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Networks as Phenomena

The emergence of ‘cyberspace’
and the World Wide Web is like
the discovery of a new continent.

– Jim Gray,
1998 Turing Award address

The on-line world as a phenomenon to be studied.

The basic language for describing it is mathematical.



The Terrain of the On-Line World

Political blogs
(Adamic-Glance, 2005)

Anti-war chain letter (LibenNowell-Kleinberg 2008)

The terrain of the on-line world is
geographic, social, and graph-theoretic.

Combinatorial and probabilistic analyses of graphs
form a central part of our understanding.



Is There Life on Earth?



A Portion of the Earth, as Seen from Flickr



Organize Traces of Human Behavior Around Hot Spots

Organize activities around “hot-spots” in space and time.

Use geo-tagged data from millions of people,
via photos, search engine queries, mobile devices

[Backstrom-Kleinberg-Kumar-Novak 2008, Kennedy-Naaman 2008,

Crandall-Backstrom-Huttenlocher-Kleinberg 2009]

Hot-spot analysis

Where are the hot-spots?

How “intense” are they?

What’s distinctive in them?

Backstrom et al 2008, Kennedy-Naaman 2008, Crandall et al 2009



How Do We Find and Describe Hot-Spots?

Start with a local-search heuristic
to find hot-spots.

Identifying Distinctive Features of a Hot-Spot.

First: textual tags.

Significance of a tag t at a hot-spot based on Bayes’ Rule.

Roughly: probability of seeing this density of photos w/ tag t,
if tag were generated from world’s background distribution?

Next: identify distinctive photos at a location
[Snavely-Seitz-Szeliski 2006, Kennedy-Naaman 2008]

Try this for the global Flickr dataset, using two scales:

100 km: metropolitan scale

100 m: landmark scale



Top landmark 2nd landmark 3rd landmark 4th landmark 5th landmark 6th landmark 7th landmark 8th landmark
1. manhattan empirestate timessquare grandcentral applestore stpatricks museumofmodernartnyse themet
2. london trafalgarsquare tatemodern eye bigben piccadillycircus britishmuseum toweroflondon buckingham
3. sanfrancisco coittower sealions unionsquare lombardstreet prison ferrybuilding embarcadero exploratorium
4. losangeles disneyland hollywood gettycenter disneyhall disneyland neworleanssquare santamonicapier griffithobservatory
5. paris eiffel cathedral sacrecoeur pyramid arcdetriomphe pompidou trocadero placedelaconcorde
6. washingtondc lincolnmemorial monument wwiimemorial capitol vietnammemorial whitehouse thomasjefferson airandspacemuseum

7. chicago cloudgate michiganavenue gehry artinstitute sears hancock wrigleyfield marinacity
8. seattle spaceneedle market emp library olympicsculpture gasworks kerrypark fountain
9. boston fenwaypark trinitychurch faneuilhall publicgarden statehouse aquarium harvardsquare harvardyard

10. sandiego balboapark sandiegozoo seals ussmidway starofindia padres mission oldtown
11. amsterdam dam annefrank nieuwmarkt museumplein station leidseplein europe spui
12. rome colosseum sanpietro pantheon fontanaditrevi basilica piazzadispagna vittoriano angel
13. barcelona sagradafamilia parcguell boqueria casamil catedral spain spain macba
14. berlin brandenburggate reichstag potsdamerplatz holocaustmemorial sonycenter tvtower berlinerdom checkpoint
15. monterey montereybay downtown canneryrow boardwalk mac fishermanswharf amusementpark pigeon
16. lasvegas paris bellagio mgm hooverdam venetian flamingo luxor venetian
17. toronto cntower phillipssquare dundassquare rom eatoncentre unionstation bluejays hockeyhalloffame
18. vancouver granvilleisland artgallery aquarium downtown gastown englishbay vpl commodore
19. firenze cathedral pontevecchio firenze piazzadelcampo florence santacroce bridge florence
20. philadelphia libertybell artmuseum cityhall jfkplaza logancircle rittenhouse citizensbankpark carpentershall
83. stlouis gatewayarch buschstadium oldcourthouse citymuseum downtown mallofamerica luxor venetian



The Earth, as Seen from Flickr



U.S. and Canada (Crandall et al 2009)
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Europe



Lower Manhattan



Bringing Network Structure Into the Picture

How do we discover the fine structure of a billion-node network?

The strange geography of our collective social experience ...



Network structure via neighborhoods

Start with network neighborhoods



Network structure via neighborhoods

Start with network neighborhoods

Think of Facebook not as a billion-node network, but instead as
a collection of a billion (relatively dense) small networks.



Network structure via neighborhoods

Start with network neighborhoods

Describe neighborhood G by vector of subgraph frequencies: For small k,
and each k-node graph H, let fG (H) = frac. of k-node sets inducing H.



Characterizing neighborhoods

fG (H) = frac. of k-node sets in G
that induce H.

Triad census: Davis-Leinhardt 71

Network motifs: Milo et al 02

Frequent subgraph mining:
Yan-Han 02, Kuramochi-Karypis 04

Subgraph homomorphism density:
Borgs et al 06

Characterizing neighborhoods:
Ugander et al 13



The geography of Facebook neighborhoods

Axes: triad frequencies

“Coastlines:” freq of
1-edge triad is ≤ 3/4.

Unpopulated areas: freq
of 2-edge triad never
close to 3/4 in real life.

Full feasible region would imply

[Razborov 2007].

Gn,p is the “river” that runs through the points.

With deviations based on triadic closure and clustering.
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Diffusion and Contagion

A basic “transport mechanism” for these systems:

Cascading behavior through a network

Long history of research in social contagion:

Agricultural, medical innovations [Ryan-Gross 1943, Coleman et al 1966]

Media influence and two-stage flow [Lazarsfeld et al 1944]

“Virality” of news, rumors, marketing strategies, political messages, ...

Cascading failures in engineered and financial systems.



Contagion in Networks

Book recommendations (Leskovec et al 2006) Anti-war chain letter (LibenNowell-Kleinberg 2008)

Networks of sexual contacts (Potterat et al 02)
Overnight loans among financial institutions (Bech and Atalay, 2008)



Threshold Contagion

Each node v chooses a threshold f (v) at the start, from a
distribution µ over {0, 1, 2, . . . , d + 1}.

v will be affected as soon as it has f (v) affected neighbors.

1

0 4

2 2

0 2 2

2 2 0 0 1 2

Despite simple formulation, a challenging model to analyze.
Special-case results for diminishing thresholds (µ(1) ≥ µ(2) ≥ · · · )
[Kempe-Kleinberg-Tardos 03, Mossel-Roch 07].

Special-case results when graph G is a tree [Dodds-Watts 04],
lattice [Cox-Durrett 91], clique [Granovetter 78, Schelling 78],
or small-world network [Ebrahimi-Ghasemiesfeh-Gao 13].

Analysis for arbitrary graphs
[Blume-Easley-Kleinberg-Kleinberg-Tardos 11].



Cascading Failures with Thresholds

r
r

Which networks are least susceptible to cascading failures?

Take edge density out of consideration: set of all graphs
where each node has d neighbors.

Choose µ from set of all distributions on {0, 1, 2, . . . , d + 1}.
Risk of G = maximum failure probability of any node in G
when thresholds are drawn from µ.

Given µ, which graphs have the lowest risk?



Testing One’s Intuition about Failure-Resilience

r
r

Intuition from epidemiology:

Dangerous to belong to a large connected component:
the clique Kd+1 is a resilient graph.

Intuition from financial markets:

Want diversity among neighbors, uncorrelated shocks:
the tree Td is a resilient graph.

These two forms of intuition are in direct opposition to each other.



Cliques vs. Trees

To get further insight into the model:
Let’s test these intuitions on distributions of the form

(µ(0), µ(1), µ(2)) = (s, t, 1− s − t)

where s is fixed and small, and t varies. (All thresholds above 2
have prob. 0.)

With threshold distribution
(s, 1− s, 0), r ’s failure prob. is
monontonic in the size of its
component.

The clique is uniquely optimal.

r



Cliques vs. Trees

r
r

Recall (µ(0), µ(1), µ(2)) = (s, t, 1− s − t).

A first result:

There exist s, t (both small, with t larger than s)
so that the tree Td has lower risk than the clique Kd+1.

Qualitative point: very different kinds of graphs are safer
against different kinds of contagion processes.



Cliques vs. Trees

r
r

Tree:

s +

(
d

2

)
s2 + dst + terms of degree ≥ 3 · · ·+

(
d

2

)
st

Clique:

s +

(
d

2

)
s2 + dst +

(
d

2

)
st + terms of degree ≥ 3 · · ·

Now let s, t → 0 so higher-order terms are negligible.
(Justification becomes subtle.)



Sufficient Sets

r

Recall:

Set of all graphs with d neighbors per node.

Set of all distributions µ on {0, 1, 2, . . . , d + 1}.
Call a set of graphs H “sufficient” if:

For every distribution µ, some graph in H achieves minimum
risk over all d-regular graphs.

Question:

Is there a finite sufficient set for family of all d-regular graphs?



The Flow of Information

Book recommendations (Leskovec et al 2006)
Anti-war chain letter (LibenNowell-Kleinberg 2008)

“Open” vs. “closed” neighborhoods a crucial distinction in contagion on
Facebook [Ugander-Backstrom-Marlow-Kleinberg 2012].

Incentives to propagate information: e.g. Query incentive networks
[Kleinberg-Raghavan 2005], DARPA Network Challenge [Pickard et al
2011], Bitcoin [Babaioff et al 2012].

Simultaneous evolution of network structure and behavior
[Holme-Newman 2006, Durrett et al 2012].



Final Reflections

MySpace is doubly awkward because it
makes public what should be private.
It doesn’t just create social networks, it
anatomizes them. It spreads them out like a
digestive tract on the autopsy table.
You can see what’s connected to what,
who’s connected to whom.

– Toronto Globe and Mail, June 2006.

Social networks — implicit for millenia — are being recorded
at high resolution.

What is the right framework for capturing the structures and
phenomena that we see?

What are the dangers of stockpiling this much personal data?

An opportunity for fundamental mathematical models to
inform the next steps on all these questions.


