

Random Fields and Random Geometry

I: Gaussian fields and Kac-Rice formulae

Robert Adler Electrical Engineering Technion – Israel Institute of Technology

> and many, many others

October 25, 2011

I do not intend to cover all these slides in 75 minutes!

(Some of the material is for your later reference, and some for the afternoon tutorial.)

Our heroes

Marc Kac 1914–1984

Stephen O. Rice 1907–1986

$$f(t) = \xi_0 + \xi_1 t + \xi_2 t^2 + \dots + \xi_{n-1} t^{n-1}$$

$$f(t) = \xi_0 + \xi_1 t + \xi_2 t^2 + \dots + \xi_{n-1} t^{n-1}$$
$$\mathbb{P}\{\xi = (\xi_0, \dots, \xi_{n-1}) \in A\} = \int_A \frac{e^{-\|x\|^2/2}}{(2\pi)^{n/2}} dx \qquad (\xi \sim N(0, I_{n \times n}))$$

$$f(t) = \xi_0 + \xi_1 t + \xi_2 t^2 + \dots + \xi_{n-1} t^{n-1}$$
$$\mathbb{P}\{\xi = (\xi_0, \dots, \xi_{n-1}) \in A\} = \int_A \frac{e^{-\|x\|^2/2}}{(2\pi)^{n/2}} dx \qquad (\xi \sim N(0, I_{n \times n}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Theorem: N_n = the number of real zeroes of f

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})^2]^{1/2}}{1 - x^2} \, dx$$

$$f(t) = \xi_0 + \xi_1 t + \xi_2 t^2 + \dots + \xi_{n-1} t^{n-1}$$
$$\mathbb{P}\{\xi = (\xi_0, \dots, \xi_{n-1}) \in A\} = \int_A \frac{e^{-\|x\|^2/2}}{(2\pi)^{n/2}} dx \qquad (\xi \sim N(0, I_{n \times n}))$$

Theorem: N_n = the number of real zeroes of f

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1-n^2[x^2(1-x^2)/(1-x^{2n}]^2]^{1/2}}{1-x^2} dx$$

Approx'n: For large n

$$\mathbb{E}\{N_n\} \sim \frac{2\log n}{\pi}$$

~ .

$$f(t) = \xi_0 + \xi_1 t + \xi_2 t^2 + \dots + \xi_{n-1} t^{n-1}$$
$$\mathbb{P}\{\xi = (\xi_0, \dots, \xi_{n-1}) \in A\} = \int_A \frac{e^{-\|x\|^2/2}}{(2\pi)^{n/2}} dx \qquad (\xi \sim N(0, I_{n \times n}))$$

Theorem: N_n = the number of real zeroes of f

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1-n^2[x^2(1-x^2)/(1-x^{2n}]^2]^{1/2}}{1-x^2} dx$$

Approx'n: For large n

$$\mathbb{E}\{N_n\} \sim \frac{2\log n}{\pi}$$

~ .

Bound: For large n

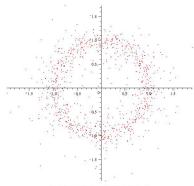
$$\mathbb{E}\{N_n\} \leq \frac{2\log n}{\pi} + \frac{14}{\pi}.$$

$$f(z) = \xi_0 + a_1\xi_1 z + a_2\xi_2 z^2 + \cdots + a_{n-1}\xi_{n-1} z^{n-1}, \qquad z \in \mathbb{C}.$$

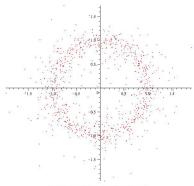
$$f(z) = \xi_0 + a_1\xi_1 z + a_2\xi_2 z^2 + \cdots + a_{n-1}\xi_{n-1} z^{n-1}, \qquad z \in \mathbb{C}.$$

(日)、

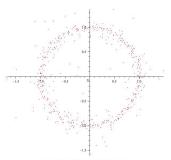
э



Zeros of 60 Hammersley random polynomials of degree 15

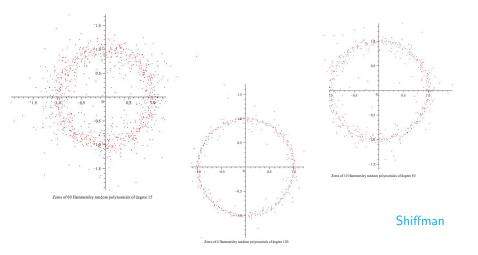


Zeros of 60 Hammersley random polynomials of degree 15



Zeros of 10 Hammersley random polynomials of degree 50

・ロト ・ 一下・ ・ ヨト ・



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● のへ(で)

$$\mathbb{E}\left\{\#\{t\in\mathbb{R}^{N}:\,f(t)=u\}
ight\}\ =\ ?$$

$$\mathbb{E}\left\{\#\{t\in\mathbb{R}^N:\,f(t)=u\}\right\}=?$$

2: $f: M \to N$, random, dim $(M) = \dim(N)$

$$\mathbb{E} \{ \# \{ p \in M : f(p) = q \} \} = ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{E}\left\{\#\{t\in\mathbb{R}^N:\,f(t)=u\}\right\} = ?$$

2: $f: M \to N$, random, dim $(M) = \dim(N)$

$$\mathbb{E} \{ \# \{ p \in M : f(p) = q \} \} = ?$$

3: In another notation:

$$\mathbb{E}\left\{\#\{f^{-1}(q)\}\right\} = ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{E}\left\{\#\left\{t\in\mathbb{R}^{N}:\,f(t)=u\right\}\right\} = ?$$

2: $f: M \to N$, random, dim $(M) = \dim(N)$

$$\mathbb{E} \{ \# \{ p \in M : f(p) = q \} \} = ?$$

3: In another notation:

$$\mathbb{E}\left\{\#\{f^{-1}(q)\}\right\} = ?$$

4: More generally:

$$f: M \to N, \dim(M) \neq \dim(N), D \subset N$$

In this case, typically,

$$\dim (f^{-1}(D)) = \dim(M) - \dim(N) + \dim(D),$$

and it is not clear what the corresponding question is.

$$\bullet \ U_u \equiv \ U_u(f,T) \stackrel{\Delta}{=} \#\{t \in T : f(t) = u, \ \dot{f}(t) > 0\}$$

$$\blacktriangleright U_u \equiv U_u(f,T) \stackrel{\Delta}{=} \#\{t \in T : f(t) = u, \dot{f}(t) > 0\}$$

Basic conditions on f: Continuity and differentiability

$$\blacktriangleright U_u \equiv U_u(f,T) \stackrel{\Delta}{=} \#\{t \in T : f(t) = u, \dot{f}(t) > 0\}$$

Basic conditions on f: Continuity and differentiability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plus (boring) side conditions to be met later

$$\blacktriangleright U_u \equiv U_u(f,T) \stackrel{\Delta}{=} \#\{t \in T : f(t) = u, \dot{f}(t) > 0\}$$

- Basic conditions on f: Continuity and differentiability
- Plus (boring) side conditions to be met later
- ► Kac-Rice formula:

$$\mathbb{E} \{ U_u \} = \int_T \int_0^\infty y \, p_t(u, y) \, dy dt$$

= $\int_T p_t(u) \int_0^\infty y \, p_t(y|u) \, dy dt$
= $\int_T p_t(u) \mathbb{E} \{ |\dot{f}(t)| \, \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u \} \, dt$

where $p_t(x, y)$ is the joint density of $(f(t), \dot{f}(t))$, $p_t(u)$ is the probability density of f(t), etc.

$$\bullet \ U_u \equiv \ U_u(f,T) \stackrel{\Delta}{=} \#\{t \in T : f(t) = u, \ \dot{f}(t) > 0\}$$

- Basic conditions on f: Continuity and differentiability
- Plus (boring) side conditions to be met later
- ► Kac-Rice formula:

$$\mathbb{E} \{ U_u \} = \int_T \int_0^\infty y \, p_t(u, y) \, dy dt$$

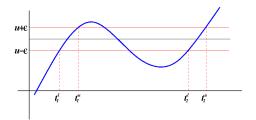
= $\int_T p_t(u) \int_0^\infty y \, p_t(y|u) \, dy dt$
= $\int_T p_t(u) \mathbb{E} \{ |\dot{f}(t)| \, \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u \} \, dt$

where $p_t(x, y)$ is the joint density of $(f(t), \dot{f}(t))$, $p_t(u)$ is the probability density of f(t), etc.

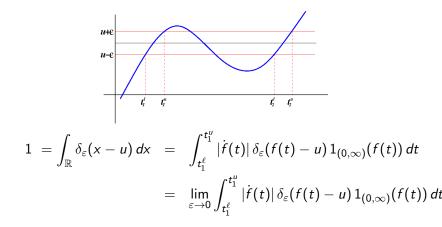
• T = [0, T] is an interval. M is a general set (e.g. manifold)

Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.

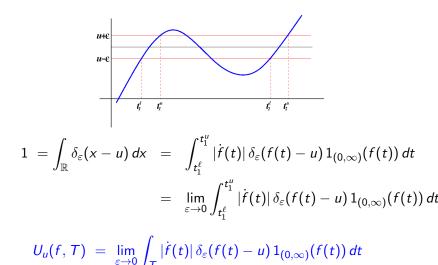
Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



うつつ 川 (一) (二) (二) (二) (二) (二)

So far, everything is deterministic

$$U_u(f, T) = \lim_{\varepsilon \to 0} \int_{T} |\dot{f}(t)| \, \delta_{\varepsilon}(f(t) - u) \, \mathbb{1}_{(0,\infty)}(f(t)) \, dt$$

So far, everything is deterministic

$$U_u(f,T) = \lim_{\varepsilon \to 0} \int_T |\dot{f}(t)| \, \delta_{\varepsilon}(f(t)-u) \, \mathbf{1}_{(0,\infty)}(f(t)) \, dt$$

Take expectations, with some sleight of hand

$$\mathbb{E}\{U_{u}(f,T)\} = \mathbb{E}\left\{\lim_{\varepsilon \to 0} \int_{T} |\dot{f}(t)| \,\delta_{\varepsilon}(f(t)-u) \,\mathbf{1}_{(0,\infty)}(f(t)) \,dt\right\}$$
$$= \int_{T} \lim_{\varepsilon \to 0} \mathbb{E}\left\{|\dot{f}(t)| \,\delta_{\varepsilon}(f(t)-u) \,\mathbf{1}_{(0,\infty)}(f(t)) \,dt\right\}$$
$$= \int_{T} \lim_{\varepsilon \to 0} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty} |y| \,\delta_{\varepsilon}(x-u) \,p_{t}(x,y) \,dxdy \,dt$$
$$= \int_{T} \int_{0}^{\infty} |y| \,p_{t}(u,y) \,dydt$$

► A (separable) parameter space *M*.

- A (separable) parameter space *M*.
- A finite or infinite set of functions φ₁, φ₂, ..., φ_j : M → ℝ satisfying

$$\sum_j arphi_j^2(t) < \infty, \qquad ext{for all } t \in M.$$

- A (separable) parameter space *M*.
- A finite or infinite set of functions φ₁, φ₂,..., φ_j : M → ℝ satisfying

$$\sum_j arphi_j^2(t) \ < \ \infty, \qquad ext{for all } t \in M.$$

A sequence ξ₁, ξ₂,..., of independent, N(0,1) random variables,

- A (separable) parameter space *M*.
- A finite or infinite set of functions φ₁, φ₂,..., φ_j : M → ℝ satisfying

$$\sum_j arphi_j^2(t) < \infty, \qquad ext{for all } t \in M.$$

- A sequence ξ₁, ξ₂,..., of independent, N(0, 1) random variables,
- Define the random field $f : M \to \mathbb{R}$ by

$$f(t) = \sum_{j} \xi_{j} \varphi_{j}(t)$$

- A (separable) parameter space *M*.
- A finite or infinite set of functions φ₁, φ₂,..., φ_j : M → ℝ satisfying

$$\sum_j arphi_j^2(t) < \infty, \qquad ext{for all } t \in M.$$

- A sequence ξ₁, ξ₂,..., of independent, N(0,1) random variables,
- Define the random field $f : M \to \mathbb{R}$ by

$$f(t) = \sum_{j} \xi_{j} \varphi_{j}(t)$$

Mean, covariance, and variance functions

$$\mu(t) \stackrel{\Delta}{=} \mathbb{E}\{f(t)\} = 0$$

$$C(s,t) \stackrel{\Delta}{=} \{[f(s) - \mu(s)] \cdot [f(t) - \mu(t)]\} = \sum_{i=1}^{n} \varphi_i(s)\varphi_i(t)$$

$$\sigma^2(t) \stackrel{\Delta}{=} C(t,t) = \sum_{i=1}^{n} \varphi_i^2(t)$$

Existence of Gaussian processes

Theorem

- Let *M* be a topological space.
- Let $C : M \times M$ be positive semi-definite.
- ▶ Then there exists a Gaussian process on $f : M \to \mathbb{R}$ with mean zero and covariance function *C*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Furthermore, f has a representation of the form $f(t) = \sum_{j} \xi_{j} \varphi_{j}(t)$, and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Existence of Gaussian processes

Theorem

- Let *M* be a topological space.
- Let $C : M \times M$ be positive semi-definite.
- ▶ Then there exists a Gaussian process on $f : M \to \mathbb{R}$ with mean zero and covariance function *C*.
- Furthermore, f has a representation of the form $f(t) = \sum_{j} \xi_{j} \varphi_{j}(t)$, and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Corollary

If there is justice in the world (smoothness and summability)

$$\dot{f}(t) = rac{\partial}{\partial t} f(t) = \sum_{j} \xi_{j} \dot{\varphi}_{j}(t),$$

and so if f is Gaussian, so is f. Where \dot{f} is any derivative on nice M.

Existence of Gaussian processes

Theorem

- Let *M* be a topological space.
- Let $C : M \times M$ be positive semi-definite.
- ▶ Then there exists a Gaussian process on $f : M \to \mathbb{R}$ with mean zero and covariance function *C*.
- Furthermore, f has a representation of the form f(t) = ∑_j ξ_jφ_j(t), and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Corollary

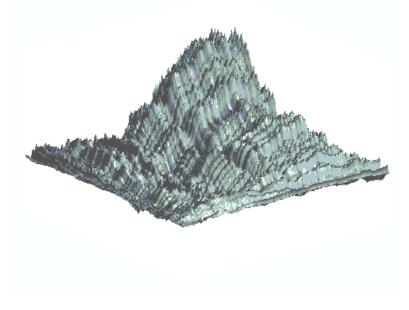
If there is justice in the world (smoothness and summability)

$$\dot{f}(t) = rac{\partial}{\partial t} f(t) = \sum_{j} \xi_{j} \dot{\varphi}_{j}(t),$$

and so if f is Gaussian, so is f. Where \dot{f} is any derivative on nice M.

Furthermore

- $\blacktriangleright \mathbb{E}\{\dot{f}(s)\dot{f}(t)\} = \mathbb{E}\{\sum \xi_j \dot{\varphi}_j(s) \sum \xi_k \dot{\varphi}_k(t)\} = \sum \dot{\varphi}_j(s) \dot{\varphi}_j(t)$
- $\blacktriangleright \mathbb{E}\{f(s)\dot{f}(t)\} = \mathbb{E}\{\sum \xi_j \varphi_j(s) \sum \xi_k \dot{\varphi}_k(t)\} = \sum \varphi_j(s) \dot{\varphi}_j(t)$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$\mathbb{E}\{W(t)\} = 0$$

$$\mathbb{E}\{W(s)W(t)\} = (s_1 \wedge t_1) \times \cdots \times (s_N \wedge t_N).$$

where $t = (t_1, \dots, t_N).$

$$\mathbb{E}\{W(t)\} = 0$$

$$\mathbb{E}\{W(s)W(t)\} = (s_1 \wedge t_1) \times \cdots \times (s_N \wedge t_N).$$

where $t = (t_1, \dots, t_N).$

 j_1

• Replace j by $j = (j_1, \ldots, j_N)$

$$\varphi_{j}(t) = 2^{N/2} \prod_{i=1}^{N} \frac{2}{(2j_{i}+1)\pi} \sin\left(\frac{1}{2}(2j_{i}+1)\pi t_{i}\right)$$
$$W(t) = \sum \cdots \sum \xi_{j_{1},\dots,j_{N}} \varphi_{j_{1},\dots,j_{N}}(t)$$

jм

$$\begin{split} \mathbb{E}\{W(t)\} &= 0 \\ \mathbb{E}\{W(s)W(t)\} &= (s_1 \wedge t_1) \times \cdots \times (s_N \wedge t_N). \end{split} \\ \end{split}$$
 where $t = (t_1, \ldots, t_N).$

• Replace j by $j = (j_1, \ldots, j_N)$

$$\varphi_j(t) = 2^{N/2} \prod_{i=1}^N \frac{2}{(2j_i+1)\pi} \sin\left(\frac{1}{2}(2j_i+1)\pi t_i\right)$$

$$W(t) = \sum_{j_1} \cdots \sum_{j_N} \xi_{j_1,\dots,j_N} \varphi_{j_1,\dots,j_N}(t)$$

► *N* = 1

 \Rightarrow

W is standard Brownian motion.

The corresponding expansion is due to Lévy, and the corresponding RKHS is known as Cameron-Martin space.

We know that

•
$$f(t) = \sum \xi_j \varphi_j(t)$$

• $\dot{f}(t) = \sum \xi_j \dot{\varphi}_j(t)$
• $\mathbb{E}{\dot{f}(s)\dot{f}(t)} = \sum \dot{\varphi}_j(s)\dot{\varphi}_j(t)$
• $\mathbb{E}{f(s)\dot{f}(t)} = \sum \varphi_j(s)\dot{\varphi}_j(t)$

We know that

•
$$f(t) = \sum \xi_j \varphi_j(t)$$

• $\dot{f}(t) = \sum \xi_j \dot{\varphi}_j(t)$
• $\mathbb{E}{\dot{f}(s)\dot{f}(t)} = \sum \dot{\varphi}_j(s)\dot{\varphi}_j(t)$
• $\mathbb{E}{f(s)\dot{f}(t)} = \sum \varphi_j(s)\dot{\varphi}_j(t)$

Thus, if

$$\sigma^2(t) = \mathbb{E}\{f^2(t)\} = \sum \varphi_j^2(t)$$

is a constant, say 1,

so that
$$\|\{\varphi_j(t)\}\|_{\ell_2} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We know that

•
$$f(t) = \sum \xi_j \varphi_j(t)$$

• $\dot{f}(t) = \sum \xi_j \dot{\varphi}_j(t)$
• $\mathbb{E}{\dot{f}(s)\dot{f}(t)} = \sum \dot{\varphi}_j(s)\dot{\varphi}_j(t)$
• $\mathbb{E}{f(s)\dot{f}(t)} = \sum \varphi_j(s)\dot{\varphi}_j(t)$

Thus, if

$$\sigma^2(t) = \mathbb{E}\{f^2(t)\} = \sum \varphi_j^2(t)$$

is a constant, say 1,

so that
$$\|\{\varphi_j(t)\}\|_{\ell_2} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

then

$$\mathbb{E}\{f(t)\dot{f}(t)\} = \sum \varphi_j(t)\dot{\varphi}_j(t)$$
$$= \frac{1}{2}\sum \frac{\partial}{\partial t}\varphi_j^2(t)$$
$$= \frac{1}{2}\frac{\partial}{\partial t}\sum \varphi_j^2(t)$$
$$= 0$$

We know that

•
$$f(t) = \sum \xi_j \varphi_j(t)$$

• $\dot{f}(t) = \sum \xi_j \dot{\varphi}_j(t)$
• $\mathbb{E}{\dot{f}(s)\dot{f}(t)} = \sum \dot{\varphi}_j(s)\dot{\varphi}_j(t)$
• $\mathbb{E}{f(s)\dot{f}(t)} = \sum \varphi_j(s)\dot{\varphi}_j(t)$

Thus, if

$$\sigma^2(t) = \mathbb{E}\{f^2(t)\} = \sum \varphi_j^2(t)$$

is a constant, say 1, so that $\|\{\varphi_j(t)\}\|_{\ell_2} = 1$

then

$$\mathbb{E}\{f(t)\dot{f}(t)\} = \sum \varphi_j(t)\dot{\varphi}_j(t)$$
$$= \frac{1}{2}\sum \frac{\partial}{\partial t}\varphi_j^2(t)$$
$$= \frac{1}{2}\frac{\partial}{\partial t}\sum \varphi_j^2(t)$$
$$= 0$$

▶ ⇒ f(t) and its derivative $\dot{f}(t)$ are INDEPENDENT. (uncorrelated)

Generic Kac-Rice formula

$$\mathbb{E}\left\{U_u\right\} = \int_{\mathcal{T}} p_t(u) \mathbb{E}\left\{\left|\dot{f}(t)\right| \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u\right\} dt$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generic Kac-Rice formula

$$\mathbb{E}\left\{U_u\right\} = \int_{\mathcal{T}} p_t(u) \mathbb{E}\left\{\left|\dot{f}(t)\right| \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u\right\} dt$$

• But f(t) and $\dot{f}(t)$ are independent!

Generic Kac-Rice formula

$$\mathbb{E}\left\{U_u\right\} = \int_{\mathcal{T}} p_t(u) \mathbb{E}\left\{\left|\dot{f}(t)\right| \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u\right\} dt$$

- But f(t) and $\dot{f}(t)$ are independent!
- Notation

$$1 = \sigma^2(t), \qquad \lambda(t) \stackrel{\Delta}{=} \mathbb{E}\{[\dot{f}(t)]^2\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generic Kac-Rice formula

$$\mathbb{E}\left\{U_u\right\} = \int_{\mathcal{T}} p_t(u) \mathbb{E}\left\{\left|\dot{f}(t)\right| \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u\right\} dt$$

- But f(t) and $\dot{f}(t)$ are independent!
- Notation

$$1 = \sigma^2(t), \qquad \lambda(t) \stackrel{\Delta}{=} \mathbb{E}\{[\dot{f}(t)]^2\}$$

► Rice formula (+ε)

$$\mathbb{E} \{ U_u \} = \frac{e^{-u^2/2}}{2\pi} \int_T [\lambda(t)]^{1/2} dt.$$

Generic Kac-Rice formula

$$\mathbb{E}\left\{U_u\right\} = \int_{\mathcal{T}} p_t(u) \mathbb{E}\left\{\left|\dot{f}(t)\right| \mathbf{1}_{(0,\infty)}(\dot{f}(t)) \mid f(t) = u\right\} dt$$

- But f(t) and $\dot{f}(t)$ are independent!
- Notation

$$1 = \sigma^2(t), \qquad \lambda(t) \stackrel{\Delta}{=} \mathbb{E}\{[\dot{f}(t)]^2\}$$

► Rice formula (+ε)

$$\mathbb{E} \{ U_u \} = \frac{e^{-u^2/2}}{2\pi} \int_T [\lambda(t)]^{1/2} dt.$$

• If $\lambda(t) \equiv \lambda$, we have the Rice formula

$$\mathbb{E} \{ U_u \} = \frac{T \lambda^{1/2}}{2\pi} e^{-u^2/2}$$

Gaussian Kac-Rice with no simplification

$$\mathbb{E}\left\{U_{u}(T)\right\} = \int_{T} \lambda^{1/2}(t)\sigma^{-1}(t)[1-\mu^{2}(t)]^{1/2}\varphi\left(\frac{m(t)}{\sigma(t)}\right)$$
$$\times \left[2\varphi(\eta(t)) + 2\eta(t)[2\Phi(\eta(t)) - 1]\right] dt$$

Gaussian Kac-Rice with no simplification

$$\mathbb{E}\left\{U_{u}(T)\right\} = \int_{T} \lambda^{1/2}(t)\sigma^{-1}(t)[1-\mu^{2}(t)]^{1/2}\varphi\left(\frac{m(t)}{\sigma(t)}\right)$$
$$\times \left[2\varphi(\eta(t)) + 2\eta(t)[2\Phi(\eta(t)) - 1]\right] dt$$

$$\begin{split} m(t) &= \mathbb{E}\{f(t)\}\\ \sigma^{2}(t) &= \mathbb{E}\{[f(t)]^{2}\}\\ \lambda(t) &= \mathbb{E}\{[\dot{f}(t)]^{2}\}\\ \mu(t) &= \frac{\mathbb{E}\{[\dot{f}(t) - m(t)] \cdot [\dot{f}(t)]\}}{\lambda^{1/2}(t)\sigma(t)}\\ \eta(t) &= \frac{\dot{m}(t) - \lambda^{1/2}(t)\mu(t)m(t)/\sigma(t)}{\lambda^{1/2}(t)[1 - \mu^{2}(t)]^{1/2}} \end{split}$$

Gaussian Kac-Rice with no simplification

$$\mathbb{E}\left\{U_{u}(T)\right\} = \int_{T} \lambda^{1/2}(t)\sigma^{-1}(t)[1-\mu^{2}(t)]^{1/2}\varphi\left(\frac{m(t)}{\sigma(t)}\right)$$
$$\times \left[2\varphi(\eta(t)) + 2\eta(t)[2\Phi(\eta(t)) - 1]\right] dt$$

$$\begin{split} m(t) &= \mathbb{E}\{f(t)\}\\ \sigma^{2}(t) &= \mathbb{E}\{[f(t)]^{2}\}\\ \lambda(t) &= \mathbb{E}\{[\dot{f}(t)]^{2}\}\\ \mu(t) &= \frac{\mathbb{E}\{[\dot{f}(t) - m(t)] \cdot [\dot{f}(t)]\}}{\lambda^{1/2}(t)\sigma(t)}\\ \eta(t) &= \frac{\dot{m}(t) - \lambda^{1/2}(t)\mu(t)m(t)/\sigma(t)}{\lambda^{1/2}(t)[1 - \mu^{2}(t)]^{1/2}} \end{split}$$

Very important fact: Long term covariances do not appear in any of these formulae.

Real roots of Gaussian polynomials The original Kac result now makes sense:

$$f(t) = \xi_0 + \xi_1 t + \dots + \xi_{n-1} t^{n-1}$$

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})^2]^{1/2}}{1 - x^2} dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Real roots of Gaussian polynomials The original Kac result now makes sense:

$$f(t) = \xi_0 + \xi_1 t + \dots + \xi_{n-1} t^{n-1}$$

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})]^2]^{1/2}}{1 - x^2} dx$$

Downcrossings, crossings, critical points

Critical points of different kinds are just zeroes of f with different side conditions. But now second derivatives appear, calculations will be harder. (f(t), f''(t) are not independent.)

Real roots of Gaussian polynomials The original Kac result now makes sense:

$$f(t) = \xi_0 + \xi_1 t + \dots + \xi_{n-1} t^{n-1}$$

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})^2]^{1/2}}{1 - x^2} dx$$

- Downcrossings, crossings, critical points Critical points of different kinds are just zeroes of f with different side conditions. But now second derivatives appear,
- calculations will be harder. (f(t), f"(t) are not independent.)
 Weakening the conditions In the Gaussian case, only absolute
- continuity and the finiteness of λ is needed. (Itô, Ylvisaker)

Real roots of Gaussian polynomials The original Kac result now makes sense:

$$f(t) = \xi_0 + \xi_1 t + \dots + \xi_{n-1} t^{n-1}$$

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})^2]^{1/2}}{1 - x^2} dx$$

Downcrossings, crossings, critical points

Critical points of different kinds are just zeroes of f with different side conditions. But now second derivatives appear, calculations will be harder. (f(t), f''(t) are not independent.)

- Weakening the conditions In the Gaussian case, only absolute continuity and the finiteness of λ is needed. (Itô, Ylvisaker)
- Higher moments?

Real roots of Gaussian polynomials The original Kac result now makes sense:

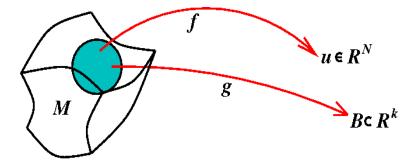
$$f(t) = \xi_0 + \xi_1 t + \dots + \xi_{n-1} t^{n-1}$$

$$\mathbb{E}\{N_n\} = \frac{4}{\pi} \int_0^1 \frac{[1 - n^2 [x^2(1 - x^2)/(1 - x^{2n})]^2]^{1/2}}{1 - x^2} dx$$

Downcrossings, crossings, critical points

Critical points of different kinds are just zeroes of f with different side conditions. But now second derivatives appear, calculations will be harder. (f(t), f''(t) are not independent.)

- Weakening the conditions In the Gaussian case, only absolute continuity and the finiteness of λ is needed. (Itô, Ylvisaker)
- Higher moments?
- Fixed points of vector valued processes?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► The setup

$$\begin{array}{ll} f &=& (f^1,\ldots,f^N) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^N \\ g &=& (g^1,\ldots,g^K) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^K \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► The setup

$$\begin{array}{lll} f & = & (f^1, \ldots, f^N) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^N \\ g & = & (g^1, \ldots, g^K) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^K \end{array}$$

► Number of points:

$$N_u \equiv N_u(M) \equiv N_u(f,g:M,B)$$

$$\stackrel{\Delta}{=} \mathbb{E} \{ \# \{ t \in M : f(t) = u, g(t) \in B \} \}.$$

► The setup

$$\begin{array}{lll} f & = & \left(f^1, \ldots, f^N\right) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^N \\ g & = & \left(g^1, \ldots, g^K\right) \ : \ M \subset \mathbb{R}^N \to \mathbb{R}^K \end{array}$$

Number of points:

$$N_u \equiv N_u(M) \equiv N_u(f,g:M,B)$$

$$\stackrel{\Delta}{=} \mathbb{E} \{ \# \{ t \in M : f(t) = u, g(t) \in B \} \}.$$

► The "metatheorem", or generalised Kac-Rice

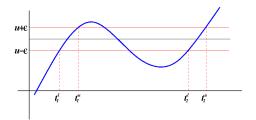
$$\mathbb{E}\{N_u\} = \int_M \int_{\mathbb{R}^D} |\det \nabla y| \ \mathbf{1}_B(v) \ p_t(u, \nabla y, v) \ d(\nabla y) \ dv \ dt$$

=
$$\int_M \mathbb{E}\left\{ \left| \det \nabla f(t) \right| \ \mathbf{1}_B(g(t)) \right| f(t) = u \right\} \ p_t(u) \ dt,$$

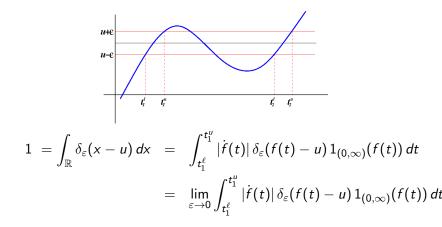
 $p_t(x, \nabla y, v) \text{ is the joint density of } (f_t, \nabla f_t, g_t)$ $(\nabla f)(t) \equiv \nabla f(t) \equiv (f_j^i(t))_{i,j=1,\dots,N} \equiv \left(\frac{\partial f^i(t)}{\partial t_j}\right)_{i,j=1,\dots,N}.$

Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.

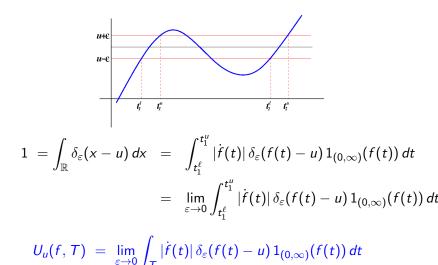
Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



Take a (positive) approximate delta function, δ_ε, supported on [-ε, +ε], and ∫_ℝ δ_ε(x) dx = 1.



うつつ 川 (一) (二) (二) (二) (二) (二)

The Kac-Rice Conditions (the fine print)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The Kac-Rice Conditions (the fine print)

Let f, g, M and B be as above, with the additional assumption that the boundaries of M and B have finite N - 1 and K - 1 dimensional measures, respectively. Furthermore, assume that the following conditions are satisfied for some $u \in \mathbb{R}^N$:

- (a) All components of f, ∇f , and g are a.s. continuous and have finite variances (over M).
- (b) For all t ∈ M, the marginal densities p_t(x) of f(t) (implicitly assumed to exist) are continuous at x = u.
- (c) The conditional densities p_t(x|∇f(t), g(t)) of f(t) given g(t) and ∇f(t) (implicitly assumed to exist) are bounded above and continuous at x = u, uniformly in t ∈ M.
- (d) The conditional densities p_t(z|f(t) = x) of det∇f(t) given f(t) = x, are continuous for z and x in neighbourhoods of 0 and u, respectively, uniformly in t ∈ M.
- (e) The conditional densities p_t(z|f(t) = x) of g(t) given f(t) = x, are continuous for all z and for x in a neighbourhood u, uniformly in t ∈ M.
- (f) The following moment condition holds:

$$\sup_{t \in M} \max_{1 \leq i, j \leq N} \mathbb{E} \left\{ \left| f_j^i(t) \right|^N \right\} < \infty.$$

(g) The moduli of continuity of each of the components of f, ∇f , and g satisfy

$$\mathbb{P}\left\{\,\omega(\eta)\,>\,arepsilon\,
ight\}\,=\,o\left(\eta^{N}
ight)\,,\qquad$$
as $\eta\downarrow0,$

for any $\varepsilon > 0$.

Higher (factorial) moments

► Factorial notation

$$(x)_k \stackrel{\Delta}{=} x(x-1)\dots(x-k+1).$$

<□ > < @ > < E > < E > E のQ @

Higher (factorial) moments

► Factorial notation

$$(x)_k \stackrel{\Delta}{=} x(x-1)\dots(x-k+1).$$

► Kac-Rice (again?)

$$\mathbb{E}\{(N_u)_k\} = \int_{M^k} \mathbb{E}\Big\{\prod_{j=1}^k |\det \nabla f(t_j)| \mathbf{1}_B(g(t_j))\Big| \widetilde{f}(\widetilde{t}) = \widetilde{u}\Big\} p_{\widetilde{t}}(\widetilde{u}) d\widetilde{t} \\ = \int_{M^k} \int_{\mathbb{R}^{kD}} \prod_{j=1}^k |\det D_j| \mathbf{1}_B(v_j) p_{\widetilde{t}}(\widetilde{u}, \widetilde{D}, \widetilde{v}) d\widetilde{D} d\widetilde{v} d\widetilde{t},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Higher (factorial) moments

► Factorial notation

$$(x)_k \stackrel{\Delta}{=} x(x-1)\dots(x-k+1).$$

► Kac-Rice (again?)

$$\begin{split} \mathbb{E}\{(N_u)_k\} &= \int_{\mathcal{M}^k} \mathbb{E}\Big\{\prod_{j=1}^k \left|\det \nabla f(t_j) \left| 1_B(g(t_j)) \right| \widetilde{f}(\widetilde{t}) = \widetilde{u} \Big\} p_{\widetilde{t}}(\widetilde{u}) d\widetilde{t} \\ &= \int_{\mathcal{M}^k} \int_{\mathbb{R}^{kD}} \prod_{j=1}^k \left|\det D_j \right| 1_B(v_j) p_{\widetilde{t}}(\widetilde{u}, \widetilde{D}, \widetilde{v}) d\widetilde{D} d\widetilde{v} d\widetilde{t}, \\ & M^k = \{\widetilde{t} = (t_1, \dots, t_k) : t_j \in \mathcal{M}, \ 1 \le j \le k\} \\ & \widetilde{f}(\widetilde{t}) = (f(t_1), \dots, f(t_k)) : \mathcal{M}^k \to \mathbb{R}^{Nk} \end{split}$$

$$\begin{aligned} \widetilde{g}(\widetilde{t}) &= (g(t_1), \dots, g(t_k)) : M^k \to \mathbb{R}^{K_k} \\ D &= N(N+1)/2 + K \end{aligned}$$

The Gaussian case: What can/can't be explicitly computed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General mean and covariance functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- General mean and covariance functions
- Isotropic fields (N = 2, 3)

- General mean and covariance functions
- Isotropic fields (N = 2, 3)
- Zero mean and constant variance (via the "induced metric")

- General mean and covariance functions
- Isotropic fields (N = 2, 3)
- Zero mean and constant variance (via the "induced metric")

Gaussian related processes

- General mean and covariance functions
- Isotropic fields (N = 2, 3)
- Zero mean and constant variance (via the "induced metric")

- Gaussian related processes
- Perturbed Gaussian processes ("Approximately")

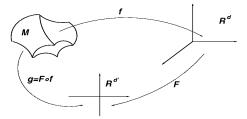
- General mean and covariance functions
- Isotropic fields (N = 2, 3)
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes
- Perturbed Gaussian processes ("Approximately")
- \mathbb{E} {No. of critical points of index k above the level u}

- General mean and covariance functions
- Isotropic fields (N = 2, 3)
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes
- Perturbed Gaussian processes ("Approximately")
- \mathbb{E} {No. of critical points of index k above the level u}

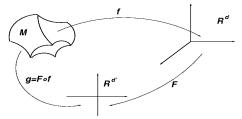
• $\mathbb{E}\left\{\sum_{k=1}^{N}(-1)^{k}(\text{No. of critical points of index } k \text{ above } u))\right\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Useful for Morse theory

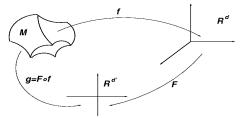


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



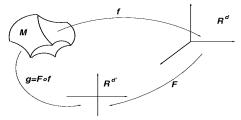
 $f(t) = (f_1(t), \dots, f_k(t)): T \to \mathbb{R}^k \qquad F: \mathbb{R}^k \to \mathbb{R}^d$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



$$egin{aligned} f(t) &= (f_1(t), \dots, f_k(t)): \ T o \mathbb{R}^k \qquad F: \ \mathbb{R}^k o \mathbb{R}^d \ g(t) &\triangleq \ F(g(t)) \ = \ F(g_1(t), \dots, g_k(t)) \,, \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



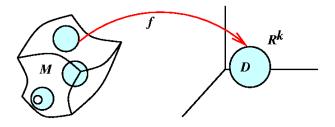
$$f(t) = (f_1(t), \dots, f_k(t)) : T \to \mathbb{R}^k \qquad F : \mathbb{R}^k \to \mathbb{R}^d$$

$$g(t) \stackrel{\Delta}{=} F(g(t)) = F(g_1(t), \ldots, g_k(t)),$$

$$F(x) = \sum_{1}^{k} x_{i}^{2}, \qquad \frac{x_{1}\sqrt{k-1}}{(\sum_{2}^{k} x_{i}^{2})^{1/2}}, \qquad \frac{m\sum_{1}^{n} x_{i}^{2}}{n\sum_{n+1}^{n+m} x_{i}^{2}}.$$

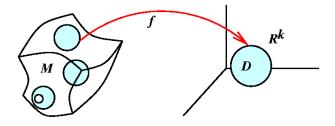
i.e. χ^2 fields with k degrees of freedom, T field with k-1 degrees of freedom, F field with n and m degrees of freedom.

The Gaussian Kinematic Formula (GKF)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Gaussian Kinematic Formula (GKF)



Jonathan's lecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The perturbed-Gaussian case

A physics approach

$$\varphi(x) = \varphi_G(x) \Big[1 + \sum_{n=3}^{\infty} \operatorname{Tr} \left[\mathbb{E}_G \{ h_n(X) \} \cdot h_n(x) \right] \Big]$$

 $\varphi_{\textit{G}}$ is iid Gaussian

$$h_n(x) \triangleq (-1)^n \frac{1}{\varphi_G(x)} \frac{\partial^n \varphi_G(x)}{\partial x^n}$$

are Hermite tensors of rank *n* with coefficients constructed from the moments $\mathbb{E}_{G}\{h_{n}(X)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The perturbed-Gaussian case

A physics approach

$$\varphi(x) = \varphi_G(x) \Big[1 + \sum_{n=3}^{\infty} \operatorname{Tr} \left[\mathbb{E}_G \{ h_n(X) \} \cdot h_n(x) \right] \Big]$$

 $\varphi_{\textit{G}}$ is iid Gaussian

$$h_n(x) \triangleq (-1)^n \frac{1}{\varphi_G(x)} \frac{\partial^n \varphi_G(x)}{\partial x^n}$$

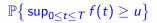
are Hermite tensors of rank *n* with coefficients constructed from the moments $\mathbb{E}_{G}\{h_n(X)\}$

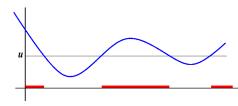
A statistical (Gaussian related) approach

$$f(t) = f_G(t) + \sum_{j=1}^{J} p_j \varepsilon_j f_j^{GR}(t)$$

 $\mathbb{P}\big\{\sup_{0\leq t\leq T}f(t)\geq u\big\}$

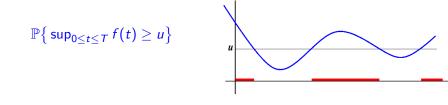
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





(日)、

э



$$\mathbb{P}\left\{\sup_{0 \le t \le T} f(t) \ge u\right\} = \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$= \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$\le \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{E}\left\{N_u\right\}$$
$$= \mathbb{E}\left\{\# \text{ of connected components in } A_u(T)\right\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



$$\mathbb{P}\left\{\sup_{0 \le t \le T} f(t) \ge u\right\} = \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$= \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$\le \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{E}\left\{N_u\right\}$$
$$= \mathbb{E}\left\{\# \text{ of connected components in } A_u(T)\right\}$$

(日)、

∃ <\0<</p>

Note: Nothing is Gaussian here!



$$\mathbb{P}\left\{\sup_{0 \le t \le T} f(t) \ge u\right\} = \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$= \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{P}\left\{f(0) < u, N_u \ge 1\right\}$$
$$\le \mathbb{P}\left\{f(0) \ge u\right\} + \mathbb{E}\left\{N_u\right\}$$
$$= \mathbb{E}\left\{\# \text{ of connected components in } A_u(T)\right\}$$

- Note: Nothing is Gaussian here!
- ► Inequality is usually an approximation, for large *u*.

▶ Number of local maxima above the level u $M_u(T) = \# \left\{ t \in [0, T] : \dot{f}(t) = 0, \ \ddot{f}(t) < 0, \ f(t) \ge u \right\}$

▶ Number of local maxima above the level u $M_u(T) = \# \left\{ t \in [0, T] : \dot{f}(t) = 0, \ \ddot{f}(t) < 0, \ f(t) \ge u \right\}$

• *f* stationary mean 0, variance 1, $\lambda_4 = \mathbb{E}\{[f''(t)]^4\}$

$$\mathbb{E}\left\{M_{-\infty}(T)\right\} = T \frac{\lambda_4^{1/2}}{2\pi\lambda_2^{1/2}}$$

▶ Number of local maxima above the level u $M_u(T) = \# \left\{ t \in [0, T] : \dot{f}(t) = 0, \ \ddot{f}(t) < 0, \ f(t) \ge u \right\}$

• *f* stationary mean 0, variance 1, $\lambda_4 = \mathbb{E}\{[f''(t)]^4\}$

$$\mathbb{E}\left\{M_{-\infty}(T)\right\} = T \frac{\lambda_4^{1/2}}{2\pi\lambda_2^{1/2}}$$

• Similarly, with $\Delta = \lambda_4 - \lambda_2^2$ and $\lambda_2 \equiv \lambda$.

$$\mathbb{E}\left\{M_u(T)\right\} = T \frac{\lambda_4^{1/2}}{2\pi\lambda_2^{1/2}} \Psi\left(\frac{\lambda_4^{1/2}u}{\Delta^{1/2}}\right) - T \frac{\lambda_2^{1/2}}{\sqrt{2\pi}} \varphi(u) \Phi\left(\frac{\lambda_2 u}{\Delta^{1/2}}\right),$$

▶ Number of local maxima above the level u $M_u(T) = \# \left\{ t \in [0, T] : \dot{f}(t) = 0, \ \ddot{f}(t) < 0, \ f(t) \ge u \right\}$

• *f* stationary mean 0, variance 1, $\lambda_4 = \mathbb{E}\{[f''(t)]^4\}$

$$\mathbb{E}\left\{M_{-\infty}(T)\right\} = T \frac{\lambda_4^{1/2}}{2\pi\lambda_2^{1/2}}$$

- Similarly, with $\Delta = \lambda_4 \lambda_2^2$ and $\lambda_2 \equiv \lambda$. $\mathbb{E} \{ M_u(T) \} = T \frac{\lambda_4^{1/2}}{2\pi \lambda_2^{1/2}} \Psi\left(\frac{\lambda_4^{1/2}u}{\Delta^{1/2}}\right) - T \frac{\lambda_2^{1/2}}{\sqrt{2\pi}} \varphi(u) \Phi\left(\frac{\lambda_2 u}{\Delta^{1/2}}\right),$
- An easy computation

$$\lim_{u\to\infty}\frac{\mathbb{E}\left\{M_u(T)\right\}}{\mathbb{E}\left\{N_u(T)\right\}}=1.$$

▶ Number of local maxima above the level u $M_u(T) = \# \left\{ t \in [0, T] : \dot{f}(t) = 0, \ \ddot{f}(t) < 0, \ f(t) \ge u \right\}$

• *f* stationary mean 0, variance 1, $\lambda_4 = \mathbb{E}\{[f''(t)]^4\}$

$$\mathbb{E}\left\{M_{-\infty}(T)\right\} = T\frac{\lambda_4^{1/2}}{2\pi\lambda_2^{1/2}}$$

• Similarly, with $\Delta = \lambda_4 - \lambda_2^2$ and $\lambda_2 \equiv \lambda$. $\mathbb{E} \{ M_u(T) \} = T \frac{\lambda_4^{1/2}}{2\pi \lambda_2^{1/2}} \Psi\left(\frac{\lambda_4^{1/2}u}{\Delta^{1/2}}\right) - T \frac{\lambda_2^{1/2}}{\sqrt{2\pi}} \varphi(u) \Phi\left(\frac{\lambda_2 u}{\Delta^{1/2}}\right),$

An easy computation

$$\lim_{u\to\infty}\frac{\mathbb{E}\left\{M_u(T)\right\}}{\mathbb{E}\left\{N_u(T)\right\}}=1.$$

which holds in very wide generality.

• $M_u(M)$ Number of local maxima on M above the level u

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- $M_u(M)$ Number of local maxima on M above the level u
- N = 2 f isotropic on unit square

$$\mathbb{E}\left\{M_{-\infty}\right\} = \frac{1}{6\pi\sqrt{3}}\frac{\lambda_4}{\lambda_2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $M_u(M)$ Number of local maxima on M above the level u
- N = 2 f isotropic on unit square

$$\mathbb{E}\left\{M_{-\infty}\right\} = \frac{1}{6\pi\sqrt{3}}\frac{\lambda_4}{\lambda_2}$$

• N = 2, f stationary on unit square

$$\mathbb{E} \{ M_{-\infty} \} = \frac{1}{2\pi^2} \frac{d_1}{|\Lambda|^{1/2}} G(-d_1/d_2)$$

A the covariance matrix of first order derivatives of f d_1, d_2 eigenvalues of cov matrix of second order derivatives G involves first and second order elliptic integrals

- $M_u(M)$ Number of local maxima on M above the level u
- N = 2 f isotropic on unit square

$$\mathbb{E}\left\{M_{-\infty}\right\} = \frac{1}{6\pi\sqrt{3}}\frac{\lambda_4}{\lambda_2}$$

• N = 2, f stationary on unit square

$$\mathbb{E} \{ M_{-\infty} \} = \frac{1}{2\pi^2} \frac{d_1}{|\Lambda|^{1/2}} G(-d_1/d_2)$$

A the covariance matrix of first order derivatives of f d_1, d_2 eigenvalues of cov matrix of second order derivatives G involves first and second order elliptic integrals

• N = 2, f isotropic on unit square

$$\mathbb{E}\left\{M_{u}\right\} = ? ? ?$$

- $M_u(M)$ Number of local maxima on M above the level u
- N = 2 f isotropic on unit square

$$\mathbb{E}\left\{M_{-\infty}\right\} = \frac{1}{6\pi\sqrt{3}}\frac{\lambda_4}{\lambda_2}$$

• N = 2, f stationary on unit square

$$\mathbb{E} \{ M_{-\infty} \} = \frac{1}{2\pi^2} \frac{d_1}{|\Lambda|^{1/2}} G(-d_1/d_2)$$

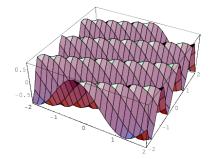
A the covariance matrix of first order derivatives of f d_1, d_2 eigenvalues of cov matrix of second order derivatives G involves first and second order elliptic integrals

• N = 2, f isotropic on unit square

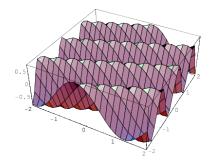
$$\mathbb{E}\left\{M_{u}\right\} = ? ? ?$$

Is there a replacement for

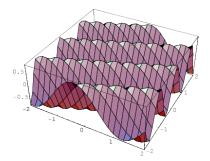
$$\lim_{u\to\infty}\frac{\mathbb{E}\left\{M_u(T)\right\}}{\mathbb{E}\left\{N_u(T)\right\}}=1.$$



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

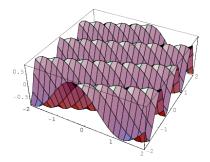


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ



 There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948–2010

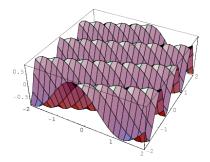
・ロト ・ 一下・ ・ ヨト・



 There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948–2010

M.S. Longuet-Higgins, 1925-

・ロト ・ 日 ・ ・ 日 ・ ・ 日



 There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948–2010

M.S. Longuet-Higgins, 1925-

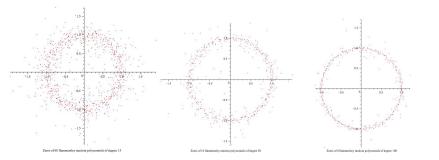
-

(日) (同) (日) (日)

Mark Dennis

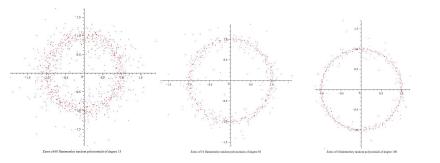
Applications V: Higher moments and complex polynomials

$$f(z) = \xi_0 + a_1\xi_1 z + a_2\xi_2 z^2 + \cdots + a_{n-1}\xi_{n-1} z^{n-1}, \qquad z \in \mathbb{C}.$$



Applications V: Higher moments and complex polynomials

$$f(z) = \xi_0 + a_1\xi_1 z + a_2\xi_2 z^2 + \cdots + a_{n-1}\xi_{n-1} z^{n-1}, \qquad z \in \mathbb{C}.$$



Means tell us where we expect the roots to be, but variances are needed to give concentration information.

Balint Virag

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Theorem If f is stationary and ergodic although less will do

 $\mathbb{P}\left\{f(\tau) \in A \Big|_{correct} \tau \text{ is a local maximum of } f\right\}$

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Theorem If f is stationary and ergodic although less will do

 $\mathbb{P}\left\{f(\tau) \in A \mid_{correct} \tau \text{ is a local maximum of } f\right\}$ $= \frac{\mathbb{E}\left\{\#\left\{t \in B : t \text{ is a local maximum of } f \text{ and } f(t) \in A\right\}\right\}}{\mathbb{E}\left\{\#\left\{t \in B : t \text{ is a local maximum of } f\right\}\right\}}$

B is any ball

• A a $n \times n$ matrix

- A a $n \times n$ matrix
- Define

$$f^{A}(t) \stackrel{\Delta}{=} \langle At, t \rangle, \qquad t \in M$$

If A is random, then f^A is a random field. If A is Gaussian (i.e. has Gaussian components) then f^A is Gaussian.

- A a $n \times n$ matrix
- Define

$$f^{A}(t) \stackrel{\Delta}{=} \langle At, t \rangle, \qquad t \in M$$

If A is random, then f^A is a random field. If A is Gaussian (i.e. has Gaussian components) then f^A is Gaussian.

► Algebraic fact

If A has no repeated eigenvalues, there are exactly 2n critical points of f^A , which occur at \pm the eigenvectors of A. The values of f^A at critical points are the eigenvalues of M

- A a $n \times n$ matrix
- Define

$$f^{A}(t) \stackrel{\Delta}{=} \langle At, t \rangle, \qquad t \in M$$

If A is random, then f^A is a random field. If A is Gaussian (i.e. has Gaussian components) then f^A is Gaussian.

Algebraic fact

If A has no repeated eigenvalues, there are exactly 2n critical points of f^A , which occur at \pm the eigenvectors of A. The values of f^A at critical points are the eigenvalues of M

Finding the maximum eigenvalue

$$\lambda_{\max}(A) = \sup_{t \in S^{n-1}} f^A(t)$$

- A a $n \times n$ matrix
- Define

$$f^{A}(t) \stackrel{\Delta}{=} \langle At, t \rangle, \qquad t \in M$$

If A is random, then f^A is a random field. If A is Gaussian (i.e. has Gaussian components) then f^A is Gaussian.

Algebraic fact

If A has no repeated eigenvalues, there are exactly 2n critical points of f^A , which occur at \pm the eigenvectors of A. The values of f^A at critical points are the eigenvalues of M

Finding the maximum eigenvalue

$$\lambda_{\max}(A) = \sup_{t \in S^{n-1}} f^A(t)$$

► (Some) random matrix problems are equivalent to random field problems, and vice versa

(ロ)、(型)、(E)、(E)、 E) の(の)

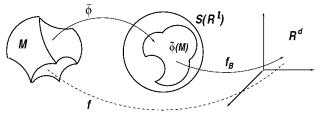
• Consider
$$f(t) = \sum_{j=1}^{\ell} \xi_j \varphi_j(t)$$

• Consider
$$f(t) = \sum_{j=1}^{\ell} \xi_j \varphi_j(t)$$

$$\bullet \ \sigma^2(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t) = (\varphi_1(t), \dots, \pi_\ell(t)) \in \mathcal{S}^{\ell-1}.$$

• Consider
$$f(t) = \sum_{j=1}^{\ell} \xi_j \varphi_j(t)$$

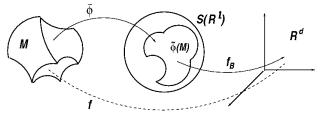
- $\blacktriangleright \ \sigma^2(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t) = (\varphi_1(t), \dots, \pi_{\ell}(t)) \in S^{\ell-1}.$
- A crucial mapping



・ロト ・聞ト ・ヨト ・ヨト

• Consider
$$f(t) = \sum_{j=1}^{\ell} \xi_j \varphi_j(t)$$

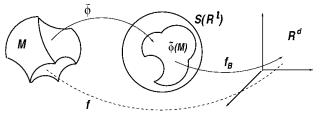
- $\bullet \ \sigma^2(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t) = (\varphi_1(t), \dots, \pi_\ell(t)) \in S^{\ell-1}.$
- A crucial mapping



• Define a new Gaussian process \tilde{f} on $\tilde{\varphi}(M)$ $\tilde{f}(x) = f(\tilde{\varphi}^{-1}(x)),$

• Consider
$$f(t) = \sum_{j=1}^{\ell} \xi_j \varphi_j(t)$$

- $\bullet \ \sigma^2(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t) = (\varphi_1(t), \dots, \pi_\ell(t)) \in S^{\ell-1}.$
- A crucial mapping



• Define a new Gaussian process \tilde{f} on $\tilde{\varphi}(M)$

$$\widetilde{f}(x) = f\left(\widetilde{\varphi}^{-1}(x)\right),$$

$$\mathbb{E}\left\{\widetilde{f}(x)\widetilde{f}(y)\right\} = \mathbb{E}\left\{f\left(\widetilde{\varphi}^{-1}(x)\right)f\left(\widetilde{\varphi}^{-1}(y)\right)\right\}$$

$$= \sum_{i} \varphi_{j}\left(\widetilde{\varphi}^{-1}(x)\right)\varphi_{j}\left(\widetilde{\varphi}^{-1}(y)\right)$$

$$= \sum_{i} x_{j}y_{j} = \langle x, y \rangle$$

The canonical Gaussian process on $S^{\ell-1}$

1: Has mean zero and covariance

$$\mathbb{E}\left\{f(s)f(s)\right\} = \langle s,t\rangle$$

for $s, t \in S^{\ell-1}$.

2: It can be realised as

$$f(t) = \sum_{j=1}^{\ell} t_j \xi_j.$$

3: It is stationary and isotropic since the covariance is function of only the (geodesic) distance between *s* and *t*.

Exceedence probabilities for canonical process: $M \subset S^{\ell-1}$

$$\mathbb{P}\left\{\sup_{t\in M} f_t \ge u\right\} = \int_0^\infty \mathbb{P}\left\{\sup_{t\in M} f_t \ge u \mid |\xi| = r\right\} \mathbb{P}_{|\xi|}(dr)$$
$$= \int_0^\infty \mathbb{P}\left\{\sup_{t\in M} \langle \xi, t \rangle \ge u \mid |\xi| = r\right\} \mathbb{P}_{|\xi|}(dr)$$
$$= \int_u^\infty \mathbb{P}\left\{\sup_{t\in M} \langle \xi, t \rangle \ge u \mid |\xi| = r\right\} \mathbb{P}_{|\xi|}(dr)$$
$$= \int_u^\infty \mathbb{P}\left\{\sup_{t\in M} \langle \xi/r, t \rangle \ge u/r \mid |\xi| = r\right\} \mathbb{P}_{|\xi|}(dr)$$
$$= \int_u^\infty \mathbb{P}\left\{\sup_{t\in M} \langle U, t \rangle \ge u/r\right\} \mathbb{P}_{|\xi|}(dr)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where U is uniform on $S^{\ell-1}$.

$$P\big\{\sup_{t\in M}\langle U,t\rangle\geq u/r\big\}$$

$$P\big\{\sup_{t\in M}\langle U,t\rangle\geq u/r\big\}$$

Working with tubes

The tube of radius ρ around a closed set $M \in S^{\ell-1}$) is

$$\begin{aligned} \operatorname{Tube}(M,\rho) &= \left\{ t \in S^{\ell-1} : \ \tau(t,M) \leq \rho \right\} \\ &= \left\{ t \in S^{\ell-1} : \ \exists \ s \in M \text{ such that } \langle s,t \rangle \geq \cos(\rho) \right\} \\ &= \left\{ t \in S^{\ell-1} : \ \sup_{s \in M} \langle s,t \rangle \geq \cos(\rho) \right\}. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$P\big\{\sup_{t\in M}\langle U,t\rangle\geq u/r\big\}$$

Working with tubes

The tube of radius ρ around a closed set $M \in S^{\ell-1}$) is

$$\begin{aligned} \operatorname{Tube}(M,\rho) &= \left\{ t \in S^{\ell-1} : \ \tau(t,M) \leq \rho \right\} \\ &= \left\{ t \in S^{\ell-1} : \ \exists \ s \in M \text{ such that } \langle s,t \rangle \geq \cos(\rho) \right\} \\ &= \left\{ t \in S^{\ell-1} : \ \sup_{s \in M} \langle s,t \rangle \geq \cos(\rho) \right\}. \end{aligned}$$

And so....

$$\mathbb{P}\big\{\sup_{t\in M}f_t\geq u\big\} = \int_u^\infty \eta_l\left(\operatorname{Tube}(M,\cos^{-1}(u/r))\right) \mathbb{P}_{|\xi|}(dr)$$

and geometry has entered the picture, in a serious fashion!

• Definition: *M* has a group structure, $\mu(t) = const$ and C(s, t) = C(s - t).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Definition: *M* has a group structure, $\mu(t) = const$ and C(s, t) = C(s t).
- Gaussian case: (Weak) stationarity also implies strong stationarity.

- Definition: *M* has a group structure, $\mu(t) = const$ and C(s, t) = C(s t).
- Gaussian case: (Weak) stationarity also implies strong stationarity.
- $M = \mathbb{R}^N$: $C : \mathbb{R}^N \to \mathbb{R}$ is non-negative definite \iff there exists a finite measure ν such that

$$C(t) = \int_{\mathbb{R}^N} e^{i \langle t, \lambda
angle} \,
u(d\lambda),$$

 ν is called the *spectral measure* and, since C is real, must be symmetric. i.e. $\nu(A) = \nu(-A)$ for all $A \in \mathcal{B}^N$.

- Definition: *M* has a group structure, $\mu(t) = const$ and C(s, t) = C(s t).
- Gaussian case: (Weak) stationarity also implies strong stationarity.
- $M = \mathbb{R}^N$: $C : \mathbb{R}^N \to \mathbb{R}$ is non-negative definite \iff there exists a finite measure ν such that

$$C(t) = \int_{\mathbb{R}^N} e^{i \langle t, \lambda
angle} \,
u(d\lambda),$$

 ν is called the *spectral measure* and, since C is real, must be symmetric. i.e. $\nu(A) = \nu(-A)$ for all $A \in \mathcal{B}^N$.

Spectral moments

$$\lambda_{i_1...i_N} \triangleq \int_{\mathbb{R}^N} \lambda_1^{i_1} \cdots \lambda_N^{i_N} \nu(d\lambda)$$

 ν is symmetric \Rightarrow odd ordered spectral moments are zero.

$$\mathbb{E}\left\{\frac{\partial^k f(s)}{\partial s_{i_1}\partial s_{i_1}\dots\partial s_{i_k}} \frac{\partial^k f(t)}{\partial t_{i_1}\partial t_{i_1}\dots\partial t_{i_k}}\right\} = \frac{\partial^{2k} C(s,t)}{\partial s_{i_1}\partial t_{i_1}\dots\partial s_{i_k}\partial t_{i_k}}.$$

<□ > < @ > < E > < E > E のQ @

$$\mathbb{E}\left\{\frac{\partial^k f(s)}{\partial s_{i_1}\partial s_{i_1}\dots\partial s_{i_k}} \frac{\partial^k f(t)}{\partial t_{i_1}\partial t_{i_1}\dots\partial t_{i_k}}\right\} = \frac{\partial^{2k} C(s,t)}{\partial s_{i_1}\partial t_{i_1}\dots\partial s_{i_k}\partial t_{i_k}}$$

 \blacktriangleright When f is stationary, and $\alpha,\beta,\gamma,\delta\in\{0,1,2,\dots\},$ then

$$\mathbb{E}\left\{\frac{\partial^{\alpha+\beta}f(t)}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}} \; \frac{\partial^{\gamma+\delta}f(t)}{\partial^{\gamma}t_{k}\partial^{\delta}t_{l}}\right\} \\ = \; (-1)^{\alpha+\beta} \; \frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}\partial^{\gamma}t_{k}\partial^{\delta}t_{l}} C(t)\Big|_{t=0} \\ = \; (-1)^{\alpha+\beta} \; i^{\alpha+\beta+\gamma+\delta} \int_{\mathbb{R}^{N}} \lambda_{i}^{\alpha}\lambda_{j}^{\beta}\lambda_{k}^{\gamma}\lambda_{l}^{\delta} \nu(d\lambda) .$$

$$\mathbb{E}\left\{\frac{\partial^k f(s)}{\partial s_{i_1}\partial s_{i_1}\dots \partial s_{i_k}} \frac{\partial^k f(t)}{\partial t_{i_1}\partial t_{i_1}\dots \partial t_{i_k}}\right\} = \frac{\partial^{2k} C(s,t)}{\partial s_{i_1}\partial t_{i_1}\dots \partial s_{i_k}\partial t_{i_k}}.$$

 \blacktriangleright When f is stationary, and $\alpha,\beta,\gamma,\delta\in\{0,1,2,\dots\},$ then

$$\mathbb{E}\left\{\frac{\partial^{\alpha+\beta}f(t)}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}} \frac{\partial^{\gamma+\delta}f(t)}{\partial^{\gamma}t_{k}\partial^{\delta}t_{l}}\right\}$$

= $(-1)^{\alpha+\beta}\frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}\partial^{\gamma}t_{k}\partial^{\delta}t_{l}}C(t)\Big|_{t=0}$
= $(-1)^{\alpha+\beta}i^{\alpha+\beta+\gamma+\delta}\int_{\mathbb{R}^{N}}\lambda_{i}^{\alpha}\lambda_{j}^{\beta}\lambda_{k}^{\gamma}\lambda_{l}^{\delta}\nu(d\lambda).$

► Write
$$f_j = \partial f / \partial t_j$$
, $f_{ij} = \partial^2 f / \partial t_i \partial t_j$ Then
 $f(t)$ and $f_j(t)$ are uncorrelated,
 $f_i(t)$ and $f_{jk}(t)$ are uncorrelated

$$\mathbb{E}\left\{\frac{\partial^k f(s)}{\partial s_{i_1}\partial s_{i_1}\dots\partial s_{i_k}} \frac{\partial^k f(t)}{\partial t_{i_1}\partial t_{i_1}\dots\partial t_{i_k}}\right\} = \frac{\partial^{2k} C(s,t)}{\partial s_{i_1}\partial t_{i_1}\dots\partial s_{i_k}\partial t_{i_k}}$$

 \blacktriangleright When f is stationary, and $\alpha,\beta,\gamma,\delta\in\{0,1,2,\dots\},$ then

$$\mathbb{E}\left\{\frac{\partial^{\alpha+\beta}f(t)}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}} \frac{\partial^{\gamma+\delta}f(t)}{\partial^{\gamma}t_{k}\partial^{\delta}t_{l}}\right\} \\ = (-1)^{\alpha+\beta} \frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha}t_{i}\partial^{\beta}t_{j}\partial^{\gamma}t_{k}\partial^{\delta}t_{l}}C(t)\Big|_{t=0} \\ = (-1)^{\alpha+\beta} i^{\alpha+\beta+\gamma+\delta} \int_{\mathbb{R}^{N}} \lambda_{i}^{\alpha}\lambda_{j}^{\beta}\lambda_{k}^{\gamma}\lambda_{l}^{\delta}\nu(d\lambda).$$

Appendix III: Regularity of Gaussian processes

► The canonical metric, d

$$d(s,t) \stackrel{\Delta}{=} \left[\mathbb{E}\left\{\left(f(s)-f(t)\right)^2\right\}\right]^{\frac{1}{2}},$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$B_d(t,\varepsilon) \stackrel{\Delta}{=} \{s \in M : d(s,t) \leq \varepsilon\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Appendix III: Regularity of Gaussian processes

► The canonical metric, d

$$d(s,t) \stackrel{\Delta}{=} \left[\mathbb{E}\left\{\left(f(s)-f(t)\right)^2\right\}\right]^{\frac{1}{2}},$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$B_d(t,\varepsilon) \stackrel{\Delta}{=} \{s \in M : d(s,t) \leq \varepsilon\}.$$

Compactness assumption

diam(M)
$$\stackrel{\Delta}{=} \sup_{s,t\in M} d(s,t) < \infty.$$

Appendix III: Regularity of Gaussian processes

► The canonical metric, d

$$d(s,t) \stackrel{\Delta}{=} \left[\mathbb{E}\left\{ \left(f(s) - f(t)\right)^2 \right\} \right]^{\frac{1}{2}},$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$B_d(t,\varepsilon) \stackrel{\Delta}{=} \{s \in M : d(s,t) \leq \varepsilon\}.$$

Compactness assumption

diam(M)
$$\stackrel{\Delta}{=} \sup_{s,t\in M} d(s,t) < \infty.$$

Entropy Fix ε > 0 and let N(M, d, ε) ≡ N(ε) denote the smallest number of d-balls of radius ε whose union covers M. Set

$$H(M, d, \varepsilon) \equiv H(\varepsilon) = \ln(N(\varepsilon)).$$

Then N and H are called the (metric) *entropy* and *log-entropy* functions for M (or f).

Dudley's theorem

Let f be a centered Gaussian field on a d-compact M Then there exists a universal K such that

$$\mathbb{E}\big\{\sup_{t\in M}f_t\big\} \leq K\int_0^{\operatorname{diam}(M)}H^{1/2}(\varepsilon)\,d\varepsilon,$$

and

$$\mathbb{E}\left\{\omega_{f,d}(\delta)
ight\}\leq K\int_{0}^{\delta}H^{1/2}(arepsilon)\,darepsilon,$$

where

$$\omega_{f,d}(\delta) \stackrel{\Delta}{=} \sup_{d(s,t) \leq \delta} |f(t) - f(s)|, \quad \delta > 0,$$

Furthermore, there exists a random $\eta \in (0,\infty)$ and a universal K such that

$$\omega_{f,d}(\delta) \leq K \int_0^{\delta} H^{1/2}(\varepsilon) \, d\varepsilon,$$

for all $\delta < \eta$.

Special cases of the entropy result

► If *f* is also stationary

f is a.s. continuous on M

$$\begin{array}{ll} \longleftrightarrow & f \text{ is a.s. bounded on } M \\ \Leftrightarrow & \int_0^\delta H^{1/2}(\varepsilon) \, d\varepsilon \ < \ \infty, \quad \forall \delta > 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Special cases of the entropy result

If f is also stationary

 $\begin{array}{ll} f \text{ is a.s. continuous on } M & \Longleftrightarrow & f \text{ is a.s. bounded on } M \\ & \Longleftrightarrow & \int_0^\delta H^{1/2}(\varepsilon) \, d\varepsilon \ < \ \infty, \quad \forall \delta > 0 \end{array}$

• If $M \subset \mathbb{R}^N$, and

$$p^2(u) \stackrel{\Delta}{=} \sup_{|s-t|\leq u} \mathbb{E}\left\{|f_s-f_t|^2\right\},$$

continuity & boundedness follow if, for some $\delta > 0$, either

$$\int_0^{\delta} (-\ln u)^{\frac{1}{2}} dp(u) < \infty \quad \text{or} \quad \int_{\delta}^{\infty} p\left(e^{-u^2}\right) \, du < \infty.$$

Special cases of the entropy result

If f is also stationary

$$\begin{array}{ll} f \text{ is a.s. continuous on } M & \Longleftrightarrow & f \text{ is a.s. bounded on } M \\ & \Longleftrightarrow & \int_0^\delta H^{1/2}(\varepsilon) \, d\varepsilon \ < \ \infty, \quad \forall \delta > 0 \end{array}$$

• If $M \subset \mathbb{R}^N$, and

$$p^2(u) \stackrel{\Delta}{=} \sup_{|s-t|\leq u} \mathbb{E}\left\{|f_s-f_t|^2\right\},$$

continuity & boundedness follow if, for some $\delta >$ 0, either

$$\int_0^{\delta} (-\ln u)^{\frac{1}{2}} dp(u) < \infty \quad \text{or} \quad \int_{\delta}^{\infty} p\left(e^{-u^2}\right) \, du < \infty.$$

▶ A sufficient condition For some $0 < K < \infty$ and $\alpha, \eta > 0$,

$$\mathbb{E}\left\{|f_{s}-f_{t}|^{2}\right\} \leq \frac{K}{\left|\log|s-t|\right|^{1+\alpha}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − のへで

for all s, t with $|s - t| < \eta$.

• Finiteness theorem: $||f|| \stackrel{\Delta}{=} \sup_{t \in M} f_t$

$$\mathbb{P}\{\|f\|<\infty\}=1 \iff \mathbb{E}\{\|f\|\} < \infty,$$

Finiteness theorem:
$$||f|| \stackrel{\Delta}{=} \sup_{t \in M} f_t$$

$$\mathbb{P}\{\|f\| < \infty\} = 1 \iff \mathbb{E}\{\|f\|\} < \infty,$$

<□ > < @ > < E > < E > E のQ @

► THE inequality: For all
$$u > 0$$
,
 $\mathbb{P}\{\|f\| - \mathbb{E}\{\|f\|\} > u\} \leq e^{-u^2/2\sigma_M^2}$.
 $\sigma_M^2 = \sup_{t \in M} \mathbb{E}\{f_t^2\}$

Finiteness theorem:
$$||f|| \stackrel{\Delta}{=} \sup_{t \in M} f_t$$

$$\mathbb{P}\{\|f\|<\infty\}=1 \iff \mathbb{E}\{\|f\|\} < \infty,$$

• THE inequality: For all
$$u > 0$$
,

$$\mathbb{P}\{\|f\| - \mathbb{E}\{\|f\|\} > u\} \leq e^{-u^2/2\sigma_M^2}.$$

$$\sigma_M^2 = \sup_{t \in M} \mathbb{E}\{f_t^2\}$$

This implies

$$\mathbb{P}\{\|f\|\geq u\} \leq e^{\mu_u-u^2/2\sigma_M^2},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mu_u = (2u\mathbb{E}\{\|f\|\} - [\mathbb{E}\{\|f\|\}]^2)/\sigma_M^2$

Finiteness theorem:
$$||f|| \stackrel{\Delta}{=} \sup_{t \in M} f_t$$

$$\mathbb{P}\{\|f\| < \infty\} = 1 \iff \mathbb{E}\{\|f\|\} < \infty,$$

• THE inequality: For all u > 0,

$$\mathbb{P}\{\|f\| - \mathbb{E}\{\|f\|\} > u\} \leq e^{-u^2/2\sigma_M^2}.$$

$$\sigma_M^2 = \sup_{t \in M} \mathbb{E}\{f_t^2\}$$

This implies

$$\mathbb{P}\{\|f\|\geq u\} \leq e^{\mu_u-u^2/2\sigma_M^2},$$

 $\mu_{u} = (2u\mathbb{E}\{\|f\|\} - [\mathbb{E}\{\|f\|\}]^{2})/\sigma_{M}^{2}$

► Asymptotics: For high levels u, the dominant behavior of all Gaussian exceedence probabilities is determined by $e^{-u^2/2\sigma_M^2}$.

Places to start reading and to find other references

- 1. R.J. Adler and J.E. Taylor, Random Fields and Geometry, Springer, 2007
- R.J. Adler, and J.E. Taylor, Topological Complexity of Random Functions, Springer Lecture Notes in Mathematics, Vol. 2019, Springer, 2010
- D. Aldous, Probability Approximations via the Poisson Clumping Heuristic, Applied Mathematical Sciences, Vol. 77, Springer-Verlag, 1989.
- 4. J-M. Azaïs and M. Wschebor. Level Sets and Extrema of Random Processes and Fields, Wiley, 2009.
- 5. H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, 1967.
- M.R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, 1983.