
then invited to submit papers based on them to the Bulletin of the AMS, and this has 
led to many fine publications. 
 
I hope you'll enjoy the papers produced from these sessions, but there's nothing like 
being at the talks -- don't miss them! 
 

David Eisenbud, Organizer 
University of California, Berkeley 

de@msri.org 
 

 
For PDF files of talks given in prior years, see 

http://www.ams.org/ams/current-events-bulletin.html. 
The list of speakers/titles from prior years may be found at the end of this booklet. 
 

http://www.ams.org/ams/current-events-bulletin.html




ON KHOT’S UNIQUE GAMES CONJECTURE

LUCA TREVISAN

Abstract. In 2002, Subhash Khot formulated the Unique Games Conjecture
a conjecture about the complexity of certain optimization problems.

The conjecture has inspired a remarkable body of work, which has clari-
fied the computational complexity of several optimization problems and the
effectiveness of “semidefinite programming” convex relaxations.

In this paper, which assumes no prior knowledge of computational complex-
ity, we describe the context and statement of the conjecture, and we discuss
in some detail one specific line of work motivated by the conjecture.

1. Introduction

Khot formulated the Unique Games Conjecture in a very influential 2002 paper
[23]. In the subsequent eight years, the conjecture has motivated and enabled a large
body of work on the computational complexity of approximating combinatorial
optimization problems (the original context of the conjecture) and on the quality
of approximation provided by ”semidefinite programming” convex relaxations (a
somewhat unexpected byproduct). Old and new questions in analysis, probability
and geometry have played a key role in this development.

Khot has recently written an excellent and broad survey paper on this body of
work [24]. In this paper we take a complementary approach and, after providing the
context and the statement of the conjecture, we focus mostly on one specific line
of work, which is representative of the style of research in this area. The interested
reader who would like to learn more about this research area is referred to Khot’s
paper [24].

2. The Statement of the Unique Games Conjecture

In this section we give the context and the statement of the Unique Games Con-
jecture. The Unique Games Conjecture is a statement about the computational
complexity of certain computational problems, so we begin with a very informal
discussion of the computational complexity of “search problems,” the notion of NP-
completeness, and the application of NP-completeness to study the complexity of
optimization problems. The reader can find a rigorous treatment in any introduc-
tory textbooks on the theory of computation, such as Sipser’s [33]. We then explain
the difficulties that arise in studying the complexity of approximations problems,
and introduce the notion of Probabilistically Checkable Proofs and the PCP The-
orem. An excellent introductory treatment of these notions can be found in the
textbook of Arora and Barak [5]. Finally, we state the Unique Games Conjecture,
as a variant of the PCP Theorem.

This material is based upon work supported by the National Science Foundation under Grant
No. CCF-1017403.
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2 LUCA TREVISAN

2.1. NP-Completeness. To briefly introduce computational complexity theory,
consider the 3-Coloring problem. In this computational problem we are given as
input an undirected graph1 G = (V,E), and the goal is to determine whether there
is a proper 3-coloring of the vertices, that is, a function c : V → {0, 1, 2} such
that c(u) �= c(v) for every {u, v} ∈ E. (If such proper colorings exist, we are also
interested in finding one.)

The 3-coloring problem is easily solvable in finite time: just consider in some
order all possible 3|V | functions c : V → {0, 1, 2} and check each of them to see if it
is a proper coloring. It is easy to improve the running time to about 2|V |, and there
are non-trivial ways to achieve further speed-ups, but all the known algorithms have
a worst-case running time that grows like c|V | for a constant c > 1, and they are
unfeasible even on graphs with a few hundred vertices. Is there are an algorithm
whose worst-case running time is bounded above by a polynomial function of |V |?

This is an open question equivalent to the P versus NP problem, one of the
six unsolved Millenium Prize Problem. One thing that we know, however, is that
the 3-Coloring problem is NP-complete, a notion introduced by Cook, Karp and
Levin [14, 28, 22]. Informally, NP is the collection of all computational problems
that, like 3-coloring, involve searching an exponentially large list in order to find
an element that satisfies a given property; P is the collection of all computational
problems that can be solved by algorithms whose running time is bounded from
above by a polynomial function of the input length.

A computational problem A reduces to a computational problem B if, informally,
there is a way to “encode” instances of problem A as instances of problem B, so
that the existence of polynomial-time algorithms for B automatically implies the
existence of a polynomial time algorithm for A.

A computational problem B is NP-hard if every problem A ∈ NP reduces to B.
If an NP -hard problem B is in NP , then B is said NP-complete. By the above
discussion we see that an NP-complete problem can be solved in polynomial time
if and only if P = NP .

It is not difficult to prove that NP-complete problems exist, and that simple and
natural problems such as 3-Coloring are NP-complete. The implications, however,
are quite surprising when seen for the first time. For example, searching for a
bounded-length proof of a given mathematical statement is a NP problem, and so
we have the following consequence of the NP-completeness of 3-Coloring:

Example 1. There is an algorithm that given an integer n runs in time polynomial
in n and constructs a graph with O(n2) vertices such that the graph has a proper
3-Coloring if and only if the Riemann Hypothesis has a proof of at most n pages.

In fact, there is nothing special about the Riemann Hypothesis: for every mathe-
matical statement S and every integer n it is possible to efficiently construct a graph
of size polynomial in the length of S and in n such that the graph is 3-colorable if
and only if S has a proof of at most n pages.

The consequences of P = NP , such as the ability to find mathematical proofs
in time polynomial in the length of the proof, seem very implausible, and it is
generally assumed that the resolution of the P versus NP question is that P �= NP .

1An undirected graph is a pair (V,E) where V is a finite set and E is a set of unordered pairs
of elements of V . The elements of V are called vertices and the elements of E are called edges.
The vertices u and v are called the endpoints of the edge {u, v}, and the edge {u, v} is said to be
incident on the vertices u and v.
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Assuming P �= NP as a conjecture, then the proof that a problem is NP-complete
can be seen as conditional proofs that the problem cannot be solved in polynomial
time.

2.2. Optimization Problems and NP-Completeness. The theory of NP-
completeness can also be used to reason about combinatorial optimization problems,
that is problems in which one wants to pick from an exponentially long list an item
that maximizes or minimizes a given cost function. In this paper we will mainly
consider the following problems:

Max Cut.: In the Maximum Cut (abbreviated Max Cut) problem we are
given as input an undirected graph G = (V,E) and we want to find a
bipartition (S, V −S) of the set of vertices maximizing the number of edges
that are cut by the partition, that is the number of edges that have one
endpoint in S and one endpoint in V − S. Equivalently, we want to find
a 2-coloring of the vertices that maximizes the number of edges that have
endpoints of different colors.

Given a graph G and a number c, it is an NP-complete problem to
determine if there is a solution that cuts at least c edges.

Sparsest Cut.: In the Sparsest Cut problem we are given a d-regular graph
G = (V,E) (that is, a graph in which each vertex is an endpoint of precisely
d edges), and we again want to find a bipartition (S, V − S), but this time
we want to minimize the number of edges cut by the partition relative to
how balanced the partition is. Namely, we want to find the partition that
minimizes the ratio

φ(S) :=
|E(S, V − S)|

d · |S| · |V − S|/|V |
where E(S, V − S) is the set of cut edges. The normalization is chosen so
that the ratio in the optimal solution is always between 0 and 1.

It is an NP-complete problem to decide, given a graph G = (V, S) and a
number r, whether there is a set S ⊆ V such that φ(S) ≤ r.

Such NP-completeness results rule out (assuming P �= NP ) the possibility of
algorithms of polynomial running time computing optimal solutions for the above
problems. What about the computational complexity of finding approximate solu-
tions?

2.3. Approximation Algorithms and PCPs. The reductions that establish the
above NP-completeness results do not offer much insight into the complexity of com-
puting approximations. For example, the NP-completeness result for the Max Cut
problem, relating it again to the task of finding a proof of the Riemann Hypothesis,
gives the following implication:

Example 2. There is an algorithm that, given an integer n, runs in time polyno-
mial in n and outputs a graph G = (V,E) and a number c such that:

• If there is a proof of the Riemann Hypothesis of at most n pages then there
is a bipartition of V that cuts ≥ c edges;

• Every bipartition of G that cuts ≥ c edges can be efficiently converted to a
valid proof of the Riemann Hypothesis of at most n pages.
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Looking more carefully into the argument, however, one sees that the transfor-
mation has the following “robustness” property with respect to approximations:

Example 3. There is an algorithm that, given an integer n, runs in time polyno-
mial in n and outputs a graph G = (V,E) and a number c such that:

• If there is a proof of the Riemann Hypothesis of at most n pages then there
is a bipartition of V that cuts ≥ c edges;

• Every bipartition of G that cuts ≥ c − k edges can be efficiently converted
to a valid proof of the Riemann Hypothesis of at most n pages with at most
k mistakes.

This means that if we had, for example, an algorithm that finds in polynomial
time solutions to the Max Cut problem that are at most 1% worse than the optimal,
we would have that we could find an n-page “proof” such that at most 1% of the
steps are wrong. Since it is always easy to come up with a proof that contains at
most one mistake (“trivially, we have 0 = 1, hence . . .”), this doesn’t cause any
contradiction.

This doesn’t mean that approximating the Max Cut problem is easy: it just
means that the instance produced by the NP-completeness proof are easy to approx-
imate, and if one wants to prove a statement of the form “if there is a polynomial
time algorithm for the Max Cut problem that finds solutions at most 1% worse than
the optimum, then P = NP ,” then such a result requires reductions of a rather
different form from the ones employed in the classical theory of NP-completeness.

Indeed, with few exceptions, proving intractability results for approximation
problems remained an open question for two decades, until the proof of the PCP
Theorem in the early 1990s by Arora, Lund, Motwani, Safra, Sudan and Szegedy
[4, 3]. The PCP Theorem (PCP stands for Probabilistically Checkable Proofs) can
be thought of as describing a format for writing mathematical proofs such that even
a “proof” in which up to, say, 1% of the steps are erroneous implies the validity of
the statement that it is supposed to prove.

Theorem 1 (The PCP Theorem). There is a constant ε0 and a polynomial time
algorithm that on input a graph G = (V,E) outputs a graph G′ = (V ′, E′) such that

• If G has a proper 3-coloring then so does G′

• If there is a coloring c′ : V ′ → {1, 2, 3} such that at least a 1−ε0 fraction of
the edges of G′ are properly colored by G′, then G has a proper 3-coloring,
and a proper 3-coloring can be efficiently constructed from c′.

The contrapositive of the second property is that if G is not a 3-colorable graph
then G′ is a graph that is not even approximately 3-colorable, that is, G′ is a graph
such that, in every 3-coloring of the vertices, at least an ε0 fraction of the edges
have endpoints of the same color.

To see how this leads to “probabilistically checkable proofs,” let us return to
our running example of whether, for a given n, there is an n-page proof of the
Riemann Hypothesis. For a given n, we can construct in time polynomial in n a
graph G such that an n-page exists if and only if there is a proper 3-coloring of
G. From G we can construct, again in time polynomial in n, a graph G′ as in the
PCP theorem. Now, an n-page proofs of the Riemann hypothesis can be encoded
(at the cost of a polynomial blow-up in size) as a proper colorings of G′. Given
a candidate proof, presented as a coloring of G′, we can think of it as having |E′|
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“steps,” each being the verification that one of the edges of G′ has indeed endpoints
of different colors. If an n-page proof of the Riemann Hypothesis exists, then there
is a proof, in this format, all whose “steps” are correct; if there is no n-page proof
of the Riemann Hypothesis, however, every “proof” is now such that at least an ε0
fraction of the “steps” are wrong. If we sample at random 100/ε0 edges of G′, and
check the validity of the given coloring just on those edges, we will find a mistake
with extremely high probability. Thus the PCP theorem gives a way to write down
mathematical proofs, and a probabilistic verification procedure to check the validity
of alleged proofs that reads only a constant number of bits of the proof and such
that valid proofs pass the probabilistic test with probability 1, and if the test passes
with probability higher than (1− ε0)

100/ε0 ≈ e−100, then a valid proof exists.
While this application to proof checking is mostly interesting to visualize the

meaning of the result, it might have applications to cryptographic protocols. In
any case, the main application and motivation of the PCP Theorem is the study of
the complexity of finding approximations to combinatorial optimization problems.

2.4. Label Cover. Various forms of the PCP Theorems are known, which are
tailored to the study of specific optimization problems. A very versatile form of
the Theorem, which was proved by Ran Raz [31] (solving a question raised by the
work of Bellare et al. [10, 9]), refers to the Label Cover problem.

Definition 2 (Label Cover). An input to the label cover problem with range Σ is
a set of equations of the form

Xi = σi,j(Yj)

where σi,j : Σ → Σ are functions specified as part of the input.
The goal is to find an assignment to the variables Xi and Yj that satisfies as

many equations as possible.

For example, the following is an instance of label cover with range Z/5Z:

X1 = Y 2
1 − 1 mod 5

X2 = Y1 − 1 mod 5
X1 = Y 4

2 + 1 mod 5

The first and third equation are not simultaneously satisfiable, and so an optimal
solution to the above instance is to satisfy two of the equations, for example the
first and the second with the assignment X1 := 4, X2 := 4, Y1 := 0, Y2 := 0.

Notice that while the equations were of an algebraic nature in the example above,
any function can be used to construct an equation.

Theorem 3 (Raz [31]). For every ε > 0 there is a Σ, |Σ| ≤ 1/εO(1) and a polyno-
mial time algorithm that on input a graph G outputs an instance C of label cover
with range Σ such that

• If G has a proper 3-coloring then in C there is an assignment to the variables
that satisfies all constraints;

• If G is not properly 3-colorable, then every assignment to the variables of
C satisfies at most an ε fraction of the equations.

This form of the PCP Theorem is particularly well suited as a starting point for
reductions, because in the second case we have the very strong guarantee that it is
impossible to satisfy even just an ε fraction of the equation. For technical reasons,
it is also very useful that each equation involves only two variables.
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The approach to derive intractability, for example for a graph problem, from
Theorem 3 is to encode each variable as a small graph, and to lay out edges in such
a way that the only way to have a good solution in the graph problem is to have
it so that it defines a good solution for the label cover problem. If we are studying
a cut problem, for example, and we have collection of vertices vX,1, . . . , vX,k corre-
sponding to each variables X in the label cover instance, then a cut (S, V − S) in
the graph gives a k-bit string (bX,1, . . . , bX,k) for every variable X of label cover,
corresponding to which of the k vertices does or does not belong to S.

The problem then becomes:

(1) To make sure that only bit strings close to a valid codeword can occur in a
near-optimal solution;

(2) To make sure that in near optimal solutions the decodings satisfy a large
number of equations.

Task (2) is typically much harder than task (1), especially in reductions to graph
problems. Indeed most NP-completeness results for approximating graph optimiza-
tion problems have proceeded by first reducing label cover to an intermediate sim-
pler problem, and then reducing the intermediate problem to the graph problem,
but at the cost of weaker intractability results than the conjectured ones.

In 2002, Khot [23] formulated a conjecture that considerably simplifies (2), es-
sentially making it of difficulty comparable to (1).

2.5. The Unique Games Conjecture.

Definition 4 (Unique Game). A unique game with range Σ is a set of equations
of the form

Xi = σi,j(Yj)

where σi,j : Σ → Σ are bijective functions specified as part of the input.
The goal is to find an assignment to the variables Xi and Yj that satisfies as

many equations as possible.

For example, the following is a unique game with range Z/5Z:

X1 = Y1 + 3 mod 5
X2 = Y1 + 1 mod 5
X1 = Y2 − 1 mod 5
X2 = Y2 − 1 mod 5

In the above example, it is not possible to satisfy all four equations, but the
optimal solution X1 := 3, X2 := 1, Y1 := 0, Y2 = 2 satisfies three of the equations.

Notice that the only difference between a Label Cover instance and a Unique
Game is that, in a Unique Game, the functions that define the equations have to
be bijective. This is, however, a substantial difference.

In particular, given a Unique Game that has a solution that satisfies all equations,
such a solution can be found very quickly in time linear in the number of equations,
while in a satisfiable Label Cover instance it is an NP-hard problem to even find a
solution that satisfies a small fraction of equations.

But what if we are given a Unique Game in which there is a solution that satisfies,
say, a 99% fraction of the equation?

Conjecture 1 (Unique Games Intractability Conjecture). For every 1/2 > ε > 0,
there is a Σ such that there is no polynomial time algorithm that, given an instance
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of Unique Games with range Σ in which it is possible to satisfy at least a 1−ε fraction
of equations, finds a solution that satisfies at least an ε fraction of equations.

If P = NP then Conjecture 1 is false; this means that proving Conjecture 1 would
require first proving P �= NP , which is beyond the reach of current techniques. The
strongest evidence that we can currently hope to prove in favor of Conjecture 1 is:

Conjecture 2 (Unique Games NP-Hardness Conjecture). For every 1/2 > ε > 0
there is a Σ and a polynomial time algorithm that, on input a graph G outputs a
unique games instance U with range Σ, such that

• If G is properly 3-colorable then there is an assignment that satisfies at least
a 1− ε fraction of equations in U ;

• If G is not properly 3-colorable then every assignment to the variables of U
satisfies at most an ε fraction of equations.

If Conjecture 2 is true, then every inapproximability result proved via a reduction
from Unique Games establishes an NP-hardness of approximation, in the same way
as a reduction starting from label cover.

2.5.1. Consequence for Max Cut. In the following we let

(1) αGW := min
1/2<ρ<1

1
π · arccos 1− 2ρ

ρ
≈ 0.878567

And we let ρGW be the value of ρ that minimizes the above expression. The
above constant comes up in the remarkable algorithm of Goemans and Williamson
[20].

Theorem 5 (Goemans and Williamson [20]). There is a polynomial time algorithm
that on input a graph G = (V,E) in which the optimal bipartition cuts opt edges
finds a bipartition that cuts at least αGW · opt edges.

Furthermore, if opt/|E| = 1 − ε ≥ ρGW , then the bipartition found by the algo-
rithm cuts at least

(2)
1

π
· arccos(−1 + 2ε) · |E|

edges., which is approximately
(
1− 2

π

√
ε
)
· |E| edges

The value of Expression (2) is approximately
Å
1− 2

π

√
ε

ã
· |E|

when ε is small.
It is known that an approximation better than 16/17 implies that P = NP

[34, 21], but no NP-hardness result is known in the range between α ≈ .878 and
16/17 ≈ .941, and there has been no progress on this problem since 1997.

Work of Khot, Kindler, Mossel and O’Donnel [25], together with later work
of Mossel, O’Donnel and Oleszkiewicz [29], proves that no improvement is possible
over the Goemans-Williamson algorithm assuming the Unique Games Intractability
Conjecture.
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Theorem 6 ([25, 29]). Suppose that there is a δ > 0, a ρ > 0 and a polynomial
time algorithm that given a graph G = (V,E) in which an optimal cut cuts ρ · |E|
vertices finds a solution that cuts at least 1

π · (arccos(1− 2ρ) + δ) · |E| edges.
Then the Unique Games Intractability Conjecture is false.

In particular, by taking ρ = ρGW we have that, for every δ > 0 the existence
of a polynomial time algorithm that, on input a graph in which the optimum is
c finds a solution that cuts more than (αGW + δ) · c edges would contradict the
Unique Games Intractability Conjecture. So, assuming the conjecture, the constant
αGW is precisely the best achievable ratio between the value of polynomial-time
constructible solutions and optimal solutions in the Max Cut problem.

In Section 3 we will present an overview of the proof of Theorem 6.

2.5.2. Consequence for Sparsest Cut. The algorithm achieving the best ratio be-
tween the quality of an optimal solution and the quality of the solution found in
polynomial time is due to Arora, Rao and Vazirani [8].

Theorem 7 ([8]). There is a polynomial time algorithm that given a graph G =
(V,E) finds a set C such that

φ(C) ≤ O(
»
log |V |) · φ(C∗)

where C∗ is an optimal solution to the sparsest cut problem.

A classical algorithm based on spectral graph theory achieves a better approxi-
mation in graphs in which the optimum is large.

Theorem 8 (Spectral Partitioning [1, 2]). There is a polynomial time algorithm
that given a graph G = (V,E) finds a set C such that

φ(C) ≤ O(
»
φ(C∗))

where C∗ is an optimal solution to the sparsest cut problem.

Theorem 9 ([25, 29]). There is an absolute constant c > 0 such that the following
is true.

Suppose that there is a δ > 0, an ε > 0 and a polynomial time algorithm that
given a graph G = (V,E) in which the sparsest cut C∗ satisfies φ(C∗) ≤ ε finds a
cut C such that

φ(C) ≤ c ·
√
ε− δ ;

then the Unique Games Intractability Conjecture is false.

In particular, assuming the conjecture, the trade-off between optimum and ap-
proximation in the spectral partitioning algorithm cannot be improved, and the
approximation ratio in the Arora-Rao-Vazirani algorithm cannot be improved to a
constant.

3. The Maximum Cut Problem

A general approach to reduce Unique Games (and, in general, Label Cover)
with range Σ to other problems is to ensure that a solution in the target problem
associates to each variable X of the unique game a function fX : {−1, 1}Σ →
{−1, 1}. Then we define a way to “decode” a function fX : {−1, 1}Σ → {−1, 1} to
a value aX ∈ Σ, and we aim to prove that if we have a good solution in the target
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problem, then the assignment X := aX to each variable X defines a good solution
in the Unique Games instance. The general idea is that if a function “essentially
depends” one of its variables, then we decode it to the index of the variable that it
depends on.

3.1. The Reduction from Unique Games to Max Cut. We outline this
method by showing how it works to prove Theorem 6. To prove the theorem,
we start from a Unique Games Instance U with range Σ such that a 1− ε′ fraction
of equations can be satisfied. We show how to use the assumption of the Theorem
to find a solution that satisfies at least an ε′ fraction of equations. We do so by
constructing a graph G, applying the algorithm to find a good approximation to
Max Cut in the graph, and then converting the cut into a good solution for the
Unique Games instance.

If U has N variables, then G has N · 2Σ vertices, a vertex vX,a for every variable
X of U and every value a ∈ {0, 1}Σ.

We define G as a weighted graph, that is a graph in which edges have a positive
real-value weight. In such a case, the value of a cut is the total weight (rather than
the number) of edges that are cut. There is a known reduction from Max Cut in
weighted graph to Max Cut in unweighted simple graphs [15], so there is no loss of
generality in working with weights.

We introduce the following action of the symmetric group of Σ on the vertices
of G. If x ∈ {−1, 1}Σ is an vector of |Σ| bits indexed by the elements of Σ, and
σ : Σ → Σ is a bijection, we denote by x ◦ σ the vector x ◦ σ ∈ {0, 1}Σ such that
(x ◦ σ)i := xσ(i).

We also define the noise operator Nρ as follows: if x ∈ {0, 1}Σ is a boolean
vector, then Nρ(x) is the random variable generated by changing each coordinate
of x independently with probability ρ, and leaving it unchanged with probability
1− ρ.

The edge set of G is defined so that its total weight is 1, and we describe it as a
probability distribution:

• Pick two random equations X = σ(Y ) and X = σ′(Y ′) in U conditioned
on having the same left-hand side.

• Pick a random element a ∈ {0, 1}Σ and pick an element b ∈ Nρ(a)
• Generate the edge (vY,a◦σ, vY ′,b◦σ′)

Let A be an optimal assignment for the Unique Games instance U . Consider
the cut of G in which S = {vY,a : aA(Y ) = 1}. This vertex bipartition cuts edges of
total weight at least ρ− 2ε′. From our assumption, we can find in polynomial time
a cut S that cuts a 1

π · (arccos 1− 2ρ) + δ fraction of edges. We want to show how
to extract from S an assignment for the Unique Games that satisfies a reasonably
large number of equations.

First we not that S assigns a bit to each variable X and to each a ∈ {−1, 1}Σ.
Let us call

fY (a) = 1 if a ∈ S

and

fY (a) = −1 if a �∈ S

We went to decode each of these functions fX : {−1, 1}Σ → {−1, 1} into an
index i ∈ Σ. We describe a probabilistic decoding process Dec(·) later.
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Some calculations show that the functions that we derive in such a way have the
property that

E
X,Y,Y ′,a,b

[fY (a ◦ σ) �= fY ′(b ◦ σ′)] ≥ 1

π
· (arccos 1− 2ρ) + δ

and from this we want to derive that

E
X,Y,Y ′

[σ(Dec(fY )) = σ′(Dec(fY ′))] ≥ Ωρ,δ(1)

from which it is easy to see that from the decodings Dec(fY ) we can reconstruct
an assignment for all variables that satisfies at least an ε′ fraction of equations in
the unique game.

Some manipulations show that, essentially, it is sufficient to prove the following
lemma:

Lemma 10 (Main). There is a probabilistic symmetric algorithm Dec(·) that on
input a function f : {−1, 1}Σ → {−1, 1} outputs an element i ∈ Σ, and such that
the following is true.

Suppose that f : {−1, 1}Σ → {−1, 1} is such that

(3) P[f(x) �= f(Nρx)] ≥
1

π
· arccos(1− 2ρ) + δ

Then there is an index i ∈ Σ such that

P[Dec(f) = i] ≥ Ωδ,ρ(1)

We say that the decoding is symmetric if the distribution of Dec(f(σ(·))) is the
same as the distribution σ(Dec(f(·))) for every bijection σ : Σ → Σ.

(Technically, the Main Lemma is not sufficient as stated. An extension that
deals with all bounded real-valued functions is necessary. The boolean case, which
is simpler to state and visualize, captures all the technical difficulties of the general
case.)

3.2. The Proof of the Main Lemma. Before discussing the proof of the Main
Lemma, we show that it is tight, in the sense that from a weaker assumption in
Equation (3) it is not possible to recover the conclusion.

Consider the majority functionMaj : {−1, 1}Σ → {−1, 1} such thatMaj(x) = 1
if and only if x has at least |Σ|/2 ones. (That is, Maj(x) := sign(

∑
i xi).) Then

Maj is a symmetric function, in the sense that Maj(x ◦ σ) = Maj(x) for every
bijection σ. This implies that for every symmetric decoding algorithm Dec we
have that Dec(Maj) is the uniform distribution over Σ, and so every index i has
probability 1/|Σ| which goes to zero even when the other parameters in the Main
Lemma are fixed. A standard calculation shows that, for large Σ,

E[Maj(x) �= Maj(Nρ(x))] ≈
1

π
arccos(1− 2ρ)

so we have an example in which Equation (3) is nearly satisfied but the conclusion
of the Main Lemma fails.

This example suggest that, if the Main Lemma is true, then the functions that
satisfy Equation (3) must be non-symmetric, that is, it must not depend equally
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on all the input variables, and that the decoding procedure Dec(·) must pick up
certain input variables that the function depends in a special way on.

Another example to consider is that of the functions arising in the bipartitions
that are derived from an optimal solution in the unique game instance U . In that
case, for every variable Y the corresponding function fY is of the form fY (x) := xi

where i is the value assigned to Y in the optimal solution. In this case, we would
expect the decoding algorithm to output the index i. In general, if f depends only
on a small number of variables, we would expect Dec to only output the indices of
those variables.

These observations suggest the use of the notion of influence of input variables.
If f : {−1, 1}Σ → {−1, 1} is a boolean function, then the influence of variable i ∈ Σ
on f is the probability

Infi(f) := P
x∈{0,1}Σ

[f(x1, . . . , xk) �= f(x1, . . . , xi−1,−xi, xi+1, . . . , xk)]

where we identified, for simplicity, Σ with {1, . . . , k}, where k := |Σ|.
It is natural to consider the decoding algorithm that picks an index i with prob-

ability proportional to Infi(f); note that this process is symmetric.
There is, unfortunately, a counterexample. Consider the function

f(x1, . . . , xk) := Maj(x1, x2,Maj(x3, . . . , xk))

and take ρ = 1 − ε. Then 1
π · arccos(1 − 2ρ) ≈ 1 − 2

π

√
ε and one can compute

that

P[f(x) �= f(Nρ(x))] ≈ 1− ε− 1

π

√
ε > 1− 2

π

√
ε+Ωε(1)

This means that we expect the decoding algorithm to select some index with a
probability that is at least a fixed constant for every fixed ε.

When we compute the influence of the variables of f , however, we find out that
x1 and x2 have constant influence 1/2, while the variables x3, . . . , xk have influence

approximately 1/
√
k. This means that the sum of the influences is about

√
k, and

so x1 and x2 would be selected with probability about 1/
√
k, and the remaining

variables with probability about 1/n. In particular, all probabilities go to zero with
k = |Σ|, and so a decoding algorithm based only on influence does not satisfy the
conditions of the Main Lemma.

In order to introduce the correct definition, it helps to introduce discrete Fourier
analysis over the Hamming cube. For our purposes, only the following facts will
be used. One is that if g : {−1, 1}Σ → R is a real-valued function, then there is a
unique set of real values ĝ(S), one for each subset S ⊆ Σ, such that

g(x) =
∑

S

ĝ(S) ·
∏

i∈S

xi

The values ĝ(S) are called the Fourier coefficients of g.

In particular, if f : {−1, 1}Σ → {−1, 1} is a boolean function, then
∑

S f̂2(S) =
1.

It is easy to see that
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Infi(f) =
∑

S:i∈S

f̂2(S)

The fact that
∑

i f̂
2(S) = 1 suggests that f̂ naturally defines a probability

distribution. Unfortunately, it is a probability distribution over subsets of Σ, rather
than a probability distribution over elements of Σ. A natural step is to consider
the algorithm Dec defined as follows: sample a set S ⊆ Σ with probability equal

to f̂2(S), then output a random element of S. In particular, we have

(4) P[Dec(f) = i] =
∑

S:∈S

f̂2(S)

|S|

which is similar to the expression for the influence of i, but weighted to give
more emphasis of the Fourier coefficients corresponding to smaller sets.2

If we go back to the function Maj(x1, x2,Maj(x3, . . . , xk)), we see that the
algorithm defined in (4) has a probability of generating x1 and x2 which is at least
an absolute constant, and that doesn’t go to zero with k.

The decoding algorithm described in Equation (4) turns out to be the correct
one. Proving the main lemma reduces now to proving the following result.

Lemma 11 (Main Lemma – Restated). Suppose that f : {0, 1}Σ → {0, 1} is such
that

(5) P[f(x) �= f(Nρx)] ≥
1

π
· arccos(1− 2ρ) + δ

Then there is an index i ∈ Σ such that

∑

S:i∈S

f̂2(S)

|S| ≥ Ωδ,ρ(1)

The proof has two parts:

• An invariance theorem due to Mossel, O’Donnell and Oleszkiewicz [29]
showing that the Main Lemma is true in the boolean setting provided that
a “Gaussian version” of the Lemma hods for functions taking real inputs
with Gaussian distribution is true;

• A theorem of Borell [11] establishing the Gaussian version of the Lemma

3.3. The Invariance Theorem and Borell’s Theorem. A starting point to gain
intuition about the Invariance Theorem is to consider the Central Limit Theorem.
Suppose that X1, . . . , Xn is a collection of independent boolean random variables,
each uniform over {−1, 1}, and suppose that a1, . . . , an are arbitrary coefficients.
Then the random variable

∑

i

aiXi

2An important point is that, with probability f̂(∅)2 we generate the empty set, and the oper-
ation of “selecting a random element” of the empty set is undefined. In such a case, the decoding
algorithm outputs a special failure symbol ⊥ not in Σ.
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is going to be close to a Gaussian distribution of average zero and variance
∑

i a
2
i ,

provided that the coefficients are reasonably smooth. (It is enough that if we scale
them so that

∑
i a

2
i = 1, then

∑
i a

3
i is small.)

Suppose now that, instead of considering a sum, that is, a degree-1 function, we
take an n-variate low-degree polynomial p and we consider the random variable

p(X1, . . . , Xn)

We cannot say any more that it has a distribution close to a Gaussian and,
in fact, it does not seem that we can say anything at all. Looking back at the
Central Limit Theorem, however, we can note that the “right” way of formulating
it is to consider a collection X1, . . . , Xn of independent boolean random variables
each uniform over {−1, 1}, and also a collection of independent Gaussian random
variables Z1, . . . , Zn each with mean zero and variance 1. Then we have that the
two random variables

∑

i

aiXi and
∑

i

aiZi

are close provided that the ai are smooth.
This is exactly the same statement as before, because the distribution

∑
i aiZi

happens to be a Gaussian distribution of mean zero and variance
∑

i a
2
i .

This formulation, however, as a natural analog to the case of low-degree poly-
nomials. The Invariance Theorem states that if p is a sufficiently “smooth” low
degree polynomial then the random variables

p(X1, . . . , Xn) and p(Z1, . . . , Zn)

are close. A result of this nature was first proved by Rotar [32].
When we apply the Invariance Theorem to a smoothed and truncated version

of the Fourier transform of the function f in the Main Lemma, we have that ei-
ther such a function is a “smooth polynomial” to which the Invariance Theorem
applies, or else the conclusion holds and there is a coordinate with noticeably high
probability of being output by the decoding algorithm. If the Invariance Theorem
applies, then the probability that f changes value on anti-correlated boolean inputs
is approximately the probability that a function changes its value on anti-correlated
Gaussian inputs. The latter is given by a Theorem of Borrel

Theorem 12 (Borrel). Suppose f : Rn → [−1, 1] is a measurable function according
to the standard Gaussian measure in R

n and such that E f = 0. For an element
x ∈ R

n and for 0 ≤ ρ ≤ 1/2, let Nρ(x) be the random variable (1 − 2ρ) · x +√
1− (1− 2ρ)2z where z is a standard Gaussian random variable.
Then

P[f(x) �= f(Nρ(x))] ≥
1

π
arccos(1− 2ρ)

There are a few ways in which Borrel’s theorem is not the “Gaussian analog”
of the Main Lemma. Notably, there is a condition on the expectation of f , there
is a lower bound, rather than an upper bound, to the probability that f changes
value, and the theorem applies to the range ρ ∈ [0, 1/2], while we are interested in
the “anti-correlation” case of ρ ∈ [1/2, 1]. There is a simple trick (consider only the
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“odd part” of the Fourier expansion of the boolean function f – that is only the
terms corresponding to sets S of odd size) that takes care of all these differences.

3.4. How Did We Use the Unique Games Conjecture? When we stated the
Unique Games Conjecture, we made the following informal claim, here rephrased
in abbreviated form:

To reduce Label Cover to a graph optimization problem like Max
Cut, we map variables to collections of vertices and we map equa-
tions to collections of edges; then we show how to “encode” as-
signments to variables as 2-colorings of vertices which cut a ≥ c1
fraction of edges, and finally (this is the hardest part of the argu-
ment) we show that given a 2-coloring that cuts a ≥ c2 fraction of
edges, then
(1) the given 2-coloring must be somewhat “close” to a 2-coloring

coming from the encoding of an assignment and
(2) if we “decode” the given 2-coloring to an assignment to the

variables, such an assignment satisfies a noticeable fraction of
equations.

Starting our reduction from a Unique Game instead of a Label
Cover problem, we only need to prove (1) above, and (2) more or
less follows for free.

To verify this claim, we “axiomatize” the properties of a reduction that only
achieves (1): we describe a reduction mapping a single variable to a graph, such
that assignments to the variable are mapped to good cuts, and somewhat good
cuts can be mapped back to assignments to the variable. The reader can then go
back to our analysis of the Max Cut inapproximability proof in the previous post,
and see that almost all the work went into establishing the existence of a family of
graphs satisfying the properties below.

Definition 13 ((c1, c2)-Graph Family). A (c1, c2) graph family is a collection of
graphs Gm = (Vm, Em), for each positive integer m, together with an encoding
function Encm : {1, . . . ,m} → 2Vm and a randomized decoding process Decm :
2Vm → {1, . . . ,m} such that

• For every m and every i ∈ m, let Si := Encm(i). Then the partition
(Si, Vm − Si) cuts at least a c1 fraction of the edges of Gm;

• If (S, Vm−S) is a partition of the vertices of Gm that cuts at least a c2 + δ
fraction of the edges, then there is an index i ∈ {1, . . . ,m} such that the
probability

P[Decm(S) = i] ≥ p(δ) > 0

is at least a positive quantity p(δ) independent of m;
• The encoding and decoding procedures are symmetric. That is, it is possible
to define an action of the symmetric group of {1, . . . ,m} on Vm such that
for every i ∈ m and every bijection σ : {1, . . . ,m} → {1, . . . ,m} we have

Encm(σ(i)) = σ(Encm(i))

and

Decm(σ(S)) ≈ σ(Decm(S))
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where D1 ≈ D2 means that D1 and D2 have the same distribution, and
σ(S) := {x ◦ σ : x ∈ S}, where x ◦ σ is the action of σ on x.

We claim that, in the previous post, we defined a (1− ε, 1− 2
π

√
ε) graph family.

The graph family is the following. For a given m:

(1) The vertex set is Vm := {−1, 1}m;
(2) The graph is weighted complete graph with edges of total weight 1. The

weight of edge (x, y) is the probability of generating the pair (x, y) by
sampling x at random and sampling y from the distribution N1−ε(x);

(3) Encm(i) defines the bipartition (Si, Vm − Si) in which Si is the set of all
vertices x such that xi = 1

(4) Decm(S) proceeds as follows. Define f(x) := −1 if x ∈ S and f(x) := 1 if
x �∈ S. Compute the Fourier expansion

f(x) =
∑

R

f̂(R)(−1)
∑

i
∈Rxi

Sample a set R with probability proportional to f̂2(R), and then output a
random element of R

4. Semidefinite Programming and Unique Games

Solving an instance of a combinatorial optimization problem of minimization
type is a task of the form

(6)
max cost(z)
subject to
z ∈ Sol

where Sol is the set of admissible solutions and cost(z) is the cost of solution
z. For example the problem of finding the maximum cut in a graph G = (V,E) is
a problem of the above type where Sol is the collection of all subsets S ⊆ V , and
cost(S) is the number of edges cut by the vertex partition (S, V − S).

If Sol ⊆ Rel, and cost′ : Rel → R is a function that agrees with cost() on Sol,
then we call the problem

(7)
max cost′(z)
subject to
z ∈ Rel

a relaxation of the problem in (6). The interest in this notion is that combinato-
rial optimization problems in which the solution space is discrete are often NP-hard,
while there are general classes of optimization problems defined over a continuous
convex solution space that can be solved in polynomial time. A fruitful approach to
approximating combinatorial optimization problems is thus to consider relaxations
to tractable convex optimization problems, and then argue that the optimum of the
relaxation is close to the optimum of the original discrete problem. See the book
of Vazirani [35] for several appications of this approach.

The Unique Games Intractability Conjecture is deeply related to the approxima-
tion quality of Semidefinite Programming relaxations of combinatorial optimization
problems.



16 LUCA TREVISAN

4.1. Semidefinite Programming. A symmetric matrixA is positive semidefinite,
written A � 0, if all its eigenvalues are non-negative. We write A � B if A− B if
positive semidefinite. We quote without proof the following facts:

• A matrix A ∈ R
n×n is positive semidefinite if and only if there are vectors

v1, . . . , vn ∈ R
m such that for every i, j we have Aij = 〈vi, vj〉. Further-

more, there is an algorithm of running time polynomial in n that, given a
matrix A, tests whether A is positive semidefinite and, if so, finds vectors
v1, . . . , vn as above.

• The set of positive semidefinite matrices is a convex subset of Rn×n. More
generally, it is a convex cone, that is, for every two positive semidefinite
matrices A,B and non-negative scalars α, β, the matrix αA+βB is positive
semidefinite.

It often the case the optimizing a linear function over a convex subset of RN is a
polynomial time solvable problem, and indeed there are polynomial time algorithms
for the following problem:

Definition 14 (Semidefinite Programming). The Semidefinite Programming prob-
lem is the following computational program: given matrices C,A1, . . . , Am ∈ R

n×n

and scalars b1, . . . , bm ∈ R, find a matrix X that solves the following optimization
problem (called a semidefinite program):

(8)

maxC •X
subject to
A1 •X ≤ b1
A2 •X ≤ b2
· · ·
Am •X ≤ bm
X � 0

where we use the notation A •B :=
∑

ij Aij ·Bij.

In light of the characterization of positive semidefinite matrices described above,
the semidefinite program (8) can be equivalently written as

(9)

max
∑

ij Cij · 〈vi, vj〉
subject to∑

ij A
1
ij · 〈vi, vj〉 ≤ b1∑

ij A
2
ij · 〈vi, vj〉 ≤ b2

· · ·∑
ij A

m
ij · 〈vi, vj〉 ≤ bm

v1, . . . , vn ∈ R
n

That is, as an optimization problem in which we are looking for a collection
v1, . . . , vn of vectors that optimize a linear function of their inner products subject
to linear inequalities about their inner products.

4.2. Semidefinite Programming and Approximation Algorithms. A qua-
dratic program is an optimization problem in which we are looking for reals
x1, . . . , xn that optimize a quadratic form subject to quadratic inequalities, that
is an optimization problem that can be written as
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(10)

max
∑

ij Cij · xi · xj

subject to∑
ij A

1
ij · xi · xj ≤ b1∑

ij A
2
ij · xi · xj ≤ b2

· · ·∑
ij A

m
ijxi · xj ≤ bm

x1, . . . , xn ∈ R

Since the quadratic condition x · x = 1 can only be satisfied if x ∈ {−1, 1},
quadratic programs can express discrete optimization problems. For example, the
Max Cut problem in a graph G = (V,E), where V = {1, . . . , n} can be written as
a quadratic program in the following way

(11)

max
∑

ij∈E
1
2 − 1

2xi · xj

subject to
x2
1 = 1

· · ·
x2
n = 1

x1, . . . , xn ∈ R

Every quadratic program has a natural Semidefinite Programming relaxation in
which we replace reals xi with vectors vi and we replace products xi ·xj with inner
products 〈vi, vj〉. Applying this generic transformation to the quadratic program-
ming formulation of Max Cut we obtain the following semidefinite programming
formulation of Max Cut

(12)

max
∑

ij∈E
1
2 − 1

2 〈vi, vj〉
subject to
〈v1, v1〉 = 1
· · ·
〈vn, vn〉 = 1
v1, . . . , vn ∈ R

n

The Max Cut relaxation (12), first studied by Delorme and Poljak [17, 16] is the
one used by Goemans and Williamson.

Algorithms based on semidefinite programming provide the best known
polynomial-time approximation guarantees for a number of other graph optimiza-
tion problems and of constraint satisfaction problem.

4.3. Semidefinite Programming and Unique Games. The quality of the ap-
proximation of Relaxation (12) for the Max Cut problem exactly matches the in-
tractability results proved assuming the Unique Games Intractability Assumptions.
This has been true for a number of other optimization problems.

Remarkably, Prasad Raghavendra has shown [30] that for a class of problems
(which includes Max Cut as well as boolean and non-boolean constraint satisfaction
problems), there is a semidefinite programming relaxation such that, assuming the
Unique Games Intractabiltiy Conjecture, no other polynomial time algorithm can
provide a better approximation than that relaxation.
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If one believes the conjecture, this means that the approximability of all such
problems has been resolved, and a best-possible polynomial time approximation
algorithm has been identified for each such problem. An alternative view is that, in
order to contradict the Unique Games Intractabiltiy Conjecture, it is enough to find
a new algorithmic approximation techniques that works better than semidefinite
programming for any of the problems that fall into Raghavendra’s framework, or
maybe find a different semidefinite programming relaxation that works better than
the one considered in Raghavendra’s work.

4.4. Sparsest Cut, Semidefinite Programming, and Metric Embeddings.
If, at some point in the future, the Unique Games Intractability Conjecture will be
refuted, then some of the theorems that we have discussed will become vacuous.
There are, however, a number of unconditional results that have been discovered
because of the research program that originated from the conjecture, and that would
survive a refutation.

First of all, the analytic techniques developed to study reductions from Unique
Games could become part of future reductions from Label Cover or from other
variants of the PCP Theorem. As discussed above, reductions from Unique Games
give ways of encoding values of variables of a Label Cover instance as good feasible
solutions in the target optimization problems, and ways of decoding good feasible
solutions in the target optimization problems as values for the variables of the Label
Cover instance.

It is also worth noting that some of the analytic techniques developed within the
research program of Unique Games have broader applicability. For example the
impetus to prove the Invariance Theorem of Mossel, O’Donnell and Oleszkiewicz
came from its implications for conditional inapproximability results, but it settles
a number of open questions in social choice theory.

Perhaps the most remarkable unconditional theorems motivated by Unique
Games regard integrality gaps of Semidefinite Programming relaxations. The inte-
grality gap of a relaxation of a combinatorial optimization problem is the worst-case
(over all instances) ratio between the optimum of the combinatorial problem and
the optimum of the relaxation. The integrality gap defines how good is the opti-
mum of the relaxation as a numerical approximation of the true optimum, and it
is usually a bottleneck to the quality of approximation algorithms that are based
on the relaxation.

The integrality gap of Relaxation (12) is .8785 · · · , the same as the hardness of
approximation result proved assuming the Unique Games Intractabiltiy Conjecture.
Indeed, the graph that exhibits the .8785 · · · gap is related to the graph used in the
reduction from Unique Games to Max Cut. (The integrality gap instance was dis-
covered by Feige and Schechtman [19].)This is part of the larger pattern discovered
by Raghavendra (cited above), who shows that, for a certain class of optimization
problems, every integrality gap instance for certain semidefinite programming re-
laxations can be turned into a conditional inapproximability result assuming the
Unique Games Intractability Conjecture.

The Sparsest Cut problem has a Semidefinite Programming relaxation, first stud-
ied by Goemans and Linial, whose analysis is of interest even outside of the area
of approximation algorithms. A metric space (X, d) is of negative type if (X,

√
d)

is also a metric space and is isometrically embeddable in Euclidean space. If every
n-point metric space of negative type can be embedded into L1 with distortion at
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most c(n), then the Semidefinite Programming relaxation of Goemans and Linial
can be used to provide a c(n)-approximate algorithm for sparsest cut, where n is
the number of vertices, and the integrality gap of the relaxation is at most c(n).
Equivalently, if there is an n-vertex instance of Sparsest Cut exhibiting an inte-
grality gap at least c(n), then there is an n-point negative-type metric space that
cannot be embedded into L1 without incurring distortion at least c(n).

Interestingly, there is a generalization of the Sparsest Cut problem, the Non-
uniform Sparsest Cut problem, for which the converse is also true, that is, the
integrality gap of the Goemans-Linial Semidefinite Programming relaxation of the
Non-uniform Sparsest Cut problem for graphs with n vertices is ≤ c(n) if and only if
every n-point negative-type metric space can be embedded into L1 with distortion
at most c(n).

It had been conjectured by Goemans and Linial that the integrality gap of the
semidefinite relaxations of Sparsest Cut and Non-Uniform Sparsest Cut was at
most a constant. Arora, Rao and Vazirani [8] proved in 2004 that the Sparsest
Cut relaxation had integrality gap O(

√
log n), and Arora, Lee and Naor [7] proved

in 2005 that Non-Uniform Sparsest Cut relaxation had integrality gap O(
√
log n ·

log log n), results that were considered partial progress toward the Goemans-Linial
conjecture.

Later in 2005, however, Khot and Vishnoi [26] proved that the relaxation of Non-
Uniform Sparsest Cut has an integrality gap (log log n)Ω(1) that goes to infinity with
n. Their approach was to:

(1) Prove that the Non-Uniform Sparsest Cut problem does not have a
constant-factor approximation, assuming the Unique Games Intractabil-
ity Conjecture, via a reduction from unique games to non-uniform sparsest
cut;

(2) Prove that a natural Semidefinite Programming relaxation of Unique
Games has integrality gap (log logn)Ω(1);

(3) Show that applying the reduction in (1) to the Unique Games instance in (2)
produces an integrality gap instance for the Goemans-Linial Semidefinite
Programming relaxation of Non-Uniform Sparsest Cut.

In particular, Khot and Vishnoi exhibit an n-point negative-type metric space
that requires distortion (log log n)Ω(1) to be embedded into L1. This has been a
rather unique approach to the construction of counterexamples in metric geometry.
The lower bound was improved to Ω(log logn) by Krauthgamer and Rabani [27],
and shortly afterward Devanur, Khot, Saket and Vishnoi [18] showed that even the
Sparsest Cut relaxation has an integrality gap Ω(log log n).

Cheeger, Kleiner and Naor [13] have recently exhibited a (logn)Ω(1) integrality
gap for Non-Uniform Sparsest Cut, via very different techniques.

5. Algorithms for Unique Games

When Khot introduced the Unique Games Conjecture, he also introduced a
Semidefinite Programming relaxation. Charikar, Makarychev and Makarychev [12]
provide a tight analysis of the approximation guarantee of that Semidefinite Pro-
gram, showing that, given a unique game with range Σ in which a 1− ε fraction of
the equations can be satisfied, it is possible to find in polynomial time a solution
that satisfies at least a 1/ΣO(ε) fraction of constraints.
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This is about as good as can be expected, because earlier work had shown that
if the Unique Games Intractability Conjecture holds, then there is no polynomial
time algorithm able to satisfy a 1/ΣoΣ(ε) fraction of constraints in a unique game
with range Σ in which a (1 − ε) fraction of equations is satisfiable. Furthermore,
the analysis of Charikar, Makarychev and Makarychev [12] is (unconditionally)
known to be tight for the specific Semidefinite Programming relaxation used in their
algorithm because of the integrality gap result of Khot and Vishnoi [26] discussed
in the previous section.

Recently, Arora, Barak and Steurer [6] have devised an algorithm that satisfies

in time 2n
εΩ(1)

a constant fraction of the equations in an instance of unique games
in which it is possible to satisfy a 1−ε fraction of equations. Although this result is
far from refuting the Unique Games Intractability Conjecture, it casts some doubts
on the Unique Games NP-hardness Conjecture. The following stronger form of the
P �= NP conjecture is generally considered to be very likely: that for every NP-hard
problem that is a c > 0 such that the problem cannot be solved with worst-case
running time faster than 2n

c

, where n is the size of the input. This means that if the

running time of the Arora-Barak-Steurer algorithm could be improved to 2n
o(1)

for a
fixed ε, the Unique Games NP-hardness Conjecture would be in disagreement with
the above conjecture about NP-hard problems, and would have to be considered
unlikely.
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COUNTING SPECIAL POINTS: LOGIC, DIOPHANTINE GEOMETRY AND
TRANSCENDENCE THEORY

THOMAS SCANLON

ABSTRACT. We expose a theorem of Pila and Wilkie on counting rational points
in sets definable in o-minimal structures and some applications of this theorem to
problems in diophantine geometry due to Masser, Peterzil, Pila, Starchenko, and
Zannier.

1. INTRODUCTION

Over the past decade and a half starting with Hrushovski’s proof of the func-
tion field Mordell-Lang conjecture [12], some of the more refined theorems from
model theory in the sense of mathematical logic have been applied to problems
in diophantine geometry. In most of these cases, the technical results underlying
the applications concern the model theory of fields considered with some addi-
tional distinguished structure and the model theoretic ideas fuse algebraic model
theory, the study of algebraic structures with a special emphasis on questions of
definability, and stability theory, the development of abstract notions of dimen-
sion, dependence, classification, et cetera for the purpose of analyzing the class of
models of a theory. Over this period, there has been a parallel development of
the model theory of theories more suited for real analysis carried out under the
rubric of o-minimality, but this theory did not appear to have much to say about
number theory. Some spectacular recent theorems demonstrate the error of this
impression.

In the paper [28], Pila presents an unconditional proof of a version of the so-
called André-Oort conjecture about algebraic relations amongst the j-invariants of
elliptic curves with complex multiplication using a novel technique coming from
model theory. This proof of the André-Oort conjecture comes on the heels of re-
proofs of the Manin-Mumford conjecture (or, Raynaud’s theorem [32]) by Pila and
Zannier [29] (and then extended by Peterzil and Starchenko [22]) and a proof of a
remarkable theorem due to Masser and Zannier [19] about simultaneous torsion
for pairs of points on families of elliptic curves all of which employ Pila’s method.

Each of these theorems is a beautiful and precise instantiation of the vague prin-
ciple that algebraic relations on sets of arithmetically interesting points of geomet-
ric origin must be explained geometrically. As such, these results deserve their
own survey independent from their proofs. However, while I agree that these
theorems and their ilk are of intrinsic interest, there are two reasons why I shall fo-
cus on their proofs. First, the proof strategy employed coming as it does from the
model theory of real geometry is the most striking common feature of these results.
Secondly, the algebro-geometric overhead required for an accurate explication of
how these problems fit into an overarching network of theorems and conjectures in

1
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diophantine geometry would overwhelm the remainder of this account and mask
the fundamentally classical nature of Pila’s approach to these problems.

With this preamble about what I shall not discuss, let me say what will appear
in this paper. We begin in Section 2 with a sketch of the Pila-Zannier proof in a
simplified case of algebraic relations on roots of unity. This sketch will not reveal
the full strength of the method as the theorem in this special case has been known
for many decades and has innumerable proofs. However, this proof shares the
architecture of the proofs of the other geometrically more complicated theorems.
In Section 3 we discuss the general theory of o-minimality. Section 4, the tech-
nical heart of this survey, concerns the Pila-Wilkie theorem on counting rational
points in definable sets. With Section 5 we return to the diophantine problems,
completing the proof sketch from Section 2 and then discussing some of the other
theorems mentioned in the abstract.

On the same day that I was asked to prepare these notes for the Current Events
Bulletin, I was asked to speak in the Bourbaki seminar about Pila’s proof of the
André-Oort conjecture. Shortly thereafter, I was asked to give a lecture series to
the experts on André-Oort about the same topic. Foolhardily, I concluded that due
to the similarity of these presentations, I would need only prepare one set of notes
and accepted all three invitations. As a matter of fact, while there are some points
of contact, these three sets of notes are radically different. The reader interested in
an exposition of Pila’s proof of the André-Oort conjecture pitched to the general
mathematician should consult my notes for the Bourbaki seminar [35] while the
reader who wishes to read a detailed précis of these proofs should read my notes
for the Luminy lectures [34]. Even better, because the original papers [24] and [28]
are well written and contain extensive introductions, the reader should go straight
to the source.

2. PILA-ZANNIER ARGUMENT FOR MULTIPLICATIVE GROUP

We shall go into more detail about the proofs of the more sophisticated theo-
rems announced in the introduction later in the paper, but let us sketch the method
in a simple example for which, admittedly, many other proofs are known (see, for
example, [32, 13]). The following theorem is a special case of the Manin-Mumford
conjecture and was already proven by Mann [18] before the Manin-Mumford con-
jecture proper was enunciated.

Theorem 2.1. Let n ∈ Z+ be a positive integer and let G = (C×)n be the nth Carte-
sian power of the multiplicative group of the complex numbers. Let G(x1, . . . , xn) ∈
C[x1, . . . , xn] be a polynomial in n variables. Then the set

{(ζ1, . . . , ζn) ∈ G : each ζi is a root of unity and G(ζ1, . . . , ζn) = 0}

is a finite union of cosets of subgroups of G.

The Pila-Zannier argument in this case proceeds by observing that we have an
analytic covering map E : Cn → G given by (z1, . . . , zn) 7→ (e2πiz1 , . . . , e2πizn) and
that relative to this covering, ζ = (ζ1, . . . , ζn) is tuple of roots of unity if and only
if there is some a ∈ Qn for which E(a) = ζ. Thus, we may convert the problem of
studying algebraic equations in roots of unity into the problem of understanding
rational solutions to the transcendental equation G(E(z)) = 0.
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In this form, we have not achieved much yet as sets defined by general complex
analytic equations can be arbitrarily complicated. However, it is not necessary to
consider E on all of Cn. We could restrict E to a fundamental domain

D := {z = (z1, . . . , zn) ∈ Cn : 0 ≤ Re(zi) < 1 for each i}

obtaining a function Ẽ := E � D : D → G, then it is still the case that ζ ∈ G is a
tuple of roots of unity if and only if there is some a ∈ Qn ∩ D with Ẽ(a) = ζ. The
advantage of this move is that Ẽ lives in logically well-behaved structure while E
does not. That is, even though from the point of view of complex analysis, the map
E is just about the best function one could hope to study, from the point of view of
mathematical logic it has a very complicated theory as the kernel of E is the set Zn

and with the ring structure inherited from Cn the theory of this structure suffers
from Gödel incompleteness phenomena. On the other hand, using the real and
imaginary part functions to identify C with R2, the function Ẽ is definable in the
structure Rexp := (R,+,×, exp,≤, 0, 1) of the real field considered together with
the real exponential function.

Why is this important? The theory of Rexp is o-minimal, which, technically,
means that every definable subset of the universe is a finite union of points and
intervals, but which means in practice that the definable sets in any number of
variables admit a geometric structure theory. In particular, the set

X̃ := {z ∈ D : G(Ẽ(z)) = 0}

is such a definable set. We have transformed the problem of describing those n-
tuples of roots of unity ζ for which G(ζ) = 0 to the problem of describing the
intersection Qn ∩ X̃ which at this level of generality may appear to be even more
hopeless than the original problem as we know the problem of describing the ra-
tional solutions to algebraic equations is notoriously intractable (and is conjec-
turally impossible algorithmically [20]). However, if we punt on the problem for
algebraic equations, then for the remaining transcendental equation we can give
numerical bounds.

More precisely, for any set Y ⊆ Rm definable in some o-minimal expansion
of the real field, we define the algebraic part of Y, Yalg, to be the union of all
connected, positive dimensional semi-algebraic sets (that, definable using Boolean
combinations of polynomial inequalities) contained in Y. The counting theorem of
Pila and Wilkie asserts that there are sub-exponentially many rational points in the
transcendental part of Y, Y rYalg. That is, if we define

N(Y, t) := #{( a1

b1
, . . . ,

an

bn
) ∈ Y rYalg : (∀i ≤ n)|ai| ≤ t, 0 < bi < t, ai ∈ Z, bi ∈ Z}

then for each ε > 0 there is a constant C = Cε so that N(Y, t) ≤ Ctε for all t ≥ 1.
To use the Pila-Wilkie bound one must understand the set Yalg and while this is

far from a trivial problem, it has a geometric character and can be solved in cases
of interest. In our proof sketch of Theorem 2.1 it follows from a theorem of Ax on
a differential algebraic version of Schanuel’s conjecture [3] that X̃alg is the union
of finitely sets each defined by affine equations with rational coefficients which
under Ẽ are transformed into translates of algebraic subgroups of G. We complete
the argument by playing the Pila-Wilkie bound against lower bounds from Galois
theory, but we delay the details until Section 5.
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Each of the theorems in diophantine geometry proven using this method fol-
lows the general outline sketched above, though, of course, the individual steps
tend to be more complicated as there is work involved in proving that the requi-
site covering map is definable in some o-minimal structure, the determination of
the algebraic part of the relevant definable sets may be difficult, and one needs
appropriate Galois theoretic or analytic number theoretic results for the lower
bounds. While each step implicates some beautiful mathematics, it is the invo-
cation of the counting principle for definable sets in o-minimal structures which
gives this method its special character. As such, we shall focus this exposé on the
ideas of definability in o-minimal structures and the counting theorem.

3. INTRODUCTION TO O-MINIMALITY

O-minimality is not well-known to the general mathematician for at least a cou-
ple of reasons. First, it owes its existence and most of its development to mathe-
matical logic and for sociological reasons having to do with logic’s place at the
boundary between mathematics and philosophy, the basics of first-order logic are
not as widely known amongst mathematicians as are the basics of algebra, anal-
ysis and geometry. Secondly, the name itself, while technically accurate in that it
expresses that all of the one-dimensional structure is reducible to the order and
ties the subject to other parts of model theory, masks the fundamental nature of
the subject which is a general but tame and geometric theory of real analysis. In
his text [39], van den Dries argues that o-minimality may be a realization of the
theory of topologie moderée proposed by Grothendieck in [11] in which topology
and real analysis follow geometric intuitions. While I do not subscribe to this the-
sis in the strong form that o-minimality is the realization of topologie moderée,
o-minimality certainly fits the bill for a geometric theory of real analysis.

What follows is a condensed introduction to the theory of o-minimality. The
book [39] develops the general theory especially as it relates to o-minimal struc-
tures on the real numbers from a geometric point of view. The reader may wish
to consult the lecture notes from the recent thematic program on o-minimality at
the Fields Institute for a more recent account or Wilkie’s Bourbaki notes [43] for a
fuller survey. The foundational papers by Pillay, Steinhorn and Knight [30, 15, 31]
remain vital.

Definition 3.1. By an o-minimal structure we mean a structure in the sense of first-
order logic (R,<, . . .) where < is a total order on R and the ellipses refer to some
extra relations, functions and constants so that each definable (using parameters)
subset of R is a finite union of points and intervals.

Remark 3.2. While in the applications we have in mind, the underlying ordered
set is the set of real numbers with its usual ordering, the proofs of the counting
principles pass through an analysis of parametrizations of definable sets in more
general o-minimal structures. That is, the compactness theorem of first-order logic
when used in the context of an o-minimal theory allows for a kind of nonstandard
analysis which converts simple existence and finiteness results into uniformity
theorems.

As noted in Remark 3.2 there are good reasons beyond the historical accident
that logicians isolated the notion of o-minimality for treating o-minimal structures
as structures in the sense of first-order logic, but it is possible to make sense of
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o-minimality without explicit reference to logic. Let us give an alternate definition
of an o-minimal structure.

Definition 3.3. By an o-minimal structure we mean a nonempty totally ordered set
(R,<) given together with a Boolean algebrasDn of subsets of Rn for each n ∈ Z+

so that

1. each Dn is closed under the natural action of Sym(n) induced by permu-
tations of coordinates,

2. each singleton set {a} belongs to D1 for a ∈ R,
3. if X ∈ Dn and Y ∈ Dm, then X×Y ∈ Dn+m,
4. if π : Rn+1 → Rn is the projection onto the first n coordinates and X ∈
Dn+1, then the image of X under π belongs to Dn,

5. {〈a, b〉 ∈ R2 : a < b} ∈ D2,
6. {〈a, b〉 ∈ R2 : a = b} ∈ D2, and
7. every set in D1 is a finite union of singletons and intervals. That is, sets of

the form (−∞, a) := {x ∈ R : x < a}, (a, b) := {x ∈ R : a < x < b}, and
(b, ∞) := {x ∈ R : b < x} for some a, b ∈ R.

We refer to the sets in Dn as the definable subsets of Rn.

It is a routine matter to check that these two definitions of o-minimality are es-
sentially the same. The closure conditions 1. - 4. on the class of definable sets in
Definitions 3.3 and the initial requirement that each Dn be a Boolean algebra cor-
respond to the syntactic operations of logical Boolean operations, permutation of
variables, naming of parameters, conjunction of formulae with disjoint variables,
and existential quantification. Condition 5. corresponds to definability of the or-
dering while condition 6. asserts the definability of equality. It is with condition
7. that we insist upon o-minimality. The choice of a first-order signature in Defini-
tion 3.1 corresponds to specifying a set of generators for the class of definable sets
in the sense of Definition 3.3.

While this second presentation permits one to work with o-minimal structures
without ever thinking about first-order logic, I contend that it is a mistake to do
so. In practice, one establishes the definability of specific sets or conditions by ex-
hibiting a definition. For example, one can show that if X ⊆ Rn is a definable set
in some ordered structure (R,<, . . .), then so is the closure X of X. Of course, this
can be done by manipulating definable sets using projections and setwise Boolean
operations, but the first-order formula describing X is transparently the usual def-
inition of the closure:

(a1, . . . , an) ∈ X ⇐⇒ (∀x1) · · · (∀xn)(∀y1) . . . (∀yn)[
∧
i≤n

xi < ai < yi

→ (∃z1) · · · (∃zn)((z1, . . . , zn) ∈ X &
∧
i≤n

xi < zi < yi)]

One of the characteristic features of mathematical arguments using model the-
ory is the way in which properties of definable sets in one structure may be de-
duced from arguments performed in logically equivalent structures through a
kind of transfer principle. While these arguments are possible without the logi-
cal formalism, they are much more natural with it.
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While there are some degenerate o-minimal structures whose underlying or-
ders are discrete, we shall insist that an o-minimal structure be densely ordered
without endpoints and for our applications the underlying ordered set is the set
of real numbers with its usual ordering.

It is not hard to see that (R,<), the set of reals just with its order, is an o-minimal
structure. It takes a little more work to demonstrate the (R,<,+), the set of real
numbers considered as an ordered group, is an o-minimal structure. This latter
structure is the basis of piecewise linear geometry and of tropical geometry. While
the finiteness and uniformity properties of PL-geometry and tropical geometry are
easy enough to demonstrate directly, the o-minimality of this underlying structure
puts these results into context. That (R,+,×,<, 0, 1), the set of real numbers con-
sidered as an ordered field, is o-minimal is a consequence of Tarski’s theorem on
elementary geometry (first proved in 1929, but only published in 1948 [38]) and is
the basis of semi-algebraic geometry.

Wilkie proved that Rexp := (R,<,+,×, exp), the real field considered together
with the real exponential function is o-minimal [42]. Indeed, he proved a stronger
theorem: the real field considered together with all Pfaffian functions is o-minimal
where we say that a function f : R → R is Pfaffian if there is a finite sequence
of functions f1, . . . , fn = f so that for each i ≤ n we have f ′i = Gi(x, f1, . . . , fn)
for some polynomial Gi(y0, y1, . . . , yi) ∈ R[y0, y1, . . . , yn]. The order one linear
differential equation satisfied by exp exhibits the exponential function as a Pfaffian
function. In later work, Speissegger [37] showed that one may take any o-minimal
structure and adjoin all Pfaffian functions relative to that structure and thereby
obtain a new o-minimal structure. In fact, Speissegger’s theorem is more general
in that he allows for the adjunction of so-called Rolle leaves to definable vector
fields, but as this generalization is not germane to our applications, we omit the
details.

In another direction, as a complement to their theorems on p-adic analytic func-
tions, Denef and van den Dries [7] proved the o-minimality of Ran, the real field
considered together with all restricted analytic functions. That is, for each n ∈ Z+

and each power series

f := ∑
α∈Nn

fαxα1
1 · · · x

αn
n ∈ R[[x1, . . . , xn]]

which converges on the unit box we are given a function symbol f̃ to be interpreted
as

f̃ (a1, . . . , an) :=

{
∑ fαaα1

1 · · · a
αn
n if − 1 ≤ a1 ≤ 1 for each i ≤ n

0 otherwise

Combining these two expansions to form Ran,exp := Ran(exp), the real field
considered with all real analytic functions and the real exponential function. The
o-minimality of this structure was first established by van den Dries and Miller [41]
and then the structure of its definable sets was more thoroughly explored by van
den Dries, Macintyre, and Marker [40]. It is this structure which is relevant to the
diophantine applications mentioned in the abstract.

For some perspective, one should note that many expansions of the real field
by global real analytic functions, for example (R,+,×,<, sin), are not o-minimal
as the zero set {x ∈ R : sin(x) = 0} is infinite but discrete. Likewise, for a
sufficiently general smooth function f : R → R the expansion (R,+,×,<, f �
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[0, 1]) is not o-minimal. Since o-minimal structures have a tame geometry and
we know that functions arising from real analysis tend to be wild, these examples
ought not to be so surprising. On the other hand, it follows from work of Rolin,
Speissegger and Wilkie [33] that there is no ultimate o-minimal structure on the
real numbers. Indeed, for any C∞ function f : R → R one can find two other
functions g : R → R and h : R → R so that f = g + h but both structures
(R,+,×,≤, g) and (R,+,×,≤, h) are o-minimal. Consequently, if we understand
o-minimality as the formalization of the concept of topologie moderée, then there
is not a single structure which captures all of tame geometry.

From the fact that a specific structure is o-minimal, one may immediately de-
duce strong finiteness properties of the definable subsets of the line. For example,
if f : R → R is definable in some o-minimal structure on the real numbers, then
the zero set of f consists of finitely many points and finitely many intervals. If f
falls into some natural class for which an identity principle holds, as when f is real
analytic, then we see that if f is not identically zero, it has only finitely many zeros.
This applies, for instance, to the case that f is built via finitely many applications
of sums, differences, products and compositions from the identity function, scalar
multiplication and the real exponential function.

The simplicity of definable sets coming explicitly from o-minimality’s defini-
tion, while often unexpected, is the basis for a far deeper structure theory of de-
finable sets in any number of variables. For example, it follows very easily from
o-minimality that in a sufficiently rich o-minimal structure, if one has a definable
family of definable nonempty sets, then this family admits a definable choice func-
tion. Let us make this statement precise and prove it in detail.

Definition 3.4. We say that the o-minimal structure (R,<, . . .) is sufficiently rich if
it has at least the structure of an ordered abelian group (R,+,−, 0, 1,<, · · · ) with
at least one positive element called 1 named by a constant.

It is an easy exercise to show that if an o-minimal structure is sufficiently rich,
then the underlying group is divisible.

Definition 3.5. Let (R,<, . . .) be an o-minimal structure. By a definable family of
definable subsets of Rn we mean a definable set X ⊆ Rn × Rm for some positive
natural number m where we regard Rm as parametrizing the family where to b ∈
Rm we associate the set Xb := {a ∈ Rn : 〈a, b〉 ∈ X}. Sometimes, we write a
definable family of definable sets as {Xb}b∈B where B ⊆ Rn is a definable set
containing the projection of X to Rm.

Definition 3.6. By a definable choice function for the definable family {Xb}b∈B we
mean a definable function f : B→ Rn for which f (b) ∈ Xb for each b ∈ B.

With these definitions in place, let us prove the existence of definable choice
functions.

Proposition 3.7. Let (R,+,−, 0, 1,<, · · · ) be a sufficiently rich o-minimal structure
and {Xb}b∈B a definable family of non-empty definable subsets of Rn. Then there is a
definable choice function f : B→ Rn for this family.

Proof. We work by induction with the case of n = 0 being trivial. For the inductive
case of n + 1, let b ∈ B and consider the set

A(b) := {y ∈ R : (∃x ∈ Rn)〈x, y〉 ∈ Xb}
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The family {A(b)}b∈B is a definable family of nonempty definable subsets of R.
Let us define a choice function h for this family. For b ∈ B, if A(b) = R, define
h(b) := 0. If A(b) 6= R, then by o-minimality it has a finite non-empty boundary.
Consider the least boundary point y. If y ∈ A(b), define h(b) := y. Otherwise, one
of three situations must obtain: (−∞, y) ⊆ A(b), (y, ∞) = A(b) or (y, z) ⊆ A(y)
for z the second boundary point of A(b). Define h(b) := y − 1 in the first case,
A(b) := y + 1 in the second case, and h(b) := y+z

2 in the last case.
For b ∈ B define

Zb := {x ∈ Rn : 〈x, h(b)〉 ∈ Xb}
Then {Zb}b∈B is a definable family of nonempty subsets of Rn which has a de-
finable choice function g : B → Rn by induction. Our desired choice function
f : B→ Rn+1 is then given by b 7→ 〈g(b), h(b)〉. �

The fundamental theorem of o-minimality is the cell decomposition theorem
which asserts, roughly, that every definable set may be partitioned into finitely
many cells, definable sets which are definably homeomorphic to balls possibly in
a lower dimensional space. Since this theorem is so important for all of the work
in o-minimality and is invoked if only implicitly throughout the proof of the Pila-
Wilkie theorem on counting rational points, we shall go into detail.

Let us begin by giving a precise definition of cell. As we define this notion, we
shall define the dimension of a cell.

Definition 3.8. Let (R,<, · · · ) be an o-minimal structure. We define the class of
cells in Rn by recursion on n and for each cell X we define dim(X). The set R0 is a
singleton which is the only cell in R0. We define dim(R0) := 0. If X ⊆ Rn is a cell
and f : X → R is a definable, continuous function, then the graph of f ,

Γ( f )X := {(x, y) ∈ Rn × R : x ∈ X & f (x) = y}
is a cell with dim(Γ( f )) := dim(X). If g : X → R is another definable, continuous
function for which (∀x ∈ X) f (x) < g(x), then the interval

( f , g)X := {(x, y) ∈ Rn × R : x ∈ X & f (x) < y < g(x)}
is a cell and dim(( f , g)X) := dim(X) + 1. Likewise,

(−∞, f )X := {(x, y) ∈ Rn × R : x ∈ X & y < f (x)}
and

(g, ∞)X := {(x, y) ∈ Rn × R | x ∈ X & g(x) < y}
are cells of dimension dim(X) + 1.

Let us specialize to the case of cells in R = R1 for a moment. A definable
function (indeed, any function) f : R0 → R is given by choosing a single point
a ∈ R. Via the natural identification R0 × R1 = R, we see that Γ( f )R0 = {a}.
Likewise, if g : R0 → R is another definable function for which (∀x ∈ R0) f (x) <
g(x), then taking b to be the sole value of g we have a < b and again with respect
to the natural identification of R0 × R1 with R, the interval ( f , g)R0 is simply the
usual interval (a, b). That is, cells in R are singletons and open intervals, possibly
unbounded. To say that (R,<, . . .) is o-minimal is precisely the same as to say that
every definable set X ⊆ R may be expressed as a finite union of cells. The cell
decomposition theorem asserts that this property of definable sets in one space
generalizes to any dimension.
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Theorem 3.9. Let (R,<, · · · ) be an o-minimal structure. Given any m ∈ Z+ and any
finite sequence X1, . . . , Xn ⊆ Rm of definable subsets of Rm there is a finite sequence of
cells C1, . . . , Ck ⊆ Rm which partitions Rm and whose restriction to each X` also parti-
tions X`. That is, Ci ∩ Cj = ∅ for i 6= j, Rm =

⋃k
j=1 Cj, and for each ` ≤ m we have

X` =
⋃
{j≤k : Cj∩X` 6=∅} Cj.

In the course of the proof of Theorem 3.9 one shows that definable functions
are very regular. The monotonicity theorem says that for any definable function
f : R → R possibly after removing finitely many points one may partition the
domain into finitely many intervals so that on each interval f is continuous and
either constant or strictly monotone. In general, the piecewise continuity theorem
says that if f : Rn → R is a definable function, then one may decompose the
domain into finitely many cells so that the restriction of f to each cell is continuous.
If the structure (R,<, . . .) includes at least the structure of an ordered field, then it
makes sense to speak of the derivative of a function. In this case, for any k ∈ Z+

one may choose a cell decomposition of the domain so that f is Ck on each cell.
Likewise, in the cell decomposition theorem itself, one may take the functions
defining the cells to have any prescribed degree of smoothness. Unfortunately, it is
not the case that one may always take the cells to be defined by analytic functions,
but in many cases of interest, for example in Ran,exp, one may take the defining
functions to be real analytic.

It it hard to overstate the strength of the geometric consequences of the cell
decomposition theorem and its refinements. For example, it implies a kind of
infinitesimal rigidity on the topology of definable sets living in a definable family.

It is a fairly easy consequence of the cell decomposition theorem applied to the
total space of a definable family that given a definable family {Xb}b∈B of definable
sets, the cells required for the cell decompositions of the various fibres also vary in
definable families. It follows from this uniformity theorem that at least when the
underlying ordered set is the set of real numbers with its usual ordering that the
topology of the sets in a definable family is rigid.

Proposition 3.10. If {Xb}b∈B is a definable family of definable sets in some o-minimal
structure on the real numbers (with the usual ordering) then there are only finitely many
homemorphism types represented in the family.

As a corollary of Proposition 3.10 we obtain a theorem of Khovanski [14] on
fewnomials. To be fair, while the theorem on fewnomials which we shall discuss
is logically a consequence of Proposition 3.10 both temporally and intellectually it
is prior. Khovanski’s work on fewnomials inspired much of the development of
theory of o-minimality and many of his specific results underly Wilkie’s proof of
the o-minimality of Rexp. Moreover, the argument we outline below is patterned
on Khovanski’s own proof through the passage from polynomials of indetermi-
nate degree to exponential polynomials.

Theorem 3.11. For fixed integers k and n there are only finitely many homemorphism
types amongst the following sets

{(a1, . . . , an) ∈ (R+)
n :

k

∑
i=1

fia
mi,1
1 · · · ami,n

n = 0}
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as ( f1, . . . , fk) ranges through Rk and m ranges through the k by n matrices with natural
number coordinates.

To prove Theorem 3.11 we observe that it suffices show that there are only
finitely many homemorphism types even if we allow m to range through Mk×n(R)
rather than merely Mk×n(N). The above family of semialgebraic sets may be em-
bedded into the following Rexp-definable family.

{(a, f , m) ∈ (R+)
n × (Rk × (Rn)k) :

k

∑
i=1

fi

n

∏
j=1

exp(mi,j ln(ai)) = 0}

The finiteness of the number of homemorphism types is now a special case of
Proposition 3.10.

4. COUNTING RATIONAL POINTS IN O-MINIMAL DEFINABLE SETS

The key technical result behind the Pila-Wilkie theorem on counting rational
points may be seen as, in some sense, a dual version of the cell decomposition
theorem in that rather than concluding that a general definable set may be pieced
together from definable subsets each defined in a very simple way it is shown
that a general definable set may be covered by finitely many definable sets each
of which is parametrized by a unit ball via functions with small derivatives. Be-
fore we go into detail about this technical result on parametrizations, let us go
into some more detail about the counting theorem itself and then explain how an
appropriate parametrization theorem could yield these bounds.

Definition 4.1. The usual multiplicative height function H : Q→N is defined by
H(0) := 0 and H( a

b ) := max{|a|, |b|} when a, b ∈ Z r {0} and gcd(a, b) = 1. We
extend H to a function, still denoted by H, on Qn by H(x1, . . . , xn) := max{H(xi) :
i ≤ n}. This is not the standard projective height, but it works well for the pur-
poses of our counting problems. Given any subset X ⊆ Rn and a number t ≥ 1
we define

X(Q, t) := {a ∈ Qn : a ∈ X & H(a) ≤ t}
and define N(X, t) := #X(Q, t) to be the number of points in X(Q, t).

If X happens to contain all of Qn, then N(X, t) is asymptotic to a constant times
t2n. This simple observation combined with the even simpler remark that Rn itself
is definable in any o-minimal structure on R shows that one cannot hope to show
that N(X, t) grows more slowly than any power of t for a general set X ⊆ Rn defin-
able in some o-minimal expansion of (R,<). Somewhat less trivial considerations
show that some further restrictions are required. For example, if X ⊆ Rn happens
to contain the graph of a polynomial with integer coefficients f : Rn−1 → R, then
N(X, t) will grow at least on the order of t2(n−1)/d where d is the degree of f . Of
course, there are more general algebraic varieties which have many rational points
and if X should contain one of these, it, too, will have many rational points. Thus,
to have any hope of proving a bound on N(X, t) for general X definable in some
o-minimal structure on R, we must exclude those algebraic sets which have too
many rational points. We achieve this by excluding all semi-algebraic sets.

Definition 4.2. We say that a set X ⊆ Rn is semi-algebraic if it is definable in the
structure (R,+,×,<) of the real numbers considered as an ordered field. More
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concretely, a set is semi-algebraic if it is a finite Boolean combination of sets de-
fined by conditions of the form f (x1, . . . , xn) > 0 where f ∈ R[X1, . . . , Xn] is poly-
nomial with real coefficients in n variables. Given a set X ⊆ Rn we define Xalg,
the algebraic part of X, to be the union of all sets Z where Z ⊆ X is semi-algebraic,
connected, and has dimension at least one. We define Xtrans, the transcendental
part of X, to be X r Xalg.

There is no reason to expect the algebraic part of X to be semi-algebraic itself
even if X is definable in some particularly well behaved o-minimal structure on the
real numbers. For example, consider the following set which definable in Rexp.

X := {(x, y, z) ∈ R3 : x > 0 & z = xy = exp(y ln(x))}
The set X has dimension two, being the graph of a definable continuous func-

tion on R+ ×R, but it does not contain any two dimensional semi-algebraic sets.
On the other hand, its algebraic part consists of the union of the following count-
ably infinite collection of one-dimensional semi-algebraic sets

{(x, y, z) ∈ R3 : x > 0 & y =
n
m

& xn = zm}

as n
m ranges through the rational numbers. Thus, in this case Xalg is a properly

infinite union of semi-algebraic sets.
With these definitions in place we may state the counting theorem from [24].

Theorem 4.3. Let X ⊆ Rn be a subset of some Cartesian power of the real numbers which
is definable in some o-minimal structure on R. Then for each ε > 0 there is some constant
C = Cε so that for t ≥ 1 one has N(Xtrans, t) ≤ Ctε.

Remark 4.4. Strengthenings of Theorem 4.3 are known. The proof of Theorem 4.3
passes through a proof a uniform version in which X is allowed to vary in a defin-
able family and the bound is shown to hold for a bigger set than simply Xtrans. For
purposes of the application of Theorem 4.3 to the André-Oort conjecture and some
related problems it is necessary to count algebraic points of small degree rather
than merely rational points. These bounds may be deduced from the bounds for
rational points [26].

Remark 4.5. Examples have been constructed showing that in general one can-
not hope for better universal bounds. However, one might hope that if X is de-
finable in a particularly nice way, then the bounds may be strengthened. In the
strongest forms, these strengthenings assert that certain transcendental equations
have no non-obvious algebraic solutions. I have in mind conjectures along the
lines of Schanuel’s conjecture on the transcendence of the exponential function
that if α1, . . . , αn are complex numbers which are Q-linearly independent then
the transcendence degree of the field Q(α1, . . . , αn, eα1 , . . . , eαn) is at least n [17],
André’s conjectures on G-functions [1], and the Kontsevich-Zagier conjectures on
periods [16]. While these conjectures are inaccessible to contemporary techniques,
Wilkie’s conjecture about sets definable using the real exponential function may
be within reach.

Conjecture 4.6. Let X ⊆ Rn be a subset of a Cartesian power of R definable in Rexp.
There there are constants C and K depending only on X so that for t ≥ 1 we have
N(Xtrans, t) ≤ C(log t)K.
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The proof Theorem 4.3 and the proofs [27] of partial results towards Conjec-
ture 4.6 rely on a general geometric theorem about parametrizations of definable
sets, referred to as a dual form of cell decomposition in the first paragraph of this
section, and a linear algebraic argument to show that the rational points on the
image of a ball under a sufficiently smooth function must lie in a small number of
algebraic hypersurfaces.

Definition 4.7. Let (R,+, ·,<, . . .) be an o-minimal structure on an ordered field,
X ⊆ Rn be a definable set of dimension k in some Cartesian power of R and r ∈ Z+

be a positive integer. We say that φ = (φ1, . . . , φn) : (0, 1)k → Rn is a partial
r-parametrization of X if

• φ is definable,
• the range of φ is contained in X, and
• for each i ≤ n and multi-index α = (α1, . . . , αk) ∈ Nk with |α| = ∑ αi ≤ r

we have | ∂|α| fi
∂x

α1
1 ···∂xαn

n
(x)| ≤ 1 for all x ∈ (0, 1)n.

By an r-parametrization of X we mean a finite set S of partial r-parametrizations of
X for which X is covered by the ranges of the functions in S.

The main theorem about parametrizations is that r-parametrizations exist for
every r ∈ Z+ and every sufficiently bounded definable set in an o-minimal struc-
ture.

Theorem 4.8. Let (R,+,×,<, . . .) be an o-minimal structure expanding an ordered field,
X ⊆ [−1, 1]n be a definable subset of the unit n-cube in R for some n ∈ Z+, and r ∈ Z+

be a positive integer. Then X admits an r-parametrization.

For the intended applications, we work in an o-minimal structure on R. What,
then, is the point of the greater generality? The proof of Theorem 4.8, even in
the case that the underlying ordered field is the field of real numbers, makes es-
sential use of parametrizations of definable sets in more general o-minimal struc-
tures through a kind of nonstandard analysis. That is, by proving even individual
instances of the parametrization theorem, say, in general o-minimal structures,
one may deduce via the compactness theorem of first-order logic that the theorem
holds uniformly in definable families. From the point of view of the ultimate theo-
rem, these compactness arguments are hidden, but they are crucial for the proofs.

Theorem 4.8 generalizes a theorem of Yomdin on the existence of r-parametriza-
tions for real semi-algebraic sets [45, 44] and its proof follows Gromov’s version
of the proof in the semi-algebraic setting [10]. Of course, for purposes of Theo-
rem 4.3 in which we count only rational points in the transcendental part of X, the
parametrization theorem for semialgebraic sets on its own does not help.

The logical structure of the proof of Theorem 4.8 is similar to that of the cell de-
composition theorem (Theorem 3.9). For both of these theorems, the one-dimen-
sional case itself is an immediate consequence of the definition of o-minimality, but
to carry out the induction using the definable choice functions given by Propo-
sition 3.7 one performs a concurrent induction showing that definable functions
have strong regularity properties. For the cell decomposition theorem, this takes
the form of the monotonicity theorem in dimension one and the piecewise conti-
nuity theorem in higher dimensions. For the parametrization theorem, this takes
the form of a reparameterization theorem in all dimensions and a strengthening of
the reparameterization theorem in dimension one.
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To say what is meant by reparameterization, we need the definition of strongly
bounded.

Definition 4.9. Let (R,+, ·, 0, 1,<, . . .) be an o-minimal expansion of an ordered
field. We say that the set X ⊆ Rn is strongly bounded if there is a natural number
N ∈ N for which X ⊆ [−N, N]n. We say that a function f : Y → Rn is strongly
bounded if its range is strongly bounded.

Definition 4.10. Let (R,+, ·, 0, 1,<, · · · ) be an o-minimal expansion of an ordered
field. Given a positive integer r ∈ Z+ and a definable function f = ( f1, . . . , fn) :
(0, 1)m → Rn we say that an r-parameterization S of the open unit box (0, 1)m is
an r-reparameterization of f if for each α ∈ Nm with |α| ≤ r, φ ∈ S and j ≤ n the

function f j ◦ φ is r-times differentiable and
∂|α|( f j◦φ)

∂x
α1
1 ···∂xαm

m
is strongly bounded.

Remark 4.11. In the case that the underlying field is simply R, then bounded and
strongly bounded have the same meaning. The meanings diverge only for non-
archimedian fields. In the real case, if f : (0, 1)m → Rn is bounded and sufficiently
smooth, then any r-parameterization of (0, 1)m is an r-reparameterization. The
utility of the concept of a reparameterization is only seen through the nonstandard
analytic arguments.

The key auxiliary result in the proof of Theorem 4.8 is the reparameterization
theorem.

Theorem 4.12. Let (R,+, ·, 0, 1,<, · · · ) be an o-minimal expansion of an ordered field,
m ∈ Z+, n ∈ Z+, and r ∈ Z+ be three positive integers. If f : (0, 1)m → Rn is
strongly bounded, then there exists an r-reparameterization of f . Moreover, if m = n = 1,
the reparameterization S may be chosen so that for each φ ∈ S either φ or φ ◦ f is a
polynomial with strongly bounded coefficients.

Theorem 4.12 and thereby the full Theorem 4.8 are established via a constructive
and concrete argument in the base case and then via an inductive argument rely-
ing heavily upon definable choice and the cell decomposition theorems in higher
dimensions.

Let us explain now how Theorem 4.3 follows from Theorem 4.8. We start with
a set X ⊆ Rn definable in some o-minimal expansion of the real numbers and a
number ε > 0. Breaking X into the 2n pieces Xτ := {(a1, . . . , an) ∈ X : |aτi

i | ≤
1 for all i ≤ n} as τ ranges over {±1}n, it suffices to estimate N(Xτ , t) for each
such τ. Since the map x 7→ 1

x does not effect our height function, we may replace
each Xτ with its image under (x1, . . . , xn) 7→ (xτ1

1 , . . . , xτn
n ) and thereby we may

assume that X ⊆ [−1, 1]n. From Theorem 4.8 we know that for each r ∈ Z+ the
set X admits an r-parameterization. We shall choose r depending on ε so that the
existence of such an r-parameterization implies that N(X, t) ≤ Ctε.

At this point, the argument follows the lines of other constructive arguments
bounding numbers of rational solutions and is similar in spirit to Bombieri’s proof
of the Mordell conjecture [5]. The key result is the following proposition whose
proof is ultimately embedded in the paper [4].

Proposition 4.13. For m, n, d ∈ N with m < n there are numbers r ∈ Z+ and ε =
ε(m, n, d) and C = C(m, n, d) in R+ so that for any Cr function φ : (0, 1)m → Rn with
range X and t ≥ 1 the set X(Q, t) is contained in at most Ctε hypersurfaces of degree d
and ε(m, n, d)→ ∞ as d→ ∞.
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The proof of Proposition 4.13 requires some nontrivial but elementary combi-
natorial estimates and some careful but again elementary analytic considerations,
but ultimately it is based on a simple, but ubiquitous in the theory of diophantine
approximations, observation: if an integer has absolute value less than one, it is
zero.

With Proposition 4.13 in place, Theorem 4.3 follows by induction: those excep-
tional hypersurfaces which have full dimension intersection with X are part of
Xalg and those which intersect X in a lower dimensional set contribute little to
N(Xtrans, t) by induction.

5. DIOPHANTINE APPLICATIONS

In general, it is not true that if X ⊆ Rn is definable in some o-minimal structure
on the real numbers that (Xtrans)(Q) is finite. For example, if X is the graph of the
function x 7→ 2x, then its algebraic part is empty, but for each integer a we have
〈a, 2a〉 ∈ X(Q). However, in some cases of independent number theoretic interest
the upper bounds of Theorem 4.3 may be played against lower bounds coming
from Galois theory. In the introduction to this paper, we sketched a version of this
argument due to Pila and Zannier to show that algebraic relations amongst roots
of unity may always be explained by multiplicative dependencies. In this section
we shall explain some of the more sophisticated results proven using variations of
this method

Let us return to the argument sketched in the introduction giving a few more
details to complete the proof. Recall that we wish to prove that for G(x1, . . . , xn) ∈
C[x1, . . . , xn] a polynomial over the complex numbers in n variables the set

X := {(ζ1, . . . , ζn) ∈ (C×)n : G(ζ1, . . . , ζn) = 0 & each ζi is a root of unity }

is a finite union of cosets of groups. We observed that if we define

D := {z ∈ C : 0 ≤ Re(z) < 1}

and Ẽ : Dn → (C×)n by

(z1, . . . , zn) 7→ (e2πiz1 , . . . , e2πizn)

then via the usual interpretation of C as R2 using the real and imaginary part
functions, the function Ẽ is definable in Rexp and the set X is the image under Ẽ
of the set X̃(Q) where X̃ := {(z1, . . . , zn) ∈ Dn : G(e2πiz1 , . . . , e2πizn) = 0} is an
Rexp-definable set.

Before we can apply Theorem 4.3 to give even numerical bounds on the distri-
butions of the points in X̃(Q), we need to compute X̃alg. The key to this computa-
tion is Ax’s function field version of the Schanuel Conjecture [3].

Theorem 5.1. If γ1(t), . . . , γn(t) ∈ tC[[t]] are power series over the complex numbers
with no constant term which are linearly independent over Q, then the transcendence de-
gree over C(t) of the field C(t, γ1(t), . . . , γn(t), exp(γ1(t)), . . . , exp(γn(t))) is at least
n.

It follows from Theorem 5.1 that if γ : (0, 1) → X̃ were a semi-algebraic curve,
then the components of γ would satisfy a nontrivial linear dependence over Q.
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This alone is not enough for the determination of X̃alg. Rather, we now use an-
other property of definable sets in o-minimal structures on the real numbers: ev-
ery countable definable set is finite. For each positive k ≤ n we consider the set
Mk of maximal k-dimensional affine spaces: affine spaces V (translates of vector
subspaces) of dimension k for which dim(V ∩ X̃) = k but for which there is some
point a ∈ (V ∩ X̃) for which is no k + 1-dimensional affine space W which meets
X̃ near a in dimension k + 1 set. It is not hard to see that relative to the usual rep-
resentations of affine spaces via affine equations, each of the sets Mk is definable.
It takes a little more work using properties of the covering map Ẽ to see that every
element of Mk is defined over Q. Hence, each Mk is countable and therefore finite.
Combining this argument with Theorem 5.1, we see that X̃alg =

⋃n
k=1

⋃
H∈Mk

H.
For the algebraic part, it is now clear that X̃alg(Q) is a finite union of cosets of
groups (intersected with [0, 1)n).

To complete the proof, we must show that (X̃trans)(Q) is finite using the bounds
from Theorem 4.3. For this we need a reduction: we may assume that G is an
irreducible polynomial defined over some a number field K. If you are comfortable
with basic algebraic geometry, this reduction is standard and quite easy and will
be given in the parenthetical sentences to follow. Otherwise, take this point as
given or just follow the argument in the case when G is in fact a polynomial over
a number field.

(For the reduction, observe that Theorem 2.1 is equivalent to the apparent gen-
eralization where the hypersurface defined by G is replaced by a general subvari-
ety. For a variety Y ⊆ An

C, if

Z := Y(C) ∩ {(ζ1, . . . , ζn) ∈ (C×)n : each ζi is a root of unity }

then Y(C) and Z(C) meet the n-tuples of roots of unity in the same set. So, we
may assume Y = Z. It then follows from Lagrange interpolation that Y is defined
over the algebraic numbers as it contains a Zariski dense set of algebraic points.
Since only finitely many equations are required to define Y, it is, in fact, defined
over a number field.)

Let us now estimate N(X̃, t). Suppose that z ∈ X̃(Q, t). We can write z =
( a1

b1
, . . . , an

bn
) where each ai and bi is an integer, 0 ≤ ai < bi ≤ t and (ai, bi) = 1

(and bi = 1 if ai = 0). Exponentiating, we have G(e2πi a1
b1 , . . . , e2πi an

bn ) = 0. Let

L := K((e2πi a1
b1 , . . . , e2πi an

bn ) be the field obtained by adjoining the coordinates of
Ẽ(z) to K. Since G has coefficients in K, for any automorphism σ : L → L over

K, we have G(σ(Ẽ(z))) = 0. Since e
2πi

aj
bj is a primitive bth

j root of unity, we know

that σ(e
2πi

aj
bj ) = e

2πi a′
bj for some integer a′ with 0 ≤ a′ < bi. Moreover, it follows

from basic Galois theory that the orbit of e
2πi

aj
bj under the Galois group of L over

K has cardinality at least ϕ(bj)/[K : Q] where ϕ is Euler’s totient function given
by ϕ(n) := #(Z/nZ)×. A simple computation shows that for any constant C > 0
and number ε < 1 we have ϕ(n) > Cnε for n � 0. Putting all these observations
together, we see that if t ∈ Z+ and N(X̃trans, t) > N(X̃trans, t− 1), then N(X̃, t) ≥

1
[K:Q]

ϕ(t). For t� 0 this would violate Theorem 4.3 with ε < 1. Hence, there must
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be some t for which every element of (X̃trans)(Q) has height at most t. That is, this
set is finite.

For the other applications we have mentioned, the statements are intrinsically
more complicated as they refer to more sophisticated geometries and the proofs
are correspondingly more involved. However, the fundamental strategies are the
same.

Let us consider the theorem of Masser and Zannier [19] about torsion on ellip-
tic curves. They consider the family of elliptic curves presented in their affine Le-
gendre form where Eλ is defined by the affine planar equation y2 = x(x− 1)(x−
λ) for λ ∈ C r {0, 1}. From theory of elliptic curves, Eλ considered together with
the point at infinity has a unique structure of an algebraic group with that point at
infinity as the identity. For a fixed complex number a we might consider the set of
λ for which the point (a,

√
a(a− 1)(a− λ)) is torsion in the group Eλ(C). It is not

hard to see that for a = 0 or a = 1, then these points are always torsion. On the
other hand, for every other a there are only countably many λ for which this point
is torsion in Eλ(C). Nevertheless, computing the rational functions which define
the multiplication by n map on Eλ it is fairly easy to show that for any such a there
will be infinitely many λ for which (a,

√
a(a− 1)(a− λ)) is torsion. Masser and

Zannier address the question: if we consider two number a and b, for how many λ

are (a,
√

a(a− 1)(a− λ)) and (b,
√

b(b− 1)(b− λ)) both torsion in Eλ(C)? In the
special case of a = 2 and b = 3 they given an answer.

Theorem 5.2. There are only finitely many complex numbers λ for which

Pλ := (2,
√

2(2− λ))

and

Qλ := (3,
√

6(3− λ))

are torsion in Eλ(C).

Remark 5.3. The proof of Theorem 5.2 applies perfectly well to any two numbers a
and b for which the points

Pa
λ := (a,

√
a(a− 1)(a− λ))

and

Qb
λ := (b,

√
b(b− 1)(b− λ))

are linearly independent over Z in the group Eλ(Q(λ)).

The proof of Theorem 5.2 follows the pattern of the proof of Theorem 2.1 we
have outlined above. For each elliptic curve Eλ, the the theory of analytic uni-
formizations gives a complex analytic covering map πλ : C → Eλ(C). As with
the usual exponential function, this covering is not definable in any o-minimal ex-
pansion of the real numbers. However, if we restrict πλ to a fundamental domain,
it is. Moreover, at the cost of treating πλ as simply a real analytic function, we
may normalize the fundamental domain so that the domain of πλ is the square
[0, 1)× [0, 1) and the map πλ is a group homomorphism when [0, 1) is given the
usual wrap around additive structure. With some work, one can show that the
two variable (or, really, four real variable) function (λ, z) 7→ πλ(z) is definable in
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Ran,exp relative to the usual interpretation of C in R and when z is restricted to
[0, 1)× [0, 1). Masser and Zannier then study the set

X̃ := {(x1, y1, x2, y2) ∈ [0, 1)4 : (∃λ)πλ(x1, y1) = (2,
√

2(2− λ))

& πλ(x2, y2) = (3,
√

6(3− λ))}

Visibly, X̃ is definable in Ran,exp and it is not hard to see that the rational points
on X̃ all come from λ for which Pλ and Qλ are simultaneously torsion. Transcen-
dence results about the Weierstraß ℘-function are used in place of Ax’s theorem to
show that X̃alg is empty and a theorem of David [6] about the degree of the field
extension required to define elliptic curves with elements of specified order plays
the rôle of the calculation of the degree of a cylcotomic extensions.

It bears noting that the published sketch of Theorem 5.2 avoids an explicit ref-
erence to definability in o-minimal structures as Pila had proved a provisional
version of Theorem 4.3 for subanalytic surfaces without invoking the theory of o-
minimality [25]. On the other hand, due to the work of Peterzil and Starchenko [23]
on the uniform definability of theta functions in Ran,exp, it follows that the ques-
tion of simultaneous torsion in families of higher dimensional abelian varieties
may be analyzed via these methods.

Finally, let us close with Pila’s proof of the André-Oort conjecture for modular
curves. We shall introduce the André-Oort conjecture via the classical theory of
complex elliptic curves. Unlike most other approaches to this problem where one
might (or might not) define the terms using complex analysis but then address the
questions with a more number theoretic theory, Pila’s proof appeals directly to the
complex analytic presentation of the problem.

As we observed above, for every elliptic curve E over the complex numbers, one
can find a complex analytic surjective group homomorphism π : C → E(C). The
kernel of C is a lattice which after making a linear change of variables we may ex-
press as ker π = Z⊕Zτ for some complex number τ ∈ h := {z ∈ C : Im(z) > 0}.
Conversely, for any τ ∈ h, the complex analytic group Eτ(C) := C/(Z + Zτ) is
complex analytically isomorphic to a complex algebraic curve with an algebraic
group structure, which we shall continue to denote by Eτ . From the general the-
ory of covering spaces, it is not hard to see that the endomorphisms of the elliptic
curve Eτ correspond to complex numbers µ for which µ(Z + Zτ) ≤ Z + Zτ. A
short computation shows that for most choices of τ, the number µ gives an en-
domorphism only when µ is an integer. On the other hand, if τ satisfies a qua-
dratic equation over Q, then there will be some endomorphisms not coming from
Z. This is the reason why elliptic curves whose endomorphism rings are strictly
larger than Z are said to have complex multiplication or to be CM.

There is an analytic function j : h → C having the property that Eτ(C) and
Eσ(C) are isomorphic as elliptic curves if and only if j(τ) = j(σ). We refer to
the value j(τ) as the j-invariant of the elliptic curve Eτ . Let us say that a complex
number ζ is a special point if it is the j-invariant of an elliptic curve with complex
multiplication. By the above discussion, we see that a number is special if and only
if it is the value of the analytic j-function on a quadratic imaginary number. The
André-Oort conjecture in this case predicts the form of the algebraic subvarieties
X ⊆ An

C of affine n-space which contain a Zariski dense set of n-tuples of special
points. Specializing to the case of n = 2, it proposes a solution to the question
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of for which polynomials g(x, y) ∈ C[x, y] are there infinitely many pairs (ξ, ζ) of
special points for which g(ξ, ζ) = 0? This case was solved early in the investiga-
tions around the André-Oort conjecture, first assuming the Riemann Hypothesis
by Edixhoven [8] and then unconditionally by André [2].

Clearly, if ξ is a special point, then the set algebraic varieties {ξ} ×A1
C and

A1 × {ξ} contain Zariski dense sets of special points as does the whole plane A2
C.

It follows from the general theory of coverings, that for each n ∈ Z+ there is
a polynomial Pn(x, y) ∈ C[x, y] for which the function τ 7→ Pn(j(nτ), j(τ)) is
identically zero. From this presentation, it is clear that the curve defined by the
vanishing of Pn contains a Zariski dense set of special points for if τ is quadratic
imaginary, then so is nτ and vice versa. The André-Oort conjecture (for the j-line)
says that these are the only algebraic varieties other than points which can contain
a Zariski dense set of special points.

Theorem 5.4 (Pila). Let X ⊆ An
C be an irreducible algebraic subvariety of affine n-space

over the complex numbers. Suppose that the set

{(ξ1, . . . , ξn) ∈ X(C) : each ξi is the j-invariant of a CM-elliptic curve}
is Zariski dense in X, then X is defined by equations of the form Pm(xi, xj) = 0 and
xk = ξ for ξ a special point.

The proof of Theorem 5.4 follows our by now familiar pattern. First, Pila ob-
serves that j restricted to a fundamental domain is definable in Ran,exp by work of
Peterzil and Starchenko [21]. He then moves from a study of X to that of X̃, the
inverse image of X(C) via j (or really, the map (z1, . . . , zn) 7→ (j(z1), . . . , j(zn)))
restricted to its fundamental domain, which is a definable set in Ran,exp. He then
must determine X̃alg and does so using considerations of the action of the modular
group showing that the algebraic part comes from the pre-images of finitely many
varieties of the desired form. At this point, the goal is to show that if X does not
already have the desired form, then there are only finitely many quadratic imag-
inary points in X̃trans. The counting theorem, Theorem 4.3, applied to rational
points, but Pila deduces the same kinds of bounds for algebraic points of bounded
degree [26]. Thus, for any ε > 0 there is some constant C for which the number of
quadratic imaginary points of height at most t in X̃trans is at most Ctε. As in the
proof of Theorem 2.1, he reduces to the case that X is defined over a number field
and observes that if there are special points coming from X̃trans, then all of their
Galois conjugates are also in this set. At this point, he estimates the size of these
orbits from below using Siegel’s theorem on the growth of the class number [36]
to find that for ε < 2 one has a lower bound of Ctε thus contradicting the upper
bound from the counting theorem.

Remark 5.5. Theorem 5.4 had been proven previously by Edixhoven and Yafaev [9]
under the assumption of the Generalized Riemann Hypothesis for quadratic imag-
inary fields. Their proof shares the same kind strategy at the end: find upper
bounds geometrically and lower bounds via Galois theory and analytic number
theory.

Remark 5.6. The paper in which the proof of Theorem 5.4 appears [28] includes
proofs of theorems in the direction of the Pink-Zilber conjectures. On the other
hand, while many parts of this argument succeed when applied to other Shimura
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varieties, some steps are incomplete. For example, it is known that the analytic
covering maps for the moduli spaces of principally polarized abelian varieties are
definable in Ran,exp (again, after suitable restriction) [23] and it seems plausible
that the arguments employed to determine the algebraic parts of inverse images
of algebraic varieties by Cartesian powers of j should work for these maps, too, but
to date no one has carried out the details. More importantly, the lower bounds on
the size of the Galois orbits of the special points are not yet known unconditionally.
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1. Introduction

Galatius’ most striking result is easy enough to state. Let Σn be the symmetric
group on n letters and Fn be the free (non-abelian) group with n generators. The
symmetric group Σn acts naturally by permutation on the n generators of Fn, and
every permutation gives thus rise to an automorphism of the free group. Galatius
proves that the map Σn →֒ AutFn in homology induces an isomorphism in degrees
less than (n− 1)/2. The homology of the symmetric groups in these ranges is well
understood. In particular, in common with all finite groups, it has no non-trivial
rational homology. By Galatius’ theorem, in low degrees this then is also true for
AutFn:

H∗(AutFn)⊗Q = 0 for 0 < ∗ < 2n/3,

as had been conjectured by Hatcher and Vogtmann.

In this lecture I will put this result in context and explain the connection with
previous work on the mapping class group of surfaces and the homotopy theoretic
approach to a conjecture by Mumford on its rational, stable cohomology. Galatius’
proof in [G] is inspired by this and at the same time improves the methods signif-
icantly. This in turn has led to further deep insights into the topology of moduli
spaces of manifolds also in higher dimensions.

2. Groups and their (co)homology

I will first step back and say a bit more about the groups mentioned above and
discuss their (co)homology in essentially algebraic terms. There are many parallels
between mapping class groups and automorphisms of free groups. Indeed, much of
the work on AutFn has been inspired by the work on the mapping class group as
these groups show very similar behavior.

2.1. Groups of primary interest. I will first introduce the discrete groups that
we will mainly be interested in.

1
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2.1.1. The symmetric group Σn on n letters, is finite of size n! and hardly needs
further introduction. It has a presentation with generators the transpositions
σ1, . . . , σn−1 that swop two adjacent letters, and relations σ2

i = 1 and the braid
relations σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i− j| > 1.

2.1.2. The automorphism group AutFn is the group of invertible homomorphisms
of the (non-abelian) free group Fn on n generators to itself. Closely related is
the outer automorphism group OutFn which is a quotient of AutFn by the normal
subgroup InnFn of inner automorphisms given by conjugation by a fixed element
of Fn. Both groups are infinite (for n > 1) and contain the symmetric group Σn as
a subgroup.

The canonical map from the free group Fn to the free abelian group Zn induces
a surjective homomorphism

L : AutFn −→ GL(n,Z),

to the general linear group. The inverse of the special linear group defines a sub-
group SAutFn of index 2. A set of generators for this subgroup are the Nielsen
transformations λij and ρij which multiply the ith generator of Fn by the jth on
the left and right respectively, and leave all other generators fixed. A nice presen-
tation of this subgroup is given by [Ge84]. To get a full set of generators, one needs
to add an automorphism of determinant −1 such as the map that sends the first
generator to its inverse and leaves all other generators fixed.

Figure 1: Collapsing a maximal tree defines a homotopy equivalence.

Fn is the fundamental group of a bouquet of n circles, or any graph Gn with Euler
characteristic 1 − n more generally. Let HtEq(Gn) denote the space of homotopy
equivalences of Gn and HtEq(Gn; ∗) the subspace of homotopy equivalences that
fix a basepoint. Their groups of components are OutFn and AutFn respectively.
Furthermore, each connected component is contractible. We thus have homotopy
equivalences

HtEq(Gn; ∗) ≃ AutFn and HtEq(Gn) ≃ OutFn.

2.1.3. The mapping class group Γg,1 of an oriented surface Sg,1 of genus g with one
boundary component is the group π0(Diff+(Sg,1; ∂)) of connected components of
the group of orientation preserving diffeomorphisms of Sg,1 that fix the boundary
point wise. Closely related is the mapping class group Γg of an oriented, closed
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surface Sg of genus g. They are generated by Dehn twists around simple closed
curves defined by the following procedure: cut the surface along the given curve,
twist one side by a full turn, and glue it back. A useful presentation was found
by Wajnryb [W83]. It is not difficult to see that when two curves intersect once
the associated Dehn twists satisfy the braid relation relation aba = bab; when two
curves don’t intersect their associated Dehn twist commute.

Figure 2: Dehn twist around the 2g + 1 indicated curves generate Γg,1.

Diffeomorphisms act on the first homology H1(Sg) = Z2g of the underlying
surface, and when they are orientation preserving they preserve the intersection
form. This defines a surjective representation

Γg −→ SP(2g,Z).

When the Euler characteristic of the underlying surfaces is negative, Earle and
Eells [EE69] showed that the connected components of the diffeomorphism groups
are contractible. We thus also have in this case homotopy equivalences

Diff+(Sg,1) ≃ Γg,1 and Diff+(Sg) ≃ Γg.

2.1.4. Natural homomorphisms between these groups. For the first three groups we
have Σn → AutFn → OutFn where the first map is induced by the permutation
action on a set of generators for Fn and the second map is the quotient map. By
gluing a disc to the boundary of the surface Sg,1 and extending diffeomorphisms by
the identity, we get a natural map Γg,1 → Γg. Finally, every diffeomorphism of Sg,1

induces an automorphism of the fundamental group π1Sg,1 = F2g. This defines a
map

ρ+ : Γg,1 −→ AutF2g.

2.2. Group (co)homology. One way to study a discrete group G is through
its homology Hn(G) and cohomology Hn(G) groups. These groups can be defined
purely algebraically or as the homology and cohomology of a space BG. The space
BG is determined (up to homotopy) by the fact that its fundamental group is G
and its universal cover is contractible. In practice one constructs such spaces by
finding a contractible space EG with a free G action. BG is then the orbit space
EG/G. For an easy example, consider the integers acting by translations on the
real line. A model for the space BZ is then given by the circle S1 = R/Z.
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The first homology group H1(G) is always the abelianisation G/[G,G] of G.
Hopf also found a purely algebraic formula for the second homology group H2(G).
Both these groups can generally be computed when one has a presentation of G
(indeed, often a subset of the relations suffices). Presentations for all the groups
mentioned above are known by now.1 For n > 4 and g > 4, the first two homology
groups are as follows:

H1(Σn) = H2(Σn) = Z/2Z

H1(AutFn) = H2(AutFn) = Z/2Z

H1(Γg,1) = 0; H2(Γg,1) = Z.

By work of Culler-Vogtmann [CV86] and Harer [H86] we know that both OutFn

and Γg have finite virtual cohomological dimensions:

vcd(OutFn) = 2n− 3 and vcd(Γg) = 4g − 5.

In particular this implies that the (co)homology in degrees above these dimensions
is all torsion for both groups. Note that the virtual cohomological dimensions
depend on n and g. In contrast, in what follows we will only be interested in the
(co)homology that is independent of n and g.

2.3. Stable (co)homology and limit groups. The groups that we introduced
in Section 2.1 come in families {Gn}n≥0 indexed by the natural numbers. For the
symmetric groups Σn, the automorphisms of free groups AutFn and the mapping
class groups Γg,1 there are canonical inclusions Gn →֒ Gn+1. Indeed, Σn →֒ Σn+1

identifies the smaller group with those permutations that leave the (n+ 1)st letter
fixed; AutFn →֒ AutFn+1 with those automorphisms of Fn+1 that leave the (n+1)st
generator fixed and send the first n generators to words not involving the (n+1)st;
and Γg,1 →֒ Γg+1,1 with those mapping classes that come from diffeomorphisms that
restrict to the identity on Sg+1,1 \Sg,1, a torus with two boundary components. In
each case we define the limit groups as G∞ := limn→∞ Gn.

It is natural to ask how the homology of Gn is related to that of Gn+1 or G∞.
In each of the three cases, the groups satisfy homology stability which means that
for a fixed degree the homology does not change once n is large enough. This
is the stable homology, or equivalently the homology of the group G∞. For the
symmetric groups this was first studied by Nakaoka [Na60], for the mapping class
groups by Harer [H85] with improved ranges given by [I89] [B] [RW], and for the
automorphism group of free groups by Hatcher and Vogtmann [HV98.C] (see also
[HV04] [HVW], and [HW]). Homology stability theorems are generally quite tricky
and difficult theorems to prove with the main techniques go back to Quillen, who
studied the question for general linear groups. The following holds:

H∗(Σn) → H∗(Σn+1) is an isomorphism in degrees ∗ < (n+ 1)/2.

1Nielsen and McCool had given a presentations of AutFn. Simplifications allowed Gersten

[G84] to compute the second homology group. For the mapping class group the first presentation

was given by Thurston and Hatcher. Building on this Harer determined the second homology

group. Further simplifications led to Wajnryb’s convenient presentation [W83][BW94].
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H∗(AutFn) → H∗(AutFn+1) is an isomorphism in degrees ∗ < (n− 1)/2.
H∗(AutFn) → H∗(OutFn) is an isomorphism in degrees ∗ < (n− 3)/2.

H∗(Γg,1) → H∗(Γg+1,1) is an isomorphism in degrees ∗ < 2g/3.
H∗(Γg,1) → H∗(Γg) is an isomorphism in degrees ∗ < (2g + 1)/3.

These results are crucial for us because it is the homology of the limit group G∞

that can be computed in each of the cases. Through homology stability also some
information on the homology of each Gn can be obtained. For rational homology
these stability ranges can often be improved. Indeed, for AutFn this is 2n/3 as
quoted in the introduction, see [HV98.C].

2.4. Products and group completion. At first it is counter-intuitive that the
homology of the larger group G∞ should be more easily determined than that of
Gn. But note that we have natural product maps

Σn × Σm −→ Σn+m,

AutFn ×AutFm −→ AutFn+m,

Γg,1 × Γh,1 −→ Γg+h,1.

The first two are given by having the first factor act on the first n points or gen-
erators and the second factor on the last m. In case of the mapping class group the
product map is induced by gluing Sg,1 and Sh,1 to the legs of a pair of pants surface
and extending the diffeomorphisms via the identity. Furthermore, the products are
commutative up to conjugation by an element in the target group Gn+m.2 It is a
standard fact that conjugation induces the identity on group homology. So we see
that the products on homology are graded commutative.

1 2 g

1 2 h

...

...

Figure 3: Pair of pants product for surfaces.

On the space level the above maps of groups induce a product on the disjoint
union M =

⊔
n BGn making it into a topological monoid. We will need to consider

2For the first two groups this is an element of the symmetric group Σn+m and its square is

the identity; but for the mapping class group this corresponds to a twist of the glued on pair of

pants surface, a braiding which is of infinite order.
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its group completion. Group completion is a powerful tool but also one of the more
mysterious constructions.

Just as discrete monoids have a group completion, so do topological monoids. It
is a homotopy theoretic construction which associates to a topological monoid M
the loop space ΩBM . (Here ΩX denotes the space of maps from a circle to X that
send a base point in S1 to a base point in X.) When M = G is a discrete group,
BG is the space mentioned above and the group completion is homotopic to G as
it ought to be: ΩBG ≃ G. In general, however, the homotopy of the monoid can
be very different from that of its group completion. In our examples, the connected
components of M have non-trivial and non-commutative fundamental groups but
no higher homotopy while the group completion ΩBM has a small abelian fun-
damental group but highly non-trivial higher homotopy groups. Nevertheless, the
homology groups are related very nicely. The group completion theorem (first in-
stances of which are proved in [BP72] and [Q]) says that in general the homology
of a connected component Ω0BM is the limit of the homology groups of the com-
ponents of M .

To come back to our examples, M =
⊔

n BGn has product that is commutative
on homology. The group completion theorem can therefore be applied, and gives

H∗(G∞) = H∗(Ω0B(
⊔

n

BGn)).

In particular, the limit group G∞ has the homology of a loop space. Indeed, a
much stronger statement is true for our examples. We will see that G∞ has actually
the homology of an infinite loop space. While for the first two groups this has long
been known, for the mapping class group it came as a surprise3 [T97]. Below we
will see how to identify these infinite loop spaces. Indeed for the symmetric group, a
classical theorem in homotopy theory, the Barratt-Priddy-Quillen Theorem, asserts
that the following two spaces are homotopic

ΩB(
⊔

n

BΣn) ≃ Ω∞S∞,

where Ω∞S∞ = limN→∞ ΩNSN is the limit space of maps from SN to itself that
fix a chosen basepoint. Its homotopy groups are the notoriously hard to compute
stable homotopy groups of spheres. However, for every prime p, the homology with
Z/pZ coefficients has been computed for Ω∞S∞, and hence for Σ∞, see [AK56]
and [DL62].

3. Moduli spaces and their (co)homology

We now switch from the algebraic to a more geometric point of view. The
groups generally have now a natural topology and we need to distinguish between
the homology of the group G as a topological space and that of BG. So the group
(co)homology of G will always be thought of and written as the (co)homology of

3This is because the twisting for the mapping class group, as explained in the previous footnote,

does not square to the identity; it is only a braiding.
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the space BG which, as for discrete groups, is the quotient EG/G of a contractible
space EG with a continuous, free G action.

3.1. Moduli spaces and characteristic classes. Our interest in groups and
their (co)homology comes most often from an interpretation of the group G as the
automorphism group Aut(W ) of some geometric object W . We like the model for
BAut(W ) to be a (topological) moduli space in the sense that

(i) the points in BAut(W ) are representing objects isomorphic to W , and

(ii) any family of objects isomorphic to W and indexed by a space X corresponds
to a continuous map f : X → BAut(W ).

Such a family Ef is called a W -bundle over X. The simplest example of such a
bundle is the Cartesian product W ×X which corresponds to the trivial map that
sends every point in X to the point in BAut(W ) that represents W . If f is the
trivial map, then so is the map f∗ in cohomology. More generally, however, the
elements in f∗(H∗(BAut(W ))), which we call the characteristic classes of Ef , will
give information about how twisted the family Ef . It may be helpful to recall the
well-known theory of characteristic classes for vector bundles.

Example: To be concrete, take W = Cn. Then Aut(W ) = GL(n,C) is the group of
invertible, linear maps. A good model for BGL(n,C) is the complex Grassmannian
manifold GrC(n,∞) of n dimensional C- linear subspaces of C∞ :=

⋃
n C

n. This is
a moduli space in the above sense. Its cohomology is well-known to be

H∗(BGL(n,C)) = Z[c1, c2, . . . , cn]

where the ci are the universal Chern classes of degree 2i. For real vector spaces we
have (the historically earlier) Pontryagin classes and Stiefel-Whitney classes.

These characteristic classes for vector bundles, which were discovered in the first
half of the last century, have played a central role in the development of topology
and geometry ever since. It is natural to ask,

What are the characteristic classes of bundles for more general W?

We might like to take W to be a compact manifold and its group of diffeomor-
phisms, or a finite simplicial complex and its group (up to homotopy) of homotopy
equivalences. When W is a circle, every orientation preserving diffeomorphism is
homotopic to a rotation which in turn is homotopic to GL(1,C). Thus the ring of
characteristic classes for S1-bundles is Z[c1]. With the proof of Mumford’s conjec-
ture and Galatius’ theorem, we now also understand the characteristic classes, at
least in the stable range, for W an oriented surface and W a simplicial complex of
dimension one, as we will now explain.

3.2. Characteristic classes for manifold bundles. We take W to be an ori-
ented, compact, smooth surface and its automorphism group to be the topological
group Diff+(W ; ∂) of orientation preserving diffeomorphisms (which fix the bound-
ary pointwise, if not empty). To construct a topological moduli space consider the
space Emb(W,R∞) of smooth embeddings of W in infinite dimensional Euclidean
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space. One may think of this as the space of embedded and parameterized sur-
faces of type W in R∞. It is a consequence of Whitney’s embedding theorem that
this space is contractible. The diffeomorphism group Diff+(W ; ∂) acts freely on it
by precomposing an embedding by a diffeomorphism. The quotient space is the
(topological) moduli space for W

Mtop(W ) := Emb(W,R∞)/Diff+(W ; ∂) = BDiff+(W ; ∂).

A point in it is a surface in R∞. As we already mentioned, if W = Sg,1 or Sg and
g > 1 then the diffeomorphism group is homotopic to the mapping class group and
hence we have homotopy equivalences

Mtop(Sg,1) ≃ BΓg,1 and Mtop(Sg) ≃ BΓg.

3.2.1. Relation to moduli spaces of Riemann surfaces. The homology of the spaces
above are also of particular interest to algebraic geometers. The moduli space
of Riemann surfaces Mg of genus g is the quotient of Teichmüller space, which is
well-known to be homeomorphic to R6g−6, by the action of the mapping class group
Γg. Mumford showed that it is a projective variety and moduli space for complex
curves. The points of Teichmüller space are Riemann surfaces (with a homotopy
class of a homeomorphism to a fixed surface Sg). As a Riemann surface can have
at most finitely many automorphisms, the action of the mapping class group has
at most finite stabilizers. It follows that rationally the (co)homology of Mg is the
same as BΓg, and hence

H∗(Mg)⊗Q ≃ H∗(M
top
g )⊗Q.

In the early 1980’s Mumford [Mu83] constructed characteristic classes κi for the
Mg and initiated the systematic study of its cohomology ring. These classes were
later also studied by Miller (and independently Morita) in the topological setting
who showed that

H∗(BΓ∞)⊗Q ⊃ Q[κ1, κ2, . . . ].

The proof in [Mi86] uses Harer’s homology stability as well as the commutativity of
the product structure on the homology as describe above in Section 2.4. In the light
of this, Mumford conjectured that the inclusion above is indeed an isomorphism.
This is now a theorem by Madsen and Weiss [MW07]. Indeed, they prove a much
stronger statement which was first conjectured in [MT01].

Theorem [MW07]. ΩB(
⊔

g BDiff+(Sg,1; ∂)) ≃ Ω∞MTSO(2).

Stringing several homotopy equivalences together, we see that the space on the
left hand side has the homology of Z × BΓ∞ by the group completion theorem.
We will now define the space on the right hand side and determine its rational
cohomology.

3.2.2. Thom spaces and their rational cohomology. Let Gr+(d, n) be the Grass-
mannian manifold of oriented R-linear d planes in Rd+n. There are two canonical
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vector bundles over Gr+(d, n): the canonical d-bundle γd,n with fibers over a plane
P ∈ Gr+(d, n) the vectors in P and its orthogonal complement γ⊥

d,n. We will only

use γ⊥
d,n and its one-point compactification (γ⊥

d,n)
c, also known as the Thom space

of γ⊥
d,n. Using the embeddings Gr+(d, n) → Gr+(d, n+1) we can form a limit space

Ω∞MTSO(d) := lim
n→∞

Ωd+n(γ⊥
d,n)

c;

here ΩkX denotes the space of maps from Sk to X that take the point at infinity of
Sk = (Rk)c to the base point in X. The rational (co)homology of these spaces are
well-understood and can be computed by standard methods in algebraic topology.
For a connected component (they are all homotopic), we have

H∗(Ω∞
0 MTSO(d))⊗Q = Λ(H>d(BSO(d))[−d]⊗Q);

here Λ(V ∗) for a graded vector space V ∗ denotes the free graded commutative
algebra on V ∗. The V ∗ in question here is given by V n = Hd+n(BSO(d))⊗Q. As
the rational classes of H∗(BSO(d)) are all even, this is just a polynomial algebra.
Mumford’s conjecture thus follows immediately.

Corollary. H∗(BΓ∞)⊗Q = Q[κ1, κ2, . . . ].

Madsen and Weiss’ theorem above however gives much more information. Thus
one is able to determine the divisibility of the κi in the integral lattice in H∗(BΓ∞).
In [GMT06] we show that the maximal divisor of κ2i is 2 and that of κ2i−1 is the
denominator of the Bi/2i where Bi is the ith Bernoulli number.

Ω∞MTSO(2) has also a vast number of torsion classes, see [MT97], [G04].
Indeed, for every even integer there is an infinite family of torsion homology classes
(each essentially a copy of H∗(BΣ∞)). These had not been detected before except
for the first family, see [CL84].

3.3. Characteristic classes for graphs. In analogy to the above, Galatius
[G] considers a moduli space Gn(R

∞) of embedded finite graphs in R∞ that have
fundamental group Fn for a fixed n. Its topology is such that the collapse of a
(non-loop) edge can be achieved by a continuous path. Thus Gn(R

∞) is connected.4

Similarly, one can define a based version Gn(R
∞; ∗) where each graph has a vertex

at the origin. Using ideas from Igusa [I02] and Culler-Vogtmann’s Outer space
[CV86], Galatius proves

Gn(R
∞; ∗) ≃ BAutFn and Gn(R

∞) ≃ BOutFn.

We will state now Galatius’ theorem in analogue to Madsen and Weiss’ theorem
on the space level.

4The topology is somewhat delicate. In particular one wants the graph to be imbedded in such

a way that every point in R
∞ has a neighborhood which either does not intersect the graph, or

intersects it in a small interval (part of an edge), or contains a neighborhood of a vertex (and no

more). Collapsing an edge has to be done in such a way that this is always satisfied.
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Theorem [G]. ΩB(
⊔

n≥0
BAutFn) ≃ Ω∞S∞.

Previous evidence for this came in the form of a remark by Hatcher in [H95]
who proved that Ω∞S∞ is a direct factor of the left hand side. Hatcher already
raises the question whether it could be an equivalence and in particular whether
the rational homology of AutF∞ is trivial. Hatcher and Vogtmann in [HV98] prove
that H∗(AutFn)⊗Q = 0 for 0 < ∗ < 7 with the exception of H4(AutF4)⊗Q = Q

providing strong evidence for the cohomological conjecture. Further evidence for
the conjecture on the space level is given by a theorem by Igusa [I02]. It says that
the linearisation map L : AutFn → GL(n,Z) on classifying spaces and after group
completion (i.e. application of ΩB) factors through Ω∞S∞.

With the Barratt-Priddy-Quillen theorem recalled in 2.4, we see that Σ∞ →֒
AutF∞ induces an isomorphism in homology and in particular

Corollary. H∗(BAutF∞)⊗Q = Q concentrated in degree 0.

4. Towards a proof

Our very rough sketch here treats simultaneously the Barratt-Priddy-Quillen
theorem, the Madsen-Weiss theorem as well as Galatius’ theorem. We mainly follow
[G] (and in parts the conceptually closely related [GMTW09]). In particular, we
emphasize the role of the scanning map.

4.1. Scanning. In abstract terms, the scanning map can be applied to topological
moduli spaces where the points are representing an object W embedded in RN , for
N large. The idea is that the scanning map at the point W ⊂ RN records the local,
microscopic picture as a magnifying glass sweeps through RN .

Figure 4: A configuration of points in RN sampled by a magnifying glass.

We first consider the simplest and well known case when W is a set of n points.
The ideas here go back to Segal and McDuff. The associated moduli space is the
configuration space Cn(R

N ) of n distinct, unordered points in RN . When scanning,
the lens of the magnifying glass can be taken small enough such that it only sees
at most one point. Identifying the lens with a ball BN in RN we see that the
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space of all local pictures is just the sphere SN = (BN )c where the point at infinity
corresponds to the lens giving us the view of the empty set. As the lens moves
across RN for a given configuration, we thus get a map from RN to SN . But away
from a compact set containing the n points the lens sees nothing and the map is
constant. We may therefore extend the map to SN = (RN )c by sending the point
at infinity to the empty set. Thus scanning defines a map

⊔

n

Cn(R
N ) −→ ΩNSN .

Similarly, scanning can be applied to the moduli space Mtop(Sg)
N of surfaces

of type Sg embedded in RN This time, unless the lens sees nothing, it will see an
oriented 2-plane intersecting BN , which is the tangent plane Tx of the nearest point
x on the surface to the center of the lens. Identifying BN with RN , this defines
a 2-dimensional subspace Tx − x of RN and a vector x perpendicular to it. Thus
we see that the Thom space (γ⊥

2,N−2)
c is the space of all local data with the point

at infinity corresponding again to the empty lens. Thus for every point in RN , we
get a point in (γ⊥

2,N−2)
c, and again we can extend this map continuously to the

compactification SN = (RN )c. Thus scanning defines a map

⊔

g

Mtop(Sg)
N −→ ΩN (γ⊥

2,N−2)
c.

Figure 5: A graph in RN sampled by a magnifying glass.

The case of graphs is similar, only that the space of all local data is much harder
to identify. Indeed, Galatius spends considerable effort to show that a map from
the N -sphere SN to the space of local data in dimension N induces an isomorphism
on homotopy groups in degrees 2N − c for some constant c. Thus in the limit as
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N → ∞ scanning defines (up to homotopy5) a map

⊔

n

Gn(R
∞) → Ω∞S∞.

4.2. Spaces of manifolds and graphs. The above maps can of course not be
homotopy equivalences. Not all path-components in the target are hit and the maps
are not injective on fundamental groups. We need to enlarge our moduli spaces.
Instead of considering only compact objects in RN consider manifolds and graphs in
RN that may also be non-compact. So let ΦN,N be the space of all manifolds W of
a given dimension d or graphs G in RN . Each W respectively G has to be a closed
subset of RN but may extend to infinity. It also need not be connected. ΦN,N is
topologized in such a way that manifolds or graphs can be pushed continuously to
infinity. The empty set is the basepoint. We have a filtration

ΦN,N ⊃ · · · ⊃ ΦN,1 ⊃ ΦN,0 ≃
⊔

n

Gn(R
N ),

where ΦN,i contains only those W or G that are subsets of Ri × (0, 1)N−i. In
particular, they are compact in the last N − i coordinate directions.

To prove the theorems by Barratt-Priddy-Quillen, Madsen-Weiss or Galatius one
would like to complete three steps. For configuration spaces this is an argument
that essentially goes back to Segal [S73].

Step 1. ΦN,N is homotopic to the space of local data of the scanning map.

This is relatively easy. The key here is that the topology of ΦN,N allows us to
push radially away from the origin. At the end of the homotopy what is left is the
local data (at the origin).

Step 2. ΦN,k → ΩΦN,k+1 is a homotopy equivalence for k > 0.6

We can construct a map as follows. For each t one can define a map ΦN,k →
ΦN,k+1 by sending W to its translate W − tek+1 by t in the (k + 1)st direction.
So as t goes to infinity, W gets pushed out of sight and we can extend the map to
S1 = Rc by sending the point at infinity to the empty set. The case for graphs is
just the same.

In the case of configuration spaces, it is straight forward to prove that this is a
homotopy equivalence. But some extra argument is required in the case of higher
dimensional manifolds and graphs.

Step 3. limN→∞ ΦN,1 is homotopic to the classifying space of
⊔

n BAutWn.

Just as Step 2, this is straight forward for configuration spaces. More generally it
is not difficult to see that in the manifold case, limN→∞ ΦN,1 is the classifying space

5More precisely, the target of the map is really something weakly homotopic to Ω∞S∞.
6This statement is equivalent to saying that ΦN,k+1 is homotopic to BΦN,k and the connected

components of ΦN,k form a group. The product in ΦN,k can be defined as follows: given two

graphs W1 and W2, move W2 to its translate W2 + ek+1. The resulting manifolds are disjoint

and one can take the disjoint union. Using a homotopy [0, 2] ≃ [0, 1] one can move the manifold

back into ΦN,k. To show that ΦN,k+1 ≃ BΦN,k is not too difficult. To show that the connected

components from a group requres some argument. Note that it is here that we require the condition
on k as the connected components certainly do not form a group when k = 0.
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of the d-dimensional cobordism category as studied in topological field theory (see
for example [GMTW09]; indeed this reproves the Main Theorem in that paper).
Similarly, in the graph case, one sees that limN→∞ ΦN,1 is the classifying space of
a cobordism category of graphs.

Though interesting in themselves, these identifications of limN→∞ ΦN,1 do not
yet allow one to make deductions for BAutW∞ or BAutWn. In order to do so, one
wants to apply a group completion theorem following the arguments in [T97]. Two
things are needed in order to apply it. First one needs to show that the classifying
space of the cobordism category is homotopic to that of its subcategory in which the
cobordisms are such that each component has non-empty out-going boundary. This
is done in [GMTW09] for manifolds (of all dimensions ≥ 2) and in [G] for graphs.
Secondly, one needs homology stability – which of course we have for graphs and
surfaces.

We note here, that in [GRW] a proof of Madsen and Weiss’ theorem in the form
stated above is given that no longer uses homology stability. Indeed, Galatius and
Randal-Williams show that the inclusion of the monoid

⊔
n BAutWn to the whole

category induces a homotopy equivalence on classifying spaces and after group
completion (i.e. applying ΩB).

5. Survey of further results

Madsen-Weiss’ theorem as well as Galatius’ theorem have been generalized in
several directions. It is convenient to summarize some of these results in a table.

Σn (n+ 1)/2 Diff(n pts) Ω∞S∞

Γg,1 (2g)/3 Diff+(Sg,1; ∂) Ω∞MTSO(2)
Ng,1 (n− 3)/3 Diff(Ng,1; ∂) Ω∞MTO(2)

. . Diff+(#nS
k × Sk \

◦

B2k; ∂) Ω∞MTSO(2k)〈k〉

AutFn (n− 1)/2 HtEq(Gn; ∗) Ω∞S∞

Hg,1 (g − 1)/2 Diff+(#gS
1 ×D2;D2 ⊂ ∂) Ω∞S∞BSO(3)+

. . Diff+(#nS
1 × S2 \

◦

B3; ∂) Ω∞S∞BSO(4)+

The first column of the table gives the discrete group Gn to be considered; the
second column lists the integer k so that the map Gn → Gn+1 induces a homology
isomorphisms in degrees less than k; the third column gives the automorphism
group AutWn of the underlying geometric object; and finally, the fourth column
contains a space homotopic to the group completion ΩB(

⊔
n≥0

BAutWn) and with
the same homology as Z×BAutW∞ .

We discuss now briefly the new entries .

5.1. Non-orientable surfaces. Let Ng,1 be an non-orientable surface of genus g
(i.e. a connected sum of g copies of RP 2s) with a boundary component. The group
Diff(Ng,1; ∂) has the same homotopy type as the associated mapping class group
Ng by [EE69]. As for oriented surfaces, extending diffeomorphisms by the identity
map over a glued on pair of pants surface induces a product Ng,1×Nh,1 → Ng+h,1.
Wahl [W08] showed that Ng,1 satisfies homology stability. Randal-Williams [RW]
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improved her range to (n− 3)/3. (In this paper he also proves homology stability
for surfaces with more exotic tangential structures (such as framed, spin and pin)
which we have not listed in the above table.) The space Ω∞MTO(2) is constructed
just as in the oriented case only that the Grassmannian of non-oriented planes is
considered. This gives the stable homology of the non-oriented mapping class group
as

H∗(N∞)⊗Q = Q[ξi] with deg ξi = 4i.

5.2. A (k − 1)-connected 2k-manifold. The connected sum #nS
k × Sk of n

copies of Sk × Sk is a higher dimensional analogue of a surface Sg = #S1 × S1.

We cut an open ball
◦

B2k out of the manifold and demand that diffeomorphisms fix
the boundary. Then a product can be constructed by gluing as for surfaces. At the
moment we do not know whether the classifying spaces of the diffeomorphism groups
satisfy homology stability. Nor do we know whether the connected components are
contractible. Nevertheless, for k > 2 Galatius and Randal-Williams have identified
the group completion of the associated monoid with a slight modification of the
space Ω∞MTSO(2k). To define this space, consider the k-connected cover π :
Gr+(2k, n)〈k〉 → Gr+(2k, n), and instead of the universal bundle γ⊥

2k,n use its pulled

back. (For a space X, its 1-connected cover X〈1〉 → X is just its universal cover.
The k-connected cover X〈k〉 → X is just a generalization of this in that X〈k〉 has
trivial homotopy groups for ∗ ≤ k and the same homotopy groups as X for ∗ > k.)
The space we are looking for is Ω∞MTSO(2k)〈k〉 := limn→∞ Ω2k+n(π∗(γ⊥

2k,n))
c.

5.3. Handlebody in dimension 3. Diffeomorphism of the 3-dimensional han-
dlebody #gS

1×D2 of genus g restrict to diffeomorphisms of the boundary surface.
Furthermore, its connected components are contractible. This is still the case when
we fix a disk D2 ⊂ ∂ on the boundary. Thus its mapping class group Hg,1 may
be identified with a subgroup of Γg,1. Hatcher and Wahl [HW] proved that these
groups satisfy homology stability. Very recently, Hatcher showed that the group
completion in this case is

Ω∞S∞BSO(3)+ = lim
k→∞

ΩkSk(BSO(3)+)

by thinking of the handlebody as a thickened graph and adopting Galatius’ proof.
The proof uses another ingredient, the Smale conjecture (see [H83]) which states
that Diff(D3) ≃ O(3). Here X+ denotes X with a disjoint base point. In particular,
this gives the stable homology of the handlebody mapping class group as

H∗(H∞)⊗Q = Q[κ2i] with deg κ2i = 4i.

5.4. A simple 3-dimensional manifold. Finally, the bottom line is also work
by Hatcher, recently announced. It concerns the connected sum of n copies of
S1 × S2 with a ball removed so that a product can be defined. Again Hatcher uses
a modification of Galatius’ argument for graphs and the Smale conjecture. Note
however, that in this case the connected components of the diffeomorphism groups
are not contractible and we do not know whether the classifying spaces of these
groups satisfy homology stability.
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6. Conclusion and future directions

We have seen that the method of scanning can be applied to topological moduli
spaces Mtop(W ) of objects isomorphic to W embedded in R∞. The target T of
the scanning map is a highly structured space, an infinite loop space. In the case
of zero dimensional manifolds, graphs and two dimensional manifolds the target of
the scanning map T , in the presence of homology stability gives a better and better
approximation to the homology of the moduli space Mtop(W ) as the complexity
of W grows. In the previous section we encountered manifolds W of higher dimen-
sions for which the scanning map induces a homotopy equivalence from the group
completion of the associated monoid to the target T but for which we do not (yet)
have homology stability.

One is naturally led to ask the following questions. Can the table above be
completed and homology stability results be found for certain types of manifolds?
Are there any other families of manifolds that can be added to the table? Indeed,
are there other geometric objects, to which the scanning method can be applied.
Galatius considered finite 1-dimensional complexes. Can the methods be pushed
to higher dimensional finite complexes?

We emphasized the point of view of moduli spaces and characteristic classes
for manifold bundles. Indeed, for every oriented, closed, d-dimensional manifolds
W , scanning gives a map α : Mtop(W ) → Ω∞MTSO(d). So the cohomology of
Ω∞MTSO(d) provides characteristic classes for all oriented d-manifolds simultane-
ously. Ebert has shown that for d even every rational cohomology class c is detected
by some manifold, i.e. α∗(c) is non-zero for some W . But this fails for d odd, see
[E1] and [E2]. This suggests that the scanning map for d odd is not optimal and
should factor through a space X(d). For d = 1, X(1) = Ω∞S∞BSO(2)+ is the
optimal space. Hatcher’s last example suggests a similar solution for d = 3.

We have tried to give here a glimpse into an active area of research that uses
new techniques to study basic questions in geometry and topology. Some of the
questions above are already pursued, and we look forward to seeing the theory
develop.
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THE GEOMETRIC NATURE OF THE FUNDAMENTAL LEMMA

DAVID NADLER

Abstract. The Fundamental Lemma is a somewhat obscure combinatorial
identity introduced by Robert P. Langlands [L79] as an ingredient in the theory
of automorphic representations. After many years of deep contributions by
mathematicians working in representation theory, number theory, algebraic
geometry, and algebraic topology, a proof of the Fundamental Lemma was
recently completed by Ngô Bao Châu [N08], for which he was awarded a Fields
Medal. Our aim here is to touch on some of the beautiful ideas contributing
to the Fundamental Lemma and its proof. We highlight the geometric nature
of the problem which allows one to attack a question in p-adic analysis with
the tools of algebraic geometry.
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1. Introduction

Introduced by Robert P. Langlands in his lectures [L79], the Fundamental Lemma
is a combinatorial identity which just as well could have achieved no notoriety. Here
is Langlands commenting on [L79] on the IAS website [L1]:

“...the fundamental lemma which is introduced in these notes, is
a precise and purely combinatorial statement that I thought must
therefore of necessity yield to a straightforward analysis. This has
turned out differently than I foresaw.”

Instead, the Fundamental Lemma has taken on a life of its own. Its original
scope involves distributions on groups over local fields (p-adic and real Lie groups).
Such distributions naturally arise as the characters of representations, and are more
than worthy of study on their own merit. But with the immense impact of Lang-
lands’ theory of automorphic and Galois representations, many potential advances
turn out to be downstream of the Fundamental Lemma. In particular, in the
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absence of proof, it became “the bottleneck limiting progress on a host of arith-
metic questions.” [H] It is rare that popular culture recognizes the significance of
a mathematical result, much less an esoteric lemma, but the recent proof of the
Fundamental Lemma by Ngô Bao Châu [N08], for which he was awarded a Fields
Medal, ranked seventh on Time magazine’s Top 10 Scientific Discoveries of 2009
list.1

Before continuing, it might be useful to have in mind a cartoon of the problem
which the Fundamental Lemma solves. In fact, what we present is an example of
the case of real Lie groups resolved long ago by D. Shelstad [S82]. Figure 1 depicts
representative orbits for the real Lie group SL(2,R) acting by conjugation on its
Lie algebra sl(2,R) � R

3 of traceless 2× 2 real matrices A.

Figure 1. Orbits of SL(2,R) acting on its Lie algebra sl(2,R) � R
3.

Reading Figure 1 from outside to inside, one encounters three types of orbits
(hyperbolic, nilpotent, and elliptic) classified by the respective values of the deter-
minant (det(A) < 0, det(A) = 0, and det(A) > 0). We will focus on the two elliptic
orbits OA+

,OA− ⊂ sl(2,R) through the elements

A+ =

ï
0 1
−1 0

ò
, A− =

ï
0 −1
1 0

ò
.

For a smooth compactly supported function ϕ : sl(2,R) → C, consider the distri-
butions given by integrating over the elliptic orbits

OA+
(ϕ) =

∫

O+

ϕ, OA−(ϕ) =

∫

O−

ϕ

with respect to an invariant measure.
Observe that the two-dimensional complex vector space spanned by these distri-

butions admits the alternative basis

Ost = OA+
+OA− , Otw = OA+

−OA− .

1Water on the moon was sixth, and Teleportation was eighth.
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The first Ost is nothing more than the integral over the union OA+
� OA− ,

which is the algebraic variety given by the equation det(A) = 1. It is called a
stable distribution since the equation det(A) = 1 makes no reference to the field of
real numbers R. Over the algebraic closure of complex numbers C, the equation
det(A) = 1 cuts out a single conjugacy class. In particular, A+ and A− are both
conjugate to the matrix ï

i 0
0 −i

ò
∈ sl(2,C).

Thus the stable distribution can be thought of as an object of algebraic geometry
rather than harmonic analysis on a real Lie algebra.

Unfortunately, there is no obvious geometric interpretation for the second Otw.
(And one might wonder whether such a geometric interpretation could exist: the
symmetry of switching the terms of Otw gives its negative.) It is called a twisted
distribution since it is a sum of OA+

and OA− with nonconstant coefficients. By its
very definition, Otw distinguishes between the orbits OA+

and OA− though there
is no invariant polynomial function separating them. Indeed, as discussed above,
over the complex numbers, they coalesce into a single orbit.

Langlands’s theory of endoscopy, and in particular, the Fundamental Lemma
at its heart, confirms that indeed one can systematically express such twisted dis-
tributions in terms of stable distributions. A hint more precisely: to any twisted
distribution, there is assigned a stable distribution, and to any test function, a
transferred test function, such that the twisted distribution evaluated on the origi-
nal test function is equal to the stable distribution evaluated on the transferred test
function. Detailed conjectures organizing the intricacies of the transfer of test func-
tions first appear in Langlands’s joint work with D. Shelstad [LS87]. The shape
of the conjectures for p-adic groups, and in particular the until recently missing
Fundamental Lemma in the non-Archimedean case, were decisively influenced by
what could be more readily understood for real groups (ultimately building on work
of Harish Chandra). As Langlands and Shelstad note, “if it were not that [trans-
fer factors] had been proved to exist over the real field [S82], it would have been
difficult to maintain confidence in the possibility of transfer or in the usefulness of
endoscopy.”

The extraordinary difficulty of the Fundamental Lemma, and also its mystical
power, emanates from the fact that the sought-after stable distributions live on the
Lie algebras of groups with little apparent relation to the original group. Applied
to the example at hand, the general theory relates the twisted distribution Otw

to a stable distribution on the Lie algebra so(2,R) � R of the rotation subgroup
SO(2,R) ⊂ SL(2,R) which stabilizes A+ or equivalently A−. Outside of book-
keeping, this is empty of content since SO(2,R) is abelian, and so its orbits in
so(2,R) are single points. But the general theory is deep and elaborate and leads
to surprising identities of which the Fundamental Lemma is the most basic and
important.

It should be pointed out that in the absence of a general proof, many special
cases of the Fundamental Lemma were established to spectacular effect. To name
the most prominent applications without attempting to explain any of the terms
involved, the proof of Fermat’s Last Theorem due to Wiles and Taylor-Wiles de-
pends upon base change for GL(2), and ultimately the Fundamental Lemma for
cyclic base change [L80]. The proof of the local Langlands conjecture for GL(n),
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a parameterization of the representations of the group of invertible matrices with
p-adic entries, due to Harris-Taylor and independently Henniart depends upon auto-
morphic induction, and ultimately the Fundamental Lemma for SL(n) established
by Waldspurger [W91].

If the Fundamental Lemma had admitted an easy proof, it would have merited
little mention in a discussion of these results. But for the general theory of automor-
phic representations and Shimura varieties, “...its absence rendered progress almost
impossible for more than twenty years.” [L2] Its recent proof has opened the door to
many further advances. Arthur [A97, A05, A09] has outlined a program to obtain
the local Langlands correspondence, for quasi-split classical groups from that of
GL(n) via twisted endoscopy (generalizing work of Rogawski [R90] on the unitary
group U(3)). In particular, this provides a parameterization of the representa-
tions of orthogonal and symplectic matrix groups with p-adic entries. Furthermore,
Arthur also describes how to reduce the automorphic spectrum of such groups to
the cuspidal automorphic spectrum of GL(n). Shin [S] has constructed Galois rep-
resentations corresponding to automorphic representations in the cohomology of
compact Shimura varieties, establishing the Ramanujan-Petersson conjecture for
such representations. This completes earlier work of Harris-Taylor, Kottwitz and
Clozel, and the Fundamental Lemma plays a key role in this advance. As Shin
notes,

“One of the most conspicuous obstacles was the fundamental lemma,
which had only been known in some special cases. Thanks to the
recent work of Laumon-Ngô ([LaN04]), Waldspurger ([W97], [W06],
[W09]) and Ngô ([N08]) the fundamental lemma (and the transfer
conjecture of Langlands and Shelstad) are now fully established.
This opened up a possibility for our work.”

Morel [M08] has obtained similar results via a comprehensive study of the coho-
mology of noncompact Shimura varieties.

Independently of its applications, the peculiar challenge of the Fundamental
Lemma has spurred many ingenious advances of standalone interest. Its recent
proof, completed by Ngô, spans many areas, appealing to remarkable new ideas in
representation theory, model theory, algebraic geometry, and algebraic topology. A
striking aspect of the story is its diverse settings. The motivation for and proof of
the Fundamental Lemma sequentially cover the following algebraic terrain:

number fields → p-adic fields → Laurent series fields → function fields

One begins with a number field and the arithmetic problem of comparing the
anisotropic part of the Arthur-Selberg trace formula for different groups. This leads
to the combinatorial question of the Fundamental Lemma about integrals over p-
adic groups. Now not only do the integrals make sense for any local field, but it
turns out that they are independent of the specific local field, and in particular its
characteristic. Thus one can work in the geometric setting of Laurent series with
integrals over loop groups (or synonymously, affine Kac-Moody groups). Finally,
one returns to a global setting and performs analogous integrals along the Hitchin
fibration for groups over the function field of a projective curve. In fact, one can
interpret the ultimate results as precise geometric analogues of the stabilization
of the original trace formula. To summarize, within the above algebraic terrain,
the main quantities to be calculated and compared for different groups are the
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following:

global orbital integrals → local orbital integrals →
cohomology of affine Springer fibers → cohomology of Hitchin fibers

Over the last several decades, geometry has accrued a heavy debt to harmonic
analysis and number theory: much of the representation theory of Lie groups and
quantum algebras, as well as gauge theory on Riemann surfaces and complex sur-
faces, is best viewed through a collection of analogies (called the Geometric Lang-
lands program, and pioneered by Beilinson and Drinfeld) with Langlands’s theory of
automorphic and Galois representations. Now with Ngô’s proof of the Fundamental
Lemma, and its essential use of loop groups and the Hitchin fibration, geometry
has finally paid back some of this debt.

In retrospect, one is led to the question: Why does geometry play a role in the
Fundamental Lemma? Part of the answer is implicit in the fact that the p-adic
integrals involved turn out to be characteristic independent. They are truly of
motivic origin, reflecting universal polynomial equations rather than analysis on
the p-adic points of groups. Naively, one could think of the comparison between
counting matrices over a finite field with a prescribed characteristic polynomial
versus counting those with prescribed eigenvalues. More substantively, one could
keep in mind Lusztig’s remarkable construction of the characters of finite simple
groups of Lie type (which encompass “almost all” finite simple groups). Though
such groups have no given geometric structure, their characters can be uniformly
constructed by recognizing the groups are the solutions to algebraic equations.
For example, though we may care primarily about characters of SL(n,Fp), it is
important to think not only about the set of such matrices, but also the determinant
equation det(A) = 1 which cuts them out.

In the case of the Fundamental Lemma, the Weil conjectures ultimately imply
that the p-adic integrals to be evaluated are shadows of the cohomology of algebraic
varieties, specifically the affine Springer fibers of Kazhdan-Lusztig. Therefore one
could hope to apply the powerful tools of mid-to-late 20th century algebraic geom-
etry – such as Hodge theory, Lefschetz techniques, sheaf theory, and homological
algebra – in the tradition pioneered by Weil, Serre, Grothendieck, and Deligne. One
of Ngô’s crucial, and possibly indispensable, contributions is to recognize that the
technical structure needed to proceed, in particular the purity of the Decomposition
Theorem of Beilinson-Bernstein-Deligne-Gabber, could be found in a return to the
global setting of the Hitchin fibration.

Our aim in what follows is to sketch some of the beautiful ideas contributing to
the Fundamental Lemma and its proof. The target audience is not experts in any of
the subjects discussed but rather mathematicians interested in having some sense
of the essential seeds from which a deep and intricate theory flowers. We hope that
in a subject with great cross-pollination of ideas, an often metaphorical account of
important structures could prove useful.

Here is an outline.
In Section 2 immediately below, we recall some basics about characters of repre-

sentations and number fields leading to a very rough account of the Arthur-Selberg
trace formula for compact quotient.
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In Section 3, we introduce the problem of stability of conjugacy classes, the
twisted orbital integrals and endoscopic groups which arise, and finally arrive at a
statement of the Fundamental Lemma.

In the remaining sections, we highlight some of the beautiful mathematics of
broad appeal which either contribute to the proof of the Fundamental Lemma or
were spurred by its study. Some were invented specifically to attack the Funda-
mental Lemma, while others have their own pre-history but are now inextricably
linked to it.2

In Section 4, we introduce the affine Springer fibers and their cohomology which
are the motivic avatars of the orbital integrals of the Fundamental Lemma. We
then discuss the equivariant localization theory of Goresky-Kottwitz-MacPherson
developed to attack the Fundamental Lemma. Strictly speaking, it is not needed
for Ngô’s ultimate proof, but it both set the scene for much of Laumon and Ngô’s
further successes, and has inspired an entire industry of combinatorial geometry.

In Section 5, we summarize and interpret several key aspects of Ngô’s proof of
the Fundamental Lemma. In particular, we discuss Laumon’s initial forays to a
global setting, and Ngô’s Support Theorem which ultimately provides the main
technical input.

Finally, in Section 6, we discuss some directions for further study.

There are many precise and readable, though of necessity lengthy, accounts of
the mathematics we will discuss. In particular, we recommend the reader read
everything by Langlands, Kottwitz, and Arthur, and time permitting, read all of
Drinfeld and Laumon’s lecture notes such as [D, La1, La2]. For the Fundamental
Lemma and its immediate neighborhood, there are Ngô’s original paper [N08], and
the long list of references therein, Hales’s beautifully concise paper [H05], along with
DeBacker’s timely update [De05], and the immensely useful book project organized
by Harris [H].

1.1. Acknowledgements. This document is intended as a writeup of my antici-
pated talk at the Current Events Bulletin Session at the Joint Mathematics Meet-
ings in New Orleans, January 2011. I would like to thank the committee and
organizers for the impetus to prepare this document.

I am particularly indebted to D. Ben-Zvi for his generosity in sharing ideas during
many far-ranging discussions.

I am grateful to D. Jordan for creating Figures 1 and 2 which beautifully evoke
the mystery of endoscopy.

For their many insights, I would like to thank S. Gunningham, B. Hannigan-
Daley, I. Le, Y. Sakallaridis, T. Schedler, M. Skirvin, X. Zhu, and all the participants
in the 2010 Duntroon Workshop, especially its organizers J. Kamnitzer and C.
Mautner.

I would also like to thank B. Conrad, M. Emerton, M. Harris, B. Kra, and M.
Strauch for their detailed comments on earlier drafts.

Finally, I gratefully acknowledge the support of NSF grant DMS-0901114 and a
Sloan Research Fellowship.

2Like Tang to NASA.



THE GEOMETRIC NATURE OF THE FUNDAMENTAL LEMMA 7

2. Characters and conjugacy classes

To begin to approach the Fundamental Lemma, let’s listen once again to Lang-
lands [L2]:

“Nevertheless, it is not the fundamental lemma as such that is
critical for the analytic theory of automorphic forms and for the
arithmetic of Shimura varieties; it is the stabilized (or stable) trace
formula, the reduction of the trace formula itself to the stable trace
formula for a group and its endoscopic groups, and the stabilization
of the Grothendieck-Lefschetz formula.

In this section, we will give a rough impression of the trace formula, and in the
next section, explain what the term stable is all about.

2.1. Warmup: finite groups. To get in the spirit, we begin our discussion with
the well known character theory of a finite group G. There are many references for
the material in this section, for example [FH91], [S77].

Definition 2.1. By a representation of G, we will mean a finite-dimensional com-
plex vector space V and a group homomorphism π : G → GL(V ).

Equivalently, we can form the group algebra C[G] = {ϕ : G → C} equipped with
convolution

(ϕ1 ∗ ϕ2)(g) =
∑

g1g2=g ϕ1(g1)ϕ2(g2), ϕ1, ϕ2 ∈ C[G],

and consider finite-dimensional C[G]-modules.

Example 2.2. (1) Trivial representation: take V = C with the trivial action.
(2) Regular representation: take V = C[G] with the action of left-translation.

Definition 2.3. The character of a representation π : G → GL(V ) is the function

χπ : G → C χπ(g) = Trace(π(g))

Definition 2.4. Consider the action of G on itself by conjugation.
We denote the resulting quotient set by G/G and refer to it as the adjoint

quotient. Its elements are conjugacy classes [g] ⊂ G.
A class function on G is a function f : G/G → C, or equivalently a conjugation-

invariant function f : G → C. We denote the ring of class functions by C[G/G].

Lemma 2.5. (1) Each character χπ is a class function.
(2) Compatibility with direct sums: χπ1⊕π2

= χπ1
+ χπ2

.
(3) Compatibility with tensor products: χπ1⊗π2

= χπ1
χπ2

.
(4) Trivial representation: χtriv(g) = 1, for all g.
(5) Regular representation:

χreg(g) =

ß
|G|, g = e
0, g �= e

Class functions have a natural Hermitian inner product

〈α, β〉 = 1
|G|

∑
g∈G α(g)β(g), α, β ∈ C[G/G].

Proposition 2.6. The characters of irreducible representations of G form an or-
thonormal basis of the class functions C[G/G].
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Thus we have two canonical bases of class functions. On the one hand, there is
the geometric basis of characteristic functions

O[g] : G/G −→ C O[g](h) =

ß
1, h ∈ [g]
0, else

of conjugacy classes [g] ⊂ G. These are pairwise orthogonal though not orthonormal
since 〈O[g],O[g]〉 is the volume of the conjugacy class [g] ⊂ G. On the other hand,
there is the spectral basis of characters

χι : G/G −→ C χι(h) = Trace(πι(h))

of irreducible representations πι of G. The geometric basis is something one has on
any finite set (though the volumes contain extra information). The spectral basis
is a reflection of the group structure of the original set G.

Remark 2.7. One uses the term spectral with the following analogy in mind. Given
a diagonalizable operator A on a complex vector space V , the traditional spectral
decomposition of V into eigenspaces can be interpreted as the decomposition of V
into irreducible modules for the algebra C[A].

Given an arbitrary representation (π, V ), we can expand its character χπ in the
two natural bases to obtain an identity of class functions. Though V might be
completely mysterious, it nevertheless admits an expansion into irreducible repre-
sentations

V �
⊕

ι∈I

V ⊕mι(π)
ι

where I denotes the set of irreducible representations. Thus we obtain an identity
of class functions ∑

[g]∈G/G

Trace(π(g))O[g] =
∑

ι∈I

mι(π)χι

The left hand side is geometric and easy to calculate. The right hand side is
spectral both mathematically speaking and in the sense that like a ghost we know
it exists though we may not be able to see it clearly. The formula gives us a starting
point to understand the right hand side in terms of the left hand side.

Remark 2.8. It is very useful to view the above character formula as an identity
of distributions. Namely, given any test function ϕ : G → C, we can write ϕ =∑

g∈G ϕ(g)δg, where δg : G → C is the characteristic function of the group element
g. Then since everything in sight is linear, we can evaluate the character formula
on ϕ. This is very natural from the perspective of representations as modules over
the group algebra C[G].

In general, it is difficult to construct representations. Outside of the trivial and
regular representations, the only others that appear immediately from the group
structure of G are induced representations.

Definition 2.9. Fix a subgroup Γ ⊂ G.
For a representation π : Γ → GL(W ), the corresponding induced representation

πind : G → GL(V ) is defined by

V = {f : G → W |f(γx) = π(γ)f(x)} πind(g)f(x) = f(xg)

We denote by χind the character of πind.
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Calculating the character χind is a particularly simple but salient calculation
from Mackey theory. Since we have no other starting point, we will focus on the
induction of the trivial representation. (Exercise: the induction of the regular
representation of Γ is the regular representation of G.) When we start with the
trivial representation, the induced representation

V = {f : Γ\G → C}
is simply the vector space of functions on the finite set Γ\G. It has a natural basis
given by the characteristic functions of the cosets. Thus every element of G, or
more generally, the group algebra C[G], acts on the vector space V by a matrix
with an entry for each pair of cosets x, y ∈ Γ\G.

Lemma 2.10. An element ϕ : G → C of the group algebra C[G] acts on the induced
representation V = {f : Γ\G → C} by the matrix

Kϕ(x, y) =
∑

γ∈Γ

ϕ(x−1γy), x, y ∈ Γ\G.

Now to calculate the character χind, we need only take the traces of the above
matrices, or in other words, the sum of their entries when x = y ∈ Γ\G.

Corollary 2.11. The character χind is given by the formula

χind(ϕ) =
∑

γ∈Γ/Γ

aγ

∫

[γ]⊂G

ϕ,

where aγ denotes the volume, or number of elements, of the quotient of centralizers
Γγ\Gγ, and the integral denotes the sum

∫

[γ]⊂G

ϕ =
∑

x∈Gγ\G
ϕ(x−1γx)

over the G-conjugacy class of γ.

Remark 2.12. Suppose we equip the quotients G/G, Γ/Γ with the natural quotient
measures, and let p : Γ/Γ → G/G denote the natural projection. Then the above
corollary can be concisely rephrased that χind is the pushforward along p of the
quotient measure on Γ/Γ.

Definition 2.13. For γ ∈ Γ, the distribution on G given on a test function ϕ :
G → C by the integral over the conjugacy class

Oγ(ϕ) =

∫

[γ]⊂G

ϕ =
∑

x∈Gγ\G
ϕ(x−1γx)

is called an orbital integral.

We have arrived at the Frobenius character formula for an induced representation

(2.1)
∑

γ∈Γ/Γ

aγOγ(ϕ) =
∑

ι∈I

mι(πind)χι(ϕ)

This is the most naive form of the Arthur-Selberg trace formula. Observe that
the right hand side remains mysterious, but the left hand side is now a concrete
geometric expression involving volumes and orbital integrals.
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2.2. Poisson Summation Formula. Now let us leave finite groups behind, and
consider generalizations of the Frobenius character formula (2.1). We will begin by
sacrificing complicated group theory and restrict to the simplest commutative Lie
group G = R.

A deceptive advantage of working with a commutative group is that we can
explicitly calculate its spectrum.

Lemma 2.14. The irreducible representations of R are the characters

χλ : R → C
× χλ(x) = exp(2πiλx)

with λ ∈ C. In particular, the irreducible unitary representations are the characters
χλ, with λ ∈ R.

Now let us consider the analogue of the Frobenius character formula 2.1 for the
group G = R. In order for the formula (not to mention our derivation of it) to
make immediate sense, we should restrict to a subgroup Γ ⊂ G which is discrete
with compact quotient Γ\G. Thus we are led to the subgroup of integers Γ = Z

with quotient the circle S1 � Z\R.
Let us calculate the various terms in the formula 2.1 for the induced Hilbert

representation L2(S1) of square-integrable complex-valued functions. For the geo-
metric side, since R is commutative, the conjugacy class of n ∈ Z is simply n itself
with volume 1. For the spectral side, Fourier analysis confirms that the represen-
tation L2(S1) is a Hilbert space direct sum of the irreducible characters χλ, with
λ ∈ 2πiZ. Furthermore, a compactly supported test function ϕ ∈ C∞

c (R) acts on
the summand χλ by multiplication by its Fourier transform

ϕ̂(λ) =

∫

R

ϕ(x)χλ(x)dx.

Theorem 2.15 (Poisson Summation Formula). For a test function ϕ ∈ C∞
c (R),

one has the equality ∑

n∈Z

ϕ(n) =
∑

λ∈Z

ϕ̂(λ)

With this success in hand, one could seek other commutative groups and attempt
a similar analysis. ¿From the vantage point of number theory, number fields provide
a natural source of locally compact commutative groups.

By definition, a number field F is finite extension of the rational numbers Q.
There is a deep and pervasive analogy between number fields and the function fields
k(X) of algebraic curves X. For example, the fundamental example of a number
field is Q, and by definition, all others are finite extensions of it. The fundamental
example of an algebraic curve is the projective line P1, and all other algebraic curves
are finite covers of it. The history of the analogy is long with many refinements by
celebrated mathematicians (Dedekind, Artin, Artin-Whaples, Weil,...). As we will
recount below, one of the most intriguing aspects of the (currently known) proof
of the Fundamental Lemma is its essential use of function fields and the extensive
analogy between them and number fields.

Throughout what follows, we will need the number field analogue of the most
basic construction of Calculus: the Taylor series expansion of a function around
a point. Given a curve X and a (rational) point x ∈ X, we can choose a local
coordinate t with a simple zero at x. Then for any non-zero rational function
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f ∈ k(X), we have its Laurent series expansion
∞∑

i=j

ait
i ∈ k((t)), with aj �= 0.

Since rational functions are locally determined, this provides an embedding of fields
k(X) ⊂ k((t)). The embedding realizes k((t)) as the completion of k(X) with
respect to the valuation vx(f) = k.

Let us illustrate the form this takes for number fields with the fundamental ex-
ample of the rational numbers Q. The local expansion of an element of Q should
take values in a completion of Q. Ostrowski’s Theorem confirms that the com-
pletions are precisely the p-adic numbers Qp, for all primes p, along with the real
numbers R. The real numbers are of course complete with respect to the usual
Euclidean absolute value. The p-adic numbers are complete with respect to the
absolute value |f |p = p−k, where f = pka/b, with (a, p) = (b, p) = 1. It satisfies
the non-Archimedean property |f + g|p ≤ max{|f |p, |g|p}, and so the compact unit
ball of p-adic integers

Zp = {f ∈ Qp||f |p ≤ 1} ⊂ Qp

is in fact a subring.
It is an elementary but immensely useful idea to keep track of all of the local

expansions of a rational number at the same time. Observe that for a rational
function on a curve, the points where it has a pole are finite in number. Similarly,
only finitely many primes divide the denominator of a rational number. This leads
one to form the ring of adeles

AQ =
rest∏

p prime

Qp × R

where the superscript “rest” denotes that we take the restricted product where all
but finitely many terms lie in the compact unit ball of p-adic integers Zp. The
simultaneous local expansion of a rational number provides an embedding of rings
Q ⊂ AQ with discrete image.

Let us justify the above somewhat technical construction with a well known
result of number theory. To solve an equation in Q, it is clearly necessary to
provide solutions in Qp, for all primes p, and also R. The Hasse principle asserts
that to find solutions in Q, one should start with such a solution in the adeles AQ,
or in other words, a collection of possibly unrelated solutions, and attempt to glue
them together. Here is an example of the success of this approach.

Theorem 2.16 (Hasse-Minkowski). Given a quadratic form

Q(x1, . . . , xn) =
∑

i≤j aijxixj , aij ∈ Q,

the equation
Q(x1, . . . , xn) = 0

has a solution in the rational numbers Q if and only if it has a solution in the adeles
AQ, or equivalently, solutions in the p-adic numbers Qp, for all primes p, and the
real numbers R.

A similar constructions of adeles make sense for arbitrary number fields F . The
completions of F will be finite extensions of the completions of Q, so finite ex-
tensions Fp of the p-adic numbers Qp, along with possibly the real numbers R or
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complex numbers C. The former are non-Archimedean so the compact unit balls
of integers Op ⊂ Fp are in fact subrings. One similarly forms the ring of adeles

AF =
rest∏

p

Fp × R
r × C

c

where p runs over all non-Archimedean completions of F , and the superscript “rest”
denotes that we take the restricted product where all but finitely many terms lie in
the compact unit balls Op. The simultaneous local expansion of elements provides
an embedding F ⊂ AF with discrete image.

In his celebrated thesis, Tate generalized the Poisson Summation Formula to the
pair of the locally compact group AF and its discrete subgroup F . The resulting
formula is an exact analogue of the classical Poisson Summation Formula

∑

x∈F

ϕ(x) =
∑

λ∈F

ϕ̂(λ)

This is an essential part of Tate’s interpretation of Class Field Theory in terms of
harmonic analysis. One could approach all that follows as an attempt to explore
the generalization of Class Field Theory to a noncommutative setting.

2.3. Arthur-Selberg Trace Formula. The Arthur-Selberg Trace Formula is a
vast generalization of the Frobenius character formula for finite groups and the
Poisson summation formula for number fields.

The starting point is an algebraic group G defined over a number field F . One
can always realize G as a subgroup of GL(n) defined by polynomial equations with
coefficients in F . We will be most interested in reductive G, which means that we
can realize G as a subgroup of GL(n) preserved by the transpose of matrices, or
equivalently, that the unipotent radical of G is trivial. Without further comment,
we will also assume that G is connected in the sense that G is not the union of
two proper subvarieties. Of course, GL(n) itself is a fundamental example of a
reductive algebraic group. For many important questions, the reader would lose
nothing considering only GL(n). But as we shall see, the role of the Fundamental
Lemma is to help us compare different groups, and in particular, reduce questions
about complicated groups to simpler ones.

Suppose we are given an algebraic group G defined over a number field F . Then
it makes sense to consider the solutions G(R) to the equations defining G in any
commutative ring R containing F . Such solutions are called the R-points of G and
form a group in the traditional sense of being a set equipped with a group law.

Less naively, although more trivially, for a field K containing F , we can also
regard the coefficients of the equations defining G as elements of K. Hence we can
consider G as an algebraic group defined over K. To keep things straight, we will
write GK to denote G thought of as an algebraic group defined over K. We will
refer to GK as the base change of G since all we have done is change the base field.

The only difference between the base change GK and the original group G is that
we are only allowed to form the R-points GK(R) of the base change for commutative
rings R containing K. Experience tells us that over algebraically closed fields, there
is little difference between equations and their solutions. In practice, this is true
for algebraic groups: for an algebraic closure F , one can go back and forth between
the F -points G(F ) and the base change GF .

Here is the most important class of reductive groups.
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Definition 2.17. (1) A torus T defined over F is an algebraic group defined over
F such that the base change TF is isomorphic to the product GL(1)k, for some k.

(2) A torus T defined over F is said to be split if it is isomorphic to the product
GL(1)k, for some k, without any base change necessary.

(3) A torus T defined over F is said to be anisotropic, or synonymously elliptic,
if all of its characters are trivial

HomF (T,GL(1)) = 〈0〉
where HomF denotes homomorphisms of algebraic groups defined over F .

Example 2.18. There are two types of one-dimensional tori defined over the real
numbers R. There is the split torus

GL(1) � {ab = 1}
with R-points R×, and the anisotropic torus

SO(2) = {g ∈ GL(2)|g−1 = gτ} � {x2 + y2 = 1}
with R-points the circle S1. Over the complex numbers C, the equations ab = 1
and x2 + y2 = 1 become equivalent via the transformation a = x+ iy, b = x− iy.

It is often best to think of an algebraic group G defined over F as comprising
roughly two pieces of structure:

(1) the base change GF or group of F -points G(F ) for an algebraic closure F ,
(2) the Galois descent data needed to recover the original equations of G itself.

To understand the result of the first step, we recall the following definition.

Definition 2.19. (1) A torus T ⊂ G is said to be maximal if it is not a proper
subgroup of another torus in G.

(2) A reductive algebraic group G is said to be split if it contains a maximal
torus which is split.

Proposition 2.20. Let G be a reductive algebraic group defined over a number
field F . Then there is a unique split reductive algebraic group Gspl defined over Q

such that
GF � Gspl

F
, and in particular G(F ) � Gspl(F ).

In other words, over algebraically closed fields, all reductive groups are split.

There is a highly developed structure theory of reductive algebraic groups, but
the subject is truly example oriented. There is the well known Cartan classification
of split reductive algebraic groups.

Example 2.21 (Split classical groups). There are four series of automorphism
groups of familiar linear geometry.

(An) The special linear group

SL(n+ 1) = {A ∈ GL(n+ 1)| det(A) = 1}.
(Bn) The odd special orthogonal group

SO(2n+ 1) = {A ∈ GL(2n+ 1)|AτQ2n+1A = Q2n+1, det(A) = 1},

Q2n+1 =

⎡

⎣
0 0 1
0 Q2n−1 0
1 0 0

⎤

⎦ .
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(Cn) The symplectic group

Sp(2n) = {A ∈ GL(2n)|AτΩ2nA = Ω2n, det(A) = 1},

Ω2n =

⎡

⎣
0 0 −1
0 Ω2n−2 0
1 0 0

⎤

⎦ .

(Dn) The even special orthogonal group

SO(2n) = {A ∈ GL(2n)|AτQ2nA = Q2n, det(A) = 1},

Q2n =

⎡

⎣
0 0 1
0 Q2n−2 0
1 0 0

⎤

⎦ .

Each is simple in the sense that (it is not a torus and) any normal subgroup
is finite, unlike for example GL(n) which has center GL(1) realized as diagonal
invertible matrices.

Each is also split with maximal torus its diagonal matrices. Outside of finitely
many exceptional groups, all simple split reductive algebraic groups are isomorphic
to one of the finitely many finite central extensions or finite quotients of the above
classical groups.

To illustrate the Galois descent data involved in recovering a reductive group G
defined over F from its base change GF , let us consider the simple example of a

torus T . The base change TF is split and hence isomorphic to GL(1)k, for some k.
Its characters form a lattice

X∗(TF ) = Hom(TF , GL(1)) � Z
k

from which we can recover TF as the spectrum

TF = SpecF [X∗(TF )].

The Galois group Γ = Gal(F/F ) naturally acts on the character lattice X∗(TF ) by

a finite group of automorphisms. This induces an action on the ring F [X∗(TF )],
and we can recover T as the spectrum of the ring of invariants

T = SpecF [X∗(TF )]
Γ.

In the extreme cases, T is split if and only if the Galois action on X∗(TF ) is
trivial, and by definition, T is anisotropic if and only if the invariant characters
X∗(TF )

Γ = HomF (T,GL(1)) are trivial.
There is a large class of non-split groups which contains all tori and is particularly

easy to describe by Galois descent. All groups directly relevant to the Fundamental
Lemma will come from this class. We give the definition and a favorite example
here, but defer discussion of the Galois descent until Section 3.3

Definition 2.22. (1) A Borel subgroup B ⊂ G is an algebraic subgroup such that
the base change BF ⊂ GF is a maximal solvable algebraic subgroup.

(2) A reductive algebraic group G is said to be quasi-split if it contains a Borel
subgroup B ⊂ G.

Example 2.23 (Unitary groups). Suppose E/F is a separable degree 2 extension
of fields. Then there is a unique nontrivial involution of E fixing F which one calls
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conjugation and denotes by a �→ a, for a ∈ E. The unitary group is the matrix
group

U(n, J,E/F ) = {A ∈ GL(n,E)|Aτ
JA = J, det(A) = 1}

where J
τ

= J is nondegenerate. We can view U(n, J,E/F ) as a subgroup of
GL(2n, F ) cut out by equations defined over F , and hence U(n, J,E/F ) is a reduc-
tive algebraic group defined over F .

If we take J to be antidiagonal, then U(n, J,E/F ) is quasi-split with Borel
subgroup its upper-triangular matrices. But if we take J to be the identity matrix,
then for example U(n, J,C/R) is the familiar compact unitary group which is as far
from quasi-split as possible. (All of its connected algebraic subgroups are reductive,
and so have trivial unipotent radical.)

Suppose we are given an algebraic group G defined over a number field F , and
also a commutative ring R with a locally compact topology. Then the group of
R-points G(R) is a locally compact topological group, and so amenable to the
techniques of harmonic analysis. Most prominently, G(R) admits a bi-invariant
Haar measure, and we can study representations such as L2(Γ\G(R)), for dis-
crete subgroups Γ ⊂ G(R). As harmonic analysts, our hope is to classify the irre-
ducible representations of G(R), and decompose complicated representations such
as L2(Γ\G(R)) into irreducibles. Our wildest dreams are to find precise analogues
of the successes of Fourier analysis where the initial group G is commutative.

For example, suppose we are given a reductive algebraic group G defined over
the integers Z, so in particular, the rational numbers Q. Then we can take K to
be either the local field of p-adic numbers Qp or real numbers R. We obtain the
p-adic groups G(Qp) and the real Lie group G(R). They are locally compact with
respective maximal compact subgroups G(Zp) where Zp ⊂ Qp is the compact unit
ball of p-adic integers, and K(R), where K ⊂ G is the fixed points of the involution
which takes a matrix to its inverse transpose. Finally, we can consider them all
simultaneously by forming the locally compact adèlic group

G(AQ) �
rest∏

p prime

G(Qp)×G(R).

It is a fundamental observation that the inclusion Q ⊂ AQ induces an inclusion
G(Q) ⊂ G(AQ) with discrete image, and so the space of automorphic functions
L2(G(Q)\G(AQ)) presents a natural representation of G(AQ), and in particular of
the p-adic groups G(Qp) and Lie group G(R), to approach via harmonic analysis.

In general, for a reductive algebraic group G defined over an arbitrary number
field F , by passing to all of the completions of F , we obtain the locally compact
p-adic groups G(Fp) and possibly the Lie groups G(R) and G(C), depending on
whether R and C occur as completions. They are locally compact with respective
maximal compact subgroups G(Op) ⊂ G(Fp) where Op ⊂ Fp is the ring of integers,
K(R) ⊂ G(R), where K ⊂ G is the fixed points of the involution which takes a
matrix to its inverse transpose, and U(C) ⊂ G(C), where U ⊂ G is the fixed points
of the involution which takes a matrix to its conjugate inverse transpose. We can
form the locally compact adèlic group

G(AF ) �
rest∏

p

G(Fp)×G(R)r ×G(C)c
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where p runs over all non-Archimedean completions of F . As with the rational
numbers, the inclusion F ⊂ AF induces an inclusion G(F ) ⊂ G(AF ) with discrete
image, and so the space of automorphic functions L2(G(F )\G(AF )) presents a
natural representation of G(AF ) to approach via harmonic analysis.

Example 2.24. The automorphic representation L2(G(F )\G(AF )) is far less ab-
stract than might initially appear. Rather than recalling the general statement of
strong approximation, we will focus on the classical case when our number field
is the rational numbers F = Q and our group is G = SL(2). Inside of the adèlic
group G(AQ), consider the product of maximal compact subgroups

K =
∏

p prime

SL(2,Zp)× SO(2,R).

Then with H ⊂ C denoting the open upper halfplane, there is a canonical identifi-
cation

SL(2,Q)\SL(2,AQ)/K � SL(2,Z)\SL(2,R)/SO(2,R)

� SL(2,Z)\H,

and the latter is the moduli of elliptic curves. By passing to smaller and smaller
subgroups of K, we obtain the moduli of elliptic curves with level structure. This
classical realization opens up the study of the original automorphic representation to
the more familiar techniques (Laplace-Beltrami operators, Hecke integral operators)
of harmonic analysis.

Remark 2.25. It is beyond the scope of this article to explain, but suffice to say, the
deepest secrets of the universe are contained in the spectrum of the automorphic
representation L2(G(F )\G(AF )). The Langlands correspondence is a conjectural
description of the spectrum, with the most prominent ingredient being represen-
tations of the Galois group Gal(F/F ). Thanks to the symmetry of the situation,
one can turn things around and attempt to understand Gal(F/F ) in terms of
L2(G(F )\G(AF )). When one shows that a Galois representation is automorphic,
or in other words, occurs in the spectrum, this leads to many deep structural im-
plications.

Not only in general, but even in specific cases, it is extremely difficult to con-
firm that a given Galois representation is automorphic. Often the only hope is to
bootstrap off of the precious few historical successes by concrete techniques such as
induction and less obviously justified approaches such as prayer. But the prospect
of success is at least supported by Langlands’s functoriality which conjectures that
whenever there is an obvious relation between Galois representations, there should
be a parallel relation between automorphic representations. In particular, there are
often highly surprising relations between automorphic representations for different
groups corresponding to much more prosaic relations of Galois representations. It
is in this context that the Fundamental Lemma plays an essential role.

Now we arrive at the Arthur-Selberg Trace Formula which is the primary tool
in the study of automorphic representations. For simplicity, let us restrict for the
moment to the far more elementary setting where the quotient G(F )\G(AF ) is
compact. The group algebra C∞

c (G(AF )) of smooth, compactly supported func-
tions on the adèlic group acts on the automorphic representation L2(G(F )\G(AF ))
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by compact operators

R(ϕ)f(g) =

∫

G(AF )

ϕ(gh)f(h)dh.

It follows that the representation decomposes as a Hilbert space direct sum of
irreducible unitary representations

L2(G(F )\G(AF )) �
⊕

ι

mιπι

We can form the character TraceR as a distribution onG(AF ). The formal analogue
of the Frobenius character formula 2.1 is an instance of the Selberg Trace Formula.

Theorem 2.26 (Selberg Trace Formula for compact quotient). Suppose G(F )\G(AF )
is compact. Then for any test function ϕ ∈ C∞

c (G(AF )), we have an identity
∑

γ∈G(F )/G(F )

aγOγ(ϕ) =
∑

ι

mιχι(ϕ)

where aγ is the volume of the quotient Gγ(F )\Gγ(AF ), and the distribution Oγ is
the orbital integral

Oγ(ϕ) =

∫

[γ]⊂G

ϕ

over the G(AF )-conjugacy class [γ] ⊂ G(AF ).

For modern theory and applications, one needs Arthur’s generalizations of the
Selberg Trace Formula for very general quotients. The technical details are formi-
dable and Arthur’s expositions can not be improved upon. But its formal structure
and application is the same. On the geometric side, we have a formal sum involving
volumes and explicit orbital integrals in the adèlic group. On the spectral side, we
have the character of the automorphic representation expressed as a formal inte-
gral over the characters of irreducible representations. The identification of the two
sides gives us a starting point to attempt to understand the spectrum in terms of
geometry.

Although there are important and difficult issues in making this formal picture
rigorous, there is an immediately accessible piece of it which can be isolated. On
the spectral side, there is the discrete part of the automorphic spectrum consisting
of irreducibles which occur on their own with positive measure. On the geometric
side, there are orbital integrals for elements γ ∈ G(F ) whose centralizers Gγ are
anisotropic tori.

The Fundamental Lemma is needed for the comparison of the anisotropic terms of
the geometric side of the trace formula for different groups. We can leave for another
time the thorny complications of other aspects of the trace formula. From hereon,
we can focus on orbital integrals over anisotropic conjugacy classes. Moreover, we
can expand each anisotropic orbital integral around each adèlic place to obtain

Oγ(ϕ) =
∏

p

Oγ(ϕp)(2.2)

where p runs over all completions of F , we expand γ at each place, Oγ(ϕp) denotes
the orbital integral along the conjugacy class [γ] ⊂ G(Fp), and without sacrificing
too much, we work with a product test function ϕ = (ϕp). Thus from hereon,
leaving global motivations behind, we can focus on orbital integrals over conjugacy
classes in local groups.
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3. Eigenvalues versus characteristic polynomials

Our discussion of the previous section is a success if the reader comes away with
the impression that outside of the formidable technical issues in play, the basic idea
of the trace formula is a kind of formal tautology. The great importance and mag-
ical applications of Arthur’s generalizations to arbitrary adèlic groups are found
in comparing trace formulas for different groups. This is the primary approach
to realizing instances of Langlands’s functoriality conjectures on the relation of
automorphic forms on different groups. The general strategy is to compare the
geometric sides where traces are expressed in concrete terms, and thus arrive at
conclusions about the mysterious spectral sides. By instances of Langlands’s reci-
procity conjectures, the spectral side involves Galois theory, and eventually leads
to deep implications in number theory.

Now an immediate obstruction arises when one attempts to compare the geomet-
ric sides of the trace formulas for different groups. Orbital integrals over conjugacy
classes in different groups have no evident relation with each other. Why should
we expect conjugacy classes of say symplectic matrices and orthogonal matrices
to have anything to talk about? If we diagonalize them, their eigenvalues live in
completely different places. But here is the key observation that gives one hope:
the equations describing their eigenvalues are in fact intimately related. In other
words, if we pass to an algebraic closure, where equations and their solutions are
more closely tied, then we find a systematic relation between conjugacy classes. To
explain this further, we will start with some elementary linear algebra, then build
to Langlands’s theory of endoscopy, and in the end, arrive at the Fundamental
Lemma.

3.1. The problem of Jordan canonical form. Suppose we consider a field k,
and a finite-dimensional k-vector space V � kn. Given an endomorphism A ∈
Endk(V ) � Mn×n(k), form the characteristic polynomial

pA(t) = det(t IdV −A) = a0 + a1t+ · · ·+ an−1t
n−1 + tn ∈ k[t].

For simplicity, we will assume that the roots of pA(t), or equivalently, the eigenvalues
λ1, . . . , λn of A, are all distinct. Of course, if k is not algebraically closed, or more
generally, does not contain the roots of pA(t), we will need to pass to an extension
of k to speak concretely of the roots.

Let’s review the two “canonical” ways to view the endomorphism A. On the one
hand, we can take the coefficients of pA(t) and form the companion matrix

CA =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
0 0 · · · 1 −an−1

⎤

⎥⎥⎥⎥⎥
⎦

Since we assume that pA(t) has distinct roots, and hence is equal to its minimal
polynomial, C is the rational normal form of A, and hence A and CA will be
conjugate. We think of this as the naive geometric form of A.

On the other hand, we can try to find a basis of V in which A is as close to
diagonal as possible. If k is algebraically closed, or more generally, contains the
eigenvalues of A, then we will be able to conjugate A into Jordan canonical form.
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In particular, since we assume that A has distinct eigenvalues, A will be conjugate
to the diagonal matrix

DA =

⎡

⎢⎢⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥⎥⎥
⎦

We think of this as the sophisticated spectral form of A. It is worth noting that
the most naive “trace formula” is found in the identity

Trace(A) = −an−1 = λ1 + · · ·+ λn

which expresses the spectral eigenvalues of A in terms of the geometric sum along
the diagonal of A.

When k is not algebraically closed, or more specifically, does not contain the
eigenvalues of A, understanding the structure of A is more difficult. It is always
possible to conjugateA into rational normal form, but not necessarily Jordan canon-
ical form. One natural solution is to fix an algebraic closure k̄, and regard A as
an endomorphism of the extended vector space V = V ⊗k k̄ � k̄n. Then we can
find a basis of V for which A is in Jordan canonical form. Equivalently, we can
conjugate A into Jordan canonical form by an element of the automorphism group
Autk̄(V ) � GL(n, k̄). This is particularly satisfying since Jordan canonical forms
of matrices completely characterize their structure.

Lemma 3.1. If two matrices A,A′ ∈ Mn×n(k) are conjugate by an element of
GL(n, k̄), they are in fact conjugate by an element of GL(n, k).

All of the subtlety of the Fundamental Lemma emanates from the difficulty that
when we consider subgroups of GL(n), the above lemma consistently fails. For
example, suppose we restrict the automorphism group of our vector space V to be
the special linear group SL(n). In other words, we impose that the symmetries
of V be not all invertible linear maps, but only those preserving volume. Then
Jordan canonical form is no longer a complete invariant for the equivalence classes
of matrices.

Example 3.2. Take k = R. Consider the rotations of the real plane V = R
2 given

by the matrices

A(θ) =

ï
cos(θ) − sin(θ)
sin(θ) cos(θ)

ò
A′(θ) =

ï
cos(θ) sin(θ)
− sin(θ) cos(θ)

ò
.

Observe that both A(θ), A′(θ) lie in SL(2,R), and they are conjugate by the matrix

M =

ï
i 0
0 −i

ò
∈ SL(2,C).

Furthermore, when θ �∈ πZ, there is no element in SL(2,R) which conjugates one
into the other. When we view A(θ), A′(θ) as endomorphisms of the complex plane
V = C

2, they both are conjugate to the diagonal matrix

D(θ) =

ï
cos(θ) + i sin(θ) 0

0 cos(θ)− i sin(θ)

ò
.
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Let us introduce some Lie theory to help us think about the preceding phenom-
enon. For simplicity, we will work with a split reductive group G whose derived
group Gder = [G,G] is simply connected. For example, the split classical groups of
Example 2.21 are all simple, hence equal to their derived groups. The special linear
and symplectic groups are simply-connected, but for the special orthogonal group,
one needs to pass to the spin two-fold cover.

Fix a split maximal torus T ⊂ G, and recall that the Weyl group of G is the
finite group W = NT /T , where NT ⊂ G denotes the normalizer of T . All split tori
are conjugate by G(k) and the choice of T ⊂ G is primarily for convenience.

To begin, let us recall the generalization of Jordan canonical form. Recall that
to diagonalize matrices with distinct eigenvalues, in general, we have to pass to an
algebraically closed field k.

Definition 3.3. For an element γ ∈ G(k), let Gγ ⊂ G denote its centralizer.
(1) The element γ is said to be regular if Gγ is commutative.
(2) The element γ is said to be semisimple if Gγ is connected and reductive.
(3) The element γ is said to be regular semisimple if it is regular and semisimple,

or equivalently Gγ is a torus.
(3) The element γ is said to be anisotropic if Gγ is an anisotropic torus.

Example 3.4. Take k = R and G = SL(2). Consider the elements

r =

ï
1 1
0 1

ò
s =

ï
1 0
0 1

ò
h =

ï
2 0
0 1/2

ò
a =

ï
0 −1
1 0

ò

with respective centralizers Tr = Z/2Z×A
1, Ts = SL(2), Th = GL(1), Ta = SO(2).

Thus r is regular, s is semisimple, h and a are regular semisimple, and a is aniso-
tropic. To see the latter fact, observe that there are no nontrivial homomorphisms
S1 → R

× of their groups of R-points.

Remark 3.5. Some prefer the phrase strongly regular semisimple for an element γ ∈
G(k) whose centralizer Gγ is a torus and not a possibly disconnected commutative
reductive group. When Gder is simply-connected, if the centralizer Gγ is a reductive
group then it will be connected.

Remark 3.6. Some might prefer to define anisotropic to be slightly more general.
Let us for the moment call a regular semisimple element γ ∈ G(F ) anistropic
modulo center if the quotient T/Z(G) of the centralizer T = Gγ by the center Z(G)
is anisotropic.

A group with split center such as GL(n) will not have anisotropic elements, but
will have elements anisotropic modulo center. A regular semisimple element γ ∈
GL(n) will be anisotropic modulo center if and only if its characteristic polynomial
is irreducible (and separable).

For the Fundamental Lemma, we will be able to focus on anisotropic elements.
Somewhat surprisingly, it is not needed for GL(n) where there is no elliptic en-
doscopy.

The following justifies the idea that semisimple elements are “diagonalizable”
and regular semisimple elements are “diagonalizable with distinct eigenvalues”.

Proposition 3.7. (1) Every semisimple element of G(k) can be conjugated into
T (k).



THE GEOMETRIC NATURE OF THE FUNDAMENTAL LEMMA 21

(2) Two semisimple elements of T (k) are conjugate in G(k) if and only if they
are conjugate by the Weyl group WG.

(3) An element of T (k) is regular semisimple if and only the Weyl group WG

acts on it with trivial stabilizer.

Second, let us generalize the notion of characteristic polynomial. Recall that the
coefficients of the characteristic polynomial are precisely the conjugation invariant
polynomial functions on matrices.

Theorem 3.8 (Chevalley Restriction Theorem). The G-conjugation invariant poly-
nomial functions on G are isomorphic to the W -invariant polynomial functions on
T . More precisely, restriction along the inclusion T ⊂ G induces an isomorphism

k[G]G
∼ �� k[T ]W .

Passing from polynomial functions to algebraic varieties, we obtain theG-invariant
Chevalley morphism

χ : G �� T/W = Spec k[T ]W .

It assigns to a group element its “unordered set of eigenvalues”, or in other words
its characteristic polynomial.

Finally, let us mention the generalization of rational canonical form for split
reductive groups. Recall that a pinning of a split reductive group G consists of
a Borel subgroup B ⊂ G, split maximal torus T ⊂ B, and basis vectors for the
resulting simple positive root spaces. The main consequence of a pinning is that
only central conjugations preserve it, and so it does away with ambiguities coming
from inner automorphisms. (For slightly more discussion, including the example of
G = SL(n), see Section 3.3 below where we discuss root data.)

Theorem 3.9 (Steinberg section). Given a pinning of the split reductive group G
with split maximal torus T ⊂ G, there is a canonical section

σ : T/W �� G

to the Chevalley morphism χ. In other words, χ ◦ σ is the identity.

Thus to each “unordered set of eigenvalues”, we can assign a group element with
those eigenvalues.

With the above results in hand, we can now introduce the notion of stable
conjugacy. Recall that given γ ∈ G(k), we denote by [γ] ⊂ G(k) the conjugacy
class through γ.

Definition 3.10. Let G be a simply-connected reductive algebraic group defined
over a field k.

We say two regular semisimple elements γ, γ′ ∈ G(k) are stable conjugate and
write γ∼stγ

′ if they satisfy one of the following equivalent conditions:
(1) γ and γ′ are conjugate by an element of G(k),
(2) γ and γ′ share the same characteristic polynomial χ(γ) = χ(γ′).
Given γ ∈ G(k), the stable conjugacy class [γ]st ⊂ G(k) through γ consists of

γ′ ∈ G(k) stably conjugate to γ.

Remark 3.11. Experts in algebraic groups over fields of finite characteristic will
note the useful fact that in Proposition 3.7 and Definition 3.10, one need only go
to the separable closure ks.
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Recall that the geometric side of the trace formula leads to orbital integrals over
conjugacy classes of regular semisimple elements in groups over local fields. The
theory of canonical forms for elements is intricate, and conjugacy classes are not
characterized by their Jordan canonical forms. The complication sketched above for
SL(2,R) is quite ubiquitous, and one will also encounter it for the classical groups
of Example 2.21. Any hope to understand conjugacy classes in concise terms must
involve passage to the stable conjugacy classes found over the algebraic closure. In
simpler terms, we must convert constructions depending on eigenvalues, such as
orbital integrals, into constructions depending on characteristic polynomials.

3.2. Fourier theory on conjugacy classes. Imbued with a proper fear of the in-
tricacy of conjugacy classes over non-algebraically closed fields, one dreams that the
geometric side of the trace formula could be rewritten in terms of stable conjugacy
classes which are independent of the field.

One might not expect that the set of conjugacy classes in a given stable conjugacy
class would be highly structured. But it turns out there is extra symmetry governing
the situation.

To simplify the discussion, it will be useful to make the standing assumption
that the reductive group G is simply connected, or more generally, its derived
group Gder = [G,G] is simply-connected.

Proposition 3.12. Let G be a reductive algebraic group defined over a local field
F .

Let γ0 ∈ G(F ) be a regular semisimple element with centralizer the torus T =
Gγ0

.
Then the set of conjugacy classes in the stable conjugacy class [γ0]st is naturally

a finite abelian group given by the kernel of the Galois cohomology map

Aγ0
� ker{H1(F, T ) �� H1(F,G)}.

In particular, it only depends on the centralizing torus T as a subgroup of G.

Remark 3.13. (1) When G is simply connected, H1(F,G) is trivial.
(2) One can view the Galois cohomology H1(F, T ) as parameterizing principal

T -bundles over SpecF . Since T is abelian, this is naturally a group. Under the
isomorphism of the proposition, the trivial bundle corresponds to γ0.

(3) One can view the quotient [γ0]st/G(F ) of the stable conjugacy class by con-
jugation as a discrete collection of classifiying spaces for stabilizers. Each of the
classifiying spaces is noncanonically isomorphic to the classifying space of T = Gγ0

.
The possible isomorphisms form a principal T -bundle giving the corresponding class
in H1(F, T ).

Now suppose we have a G(F )-invariant distribution on the stable conjugacy class
containing γ0. In other words, we have a distribution of the form

δ(ϕ) =
∑

γ∈Aγ0

cγOγ(ϕ)

where as usual Oγ(ϕ) denotes the orbital integral over the G(F )-conjugacy class
through γ. In what sense could we demand the distribution δ be invariant along
the entire stable conjugacy class? Requiring the coefficients cγ are all equal is a lot
to ask for, but there is a reasonable generalization presented by Fourier theory.
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Consider the Pontryagin dual group of characters

AD
γ0

= Hom(Aγ0
,C×).

Definition 3.14. Let G be a reductive algebraic group defined over a local field
F . Let γ0 ∈ G(F ) be an anisotropic element.

Given κ ∈ AD
γ0
, the κ-orbital integral through γ0 is the distribution

Oκ
γ0
(ϕ) =

∑

γ∈Aγ0

κ(γ)Oγ(ϕ)

In particular, when κ = e ∈ AD
γ0

is the trivial character, the stable orbital integral
is the distribution

SOγ0
(ϕ) = Oe

γ0
(ϕ).

Remark 3.15. Observe that the stable orbital integral SOγ0
(ϕ) is independent of

the choice of base point γ0 in the stable conjugacy class. Thus it is truly associated
to the characteristic polynomoial χ(γ0).

On the other hand, the dependence of the κ-orbital integral Oκ
γ0
(ϕ) on the base

point γ0 is modest but nontrivial. If one chooses some other γ′
0 ∈ Aγ0

, the resulting
expression will scale by κ(γ′

0). For groups with simply-connected derived groups,
there is the base point, which is canonical up to a choice of pinning, given by the
image of the Steinberg section σ(χ(γ0)).

Now by Fourier theory, we can write our original distribution δ as a finite sum

δ(ϕ) =
∑

κ∈AD
γ0

cκOκ
γ0
(ϕ).

Hence while δ might not have been stable, it can always be written as a linear com-
bination of distributions which vary along the stable conjugacy class by a character.

Now to proceed any further, we must understand the character group

AD
γ0

= Hom(Aγ0
,C×).

A closer examination of the possible characters will reveal the possibility of a deep
reinterpretation of the κ-orbital integrals.

Suppose the local field F is non-Archimedean, and fix a torus T defined over F .
Recall that we can think of T as the information of a split torus TF � GL(1)k over

the algebraic closure F , together with the Galois descent data needed to recover
the original equations cutting out T . The descent is captured by the finite action
of the Galois group Γ = Gal(F/F ) on the cocharacter lattice

X∗(TF ) = Hom(GL(1), TF ) � Z
k.

Consider the dual complex torus

T∨ = SpecC[X∗(TF )] � GL(1)k

whose monomial functions are the cocharacter lattice. The Γ-action on X∗(TF )
induces a corresponding Γ-action on T∨.

Proposition 3.16 (Local Tate-Nakayama duality). Assume F is a non-Archimedean
local field. There is a canonical identification of abelian groups

H1(F, T )D � π0((T
∨)Γ)

between the Pontryagin dual of the Galois cohomology of T , and the component
group of the Γ-invariants in the dual torus T∨.



24 DAVID NADLER

Remark 3.17. When G is simply connected, H1(F,G) is trivial, and so we have
calculated AD

γ0
.

When G is not simply-connected, elements of π0((T
∨)Γ) nonetheless restrict to

characters of AD
γ0
. It is an exercise to relate the kernel of this restriction to π1(G).

Thus a regular semisimple element γ0 ∈ G(F ) provides a centralizing torus
T = Gγ0

which in turn determines a Galois action on the dual torus T∨. To each
element κ ∈ (T∨)Γ in the Galois-fixed locus, we can associate the κ-orbital integral
Oκ

γ0
(ϕ) defined by the image of κ in the component group π0((T

∨)Γ).

3.3. Endoscopic groups and the Fundamental Lemma. We have reached a
pivotal point in our discussion. Let’s step back for a moment and take measure of
its successes and shortcomings.

Given a number field F , and a reductive algebraic group G defined over F , we
aim to understand the automorphic representation L2(G(F )\G(AF )). Our main
tool is the Arthur-Selberg Trace Formula which provides the character of the rep-
resentation in terms of orbital integrals over conjugacy classes of the adèlic group.
Furthermore, we have focused on the anisotropic conjugacy classes and expressed
their orbital integrals in terms of κ-twisted orbital integrals over stable conjugacy
classes in p-adic groups.

It is not too much of a stretch to argue that the κ-stable orbital integrals Oκ
γ0
(ϕ)

are more appealing than the basic orbital integrals Oγ(ϕ) since their dependence
on the conjugacy classes within a stable conjugacy class is through a character
rather than a specific choice of conjugacy class. This is an early manifestation of
the motivic, or universal algebraic, nature of the κ-orbital integrals. But of course,
aesthetics aside, Fourier inversion tells us we can go back and forth between the
two, and so in some sense we have not accomplished very much.

Thus perhaps we have made a Faustian bargain: we have traded the evident
geometric structure of basic orbital integrals Oγ(ϕ) for the representation theoretic
structure of κ-orbital integrals Oκ

γ0
(ϕ). With our original aim to compare trace

formulas for different groups, one could even worry that we have made things more
difficult rather than less. Indeed, one could argue that what we have done “is
obviously useless, because the term Oκ

γ0
(ϕ) is still defined in terms of G” rather

than some other group [H].
But now we have arrived in the neighborhood of the Fundamental Lemma. It

is the lynchpin in Langlands’s theory of endoscopy which relates κ-orbital integrals
to stable orbital integrals on other groups. The theory of endoscopy (for which we
recommend the original papers of Kottwitz [K84, K86]) has many facets, but at its
center is the following question:

For a local field F , given an element γ0 ∈ G(F ), and a compatible
character κ ∈ T∨, on what group H should we try to express the
κ-orbital integral Oκ

γ0
(ϕ) as a stable orbital integral?

The answer is what ones calls the endoscopic group associated to the given data.
At first pass, it is a very strange beast, neither fish nor fowl. But the Fundamental
Lemma is what confirms it is the correct notion.

There is a great distance between the intuitive idea of an endoscopic group
and the minimal notions one needs to at least spell out the Fundamental Lemma.
Most of the technical complications devolve from the intricacy of Galois descent
for quasi-split groups. So it seems useful, though less efficient, to first explain the
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basic notions assuming all groups are split (Definition 2.19), and then add in the
necessary bells and whistles for quasi-split groups (Definition 2.22).

3.3.1. Split groups. We begin with a reminder of the “combinatorial skeleton” of
a split reductive group given by its root datum. We will always equip all split
reductive groups G with a pinning consisting of a Borel subgroup B ⊂ G, split
maximal torus T ⊂ B, and basis vectors for the resulting simple positive root
spaces. This has the effect of providing a canonical splitting

1 �� Inn(G) = G/Z(G) �� Aut(G) �� Out(G) ����
1

since the automorphisms of G preserving the pinning map isomorphically to the
outer automorphisms of G.

Example 3.18. Take G = SL(n) and T ⊂ SL(n) the split maximal torus of
diagonal matrices of determinant one.

Then the symmetric group Σn acts simply transitively on the possible Borel
subgroups B ⊂ G satisfying T ⊂ B. Let us choose B ⊂ SL(n) to consist of
upper-triangular matrices of determinant one.

The resulting simple positive root spaces can be identified with the n− 1 super-
diagonal matrix entries (directly above the diagonal). Let us choose the basis given
by taking the element 1 in each simple positive root space.

The outer automorphisms Out(SL(2)) are trivial, but when n > 2, the outer
automorphisms Out(SL(n)) are the group Z/2Z. The above pinning realizes the
nontrivial outer automorphism as the automorphism given by

A � �� M(A−1)τM−1, A ∈ SL(n),

where τ denotes the transpose operation, and M is the antidiagonal matrix with
Mi,n−i+1 = 1 when i < n/2, and Mi,n−i+1 = −1 when i ≥ n/2.

Definition 3.19. (1) A (reduced) root datum is an ordered quadruple

Ψ = (X,Φ, X∨,Φ∨)

of the following data:

(1) X,X∨ are finite rank free Z-modules in duality by a pairing

〈, 〉 : X ×X∨ �� Z

(2) Φ,Φ∨ are finite subsets of X,X∨ respectively in fixed bijection

α �� �� α∨

We will always assume that our root data are reduced in the sense that if α ∈ Φ,
then cα ∈ Φ if and only if c = ±1.

The data must satisfy the following properties:

(a) 〈α, α∨〉 = 2,
(b) sα(Φ) ⊂ Φ, s∨α(Φ

∨) ⊂ Φ∨, where

sα(x) = x− 〈x, α∨〉α, x ∈ X,α ∈ Φ,
s∨α(y) = y − 〈α, y〉α∨, y ∈ X∨, α ∈ Φ.
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The Weyl group WΨ of the root datum is the finite subgroup of GL(X) generated
by the reflections sα, for α ∈ Φ.

(2) A based root datum is an ordered sextuple

Ψ = (X,Φ,Δ, X∨,Φ∨,Δ∨)

consisting of a root datum (X,Φ, X∨,Φ∨) together with a choice of subsets

Δ ⊂ Φ,Δ∨ ⊂ Φ∨

satisfying the following properties:

(a) the bijection Φ ←→ Φ∨ restricts to a bijection Δ ←→ Δ∨,
(b) there exists an element v ∈ X with trivial stabilizer in WΨ, for which we

have

Δ∨ = {α∨ ∈ Φ∨|〈v, α∨〉 > 0}

To a split reductive group G with a Borel subgroup B ⊂ G, and maximal torus
T ⊂ B, one associates the based root datum

Ψ(G) = (X∗,ΦG,ΔG, X
∗,Φ∨

G,Δ
∨
G)

consisting of the following:

• X∗ = X∗(T ) = Hom(GL(1), T ) the cocharacter lattice,
• X∗ = X∗(T ) = Hom(T,GL(1)) the character lattice,
• ΦG ⊂ X∗ the coroots,
• Φ∨

G ⊂ X∗ the roots,
• ΔG ⊂ ΦG the simple coroots, and
• Δ∨

G ⊂ Φ∨
G the simple roots.

The Weyl group WΨ(G) coincides with the usual Weyl group WG = NT /T .
Here is a key motivation for the notion of based root data.

Theorem 3.20. Fix a field k.
(1) Every based root datum Ψ is isomorphic to the based root datum Ψ(G) of

some split reductive group G, defined over k, and equipped with a pinning.
(2) The automorphisms of the based root datum Ψ(G) are isomorphic to the outer

automorphisms of G, or equivalently, the automorphisms of G, as an algebraic group
defined over k, that preserve its pinning.

The combinatorial classification of groups finds ubiquitous application, and is
further justified by many natural occurrences of related structures such as Dynkin
diagrams. But one of its initially naive but ultimately deep implications is the
evident duality for reductive groups coming from the duality of root data. It gen-
eralizes the very concrete duality for tori we have seen earlier which assigns to a
split torus T = Spec k[X∗(T )] the dual complex torus T∨ = SpecC[X∗(T )].

Definition 3.21. Let G be a split reductive group with based root datum

Ψ(G) = (X∗,ΦG, X
∗,Φ∨

G,ΔG,Δ
∨
G).

The Langlands dual group G∨ is the split reductive complex algebraic group with
dual based root datum

Ψ(G∨) = (X∗,Φ∨
G,Δ

∨
G, X∗,ΦG,ΔG).
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Remark 3.22. We have stated the duality asymmetrically, where G is defined over
some field k, but the dual group G∨ is always a complex algebraic group. Observe
that such asymmetry arose for tori when we described complex characters. In
general, it stems from the fact that our automorphic representations are complex
vector spaces.

For a group G with Langlands dual group G∨, the maximal torus T∨ ⊂ G∨ is
the dual of the maximal torus T ⊂ G, the Weyl groups WG and WG∨ coincide, the
outer automorphisms Out(G) and Out(G∨) coincide, and the roots of G are the
coroots of G∨ and vice-versa. If G is simple, then so is G∨, and if in addition G is
complex, Z(G) � π1(G

∨) and vice-versa (generalizations of the last assertion are
possible but one has to be careful to compare potentially different kinds of groups).

Example 3.23. The following are pairs of Langlands dual groups: GL(n) ←→
GL(n), SL(n) ←→ PGL(n), SO(2n+ 1) ←→ Sp(2n), SO(2n) ←→ SO(2n).

Although the above definition is concrete, there is a deep mystery in passing from
a group to root data, dual root data, and then back to a group again. Commutative
and combinatorial structures are the only things which can easily cross the divide.3

Now we arrive at the notion of endoscopic group in the context of split groups.

Definition 3.24. Let G be a split reductive algebraic group with split maximal
torus T ⊂ G.

(1) Split endoscopic data is an element κ ∈ T∨ ⊂ G∨.
(2) Given split endoscopic data κ ∈ T∨, the associated split endoscopic group of

G is the split reductive algebraic group H whose Langlands dual group H∨ is the
connected component of the centralizer G∨

κ ⊂ G∨ of the element κ.

It follows immediately that T is also a maximal torus of H and the coroots
ΦH are a subset of the coroots ΦG. More precisely, the element κ ∈ T∨ =
Hom(X∗(T ), GL(1)) can be evaluated on X∗(T ), and in particular on ΦG ⊂ X∗(T ),
and the coroots ΦH are given by the kernel

ΦH = {α ∈ ΦG|κ(α) = 1}.

This immediately implies that the roots Φ∨
H are the corresponding subset of the

roots ΦG, and the Weyl group WH is a subgroup of the Weyl group WG. But this
by no means implies that H is anything close to a subgroup of G.

Example 3.25. We will work with the split groups defined in Example 2.21.
Take G = Sp(2n) the symplectic group so that G∨ = SO(2n + 1) the odd

orthogonal group. Recall that the diagonal matrices inside of SO(2n+1) furnish a
split maximal torus T∨. Take the element

κ =

ï
1 0
0 −In

ò
∈ T∨

with centralizer O(2n) which is disconnected with connected component H∨ =
SO(2n). Taking the Langlands dual ofH∨ gives the endoscopic groupH = SO(2n).

3There are many hints in quantum field theory of “missing” higher-dimensional objects which
can be specialized on the one hand to reductive groups, and on the other hand to their root data.
But until they or their mathematical analogues are understood in some form, the relation of group
to root data and hence to dual group will likely remain mysterious.



28 DAVID NADLER

Figure 2. The root system of the group Sp(4) with the roots of
the endoscopic group SO(4) highlighted. Reflected in the back-
ground is the root system for the Langlands dual group SO(5)
with the roots of the subgroup SO(4) highlighted.

One can check that there is no nontrivial homomorphism from SO(2n) to Sp(2n)
when n ≥ 3. (When n = 2, there are homomorphisms, but they do not induce the
correct maps on root data.)

3.3.2. General story: quasi-split groups. Now we will pass to the general setting of
quasi-split groups. The inexperienced reader could skip this material and still find
plenty of interesting instances of the Fundamental Lemma to ponder. Throughout
what follows, let F be a non-Archimedean local field with residue field f .

Definition 3.26. (1)A field extension E/F with residue field e/f is said to be
unramified if the degrees satisfy [E : F ] = [e : f ].

(2) A reductive algebraic group G defined over a local field F is said to be
unramified if the following hold:

(a) G is quasi-split,
(b) GFun is split for the maximal unramified extension Fun/F .

Unramified groups G are combinatorial objects, classified by the split reductive
group GFun together with the Galois descent homomorphism

ρG : Gal(Fun/F ) �� Out(G)

which is completely determined by its value on the Frobenius automorphism.
To state the general notion of unramified endoscopic group, we will need the

following standard constructions. Given a split reductive group G, and an element
κ ∈ T∨ ⊂ G∨, recall that we write H∨ for the connected component of the cen-
tralizer G∨

κ ⊂ G∨ of the element κ. We will write π0(κ) for the component group
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of the centralizer of the element (κ, e) of the semi-direct product G∨
� Out(G∨).

There are canonical maps

Out(H∨) π0(κ)
πH∨�� πG∨ �� Out(G∨)

WH∨ �Out(H∨) �� WG∨ �Out(G∨)

where the latter is compatible with the actions on T∨ and projections to π0(κ), and
extends the canonical inclusion WH∨ → WG∨ .

Definition 3.27. Let G be an unramified reductive group, so in particular quasi-
split with Borel subgroup B ⊂ G, and (not necessarily split) maximal torus T ⊂ B.

(1) Unramified endoscopic data is a pair (κ, ρκ) consisting of an element κ ∈
T∨ ⊂ G∨, and a homomorphism

ρκ : Gal(Fun/F ) �� π0(κ) such that ρG = πG∨ ◦ ρκ.

(2) Given unramified endoscopic data (κ, ρκ), the associated unramified endo-
scopic group of G is the unramified reductive group H defined over F constructed
as follows. Recall that the split endoscopic group Hspl associated to the element κ
is the connected component of the centralizer G∨

κ ⊂ G∨. The endoscopic group H
is the form of Hspl defined over F by the the Galois descent homomorphism

ρH = πH∨ ◦ ρκ : Gal(Fun/F ) �� Out(Hspl).

Example 3.28 (Endoscopic groups for SL(2)). There are three unramified endo-
scopic groups for SL(2). Recall that the dual group is PGL(2).

(1) SL(2) itself with κ = e ∈ T∨ the identity, and ρκ trivial.
(2) GL(1) with κ �= e ∈ T∨ any nontrivial element, and ρκ trivial.
(3) U(1, E/F ) with κ = −e ∈ T∨ the square-root of the identity, and ρκ the

non-trivial map to π0(κ) � Z/2Z.

The first two are split, but the last is not.

3.3.3. Statement of Fundamental Lemma. Finally, we arrive at our destination.
The Fundamental Lemma relates the κ-orbital integral over a stable conjugacy

class in the group G with the stable orbital integral over a stable conjugacy class in
an endoscopic group H. Such an idea should lead to some immediate confusion: the
orbital integrals to be compared are distributions on different groups, so to compare
them we must also have some correspondence of test functions.

There is a deep and intricate theory of transferring test functions of which the
Fundamental Lemma is in some sense the simplest and thus most important in-
stance. It states that in the most hospitable situation, the most simple-minded
transfer of the simplest test functions leads to a good comparison of orbital in-
tegrals. There are many variations (twisted, weighted, ...) of the Fundamental
Lemma, but the most important are now understood thanks to reductions to the
Fundamental Lemma or extensions of the ideas of its proof.

Fix an unramified group G defined over F . The fact that G is unramified implies
that it is the localization of a smooth affine group scheme G defined over the ring
of integers OF whose special fiber over the residue field k is connected reductive.

Definition 3.29. A maximal compact subgroup K ⊂ G(F ) is said to be hyperspe-
cial if there is a smooth affine group scheme G defined over OF such that
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(1) GF = G,
(2) G(OF ) = K, and
(3) Gk is connected reductive.

Lemma 3.30. A reductive algebraic group G defined over a local field F is unram-
ified if and only if G(F ) contains a hyperspecial maximal compact subgroup.

Now an endoscopic group H is not a subgroup of G. Rather we must content
ourselves with the relationship of characteristic polynomials

H

χH

��

G

χG

��
T/WH

ν �� T/WG

This provides a relationship between stable conjugacy classes as follows. Given a
parameter aH ∈ (T/WH)(F ), we can consider its transfer aG = ν(aH) ∈ (T/WG)(F ).
Even if aH ∈ (T/WH)(F ) is regular, since the inclusion WH ⊂ WG is not an iso-
morphism (except when H = G), the transfer aG ∈ (T/WG)(F ) might not be
regular.

Definition 3.31. A parameter aH ∈ (T/WH)(F ) is said to be G-regular if it and
its transfer aG = ν(aH) ∈ (T/WG)(F ) are both regular.

Now given a G-regular parameter aH ∈ (T/WH)(F ) with transfer aG = ν(aH) ∈
(T/WG)(F ), we have the stable conjugacy class

[γH ]st = χ−1
H (aH) ⊂ H and its transfer [γG]st = χ−1

G (aG) ⊂ G.

Fundamental Lemma 3.1 ([N08]). Let F be a local field.
Let G be an unramified group defined over F .
Let H be an unramified endoscopic group for G associated to endoscopic data

(κ, ρκ).
Let KG ⊂ G(F ),KH ⊂ H(F ) be hyperspecial maximal compact subgroups.
Then for G-regular aH ∈ T/WH and transfer aG = ν(aH) ∈ (T/WG)(F ), we

have an equality

SOγH
(1KH

) = Δ(γH , γG)Oκ
γG

(1KG
)

where γH ∈ χ−1
H (aH), γG ∈ χ−1

G (aG), and Δ(γH , γG) is the transfer factor (which
shall not be defined here).

Remark 3.32. A precise formulation of transfer factors first appears in Langlands’s
joint work with D. Shelstad [LS87]. The transfer factor Δ(γH , γG) accounts for
the ambiguity that the κ-orbital integral Oκ

γG
(ϕ) depends on the choice of lift

γG ∈ χ−1
G (aG). By definition, the stable orbital integral SOγH

(ϕ) is an invariant of
aH = χH(γH). It is worth mentioning that ifG is split and the derived groupGder =
[G,G] is simply-connected, then the Steinberg section provides a distinguished lift
γG = σ(aG).

Remark 3.33. There is an analogous “Fundamental Lemma” for Archimedean local
fields, resolved long ago by D. Shelstad [S82], which one also needs for applications
of the trace formula. The example at the beginning of the Introduction fits into
this Archimedean part of the theory.
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It should be apparent that one can formulate a Lie algebra variant of the Funda-
mental Lemma. Namely, let g be the Lie algebra of G, and h the Lie algebra of an
endoscopic group. Then one can replace the stable conjugacy classes of the group
elements γH ∈ H(F ) and γG ∈ G(F ) with those of Lie algebra elements ξH ∈ h(F )
and ξG ∈ g(F ).

In fact, the situation simplifies further in that each stable conjugacy class now
has a canonical element. To see this, observe that stable conjugacy classes in the
Lie algebra g are the fibers of the Chevalley morphism

χ : g �� t/W = Spec k[t]W .

For the choice of a pinning, there is the Kostant section

σ : t/W �� g.

This is completely general, unlike for the group G, where the Steinberg section
could be defined only when the derived group Gder = [G,G] is simply-connected.

Thus with the assumptions of the Fundamental Lemma stated above, the Lie
algebra variant takes the form of an identity

SOaH
(1h(OF )) = Oκ

aG
(1g(OF ))

where we index the stable orbital integral by the parameter aH ∈ (t/WH)(F ), and
we base the κ-orbital integral at the image of the Kostant section applied to the
transfer aG = ν(aH) ∈ (t/WG)(F ). In particular, the distinguished base point
obviates the need for any transfer factor.

An important theorem of Waldspurger [W08] asserts that the Lie algebra variant
of the Fundamental Lemma implies the original statement. And it is the Lie algebra
variant which Ngô proves, and which we will turn to in the next section.

4. Geometric interpretation of Fundamental Lemma

In retrospect, the search for a proof of the Fundamental Lemma turns out to
be the search for a setting where the powerful tools of algebraic geometry – Hodge
theory, Lefschetz techniques, sheaf theory, homological algebra – could be brought
to bear on the problem. As we have seen, the Fundamental Lemma is an analytic
assertion about integrals of characteristic functions on p-adic groups. But these
functions turn out to be of motivic origin, and hence amenable to the deep mid-to-
late 20th century synthesis of algebraic geometry and algebraic topology.

Here is a historical antecedent worth keeping in mind (which is deeply intertwined
with the Fundamental Lemma and its proof). The classical Riemann hypothesis
that all non-trivial zeros of the Riemann zeta function have real part 1/2 is a
difficult problem. Even more dauntingly, it admits a well-known generalization
to any number field F for which the classical version is the case of the rational
numbers Q. Nevertheless, an analogous Riemann hypothesis for function fields
of curves, formulated by Artin, was proved for elliptic curves by Hasse, and then
for all genus curves by Weil. It involves counting the number of points of the
curve over finite fields. The basic case of the projective line is completely trivial.
The Weil conjectures are a vast generalization to all algebraic varieties. They
were a prominent focus of Grothendieck and Serre, and eventually established by
Deligne. At the heart of the proof is the interpretation of counting points in terms
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of cohomology with Galois actions. So in the end, the point counts have much more
structure than one might have thought.

4.1. Motivic origin. Though the Fundamental Lemma is a local statement, its
motivation comes from global questions about a number field. Without Langlands
functoriality and the Arthur-Selberg Trace Formula in mind, it would be hard to
arrive at the Fundamental Lemma as a reasonable assertion. Nevertheless, once
we dispense with motivation, the concrete problem to be solved involves only local
fields.

Remarkably, the analogy between number fields and function fields of curves
leads to precise mathematical comparisons between their completions. It is hard to
imagine that all of the intricate arithmetic of a number field could be found in the
geometry of an algebraic curve. For example, the structure of the rational numbers
Q is far more complicated than that of the projective line P1. But it turns out that
important structures of the p-adic fields Qp can be found in the Laurent series fields
Fp((t)). Naively, though Qp is of characteristic zero and Fp((t)) is of characteristic
p, they share the formal structure that each is a complete local field with residue
field Fp. In particular, one can transport the statement of the Fundamental Lemma
from the setting of p-adic fields to Laurent series fields.

The following liberating theorem of Waldspurger opens the door to geometric
techniques.

Theorem 4.1 ([W06]). The Lie algebra variant of the Fundamental Lemma in the
equal characteristic or geometric case of Fp((t)) implies the Lie algebra variant of
the Fundamental Lemma in the unequal characteristic or arithmetic case of Qp.

Remark 4.2. Waldspurger proves the above assertion for sufficiently large residual
characteristic p. Thanks to previous work of Hales [H95], this suffices to establish
the Fundamental Lemma for arbitrary residual characteristic.

Waldspurger’s proof is a tour de force of representation theory. It provides a
detailed analysis of constructions which are natural but specific to reductive groups.

Cluckers, Hales, and Loeser [CHL] have discovered a completely independent
proof of the above result. The context of their arguments is mathematical logic,
specifically model theory. While this is unfamiliar to many, it is very appealing in
that it gets to the heart, or motivic truth, of the independence of characteristic.
Very roughly speaking, the arguments take seriously the idea that integrals contain
more information than their numerical values. Rather, they should be thought
of as universal linear expressions for their cycles of integration weighted by their
integrands. It applies generalizations of Cluckers-Loeser [CL05, CL], building on
work of Denef-Loeser [DL01], of the classical Ax-Kochen-Ersov Theorem that given
ϕ a first order sentence (a formula with no free variables) in the language of rings,
for almost all prime numbers p, the sentence ϕ is true in Qp if and only if it is true
in Fp((t)).

4.2. Affine Springer fibers. In the geometric setting of Laurent series fields,
thanks to the Weil conjectures, the Fundamental Lemma takes on a topological
form. It comes down to comparing the cohomology of affine Springer fibers for en-
doscopic groups. We will explain what affine Springer fibers are and some beautiful
techniques of broad applicability developed to understand their cohomology.
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Affine Springer fibers were introduced by Kazhdan-Lusztig [KL88] as natural
generalizations of Grothendieck-Springer fibers. The latter play a fundamental role
in Springer’s theory of Weyl group representations, as well as Lusztig’s theory of
character sheaves. If we take the viewpoint that Grothendieck-Springer fibers are
essential to the characters of groups over a finite field, then it is not surprising that
affine Springer fibers figure prominently in the characters of p-adic groups.

For simplicity, and to appeal to topological methods, we will work here with base
field the complex numbers C. We write K = C((t)) for the Laurent series field, and
O = C[[t]] for its ring of integers.

Remark 4.3. Since C is algebraically closed, all unramified groups over K will be
split, and so we will not be discussing the most general form of the Fundamental
Lemma. We hope the broader intutions available in this setting will compensate
for the sacrifice of generality.

Let G be a complex reductive group with Lie algebra g. Consider the so-called
affine or loop group GK = G(C((t))), and its subgroup of arcs GO = G(C[[t]]).
The quotient GrG = GK/GO is called the affine Grassmannian of G. It is an
increasing union of projective varieties indexed by the natural numbers. The group
GK naturally acts on GrG by multiplication, and we can think of its Lie algebra
gK as acting infinitesimally by vector fields.

Definition 4.4. For an element ξ ∈ gK of the Lie algebra of the loop group GK,
the affine Springer fiber GrξG is the fixed-points of the vector field ξ acting on the
affine Grassmannian GrG. It admits the concrete description

GrξG = {g ∈ GK|Adg(ξ) ∈ gO}/GO

where gO denotes the Lie algebra of GO.

Although affine Springer fibers are not finite-type schemes, when the parameter
ξ is regular semisimple, their underlying reduced schemes are reasonable. We will
see this by examining the natural symmetry groups acting upon them.

First, observe that the Springer fiber only depends upon the GK-conjugacy class
of ξ, and if ξ is not conjugate to any ξ′ ∈ gO then the Springer fiber will be empty.
So there is no loss in assuming ξ ∈ gO from the start. Moreover, any regular
semisimple ξ ∈ gO is GK-conjugate to a unique ξ0 = σ(a) ∈ gO in the image of the
Kostant slice

σ : (t/W )O �� gO.

So in what follows, we will assume that ξ = σ(a) for a fixed regular element a ∈
(t/W )O.

Now, let T = (GK)ξ ⊂ GK denote the (possibly ramified) torus given by the
centralizer of ξ. Let S ⊂ T be its maximally unramified subtorus. In other words,
if we write X∗(TK) for the cocharacters of T , then the cocharacters of S are the
Galois-invariants

X∗(S) = X∗(TK)
Gal(K/K).

A key observation is that T canonically extends to a smooth commutative group-
scheme J defined over O. Namely, over the regular locus greg ⊂ g, we have the
smooth commutative group-scheme of centralizers I → greg, and we can form the
fiber product

J = SpecO ×g I
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over the base point ξ = ε(a) : SpecO → greg ⊂ g.
We will write Λξ for the coweight lattice X∗(S), and Pξ for the affine Grass-

mannian JK/JO. The latter is an increasing union of not necessarily projective
varieties. Since J is commutative, Pξ is naturally a commutative group. ¿From the

constructions, Pξ and hence also its subgroup Λξ naturally act on GrξG.

Proposition 4.5 ([KL88]). Suppose ξ ∈ gK is regular semisimple.

Then the underlying reduced scheme GrξG,red of the affine Springer fiber is a
countable union of projective irreducible components. Furthermore, the natural Λξ-

action on GrξG,red is free with quotient GrξG,red/Λξ a projective variety.

Example 4.6. Take G = SL(2), and consider the elements

ξ1 =

ï
0 t
1 0

ò
, ξ2 =

ï
0 t2

1 0

ò
, ξ′2 =

ï
t 0
0 −t

ò
∈ gK.

Then (at the level of reduced schemes) Grξ1G is a point, and Grξ2G is an infinite string
of P1’s attached one after the other at nodes. The lattice Λξ2 is rank one, and the

quotient Grξ2G /Λξ2 is a nodal elliptic curve.
To see things for ξ2, it helps to note that ξ2 and ξ′2 are GK-conjugate, and so

one can calculate with ξ′2. On the other hand, ξ1 is anisotropic and can not be
diagonalized.

Now given a character
κ : Pξ/Λξ → C

×,

we can consider the summand

H∗(Grξ/Λξ)κ ⊂ H∗(Grξ/Λξ)

consisting of cocycles that transform by the character κ under the action of Pξ/Λξ.
Thanks to the following application of the Weil conjectures, the Fundamental

Lemma involves identifying this cohomology with the invariant cohomology of an
affine Springer fiber for an endoscopic group.

Theorem 4.7. Suppose ξ ∈ gK is regular semisimple. Then the κ-orbital integral
Oκ

ξ (1gO ) can be recovered from the κ-summand H∗(Grξ/Λξ)κ, or more precisely
from its underlying motive.

Remark 4.8. By underlying motive, we mean that one should properly work over a
finite field with �-adic cohomology, and use the Grothendieck-Lefschetz fixed point
formalism to recover orbital integrals from traces of Frobenius.

Unfortunately, there is no evident geometric relationship between the affine
Springer fibers for a group and an endoscopic group. And any attempt to ex-
plicitly calculate the cohomology must face the fact that already for the symplectic
group Sp(6), Bernstein and Kazhdan [KL88, Appendix] found an affine Springer
fiber whose cohomology contains the motive of a hyperelliptic curve.

4.3. Equivariant localization. Goresky-Kottwitz-MacPherson proposed the in-
triguing idea that the combinatorics of endoscopic groups hint at a possible geo-
metric mechanism for relating affine Springer fibers. Recall that the roots of an
endoscopic group are an explicit subset of the roots of the original group. For an
affine Springer fiber with large toric symmetry, Goresky-Kottwitz-MacPherson rec-
ognized that its toric one-skeleton of zero and one-dimensional toric orbits was in



THE GEOMETRIC NATURE OF THE FUNDAMENTAL LEMMA 35

fact completely encoded by the roots. In turn, they also discovered that for a very
general class of varieties with large toric symmetries, their cohomology could be
read off from their toric one-skeleta.

Let X be a (possibly singular) projective variety equipped with an action of the
torus T = (C×)n. For simplicity, we will fix an embedding X ⊂ CP

N , and assume
the T -action is induced by a linear T -action on C

N+1. Then there is a moment
map

μ : X
� � �� CPN �� t∨

which induces the corresponding infinitesimal action of t. For a vector v ∈ t,
regarded as a vector field on CP

N , the one-form ω(v,−) obtained by contracting
with the Kahler form is given by the pairing 〈dμ(−), v〉 Furthermore, we will assume
the images of the fixed points XT ⊂ X are all distinct, in particular, there are only
finitely many.

Definition 4.9. Suppose T = (C×)n acts on X with finitely many one-dimensional
orbits. Let X1 ⊂ X be the one skeleton of fixed points and one-dimensional orbits.
The moment graph ΓT (X) is defined to be the quotient

ΓT (X) = X1/Tc,

where Tc = (S1)n is the compact torus inside T . The moment map descends to a
canonical immersion

μ : ΓT (X) �� t∨.

The structure of the moment graph is not only the abstract graph, but also its
immersion into t∨. The image of any one-dimensional orbit O ⊂ X1 will be a line
segment � ⊂ t∨ whose orthogonal in t is the Lie algebra of the stabilizer of O.

Example 4.10. Fix a maximal torus T ⊂ G. For ξ ∈ tO ⊂ gK, the cen-
tralizer ZGK(ξ) contains the affine torus TK, and hence the full coweight lattice
Λ = Hom(C×, T ). If ξ is regular semsimple, the maximal torus T ⊂ G acts on

GrξG/Λ with finitely many one-dimensional orbits. The resulting moment graph

ΓT (GrξG/Λ) is an invariant of the root data of G.

The following equivariant localization theorem is not difficult but gives a beau-
tiful combinatorial picture of the cohomology of X. Its validity depends on the
technical assumption that the T -action on X is equivariantly formal. We will not
explain what this means, but only mention that it follows from more familiar con-
ditions such as the vanishing of the odd degree cohomology of X, or if the mixed
Hodge structure on the cohomology of X is in fact pure.

Theorem 4.11 ([GKM98]). Suppose the T -action on X is equivariantly formal.
Then the cohomology of X is an invariant of the moment graph ΓT (X).

This general viewpoint on the cohomology of spaces with torus actions has
been very fruitful. Foremost, there is the original application of Goresky-Kottwitz-
MacPherson to the Fundamental Lemma.

Corollary 4.12 ([GKM04]). For ξ ∈ tO ⊂ gK regular semisimple, if the cohomol-

ogy of GrξG/Λ is pure, then the Fundamental Lemma holds for ξ.
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Remark 4.13. Note that the corollary assumes ξ lies in the loop algebra of t. This is
a very restrictive condition on a regular semisimple element. In particular, it implies
that its centralizer is an unramified torus. This starting point is what provides
sufficient symmetries to apply equivariant localization to the affine Springer fiber.

Outside of the question of what to do with affine Springer fibers with less symme-
try, the issue of purity is a formidable obstacle to further progress in the local set-
ting. Some cases were directly settled by Goresky-Kottwitz-MacPherson [GKM06],
but for a uniform understanding, new ideas appeared necessary.

5. Hitchin fibration and the search for purity

In this section, we will continue to work over the complex numbers C in order to
appeal to topological methods of broad familiarity. We will adopt all of the notation
of the previous section, so for example we write K = C((t)) for the Laurent series
field, and O = C[[t]] for its ring of integers. Given the reductive group G, we write
GK for its loop group, and GO for the subgroup of arcs.

5.1. Grothendieck-Springer resolution. Affine Springer fibers for the loop group
GK are a natural generalization of Springer fibers for the original group G.

For a nilpotent element ξ ∈ N ⊂ g of the Lie algebra of G, the Springer fiber
Bξ is the fixed-points of the vector field ξ acting on the flag variety B of all Borel
subalgebras b ⊂ g. They naturally arise as the fibers of the Springer resolution of
the nilpotent cone

μN : Ñ � T ∗(G/B) = {(b, ξ) ∈ B ×N|ξ ∈ b} �� N (b, ξ) � �� ξ

Beginning with Springer’s construction of Weyl group representations in their co-
homology, Springer fibers are now ubiquitous in representation theory.

A vital observation is that the Springer resolution may be extended to the so-
called Grothendieck-Springer resolution

μg : g̃ = {(b, ξ) ∈ B × g|ξ ∈ b} �� g (b, ξ) � �� ξ

While Springer fibers for nilpotent elements ξ ∈ N are difficult and important,
Springer fibers for regular semisimple elements ξ ∈ greg,ss are finite and on their
own uninteresting. So what have we accomplished by introducing the Grothendieck-
Springer resolution? We can now reduce questions about interesting Springer fibers
to questions about dull Springer fibers.

What technique can we use to relate the cohomology of the fibers of a map such
as the Grothendieck-Springer resolution? Sheaf theory. The cohomology of the
fibers of a map are precisely the local invariants of the derived pushforward of the
constant sheaf along the map. Global results about the pushforward will imply
local results about the cohomology of the fibers. For example, much of Springer’s
theory of Weyl group representations is encoded in the following statement (see for
example [G83, HoKa84]).

Theorem 5.1. The restriction of the derived pushforward Rμg∗Cg̃ of the constant
sheaf on g̃ to the open locus of regular semisimple elements greg,ss ⊂ g is a local
system with monodromies given by the regular representation of the Weyl group of
g. The entire pushforward is the canonical intersection cohomology extension of
this local system.
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Returning to the loop group GK, the affine Springer fibers GrξG are also fibers of
an analogous map. But here the target is the infinite-dimensional Lie algebra gK
and the fibers GrξG are not projective varieties. The powerful topological methods
of algebraic geometry do not (yet) extend to such a setting. Some new idea is
needed to proceed.

5.2. Compactified Jacobians. Laumon introduced a beautiful way to begin to

study the relation of affine Springer fibers GrξG for varying parameters ξ ∈ gK. As

we vary the parameter ξ ∈ gK, the behavior of the affine Springer fibers GrξG is far
wilder than we might expect.

Example 5.2. Take G = SL(2), and consider the family of elements

ξ(ε) =

ï
0 εt2 + t3

1 0

ò
∈ gK, for ε ∈ C.

When ε = 0, (at the level of reduced schemes) the affine Springer fiber Gr
ξ(ε)
G is

simply P
1, but when ε �= 0, it is an infinite string of P1’s attached one after the

other at nodes with symmetry lattice Λξ(ε) � Z.

Laumon recognized that the quotients GrξG/Λξ which interest us most in fact
form reasonable families in a topological sense.

Proposition 5.3 ([La06]). Suppose G = GL(n), and let ξ ∈ gK be regular semisim-
ple. Then there is a complex projective curve Cξ of genus zero, with a single singular

point, such that the quotient GrξG/Λξ is homeomorphic to the compactified Jacobian

Jac(Cξ) = {degree 0, rank 1 torsion free sheaves on Cξ}.
This is a powerful insight: such curves Cξ form nice finite-dimensional families,

and hence so do their compactificed Jacobians Jac(Cξ).

Example 5.4. (compare with Example 5.2). Take G = SL(2), and consider the
family of elements

ξ(ε) =

ï
0 εt2 + t3

1 0

ò
∈ gK, for ε ∈ C.

Then we can take Cξ(ε) to be the family of singular elliptic curves y2 = εt2 + t3.
When ε = 0, the curve Cξ(0) is a cuspidal elliptic curve, and when ε �= 0, it is a
nodal elliptic curve. The compactified Jacobian of any elliptic curve, smooth or
singular, is isomorphic to the curve itself.

By deforming such curves, Laumon provides a natural geometric setting for the
equivariant localization techniques of Goresky-Kottwitz-MacPherson. In particu-
lar, he was able to deduce the Fundamental Lemma for unitary groups contingent
upon the purity of the affine Springer fibers involved [La]. The main obstruction
for further progress remained the elusive purity on which all conclusions were con-
ditional.

5.3. Hitchin fibration. Ngô recognized that Laumon’s approach to affine Springer
fibers via compactified Jacobians is a natural piece of the Hitchin fibration. Al-
though it might appear complicated at first glance, the Hitchin fibration is nothing
more than the natural generalization of the Chevalley morphism

χ : g �� t/W = Spec k[t]W .
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to the setting of algebraic curves. Recall that χ descends to the quotient g/G, and
is also equivariant for GL(1) acting on g by linear scaling, and on (t/W ) by the
resulting weighted scaling.

Fix a smooth projective curve C. Although the constructions to follow are very
general, for simplicity we will continue to work over the complex numbers C, so in
particular C is nothing more than a compact Riemann surface. Let us imagine the
Lie algebra g varying as a vector bundle along C. In order to preserve its natural
structures, we should insist that the transition functions of the vector bundle take
values in G acting by the adjoint representation. In other words, the twisting of the
vector bundle should be encoded by a principal G-bundle P and the vector bundle
should take the form of the associated bundle

gP = P ×G g.

We will write BunG for the moduli of principal G-bundles over C
Now suppose we are given a line bundle L over C. The GL(1)-action of linear

scaling on g together with the line bundle L provides the option to twist further
and form the tensor product

gP,L = gP ⊗OC
L.

Similarly, theGL(1)-action of weighted scaling on t/W together with the line bundle
L provides an affine bundle

(t/W )L = L ×GL(1) t/W.

Definition 5.5. Fix a smooth projective curve C equipped with a line bundle L.
The total space MG of the Hitchin fibation is the moduli of pairs called Higgs

bundles of a principal G-bundle P over C, and a section of the twisted adjoint
bundle

ϕ ∈ Γ(C, gP,L)

called a Higgs field.
The base AG of the Hitchin fibration is the space of possible eigenvalues

AG = Γ(C, (t/W )L).

The Hitchin fibration is the pointwise unordered eigenvalue map

χ : MG
�� AG.

The Hitchin fibers are the inverse images Ma
G = χ−1(a) for parameters a ∈ AG.

Remark 5.6. Hitchin’s original construction [Hi87] focused on the case where L is
the canonical line bundle ωC of one-forms on C. This is most natural from the
perspective that then MG is the cotangent bundle to the moduli BunG of principal
G-bundles, and the Hitchin fibration is a complete integrable system. The choice of
line bundle L provides useful technical freedom, since by choosing L ample enough,
we can eliminate any constraint imposed by the global geometry of C.

Remark 5.7. Given a line bundle L and principal G-bundle P, we can find finitely
many points of C so that the restrictions of the bundles to their complement are
trivializable. Thus any point of MG gives an element of g(F ), well-defined up to
dilation and conjugation, where F is the function field of C. Likewise any point of
AG gives an element of (t/W )(F ), well-defined up to dilation.

In this way, we can import abstract definitions for algebraic groups defined over
a field F to the setting of the Hitchin fibration. For example, a point of MG is said
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to be regular, semisimple, regular semisimple, or anisotropic if the generic value of
its Higgs field is so as an element of g(F ). Likewise a point of AG is said to be
generically regular if its generic value is a regular value of (t/W )(F ).

Example 5.8 (Hitchin fibration for GL(n)). Recall that for gl(n) = End(Cn), the
Chevalley morphism is simply the characteristic polynomial

χ : End(Cn) �� ⊕n
k=1 Lk χ(A) = det(t Id−A)

where Lk � C denotes the one-dimensional vector space generated by the kth
elementary symmetric polynomial.

The total space MGL(n) is the moduli of pairs of a rank n vector bundle V over
C, and a twisted endomorphism

ϕ ∈ Γ(C,EndOC
(V)⊗OC

L).
The base AGL(n) is the space of possible eigenvalues

AGL(n) =
n⊕

k=1

Γ(C,Lk ⊗OC
L⊗k)).

The Hitchin fibration is the pointwise unordered eigenvalue map

χ : MGL(n)
�� AGL(n).

A parameter a ∈ AGL(n) assigns to each point c ∈ C a collection of n unordered
eigenvalues. The spectral curve Ca is the total space of this varying family over C.
More precisely, it is the solution to the equation on the total space of L given by
the characteristic polynomial corresponding to a. When the spectral curve Ca is
reduced, the Hitchin fiber is isomorphic to the compactified Picard

Ma
GL(n) � Pic(Ca)

of rank 1, torsion free sheaves on Ca.

Example 5.9 (Hitchin fibration for SL(2)). For sl(2) = {A ∈ gl(2)|Trace(A) = 0},
the Chevalley morphism is simply the determinant map

χ : sl(2) �� C χ(A) = det(A)

The total space MSL(2) is the moduli of pairs of a rank 2 vector bundle V over

C with trivialized determinant ∧2V � OC , and a twisted traceless endomorphism

ϕ ∈ Γ(C,EndOC
(V)⊗OC

L), Trace(ϕ) = 0 ∈ Γ(C,L).
The base ASL(2) is the space of possible determinants

ASL(2) = Γ(C,L⊗2).

The Hitchin fibration is the pointwise determinant map

χ : MSL(2)
�� ASL(2).

We can regard a parameter a ∈ ASL(2) as an element of AGL(2) and hence
assign to it a spectral curve Ca. This will be nothing more than the two-fold cover
ca : Ca → C given by the equation t2 + a on the total space of L. When a is not
identically zero, Ca is reduced, and the Hitchin fiber is isomorphic to the moduli

Ma
SL(2) � {F ∈ Pic(Ca)| det(ca∗F) � OC}.
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The importance of the Hitchin fibration in gauge theory, low dimensional topol-
ogy, and geometric representation theory can not be underestimated. Note that the
moduli BunG of principal G-bundles is a precise analogue of the primary locally
symmetric space of automorphic representation theory. Namely, if F denotes the
function field of the smooth projective complex curve C, and AF its adèles with
ring of integers OF , then the moduli of principal G-bundles is isomorphic to the
double coset quotient

BunG � G(F )\G(AF )/G(OF ).

So in some sense we have come full circle. Starting from questions about number
fields, we arrived at p-adic local fields and the Fundamental Lemma. Then we
translated the questions to Laurent series local fields, and finally we will appeal to
the geometry of function fields.

Now instead of considering affine Springer fibers, Ngô proposes that we consider
Hitchin fibers. To spell out more precisely the relation between the two, we will
focus on their symmetries.

Recall that to a regular semisimple Kostant element ξ ∈ gO, we associate a
commutative group-scheme J over O, and the affine Grassmannian Pξ = JK/JO
naturally acts on the affine Springer fiber GrξG.

Similarly, there is a global version of this construction which associates to a
generically regular element a ∈ AG, a commutative group scheme J over the curve
C, and the moduli Pa of principal J-bundles is a commutative group-stack which
naturally acts on the Hitchin fiber Ma

G. Here generically regular means that the
value of the section a is regular except at possibly finitely many points of C.

The following result of Ngô is a direct analogue of the adèlic factorization ap-
pearing in Formula (2.2).

Theorem 5.10. Suppose a ∈ AG is generically regular.
Let ci ∈ C, for i ∈ I, be the finitely many points where a is not regular, and let

Di = SpecOi be the formal disk around ci.
Consider the Kostant elements ξi = σ(a|Di

) ∈ gOi
. Then there is a canonical

map inducing a topological equivalence

∏
i∈I GrξiG/Pξi

∼ �� Ma
G/Pa.

Example 5.11 (Example 5.8 of GL(n) continued). When the spectral curve Ca

of the parameter a ∈ AGL(n) is reduced, the symmetry group Pa is precisely the
Picard Pic(Ca) of line bundles on Ca. Under the identification of the Hitchin fiber

Ma
GL(n) � Pic(Ca)

with the compactified Picard, the action of Pa � Pic(Ca) is simply tensor product.

Example 5.12 (Example 5.9 of SL(2) continued). When the parameter a ∈
AGL(n) is nonzero so that Ca is reduced, the symmetry group Pa is the Prym
variety given by the kernel of the norm map

Pa � ker{N : Pic(Ca) �� Pic(C)}

Under the identification of the Hitchin fiber explained above, the action of Pa is
simply tensor product.
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¿From the theorem and careful choices of the parameter a ∈ AG and the line
bundle L, one can realize the cohomology of affine Springer fibers completely in
terms of the cohomology of Hitchin fibers. Now we are in a finite-dimensional setting
where the tools of algebraic geometry apply. Without developing any further theory,
Laumon and Ngô [LaN04] were able to establish the necessary purity to deduce the
Fundamental Lemma for unitary groups.

5.4. Ngô’s Support Theorem. ¿From our preceding discussion, we conclude that
we can replace the study of affine Springer fibers with that of Hitchin fibers. Unlike
the somewhat discontinuous behavior of affine Springer fibers, the Hitchin fibration
is a highly structured family. To understand its cohomology, Ngô introduces the
following general notion of an abelian fibration. What he proves about them will
no doubt find much further application. For simplicity, we will continue to work
over the complex numbers C, though the notions and results make sense in great
generality.

Definition 5.13. A weak abelian fibration consists of a base variety S, a projective
map f : M → S, and a smooth abelian group-scheme g : P → S, with connected
fibers, acting on M . Thus for s ∈ S, the fiber Ms = f−1(s) is a projective variety,
the fiber Ps = f−1(s) is a connected abelian group, and we have a Ps-action on
Ms.

We require the following properties to hold:

(1) For each s ∈ S, the fibers Ms and Ps have the same dimension.
(2) For each s ∈ S, and m ∈ Ms, the stabilizer StabPs

(m) ⊂ Ps is affine.
(3) P has a polarizable Tate module.

Remark 5.14. We will not attempt to explain the third technical condition other
than the following brief remark. For each s ∈ S, there is a canonical Chevalley
exact sequence

1 �� Rs
�� Ps

�� As
�� 1

where As is an abelian variety, and Rs is a connected abelian affine group. If Rs

were always trivial, the third condition would assert that P is a polarizable family
of abelian varieties.

As the name suggests, the above notion is quite weak. To strengthen it, let us cut
up the base variety S into its subvarieties Sδ where the dimension δ(s) = dim(Rs)
of the affine part of Ps is precisely δ.

Definition 5.15. (1) A smooth connected abelian group scheme g : P → S is said
to be δ-regular if it satisfies

codim(Sδ) ≥ δ.

(2) A δ-regular abelian fibration is a weak abelian fibration whose group scheme
is δ-regular.

Remark 5.16. Given any δ-regular abelian fibration, over the generic locus S0 ⊂ S,
the group-schemes Ps are in fact abelian varieties, act on Ms with finite stabilizers,
and hence Ms is a finite union of abelian varieties.

Example 5.17. Here are two good examples of δ-regular abelian fibrations to keep
in mind:

(1) Any integrable system (though here we use that we are working over the
complex numbers C).
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(2) For X → S a versal deformation of a curve with plane singularities, M =
Jac(X/S) with its natural action of P = Jac(X/S).

Now we arrive at the main new technical result underlying Ngô’s proof of the
Fundamental Lemma. It is a refinement of the celebrated Decomposition Theorem
of Beilinson-Bernstein-Deligne-Gabber in the setting of abelian fibrations. In citing
the Decomposition Theorem, we are invoking the full power of Hodge theory, in
particular a very general form of the relative Hard Lefschetz Theorem. Let us recall
it in a specific form sufficient for our current discussion.

Theorem 5.18 (Decomposition Theorem). Let f : M → S be a projective map
of varieties with M smooth. The pushforward Rf∗CM is a direct sum of (shifted)
intersection cohomology sheaves of local systems on subvarieties of S.

Example 5.19. (1) Let f : M → S be a proper fibration with M and S smooth.
Then the pushforward Rf∗CM is a direct sum of (shifted) semisimple local systems
whose fiber at s ∈ S is the cohomology of the fiber Ms = f−1(s).

(2) Recall the Springer resolution μN : Ñ → N discussed above. The pushfor-
ward RμN∗CÑ is a direct sum of intersection cohomology sheaves supported on
the various nilpotent orbits. For simplicity, let us restrict to G = GL(n). Then
the nilpotent orbits Oy ⊂ N are indexed by Young diagrams y. Irreducible rep-
resentations Vy of the symmetric group Σn are also indexed by Young diagrams
y. On each orbit Oy ⊂ N , there is a local system Ly of rank dimVy such that its
intersection cohomology is the contribution to RμN∗CÑ from the orbit Oy. This
gives a geometric decomposition of the regular representation of Σn.

The following support result significantly constrains the supports of the sum-
mands occurring in the Decomposition Theorem. Very roughly speaking, it says
that in the case of δ-regular abelian fibrations, one can surprisingly calculate the
pushforward by studying generic loci.

Theorem 5.20 (Ngô’s Support Theorem). Let f : M → S, g : P → S be a δ-
regular abelian fibration of relative dimension d. Assume the base S is connected
and the total space M is smooth.

Let F be an intersection cohomology sheaf occurring as a summand in the push-
forward Rf∗CM , and let Z ⊂ S be the support of F .

Then there exists an open subset U ⊂ S such that U ∩ Z �= ∅, and a non-zero
local system L on the intersection U ∩Z such that the tautological extension by zero
of L to all of U is a summand of the restriction R2df∗CM |U .

In particular, if the fibers of f are irreducible, then Z = S.

Example 5.21. Here is an example and then a non-example of the kind of phe-
nomenon explained by the support theorem.

(1) Let f : M → S be a proper flat family of irreducible curves with M and S
smooth. Let Sreg ⊂ S be the open locus over which f is smooth, so in particular
where the fibers are necessarily smooth. Then the pushforward Rf∗CM is the
intersection cohomology extension of the (shifted) local system Rf∗CM |Sreg whose
fiber at s ∈ Sreg is the cohomologyH0⊕H1[−1]⊕H2[−2] of the curveMs = f−1(s).

This satisfies the conclusion of the support theorem, though strictly speaking it
is not an application of it (except in special instances where the curves are of genus
1).
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(2) Consider the proper flat family of irreducible surfaces

f : M = {([x, y, z, w], s) ∈ P
3 × A

1|x3 + y3 + z3 + sw3 = 0} �� S = A
1

with the obvious projection f([x, y, z, w], s) = s. It is smooth over A
1 \ {0}, but

singular over {0}. One can check that the pushforward Rf∗CM contains summands
which are skyscraper sheaves supported at {0}.

This does not satisfy the conclusion of the support theorem, though f is a proper
flat map.

5.5. Geometric elliptic endoscopy. Now let us return to the Hitchin fibration
along with its relative symmetry group

χ : MG
�� AG P �� AG

The results to follow are strikingly parallel to the stabilization of the anisotropic
part of the Arthur-Selberg trace formula. Recall that the adèlic factorization of
Formula (2.2) expressed the anisotropic terms of the Arthur-Selberg trace formula
in terms of local orbital integrals, and ultimately led to the Fundamental Lemma.
Here we reverse the process and thanks to the adèlic factorization of Theorem 5.10,
calculate the cohomology of affine Springer fibers in terms of anisotropic Hitchin
fibers, and in this way ultimately prove the Fundamental Lemma.

Definition 5.22 (Anisotropic Hitchin fibration). The anisotropic Hitchin base
Aani

G ⊂ AG consists of parameters a ∈ AG such that any Higgs bundle (P, ϕ) ∈
χ−1(a) is generically anisotropic in the sense that for any generic trivialization of
P (and the line bundle L), the Higgs field ϕ is anisotropic as an element of g(F ),
where F is the function field of C.

The anisotropic Hitchin fibration and relative symmetry group is the restriction
of the Hitchin fibration and its relative symmetry group to the anisotropic Hitchin
base

χani : Mani
G = MG ×AG

Aani
G

�� Aani
G Pani = P ×AG

Aani
G

�� Aani
G

Remark 5.23. An equivalent characterization of the anisotropic Hitchin base Aani
G

is the complement of the image of the Hitchin bases for all Levi subgroups.

Remark 5.24. Since GL(n) has nontrivial split center, it contains no anisotropic
tori. Thus the anisotropic Hitchin fibration for GL(n) is empty and all that follows
is vacuous. This is not surprising: there is no nontrivial elliptic endoscopy for
GL(n). All of its endoscopic subgroups are in fact Levi subgroups.

The reader interested in examples is recommended to look at the end of this
section where SL(2) is discussed.

Theorem 5.25. Over the anisotropic locus, the Hitchin fibration and its relative
symmetry group form a δ-regular abelian fibration.

Remark 5.26. (1) In fact, in general Mani
G will be a Deligne-Mumford stack, but

this does not obstruct any aspect of our discussion.
(2) The theorem is not known in characteristic p, but one can restrict further

to where it holds and continue with the calculations to be performed. Then local-
global compatibility can be used to extend the calculations further.
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To shorten the notation, we will write

FG = Rχani
∗ CMani

G

for the pushforward of the constant sheaf along the Hitchin fibration.
Since cohomology is invariant under isotopy, the natural Pani-action on FG

factors through the component group π0(Pani). Our aim consists of two steps:

(1) Fourier theory: decompose the pushforward FG into eigenspaces for the
natural π0(Pani)-action,

(2) Endoscopic stabilization: identify the eigenspaces for nontrivial characters
with the invariant eigenspaces for endoscopic groups.

Because we are over the anisotropic locus, π0(Pani) has finite fibers, and so the
eigenspace decomposition is discrete.

For the trivial character of π0(Pani), Ngô’s Support Theorem gives a striking
analogue of the central Theorem 5.1 of Springer theory.

Theorem 5.27 (Stable summand). The π0(Pani)-invariant (shifted) simple per-
verse summands of the pushforward FG are the canonical intersection cohomology
extensions to all of Aani

G of their restrictions to any non-empty open subset.

Without loss of applicability, we can find an étale base change Ãani
G → Aani

G over
which there is a surjective homomorphism of relative groups

X∗(T ) �� π0(Pani).

This is convenient in that we can think of a character

κ : π0(Pani) �� C×

as in turn a character of X∗(T ), or in other words, an element of T∨.
On the one hand, we can consider the summand

FG,κ ⊂ FG

consisting of sections that transform by the character κ under the action of π0(Pani).
In particular, when κ = e is the trivial character, we denote the stable summand
of π0(P)-invariants by

FG,st = FG,e.

On the other hand, we can consider endoscopic groups H associated to endo-
scopic data (κ, ρκ) where κ ∈ T∨ ⊂ G∨ and ρκ : π1(C, c0) → π0(κ). Though we
are now in a global geometric setting, the constructions are completely parallel to
those discussed in Section 3.3. The resulting endoscopic groups H are unramified
quasi-split group schemes defined over C. It is straightforward to generalize the
Hitchin total space, base, and fibration to such group schemes. In particular, the
natural transfer map induces a closed immersion of Hitchin bases

νH : Ãani
H

� � �� Ãani
G .

Theorem 5.28 (Endoscopic summands). The geometric Fundamental Lemma holds:
the κ-eigenspace FG,κ is a direct sum over all κ-endoscopic groups H of their
(shifted) stable summands νH∗FH,st.
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The theorem is proved by an intricate application of Ngô’s support theorem.
Roughly speaking, it is straightforward to establish an identification over a generic
open locus intersecting the Hitchin bases of all relevant endoscopic groups. Then
one uses the support theorem to conclude that the identification extends over the
entire anisotropic Hitchin base.

The identification of sheaves gives an identification of their fibers and hence an
identification of the stable cohomology of Hitchin fibers for H with the correspond-
ing endoscopic cohomology of Hitchin fibers for G. As we have discussed, such
identifications imply analogous identifications for affine Springer fibers, hence also
for p-adic orbital integrals, and ultimately confirm the Fundamental Lemma.

Example 5.29 (Geometric endoscopy for SL(2)). Recall that to a parameter a ∈
ASL(2), we can assign the spectral curve Ca given by the equation t2 + a on the
total space of L. As long as a is not identically zero, it is generically regular and
Ca is reduced. In this case, we write C̃a for the normalization of Ca.

We can cut up ASL(2) \ {0} into three natural pieces:

(1) Ast: Ca is irreducible, C̃a → C is ramified. Then π0(Pa) is trivial.

(2) AU(1): Ca is irreducible, C̃a → C is unramified. Then π0(Pa) � Z/2Z.
(3) AGL(1): Ca is reducible. Then π0(Pa) � Z.

The anisotropic locus Aani
SL(2) is the union Ast �AU(1).

Each component of AU(1), AGL(1) is the image of the Hitchin base for an endo-
scopic U(1), GL(1) respectively.

6. Some further directions

In this section, we briefly list some research directions related to Ngô’s proof
of the Fundamental Lemma. In particular, we focus on geometric questions, some
solved, some open. It goes without saying that the list is idiosyncratic and far from
comprehensive.

6.1. Deeper singularities. From a geometric perspective, Ngô’s endoscopic de-
scription of the cohomology of the anisotropic Hitchin fibration is only a first step.
In the spirit of Springer theory, one should study the entire fibration, proceeding
from the anisotropic locus to more complicated Higgs bundles.

Chadouard and Laumon [ChLa, ChLaI, ChLaII] have extended Ngô’s picture to
the locus of regular semisimple Higgs bundles in order to prove Arthur’s weighted
fundamental lemma. Recall that the anisotropic locus consists of Higgs bundles such
that the generic value of the Higgs field is an anisotropic element of g(F ), where F
is the function field of the curve C. A Higgs bundle is generically regular semisimple
if the generic value of the Higgs field is a regular semisimple element of g(F ). The
regular semisimple Hitchin fibers are no longer of finite type, but are increasing
unions of finite-type schemes of bounded dimension. (One could compare with affine
Springer fibers which display analogous behavior.) Chadouard and Laumon develop
a beautiful truncation framework, directly inspired by Arthur’s truncations of the
trace formula, and exhibit the regular semisimple Hitchin fibration as an increasing
union of proper maps. The truncations are governed by stability conditions on Higgs
bundles, though the eventual contributions to the weighted fundamental lemma are
independent of the stability parameters.
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6.2. Transfer for relative trace formulas. The relative trace formula4 (as de-
scribed in [Lap]) is a yet to be fully developed framework, originally pioneered
by Jacquet, for understanding period integrals of automorphic forms. It includes a
transfer principle depending upon identities analogous to the Fundamental Lemma.

From a geometric perspective, the main object of study in the relative trace
formula is a reductive group G equipped with two spherical subgroups H1, H2 ⊂ G,
and ultimately the two-sided quotient H1\G/H2. The basic example is G = H×H
with H1 = H2 = H which gives the adjoint quotient G/G and the usual trace
formula.

Given two such groups with spherical subgroups H1 ×H2 ⊂ G,H ′
1 ×H ′

2 ⊂ G′,
the transfer principle is predicated on a relation between the H1 × H2-invariant
functions on G and H ′

1 × H ′
2-invariant functions on G′. This induces a transfer

of invariant distributions generalizing that between groups and their endoscopic
groups mediated by the relation of their characteristic polynomials.

Geometric methods have been used by Ngô [N99] and Yun [Y] to prove fundamen-
tal lemmas for relative trace formulas. The latter employs direct analogues of Ngô’s
global proof of the Fundamental Lemma. There are also precursors to further such
results coming from traditional Springer theory as in the work of Grinberg [Gr98].

6.3. Geometric trace formulas. A striking aspect of Ngô’s proof of the Funda-
mental Lemma is that its final global calculations are direct geometric analogues
of the stabilization of the trace formula. Recall that at the end of the day, the
Fundamental Lemma is simply a tool in the analysis of the trace formula and its
stabilization. With the Geometric Langlands program in mind, this naturally leads
to the question: what is the geometric analogue of the trace formula itself?

The Geometric Langlands program, pioneered by Beilinson and Drinfeld, is a
fruitful geometric analogue of the theory of automorphic forms and Galois repre-
sentations. The basic automorphic objects are D-modules on the moduli of prin-
cipal G-bundles on a curve. The corresponding spectral objects are quasicoherent
sheaves on the moduli of flat G∨-connections on the curve. Langlands’s conjec-
tural reciprocity takes the form of a conjectural equivalence of categories between
D-modules and quasicoherent sheaves. Broadly understood, the subject forms a
substantial industry with motivations from mathematical physics and representa-
tion theory.

Frenkel, Langlands, and Ngô [FLN, FN] have taken the first steps towards a trace
formula in this setting. They describe the intricate contours of the problem, and
make serious progress towards the development of a precise formulation. Stepping
back from the challenges of principal bundles on curves, one can ask what kind of
math should a geometric trace formula involve? Or slightly more precisely, what
kind of object is the character of a group acting on a category? Here algebraic
topology provide precise answers involving loop spaces, and Hochschild and cyclic
homology. For a realization of these ideas in the context of group actions, and in
particular, a connection to Lusztig’s character sheaves, see [BZN].

6.4. Purity of Hitchin fibration. The decisive geometric input to Ngô’s proof
of the Fundamental Lemma is the Decomposition Theorem applied to the Hitchin
fibration. The purity of the pushforward along the Hitchin fibration leads to the
endoscopic decomposition of the cohomology.

4I would like to thank Y. Sakellaridis for explaining to me what this world is all about.
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If one restricts to equivalence classes of appropriate semistable Higgs bundles,
the Hitchin space takes the more concrete form of a quasiprojective variety MDol.
Nonabelian Hodge theory provides a diffeomorphism between MDol and a corre-
sponding affine variety MB of representations of the fundamental group of the
curve. The diffeomorphism is far from an isomorphism: the algebraic structure on
MDol depends on the algebraic structure of the curve, while MB depends only on
the fundamental group of the curve. Though MB is affine, the fibers of the Hitchin
fibration for MDol are compact half-dimensional subvarieties.

De Cataldo, Hausel, and Migliorini [dCHM] study the weight and perverse filtra-
tions on the cohomology of MDol and MB induced by the Hitchin fibration. Their
specific results and what they point towards should shed further light on the topo-
logical nature of the indispensable purity invoked in the proof of the Fundamental
Lemma.

6.5. Affine Springer theory. The broad paradigms of Springer theory explain
many aspects of Ngô’s proof of the Fundamental Lemma. For example, it employs
in an essential way the idea that the cohomology of complicated Springer fibers
could be recovered from simpler fibers.

But conversely, there are many other aspects of Springer theory which would
be worth pursuing in the setting of the Hitchin fibration. For example, Yun [YI,
YII, YIII] studies a tamely ramified version of the Hitchin fibration consisting of
Higgs bundles equipped with a compatible flag at a point of the curve. This leads
to a generalization of the commutative symmetries appearing in the endoscopic
decomposition of the cohomology. Namely, the cohomology becomes a module
over the double affine Hecke algebra, and other intriguing relations with quantum
algebra appear.

It would be interesting to find other important aspects of traditional Springer
theory: the role of the nilpotent cone, a resolution of nilpotent Higgs bundles, and
the role of the Fourier transform, to name a few.
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[L79] R.P. Langlands, Les débuts d’une formule des traces stable, Publications mathématiques de
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