
     

Knot Theory and Physics

Louis H. Kauffman
Department of Mathematics, Statistics and Computer Science

University of Illinois at Chicago
851 South Morgan Street
Chicago, IL, 60607-7045

Abstract

This article is an introduction to relationships between knot theory and theo-
retical physics. We give an exposition of the theory of polynomial invariants
of knots and links, the Witten functional integral formulation of knot and link
invariants, and the beginnings of topological quantum field theory, and show
how the theory of knots is related to a number of key issues in mathematical
physics, including loop quantum gravity and quantum information theory.

1 Introduction

This article is an introduction to some of the relationships between knot
theory and theoretical physics. Knots themselves are macroscopic physical
phenomena in three-dimensional space, occuring in rope, vines, telephone
cords, polymer chains, DNA, certain species of eel and many other places in
the natural and man-made world. The study of topological invariants of knots
leads to relationships with statistical mechanics and quantum physics. This
is a remarkable and deep situation where the study of a certain (topological)
aspects of the macroscopic world is entwined with theories developed for the
subtleties of the microscopic world. The present article is an introduction to
the mathematical side of these connections, with some hints and references
to the related physics.



    

We begin with a short introduction to knots, links, braids and the bracket
polynomial invariant of knots and links. The article then discusses Vassiliev
invariants of knots and links, and how these invariants are naturally related
to Lie algebras and to Witten’s gauge theoretic approach. This part of the
article is an introduction to how Vassiliev invariants in knot theory arise
naturally in the context of Witten’s functional integral.

The article is divided into 5 sections beyond the introduction. Section
2 is a quick introduction to the topology of knots and links. Section 3 dis-
cusses Vassiliev invariants and invariants of rigid vertex graphs. Section 4
introduces the basic formalism and shows how Witten’s functional integral is
related directly to Vassiliev invariants. Section 5 discusses the loop transform
and loop quantum gravity in this context. Section 6 is an introduction to
topological quantum field theory, and to the use of these techniques in pro-
ducing unitary representations of the braid group, a topic of intense interest
in quantum information theory.
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2 Knots, Braids and Bracket Polynomial

The purpose of this section is to give a quick introduction to the diagram-
matic theory of knots, links and braids. A knot is an embedding of a circle
in three-dimensional space, taken up to ambient isotopy.
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Figure 1 - A knot diagram.
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Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be ob-
tained from the other through a continuous family of embeddings of circles
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in three-space. A link is an embedding of a disjoiint collection of circles,
taken up to ambient isotopy. Figure 1 illustrates a diagramm for a knot.
The diagram is regarded both as a schematic picture of the knot, and as a
plane graph with extra structure at the nodes (indicating how the curve of
the knot passes over or under itself by standard pictorial conventions).
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Figure 3 - Braid Generators.

Ambient isotopy is mathematically the same as the equivalence relation
generated on diagrams by the Reidemeister moves. These moves are illus-
trated in Figure 2. Each move is performed on a local part of the diagram
that is topologically identical to the part of the diagram illustrated in this
figure (these figures are representative examples of the types of Reidemeis-
ter moves) without changing the rest of the diagram. The Reidemeister
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moves are useful in doing combinatorial topology with knots and links, no-
taby in working out the behaviour of knot invariants. A knot invariant is
a function defined from knots and links to some other mathematical object
(such as groups or polynomials or numbers) such that equivalent diagrams
are mapped to equivalent objects (isomorphic groups, identical polynomials,
identical numbers).

Hopf Link

Figure Eight Knot

Trefoil Knot

Figure 4 - Closing Braids to form knots and links.
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b CL(b)
Figure 5 - Borromean Rings as a Braid Closure.

Another significant structure related to knots and links is the Artin Braid
Group. A braid is an embedding of a collection of strands that have their ends
top and bottom row points in two rows of points that are set one above the
other with respect to a choice of vertical. The strands are not individually
knotted and they are disjoint from one another. See Figures 3, 4 and 5 for
illustrations of braids and moves on braids. Braids can be multiplied by
attaching the bottom row of one braid to the top row of the other braid.
Taken up to ambient isotopy, fixing the endpoints, the braids form a group
under this notion of multiplication. In Figure 3 we illustrate the form of
the basic generators of the braid group, and the form of the relations among
these generators. Figure 4 illustrates how to close a braid by attaching the
top strands to the bottom strands by a collection of parallel arcs. A key
theorem of Alexander states that every knot or link can be represented as
a closed braid. Thus the theory of braids is critical to the theory of knots
and links. Figure 5 illustrates the famous Borrowmean Rings (a link of three
unknotted loops such that any two of the loops are unlinked) as the closure
of a braid.
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We now discuss a significant example of an invariant of knots and links,
the bracket polynomial. The bracket polynomial can be normalized to pro-
duce an invariant of all the Reidemeister moves. This normalized invariant
is known as the Jones polynomial [7]. The Jones polynomial was originally
discovered by a different method than the one given here.

The bracket polynomial , < K > = < K > (A), assigns to each unoriented
link diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then < K > = < K ′ >.

2. If K !O denotes the disjoint union of K with an extra unknotted and
unlinked component O (also called ‘loop’ or ‘simple closed curve’ or
‘Jordan curve’), then

< K !O > = δ < K >,

where
δ = −A2 − A−2.

3. < K > satisfies the following formulas

< χ > = A <# > +A−1 <)(>

< χ > = A−1 <# > +A <)(>,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment.

In computing the bracket, one finds the following behaviour under Rei-
demeister move I:

< γ >= −A3 <$>

and
< γ >= −A−3 <$>

where γ denotes a curl of positive type as indicated in Figure 6, and γ
indicates a curl of negative type, as also seen in this figure. The type of a
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curl is the sign of the crossing when we orient it locally. Our convention of
signs is also given in Figure 6. Note that the type of a curl does not depend
on the orientation we choose. The small arcs on the right hand side of these
formulas indicate the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to an
invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K) < K > (A),

where we chose an orientation for K, and where w(K) is the sum of the
crossing signs of the oriented link K. w(K) is called the writhe of K. The
convention for crossing signs is shown in Figure 6.

: or

: or

+ -

+ +

- -

Figure 6 - Crossing Signs and Curls

The State Summation. In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be any unoriented link
diagram. Define a state, S, of K to be a choice of smoothing for each crossing
of K. There are two choices for smoothing a given crossing, and thus there are
2N states of a diagram with N crossings. In a state we label each smoothing
with A or A−1 as in the expansion formula for the bracket. The label is called
a vertex weight of the state. There are two evaluations related to a state.
The first one is the product of the vertex weights, denoted
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< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S||.

Define the state summation, < K >, by the formula

< K > =
∑

S

< K|S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ > = A <! > +A−1 <)(>,

< K "O > = δ < K >,

< O > = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with an
A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the
state summation. Hence this state summation produces the bracket polyno-
mial as we have described it at the beginning of the section.

Remark. By a change of variables one obtains the original Jones polynomial,
VK(t), for oriented knots and links from the normalized bracket:

VK(t) = fK(t−
1
4 ).

Remark. The bracket polynomial provides a connection between knot the-
ory and physics, in that the state summation expression for it exhibits it
as a generalized partition function defined on the knot diagram. Partition
functions are ubiquitous in statistical mechanics, where they express the
summation over all states of the physical system of probability weighting
functions for the individual states. Such physical partition functions contain
large amounts of information about the corresponding physical system. Some
of this information is directly present in the properties of the function, such
as the location of critical points and phase transition. Some of the informa-
tion can be obtained by differentiating the partition function, or performing
other mathematical operations on it.
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In fact, by defining a generalization of the bracket polynomial, defined
on knot diagrams but not invariant under the Reidemeister moves, we can
capture significant partition functions that are physically meaningful. There
is not room in this survey to detail how this generalization can be used to
express the Potts model for planar graphical configurations, and how it ex-
presses the relationship between the Potts model and the Temperley-Lieb
algebra in diagrammatic form. There is much more in this connection with
statistical mechanics in that the local weights in a partition function are often
expressed in terms of solutions to a matrix equation called the Yang-Baxter
equation, that turns out to fit perfectly invariance under the third Reide-
meister move. As a result, there are many ways to define partition functions
of knot diagrams that give rise to invariants of knots and links. The subject
is intertwined with the algebraic structure of Hopf algebras and quantum
groups, useful for producing systematic solutions to the Yang-Baxter equa-
tion. In fact Hopf algebras are deeply connected with the problem of con-
structing invariants of three-dimensional manifolds in relation to invariants
of knots. We have chosen, in this survey paper, to not discuss the details
of these approaches, but rather to proceed to Vassiliev invariants and the
relationships with Witten’s functional integral. The reader is referred to
[8, 9, 10, 7, 17] for more information about relationships of knot theory with
statistical mechanics, Hopf algebras and quantum groups. For topology, the
key point is that Lie algebras can be used to construct invariants of knots
and links. This is shown nowhere more clearly than in the theory of Vassiliev
invariants that we take up in the next section.

3 Vassiliev Invariants and Invariants of Rigid
Vertex Graphs

In this section we study the combinatorial topology of Vassiliev invariants.
As we shall see, by the end of this section, Vassiliev invariants are directly
conncected with Lie algebras, and representations of Lie algebras can be
used to construct them. This aspect of link invariants is one of the most
fundamental for connections with physics. Just as symmetry considerations
in physics lead to a fundamental relationship with Lie algebras, topological
invariance leads to a fundamental relationship of the theory of knots and
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links with Lie algebras.

If V (K) is a (Laurent polynomial valued, or more generally - commuta-
tive ring valued) invariant of knots, then it can be naturally extended to an
invariant of rigid vertex graphs by defining the invariant of graphs in terms
of the knot invariant via an ‘unfolding of the vertex. That is, we can re-
gard the vertex as a ‘black box” and replace it by any tangle of our choice.
Rigid vertex motions of the graph preserve the contents of the black box,
and hence implicate ambient isotopies of the link obtained by replacing the
black box by its contents. Invariants of knots and links that are evaluated
on these replacements are then automatically rigid vertex invariants of the
corresponding graphs. If we set up a collection of multiple replacements at
the vertices with standard conventions for the insertions of the tangles, then
a summation over all possible replacements can lead to a graph invariant
with new coefficients corresponding to the different replacements. In this
way each invariant of knots and links implicates a large collection of graph
invariants.

The simplest tangle replacements for a 4-valent vertex are the two cross-
ings, positive and negative, and the oriented smoothing. Let V(K) be any
invariant of knots and links. Extend V to the category of rigid vertex em-
beddings of 4-valent graphs by the formula

V (K∗) = aV (K+) + bV (K−) + cV (K0)

where K+ denotes a knot diagram K with a specific choice of positive cross-
ing, K− denotes a diagram identical to the first with the positive crossing
replaced by a negative crossing and K∗ denotes a diagram identical to the
first with the positive crossing replaced by a graphical node.

There is a rich class of graph invariants that can be studied in this manner.
The Vassiliev Invariants [4] constitute the important special case of these
graph invariants where a = +1, b = −1 and c = 0. Thus V (G) is a Vassiliev
invariant if

V (K∗) = V (K+)− V (K−).

Call this formula the exchange identity for the Vassiliev invariant V. See
Figure 7.
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Figure 7 - Exchange Identity for Vassiliev Invariants

V is said to be of finite type k if V (G) = 0 whenever |G| > k where |G|
denotes the number of (4-valent) nodes in the graph G. The notion of finite
type is of extraordinary significance in studying these invariants. One reason
for this is the following basic Lemma.

Lemma. If a graph G has exactly k nodes, then the value of a Vassiliev
invariant vk of type k on G, vk(G), is independent of the embedding of G.

Proof. Omitted. //

The upshot of this Lemma is that Vassiliev invariants of type k are in-
timately involved with certain abstract evaluations of graphs with k nodes.
In fact, there are restrictions (the four-term relations) on these evaluations
demanded by the topology and it follows from results of Kontsevich [4] that
such abstract evaluations actually determine the invariants. The knot invari-
ants derived from classical Lie algebras are all built from Vassiliev invariants
of finite type. All of this is directly related to Witten’s functional integral
[19].
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In the next few figures we illustrate some of these main points. In Figure
8 we show how one associates a so-called chord diagram to represent the
abstract graph associated with an embedded graph. The chord diagram is
a circle with arcs connecting those points on the circle that are welded to
form the corresponding graph. In Figure 9 we illustrate how the four-term
relation is a consequence of topological invariance.

Figure 8 - Chord Diagrams
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Figure 9 — The Four Term Relation from Topology

Figure 10 — The Four Term Relation from Categorical Lie
Algebra
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Figure 11 — Calculating Lie Algebra Weights

In Figure 10 we show how the four term relation is a consequence of the
abstract pattern of the commutator identity for a matrix Lie algebra. That
is, we show how a diagrammatic version of the formula

T aT b − T bT a = fab
c T c

fits directly with the four-term relation. The formula we have quoted here
states that the commutator of the matrices T a and T b is equal to a sum of
the matrices T c with coefficients (the structure coefficients of the Lie algebra)
fab

c . Such a relation is the most concrete way to define a matrix Lie algebra.
There are other levels of abstraction that can be employed here. The same
diagrammatic can be interpreted directly in terms of the Jacobi identity that
defines a Lie algebra. We shall content ourselves with this matrix point of
view here, and add that it is assumed here that the structure coefficients
are invariant under cyclic permutation, as assumption that is not needed in
the general case The four term relation is directly related to a categorical
generalisation of Lie algebras.
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Figure 11 illustrates how the weights are assigned to the chord diagrams
in the Lie algebra case - by inserting Lie algebra matrices into the circle and
taking a trace of a sum of matrix products. The relationship between Vas-
siliev invariants and Lie algebras has been known since Bar-Natan’s thesis.
See also [11]. In [4] the reader will find a good account of Kontsevich’s Theo-
rem, showing how Lie algebra weight systems, and in fact any weight system
satsfying the four-term-relation, can be used to construct knot invariants.
Conceptually, the ideas in back of the Kontsevich Theorem are directly re-
lated to Witten’s approach to knot invariants via quantum field theory. We
give an exposition of this approach in the next section of this article.

Example. Let
PK(t) = fK(et), (A = et)

where fK(A) is the normalized bracket polynomial invariant discussed in the
last section. Then PK(t) is expressed as a power series in t with coefficients
vn(K), n = 0, 1, 2, · · · that are invariants of the knot or link K. It is not hard
to show that these coefficent invariants (extended to graphs so that the Vas-
siliev exchange identity is satisfied) are Vassiliev invariants of finite type. In
fact, most of the so-called polynomial invariants of knots and links (relatives
of the bracket and Jones polynonmials) give rise to Vassiliev invariants in just
this way. Thus Vassiliev invariants of finite type are ubiquitous in this area of
knot theory. One can think of Vassiliev invariants as building blocks for the
other invariants, or that these invariants are sources of Vassiliev invariants.

4 Vassiliev Invariants and Witten’s Functional
Integral

In [19] Edward Witten proposed a formulation of a class of 3-manifold in-
variants as generalized Feynman integrals taking the form Z(M) where

Z(M) =
∫

DAe(ik/4π)S(M,A).

Here M denotes a 3-manifold without boundary and A is a gauge field (also
called a gauge potential or gauge connection) defined on M . The gauge field
is a one-form on a trivial G-bundle over M with values in a representation of
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the Lie algebra of G. The group G corresponding to this Lie algebra is said
to be the gauge group. In this integral the action S(M, A) is taken to be
the integral over M of the trace of the Chern-Simons three-form A ∧ dA +
(2/3)A ∧ A ∧ A. (The product is the wedge product of differential forms.)

Z(M) integrates over all gauge fields modulo gauge equivalence.

The formalism and internal logic of Witten’s integral supports the exis-
tence of a large class of topological invariants of 3-manifolds and associated
invariants of knots and links in these manifolds.

The invariants associated with this integral have been given rigorous com-
binatorial descriptions but questions and conjectures arising from the integral
formulation are still outstanding. Specific conjectures about this integral take
the form of just how it implicates invariants of links and 3-manifolds, and
how these invariants behave in certain limits of the coupling constant k in
the integral. Many conjectures of this sort can be verified through the combi-
natorial models. On the other hand, the really outstanding conjecture about
the integral is that it exists! At the present time there is no measure theory
or generalization of measure theory that supports it in full generality. Here is
a formal structure of great beauty. It is also a structure whose consequences
can be verified by a remarkable variety of alternative means.

The formalism of the Witten integral implicates invariants of knots and
links corresponding to each classical Lie algebra. In order to see this, we need
to introduce the Wilson loop. The Wilson loop is an exponentiated version
of integrating the gauge field along a loop K in three space that we take to
be an embedding (knot) or a curve with transversal self-intersections. For
this discussion, the Wilson loop will be denoted by the notation

WK(A)

to denote the dependence on the loop K and the field A. It is usually

indicated by the symbolism tr(Pe
∮

K
A) . Thus

WK(A) = tr(Pe
∮

K
A).

Here the P denotes path ordered integration - we are integrating and ex-
ponentiating matrix valued functions, and so must keep track of the order
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of the operations. The symbol tr denotes the trace of the resulting matrix.
This Wilson loop integration exists by normal means and does not require
functional integration.

With the help of the Wilson loop functional on knots and links, Witten
writes down a functional integral for link invariants in a 3-manifold M :

Z(M, K) =
∫

DAe(ik/4π)S(M,A)tr(Pe
∮

K
A)

=
∫

DAe(ik/4π)SWK(A).

Here S(M, A) is the Chern-Simons Lagrangian, as in the previous discussion.
We abbreviate S(M, A) as S and write WK(A) for the Wilson loop. Unless
otherwise mentioned, the manifold M will be the three-dimensional sphere
S3

An analysis of the formalism of this functional integral reveals quite a bit
about its role in knot theory. One can determine how the Witten integral
behaves under a small deformation of the loop K.

Theorem.

1. Let Z(K) = Z(S3, K) and let δZ(K) denote the change of Z(K) under
an infinitesimal change in the loop K. Then

δZ(K) = (4πi/k)
∫

dAe(ik/4π)S[V ol]TaTaWK(A)

where V ol = εrstdxrdxsdxt.

The sum is taken over repeated indices, and the insertion is taken of the
matrices TaTa at the chosen point x on the loop K that is regarded as
the center of the deformation. The volume element V ol = εrstdxrdxsdxt

is taken with regard to the infinitesimal directions of the loop deforma-
tion from this point on the original loop.
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2. The same formula applies, with a different interpretation, to the case
where x is a double point of transversal self intersection of a loop K, and
the deformation consists in shifting one of the crossing segments per-
pendicularly to the plane of intersection so that the self-intersection
point disappears. In this case, one Ta is inserted into each of the
transversal crossing segments so that TaTaWK(A) denotes a Wilson
loop with a self intersection at x and insertions of Ta at x + ε1 and
x + ε2 where ε1 and ε2 denote small displacements along the two arcs
of K that intersect at x. In this case, the volume form is nonzero, with
two directions coming from the plane of movement of one arc, and the
perpendicular direction is the direction of the other arc.

Remark. One shows that the result of a topological variation has an ana-
lytic expression that is zero if the topological variation does not create a local
volume. Thus we have shown that the intergral of e(ik/4π)S(A)WK(A) is topo-
logically invariant as long as the curve K is moved by the local equivalent of
regular isotopy.

In the case of switching a crossing the key point is to write the crossing
switch as a composition of first moving a segment to obtain a transversal
intersection of the diagram with itself, and then to continue the motion to
complete the switch. Up to the choice of our conventions for constants, the
switching formula is, as shown below (See Figure 12).

Z(K+)− Z(K−) = (4πi/k)
∫

DAe(ik/4π)STaTa < K∗∗|A >

= (4πi/k)Z(T aT aK∗∗),

where K∗∗ denotes the result of replacing the crossing by a self-touching
crossing. We distinguish this from adding a graphical node at this crossing
by using the double star notation.
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Figure 12 — The Difference Formula

A key point is to notice that the Lie algebra insertion for this difference
is exactly what is done (in chord diagrams) to make the weight systems for
Vassiliev invariants (without the framing compensation). Thus the formalism
of the Witten functional integral takes one directly to these weight systems
in the case of the classical Lie algebras. In this way the functional integral
is central to the structure of the Vassiliev invariants.

5 The Loop Transform and Quantum Gravity

Suppose that ψ(A) is a (complex valued) function defined on gauge fields.
Then we define formally the loop transform ψ̂(K), a function on embedded
loops in three-dimensional space, by the formula

ψ̂(K) =
∫

DAψ(A)WK(A).
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In other words,we take ψ̂(K) to be the functional equivalence class of
ψ(A)WK(A) in the sense of the previous section.

ψ̂(K) ∼ ψ(A)WK(A).

If ∆ is a differential operator defined on ψ(A), then we can use this integral
transform to shift the effect of ∆ to an operator on loops via integration by
parts:

∆̂ψ(K) =
∫

DA∆ψ(A)WK(A)

= −
∫

DAψ(A)∆WK(A).

Again, this is a statement about the equivalence classes:

∆̂ψ(K) ∼ (∆ψ(A))WK(A) ∼ − ψ(A)(∆WK(A)).

When ∆ is applied to the Wilson loop the result can be an understandable
geometric or topological operation. One cane illustrate this situation with
operators G and H.

G = −F a
ijdxiδ/δAa

j (x)

H = −εarsF
a
ijδ/δA

s
iδ/δA

r
j

with summation over the repeated indices. Each of these operators has the
property that its action on the Wilson loop has a geometric or topological
interpretation. One has

Ĝψ(K) = δψ̂(K)

where this variation refers to the effect of varying K. As we saw in the pre-
vious section, this means that if ψ̂(K) is a topological invariant of knots and
links, then Ĝψ(K) = 0 for all embedded loops K. This condition is a trans-
form analogue of the equation Gψ(A) = 0. This equation is the differential
analogue of an invariant of knots and links. It may happen that δψ̂(K) is
not strictly zero, as in the case of our framed knot invariants. For example
with

ψ(A) = e(ik/4π)
∫

tr(A∧dA+(2/3)A∧A∧A)
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we conclude that Ĝψ(K) is zero for flat deformations (in the sense of the
previous section) of the loop K, but can be non-zero in the presence of a
twist or curl. In this sense the loop transform provides a subtle variation on
the strict condition Gψ(A) = 0.

In [3] and other publications by Ashtekar, Rovelli, Smolin and their col-
leagues, the loop transform is used to study a reformulation and quantization
of Einstein gravity. The differential geometric gravity theory of Einstein is
reformulated in terms of a background gauge connection and in the quantiza-
tion, the Hilbert space consists in functions ψ(A) that are required to satisfy
the constraints

Gψ = 0

and
Hψ = 0

Thus we see that Ĝ(K) can be partially zero in the sense of producing a
framed knot invariant, and that Ĥ(K) is zero for non-self intersecting loops.
This means that the loop transforms of G and H can be used to investigate
a subtle variation of the original scheme for the quantization of gravity. This
program is being actively pursued by a number of researchers. The Vas-
siliev invariants arising from a topologically invariant loop transform are of
significance to this theory.

6 Braiding, Topological Quantum Field The-
ory and Quantum Computing

The purpose of this section is to discuss in a very general way how braiding
is related to topological quantum field theory and to the enterprise [6] of
using this sort of theory as a model for anyonic quantum computation. The
ideas in the subject of topological quantum field theory are well expressed in
the book [2] by Michael Atiyah and the paper [19] by Edward Witten. The
simplest case of this idea is C. N. Yang’s original interpretation of the Yang-
Baxter Equation. Yang articulated a quantum field theory in one dimension
of space and one dimension of time in which the R-matrix giving the scat-
tering ampitudes for an interaction of two particles whose (let us say) spins
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corresponded to the matrix indices so that Rcd
ab is the amplitude for particles

of spin a and spin b to interact and produce particles of spin c and d. Since
these interactions are between particles in a line, one takes the convention
that the particle with spin a is to the left of the particle with spin b, and the
particle with spin c is to the left of the particle with spin d. If one follows
the concatenation of such interactions, then there is an underlying permu-
tation that is obtained by following strands from the bottom to the top of
the diagram (thinking of time as moving up the page). Yang designed the
Yang-Baxter equation for R so that the amplitudes for a composite process
depend only on the underlying permutation corresponding to the process and
not on the individual sequences of interactions.

In taking over the Yang-Baxter equation for topological purposes, we can
use the same intepretation, but think of the diagrams with their under- and
over-crossings as modeling events in a spacetime with two dimensions of space
and one dimension of time. The extra spatial dimension is taken in displacing
the woven strands perpendicular to the page, and allows the use of braiding
operators R and R−1 as scattering matrices. Taking this picture to heart, one
can add other particle properties to the idealized theory. In particular one
can add fusion and creation vertices where in fusion two particles interact
to become a single particle and in creation one particle changes (decays)
into two particles. Matrix elements corresponding to trivalent vertices can
represent these interactions. See Figure 13.

Figure 13 -Creation and Fusion

Once one introduces trivalent vertices for fusion and creation, there is
the question how these interactions will behave in respect to the braiding
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operators. There will be a matrix expression for the compositions of braid-
ing and fusion or creation as indicated in Figure 15. Here we will restrict
ourselves to showing the diagrammatics with the intent of giving the reader
a flavor of these structures. It is natural to assume that braiding intertwines
with creation as shown in Figure 16 (similarly with fusion). This intertwin-
ing identity is clearly the sort of thing that a topologist will love, since it
indicates that the diagrams can be interpreted as embeddings of graphs in
three-dimensional space. Figure 14 illustrates the Yang-Baxter equation.
The intertwining identity is an assumption like the Yang-Baxter equation
itself, that simplifies the mathematical structure of the model.

=

RIR I
RI

RI
RI

R I

R I
R I

Figure 14 - YangBaxterEquation

= R

Figure 15 - Braiding
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Figure 16 - Intertwining

It is to be expected that there will be an operator that expresses the
recoupling of vertex interactions as shown in Figure 17 and labeled by Q.
The actual formalism of such an operator will parallel the mathematics of
recoupling for angular momentum. See for example [9]. If one just considers
the abstract structure of recoupling then one sees that for trees with four
branches (each with a single root) there is a cycle of length five as shown in
Figure 17. One can start with any pattern of three vertex interactions and
go through a sequence of five recouplings that bring one back to the same
tree from which one started. It is a natural simplifying axiom to assume that
this composition is the identity mapping. This axiom is called the pentagon
identity.

Q

Figure 17 - Recoupling
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Q
Q
Q

Q

Q

Figure 18 - Pentagon Identity

Finally there is a hexagonal cycle of interactions between braiding, recou-
pling and the intertwining identity as shown in Figure 19. One says that the
interactions satisfy the hexagon identity if this composition is the identity.
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Q
Q

Q

R

R
R

Figure 19 - Hexagon Identity

A three-dimensional topological quantum field theory is an algebra of in-
teractions that satisfies the Yang-Baxter equation, the intertwining identity,
the pentagon identity and the hexagon identity. There is not room in this
summary to detail the way that these properties fit into the topology of
knots and three-dimensional manifolds, but a sketch is in order. For the
case of topological quantum field theory related to the group SU(2) there is
a construction based entirely on the combinatorial topology of the bracket
polynomial (See Section 2 of this article.). See [10, 9] for more information
on this approach.
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It turns out that the algebraic properties of a topological quantum field
theory give it enough power to rigourously model three manifold invariants
described by the Witten integral. This is done by regarding the three-
manifold as a union of two handlebodies with boundary an orientable surface
Sg of genus g. The surface is divided up into trinions as illustrated in Figure
20. A trinion is a surface with boundary that is topologically equivalent to
a sphere with three punctures. In Figure 20 we illustrate two trinions, the
second shown as a neighborhood of a trivalent vertex, and a surface of genus
three that is decomposed into three trinions. It turns out that there is a
way to associate a vector space V (Sg) to a surface with a trinion decompo-
sition, defined in terms of the associated topological quantum field theory,
such that the isomorpism class of the vector space V (Sg) does not depend
upon the choice of decomposition. This independence is guaranteed by the
braiding, hexagon and pentagon identities in such a way that one can asso-
ciate a well-defined vector |Mε〉 in V (Sg) whenenver M is a three manifold
whose boundary is Sg. Furthermore, if a closed three-manifold M3 is decom-
posed along a surface Sg into the union of M− and M+ where these parts are
otherwise disjoint three-manifolds with boundary Sg, then the inner product
I(M) = 〈M−|M+〉 is, up to normalization, an invariant of the three-manifold
M3. With the definition of topological quantum field theory given above,
knots and links can be incorporated as well, so that one obtains a source of
invariants I(M3, K) of knots and links in orientable three-manifolds.

29



    � �

Figure 20 - Decomposition of a Surface into Trinions

The invariant I(M3, K) can be formally compared with the Witten inte-
gral

Z(M3, K) =
∫

DAe(ik/4π)S(M,A)WK(A).

It can be shown that up to limits of the heuristics, Z(M, K) and I(M3, K)
are essentially equivalent for appropriate choice of gauge groups.

This point of view, leads to more abstract formulations of topological
quantum field theories as ways to associate vector spaces and linear transfor-
mations to manifolds and cobordisms of manifolds. (A cobordism of surfaces
is a three manifold whose boundary consists in these surfaces.)
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As the reader can see, a three-dimensional TQFT is, at base, a highly
simplified theory of point particle interactions in 2+1 dimensional spacetime.
It can be used to articulate invariants of knots and links and invariants of
three manifolds. The reader interested in the SU(2) case of this structure
and its implications for invariants of knots and three manifolds can consult
[9, 10, 5]. One expects that physical situations involving 2+1 spacetime will
be approximated by such an idealized theory. It is thought for example, that
aspects of the quantum Hall effect will be related to topological quantum field
theory [18]. One can imagine a physics where the geometrical space is two
dimensional and the braiding of particles corresponds to their interactions
through circulating around one another in the plane. Anyons are particles
that do not just change their wave-functions by a sign under interchange, but
rather by a complex phase or even a linear combination of states. It is hoped
that TQFT models will describe applicable physics. One can think about
the possible applications of anyons to quantum computing. The TQFT ′s
then provide a class of anyonic models where the braiding is essential to the
physics and to the quantum computation.

Q Q
-1

-1

R

B = Q   RQ

Figure 21 - A More Complex Braiding Operator
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The key point in the application and relationship of TQFT and quantum
information theory is, in our opinion, contained in the structure illustrated
in Figure 21. There we show a more complex braiding operator, based on the
composition of recoupling with the elementary braiding at a vertex. (This
structure is implicit in the Hexagon identity of Figure 19.) The new braiding
operator is a source of unitary representations of braid group in situations
(which exist mathematically) where the recoupling transformations are them-
selves unitary. This kind of pattern is utilized in the work of Freedman and
collaborators [6] and in the case of classical angular momentum formalism
has been dubbed a “spin-network quantum simlator” by Rasetti and collab-
orators [15]. In [14] we show how certain natural deformations [9] of Penrose
spin networks [16] can be used to produce such the Freedman-Kitaev model
for anyonic topological quantum computation. It is legitimate to speculate
that networks of this kind are present in physical reality.

Quantum computing can be regarded as a study of the structure of the
preparation, evolution and measurement of quantum systems. In the quan-
tum computation model, an evolution is a composition of unitary transfor-
mations (usually finite dimensional over the complex numbers). The unitary
transformations are applied to an initial state vector that has been prepared
prior to this process. Measurements are projections to elements of an or-
thonormal basis of the space upon which the evolution is applied. The result
of measuring a state |ψ〉, written in the given basis, is probabilistic. The
probability of obtaining a given basis element from the measurement is equal
to the absolute square of the coefficient of that basis element in the state
being measured.

It is remarkable that the above lines constitute an essential summary
of quantum theory. All applications of quantum theory involve filling in
details of unitary evolutions and specifics of preparations and measurements.
Such unitary evolutions can be seen as approximated arbitrarily closely by
representations of the Artin braid group. The key to the anyonic models of
quantum computation via topological quantum field theory, or via deformed
spin networks is that all unitary evolutions can be approximated by a single
coherent method for producing representations of the braid group. This
beautiful mathematical fact points to a deep role for topology in the structure
of quantum physics.
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The future of knots, links and braids in relation to physics will be very
exciting. There is no question that unitary representations of the braid group
and quantum invariants of knots and links play a fundamental role in the
mathematical structure of quantum mechanics, and we hope that time will
show us the full meaning of this relationship.
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