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I do not intend to cover all these slides in 75 minutes!

(Some of the material is for your later reference, and some for the
afternoon tutorial.)
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Real roots of algebraic equations (Kac, 1943)

f (t) = ξ0 + ξ1t + ξ2t2 + · · ·+ ξn−1tn−1

P{ξ = (ξ0, . . . , ξn−1) ∈ A} =

∫
A

e−‖x‖
2/2

(2π)n/2
dx

(
ξ ∼ N(0, In×n)

)
Theorem: Nn = the number of real zeroes of f

E{Nn} =
4

π

∫ 1

0

[1− n2[x2(1− x2)/(1− x2n]2]1/2

1− x2
dx

Approx’n: For large n

E{Nn} ∼
2 log n

π
Bound: For large n

E{Nn} ≤
2 log n

π
+

14

π
.
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Zeroes of complex polynomials

f (z) = ξ0+a1ξ1z+a2ξ2z2+· · ·+an−1ξn−1zn−1, z ∈ C.

Shiffman
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Thinking more generally:

1: f : RN → RN , random

E
{

#{t ∈ RN : f (t) = u}
}

= ?

2: f : M → N, random, dim(M) = dim(N)

E {#{p ∈ M : f (p) = q}} = ?

3: In another notation:

E
{

#{f −1(q)}
}

= ?

4: More generally:

f : M → N, dim(M) 6= dim(N), D ⊂ N

In this case, typically,

dim
(
f −1(D)

)
= dim(M)− dim(N) + dim(D),

and it is not clear what the corresponding question is.
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The original (non-specific) Rice formula

I Uu ≡ Uu(f ,T )
∆
= #{t ∈ T : f (t) = u, ḟ (t) > 0}

I Basic conditions on f : Continuity and differentiability

I Plus (boring) side conditions to be met later

I Kac-Rice formula:

E {Uu} =

∫
T

∫ ∞
0

y pt(u, y) dydt

=

∫
T

pt(u)

∫ ∞
0

y pt(y
∣∣u) dydt

=

∫
T

pt(u)E
{
|ḟ (t)| 1(0,∞)(ḟ (t))

∣∣ f (t) = u
}

dt

where pt(x , y) is the joint density of (f (t), ḟ (t)),
pt(u) is the probability density of f (t), etc.

I T = [0,T ] is an interval. M is a general set (e.g. manifold)
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The original (non-specific) Rice formula: The proof
I Take a (positive) approximate delta function, δε, supported on

[−ε,+ε], and
∫
R δε(x) dx = 1.

1 =

∫
R
δε(x − u) dx =

∫ tu1

t`1

|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt

= lim
ε→0

∫ tu1

t`1

|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt

Uu(f ,T ) = lim
ε→0

∫
T
|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt



The original (non-specific) Rice formula: The proof
I Take a (positive) approximate delta function, δε, supported on

[−ε,+ε], and
∫
R δε(x) dx = 1.

1 =

∫
R
δε(x − u) dx =

∫ tu1

t`1
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The original (non-specific) Rice formula: The proof

I So far, everything is deterministic

Uu(f ,T ) = lim
ε→0

∫
T
|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt

I Take expectations, with some sleight of hand

E{Uu(f ,T )} = E
{

lim
ε→0

∫
T
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∫
T

lim
ε→0

∫ ∞
x=−∞
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y=0
|y | δε(x − u) pt(x , y) dxdy dt
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T

∫ ∞
0
|y | pt(u, y) dydt
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Constructing Gaussian Processes
I A (separable) parameter space M.

I A finite or infinite set of functions ϕ1, ϕ2, . . . , ϕj : M → R
satisfying ∑

j

ϕ2
j (t) < ∞, for all t ∈ M.

I A sequence ξ1, ξ2, . . . , of independent, N(0, 1) random
variables,

I Define the random field f : M → R by

f (t) =
∑
j

ξjϕj(t)

I Mean, covariance, and variance functions

µ(t)
∆
= E{f (t)} = 0

C (s, t)
∆
= {[f (s)− µ(s)] · [f (t)− µ(t)]} =

∑
ϕj(s)ϕj(t)

σ2(t)
∆
= C (t, t) =

∑
ϕ2
j (t)
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Existence of Gaussian processes

Theorem
I Let M be a topological space.
I Let C : M ×M be positive semi-definite.
I Then there exists a Gaussian process on f : M → R with mean

zero and covariance function C .
I Furthermore, f has a representation of the form

f (t) =
∑

j ξjϕj(t), and if f is a.s. continuous then the sum
converges uniformly, a.s., on compacts.

Corollary
I If there is justice in the world (smoothness and summability)

ḟ (t) =
∂

∂t
f (t) =

∑
j

ξj ϕ̇j(t),

and so if f is Gaussian, so is ḟ . Where ḟ is any derivative on nice M.

Furthermore
I E{ḟ (s)ḟ (t)} = E

{∑
ξj ϕ̇j(s)

∑
ξk ϕ̇k(t)

}
=
∑
ϕ̇j(s)ϕ̇j(t)

I E{f (s)ḟ (t)} = E
{∑

ξjϕj(s)
∑
ξk ϕ̇k(t)

}
=
∑
ϕj(s)ϕ̇j(t)
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Example: The Brownian sheet on RN

E{W (t)} = 0

E{W (s)W (t)} = (s1 ∧ t1)× · · · × (sN ∧ tN).

where t = (t1, . . . , tN).

I Replace j by j = (j1, . . . , jN)

ϕj(t) = 2N/2
N∏
i=1

2

(2ji + 1)π
sin
(

1
2 (2ji + 1)πti

)
⇒

W (t) =
∑
j1

· · ·
∑
jN

ξj1,...,jN ϕj1,...,jN (t)

I N = 1
W is standard Brownian motion.
The corresponding expansion is due to Lévy, and the
corresponding RKHS is known as Cameron-Martin space.
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Constant variance Gaussian processes
I We know that

I f (t) =
∑
ξjϕj(t)

I ḟ (t) =
∑
ξj ϕ̇j(t)

I E{ḟ (s)ḟ (t)} =
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ϕ̇j(s)ϕ̇j(t)

I E{f (s)ḟ (t)} =
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ϕj(s)ϕ̇j(t)

I Thus, if

σ2(t) = E{f 2(t)} =
∑

ϕ2
j (t)

is a constant, say 1, so that ‖{ϕj (t)}‖`2
= 1

I then

E{f (t)ḟ (t)} =
∑

ϕj(t)ϕ̇j(t)

= 1
2

∑ ∂

∂t
ϕ2
j (t)

= 1
2

∂

∂t

∑
ϕ2
j (t)

= 0

I ⇒ f (t) and its derivative ḟ (t) are INDEPENDENT. (uncorrelated)
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Constant variance Gaussian processes and Kac-Rice

I Generic Kac-Rice formula

E {Uu} =

∫
T

pt(u)E
{
|ḟ (t)| 1(0,∞)(ḟ (t))

∣∣ f (t) = u
}

dt

I But f (t) and ḟ (t) are independent!

I Notation

1 = σ2(t), λ(t)
∆
= E{[ḟ (t)]2}

I Rice formula (+ε)

E {Uu} =
e−u

2/2

2π

∫
T

[λ(t)]1/2 dt.

I If λ(t) ≡ λ, we have the Rice formula

E {Uu} =
T λ1/2

2π
e−u

2/2
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|ḟ (t)| 1(0,∞)(ḟ (t))

∣∣ f (t) = u
}

dt
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I But f (t) and ḟ (t) are independent!

I Notation

1 = σ2(t), λ(t)
∆
= E{[ḟ (t)]2}

I Rice formula (+ε)

E {Uu} =
e−u

2/2

2π

∫
T

[λ(t)]1/2 dt.

I If λ(t) ≡ λ, we have the Rice formula

E {Uu} =
T λ1/2

2π
e−u

2/2



Constant variance Gaussian processes and Kac-Rice

I Generic Kac-Rice formula

E {Uu} =

∫
T

pt(u)E
{
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Gaussian Kac-Rice with no simplification

E {Uu(T )} =

∫
T
λ1/2(t)σ−1(t)[1− µ2(t)]1/2ϕ

(
m(t)

σ(t)

)
×
[
2ϕ(η(t)) + 2η(t)[2Φ(η(t))− 1]

]
dt

m(t) = E{f (t)}
σ2(t) = E{[f (t)]2}
λ(t) = E{[ḟ (t)]2}

µ(t) =
E{[f (t)−m(t)] · [ḟ (t)]}

λ1/2(t)σ(t)

η(t) =
ṁ(t)− λ1/2(t)µ(t)m(t)/σ(t)

λ1/2(t)[1− µ2(t)]1/2

I Very important fact: Long term covariances do not appear in
any of these formulae.
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Some pertinent thoughts

I Real roots of Gaussian polynomials The original Kac result
now makes sense:

f (t) = ξ0 + ξ1t + · · ·+ ξn−1tn−1

E{Nn} =
4

π

∫ 1

0

[1− n2[x2(1− x2)/(1− x2n]2]1/2

1− x2
dx

I Downcrossings, crossings, critical points
Critical points of different kinds are just zeroes of ḟ with
different side conditions. But now second derivatives appear,
calculations will be harder. (f (t), f ′′(t) are not independent.)

I Weakening the conditions In the Gaussian case, only absolute
continuity and the finiteness of λ is needed. (Itô, Ylvisaker)

I Higher moments?

I Fixed points of vector valued processes?
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The Kac-Rice “Metatheorem”

I The setup

f = (f 1, . . . , f N) : M ⊂ RN → RN

g = (g 1, . . . , gK ) : M ⊂ RN → RK

I Number of points:

Nu ≡ Nu(M) ≡ Nu(f , g : M,B)
∆
= E

{
# {t ∈ M : f (t) = u, g(t) ∈ B}

}
.

I The “metatheorem”, or generalised Kac-Rice

E{Nu} =

∫
M

∫
RD

|det∇y | 1B(v) pt(u,∇y , v) d(∇y) dv dt

=

∫
M
E
{
|det∇f (t) | 1B(g(t))

∣∣∣ f (t) = u
}

pt(u) dt,

pt(x ,∇y , v) is the joint density of (ft ,∇ft , gt)
(∇f )(t) ≡ ∇f (t) ≡

(
f ij (t)

)
i,j=1,...,N

≡
( ∂f i (t)
∂tj

)
i,j=1,...,N

.
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The original (non-specific) Rice formula: The proof
I Take a (positive) approximate delta function, δε, supported on

[−ε,+ε], and
∫
R δε(x) dx = 1.

1 =

∫
R
δε(x − u) dx =

∫ tu1

t`1

|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt

= lim
ε→0

∫ tu1

t`1

|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt

Uu(f ,T ) = lim
ε→0

∫
T
|ḟ (t)| δε(f (t)− u) 1(0,∞)(f (t)) dt
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The Kac-Rice Conditions (the fine print)

.

Let f , g , M and B be as above, with the additional assumption that the boundaries of M and B have
finite N − 1 and K − 1 dimensional measures, respectively. Furthermore, assume that the following

conditions are satisfied for some u ∈ RN :

(a) All components of f , ∇f , and g are a.s. continuous and have finite variances (over M).
(b) For all t ∈ M, the marginal densities pt (x) of f (t) (implicitly assumed to exist) are continuous at

x = u.
(c) The conditional densities pt (x|∇f (t), g(t)) of f (t) given g(t) and ∇f (t) (implicitly assumed to

exist) are bounded above and continuous at x = u, uniformly in t ∈ M.
(d) The conditional densities pt (z|f (t) = x) of det∇f (t) given f (t) = x , are continuous for z and x

in neighbourhoods of 0 and u, respectively, uniformly in t ∈ M.
(e) The conditional densities pt (z|f (t) = x) of g(t) given f (t) = x , are continuous for all z and for x

in a neighbourhood u, uniformly in t ∈ M.
(f) The following moment condition holds:

sup
t∈M

max
1≤i,j≤N

E
{∣∣∣f ij (t)

∣∣∣N}
<∞.

(g) The moduli of continuity of each of the components of f , ∇f , and g satisfy

P {ω(η) > ε } = o
(
η
N
)
, as η ↓ 0,

for any ε > 0.
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for any ε > 0.



Higher (factorial) moments

I Factorial notation

(x)k
∆
= x(x − 1) . . . (x − k + 1).

I Kac-Rice (again?)

E{(Nu)k} =

∫
Mk

E
{ k∏

j=1

|det∇f (tj) | 1B(g(tj))
∣∣∣ f̃ (̃t) = ũ

}
pt̃(ũ)dt̃

=

∫
Mk

∫
RkD

k∏
j=1

|detDj | 1B(vj) pt̃(ũ, D̃, ṽ) dD̃ dṽ d t̃,

Mk = {t̃ = (t1, . . . , tk) : tj ∈ M, 1 ≤ j ≤ k}
f̃ (̃t) = (f (t1), . . . , f (tk)) : Mk → RNk

g̃ (̃t) = (g(t1), . . . , g(tk)) : Mk → RKk

D = N(N + 1)/2 + K
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The Gaussian case: What can/can’t be explicitly computed

I General mean and covariance functions

I Isotropic fields (N = 2, 3)

I Zero mean and constant variance (via the ”induced metric”)

I Gaussian related processes

I Perturbed Gaussian processes (“Approximately”)

I E{No. of critical points of index k above the level u}

I E
{∑N

k=1(−1)k(No. of critical points of index k above u))
}

Useful for Morse theory
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The Gaussian-related case

f (t) = (f1(t), . . . , fk(t)) : T → Rk F : Rk → Rd

g(t)
∆
= F (g(t)) = F (g1(t), . . . , gk(t)) ,

F (x) =
k∑
1

x2
i ,

x1

√
k − 1

(
∑k

2 x2
i )1/2

,
m
∑n

1 x2
i

n
∑n+m

n+1 x2
i

.

i.e. χ2 fields with k degrees of freedom, T field with k − 1
degrees of freedom, F field with n and m degrees of freedom.
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The Gaussian Kinematic Formula (GKF)
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The perturbed-Gaussian case

I A physics approach

ϕ(x) = ϕG (x)
[
1 +

∞∑
n=3

Tr [EG{hn(X )} · hn(x)]
]

ϕG is iid Gaussian

hn(x)
∆
= (−1)n

1

ϕG (x)

∂nϕG (x)

∂xn

are Hermite tensors of rank n with coefficients constructed
from the moments EG{hn(X )}

I A statistical (Gaussian related) approach

f (t) = fG (t) +
J∑

j=1

pjεj f
GR
j (t)
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Applications I: Exceedence probabilities via level crossings

P
{

sup
0≤t≤T

f (t) ≥ u
}

P
{

sup0≤t≤T f (t) ≥ u
}

P
{

sup
0≤t≤T

f (t) ≥ u
}

= P {f (0) ≥ u}+ P {f (0) < u,Nu ≥ 1}

= P {f (0) ≥ u) + P {f (0) < u,Nu ≥ 1}
≤ P {f (0) ≥ u) + E{Nu}
= E{# of connected components in Au(T )}

I Note: Nothing is Gaussian here!

I Inequality is usually an approximation, for large u.
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Applications II: Local maxima on the line

I Number of local maxima above the level u

Mu(T ) = #
{

t ∈ [0,T ] : ḟ (t) = 0, f̈ (t) < 0, f (t) ≥ u
}

I f stationary mean 0, variance 1, λ4 = E{[f ′′(t)]4}

E {M−∞(T )} = T
λ

1/2
4

2πλ
1/2
2

I Similarly, with ∆ = λ4 − λ2
2 and λ2 ≡ λ.

E {Mu(T )} = T
λ

1/2
4

2πλ
1/2
2

Ψ

(
λ

1/2
4 u

∆1/2

)
− T

λ
1/2
2√
2π
ϕ(u)Φ

(
λ2u

∆1/2

)
,

I An easy computation

lim
u→∞

E {Mu(T )}
E {Nu(T )}

= 1.

which holds in very wide generality.
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Applications III: Local maxima on M ⊂ RN

I Mu(M) Number of local maxima on M above the level u

I N = 2 f isotropic on unit square

E {M−∞} =
1

6π
√

3

λ4

λ2

I N = 2, f stationary on unit square

E {M−∞} =
1

2π2

d1

|Λ|1/2
G (−d1/d2)

Λ the covariance matrix of first order derivatives of f
d1, d2 eigenvalues of cov matrix of second order derivatives

G involves first and second order elliptic integrals

I N = 2, f isotropic on unit square

E {Mu} = ? ? ?

I Is there a replacement for

lim
u→∞

E {Mu(T )}
E {Nu(T )}

= 1.
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Applications IV: Longuet-Higgins and oceanography

I There are precise computations for the expected numbers of
specular points, mainly by M.S. Longuet-Higgins, 1948–2010

M.S. Longuet-Higgins, 1925–Mark Dennis
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Applications V: Higher moments and complex polynomials

f (z) = ξ0+a1ξ1z+a2ξ2z2+· · ·+an−1ξn−1zn−1, z ∈ C.

I Means tell us where we expect the roots to be, but variances
are needed to give concentration information.

Balint Virag
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Applications VI: Poisson limits and Slepian models

Theorem
1: Sequences of increasingly rare events such as the existence of high level local

maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods
or large regions so that a few of them still occur have an asymptotic Poisson
distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the
expected number of events in a given region or time interval.

Theorem
If f is stationary and ergodic although less will do

P
{

f (τ) ∈ A
∣∣
correct

τ is a local maximum of f
}

=
E{#{t ∈ B : t is a local maximum of f and f (t) ∈ A}}

E{#{t ∈ B : t is a local maximum of f }}
B is any ball
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Applications VII: Eigenvalues of random matrices

I A a n × n matrix

I Define

f A(t)
∆
= 〈At, t〉, t ∈ M

If A is random, then f A is a random field. If A is Gaussian
(i.e. has Gaussian components) then f A is Gaussian.

I Algebraic fact
If A has no repeated eigenvalues, there are exactly 2n critical
points of f A , which occur at ± the eigenvectors of A.
The values of f A at critical points are the eigenvalues of M

I Finding the maximum eigenvalue

λmax(A) = sup
t∈Sn−1

f A(t)

I (Some) random matrix problems are equivalent to random
field problems, and vice versa
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Appendix I: The canonical Gaussian process
I Consider f (t) =

∑`
j=1 ξjϕj(t)

I σ2(t) ≡ 1 ⇒ ϕ̃(t) = (ϕ1(t), . . . , π`(t)) ∈ S`−1.
I A crucial mapping

I Define a new Gaussian process f̃ on ϕ̃(M)

f̃ (x) = f
(
ϕ̃−1(x)

)
,

E
{

f̃ (x)f̃ (y)
}

= E
{

f
(
ϕ̃−1(x)

)
f
(
ϕ̃−1(y)

)}
=

∑
ϕj

(
ϕ̃−1(x)

)
ϕj

(
ϕ̃−1(y)

)
=

∑
xjyj = 〈x , y〉
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The canonical Gaussian process on S `−1

1: Has mean zero and covariance

E {f (s)f (s)} = 〈s, t〉

for s, t ∈ S`−1.

2: It can be realised as

f (t) =
∑̀
j=1

tjξj .

3: It is stationary and isotropic since the covariance is function of
only the (geodesic) distance between s and t.



Exceedence probabilities for canonical process: M ⊂ S `−1

P
{

sup
t∈M

ft ≥ u
}

=

∫ ∞
0

P
{

sup
t∈M

ft ≥ u
∣∣ |ξ| = r

}
P|ξ|(dr)

=

∫ ∞
0

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣ |ξ| = r
}
P|ξ|(dr)

=

∫ ∞
u

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣ |ξ| = r
}
P|ξ|(dr)

=

∫ ∞
u

P
{

sup
t∈M
〈ξ/r , t〉 ≥ u/r

∣∣ |ξ| = r
}
P|ξ|(dr)

=

∫ ∞
u

P
{

sup
t∈M
〈U, t〉 ≥ u/r

}
P|ξ|(dr)

where U is uniform on S`−1.



I We need

P
{

sup
t∈M
〈U, t〉 ≥ u/r

}

I Working with tubes
The tube of radius ρ around a closed set M ∈ S`−1) is

Tube(M, ρ) =
{

t ∈ S`−1 : τ(t,M) ≤ ρ
}

=
{

t ∈ S`−1 : ∃ s ∈ M such that 〈s, t〉 ≥ cos(ρ)
}

=

{
t ∈ S`−1 : sup

s∈M
〈s, t〉 ≥ cos(ρ)

}
.

I And so....

P
{

sup
t∈M

ft ≥ u
}

=
∫∞
u ηl

(
Tube(M, cos−1(u/r))

)
P|ξ|(dr)

and geometry has entered the picture, in a serious fashion!
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Appendix II: Stationary and isotropic fields

I Definition: M has a group structure, µ(t) = const and
C (s, t) = C (s − t).

I Gaussian case: (Weak) stationarity also implies strong
stationarity.

I M = RN : C : RN → R is non-negative definite ⇐⇒ there
exists a finite measure ν such that

C (t) =

∫
RN

e i〈t,λ〉 ν(dλ),

ν is called the spectral measure and, since C is real, must be
symmetric. i.e. ν(A) = ν(−A) for all A ∈ BN .

I Spectral moments

λi1...iN
∆
=

∫
RN

λi11 · · ·λ
iN
N ν(dλ)

ν is symmetric ⇒ odd ordered spectral moments are zero.
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I Elementary considerations give

E
{

∂k f (s)

∂si1∂si1 . . . ∂sik

∂k f (t)

∂ti1∂ti1 . . . ∂tik

}
=

∂2kC (s, t)

∂si1∂ti1 . . . ∂sik∂tik
.

I When f is stationary, and α, β, γ, δ ∈ {0, 1, 2, . . . }, then

E
{
∂α+βf (t)

∂αti∂βtj

∂γ+δf (t)

∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C (t)

∣∣∣
t=0

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ).

I Write fj = ∂f /∂tj , fij = ∂2f /∂ti∂tj Then

f (t) and fj(t) are uncorrelated,

fi (t) and fjk(t) are uncorrelated

I Isotropy (C (t) = C (‖t‖) ⇒ ν is spherically symmetric ⇒
E {fi (t)fj(t)} = −E {f (t)fij(t)} = λδij



I Elementary considerations give

E
{

∂k f (s)

∂si1∂si1 . . . ∂sik

∂k f (t)

∂ti1∂ti1 . . . ∂tik

}
=

∂2kC (s, t)

∂si1∂ti1 . . . ∂sik∂tik
.

I When f is stationary, and α, β, γ, δ ∈ {0, 1, 2, . . . }, then

E
{
∂α+βf (t)

∂αti∂βtj

∂γ+δf (t)

∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C (t)

∣∣∣
t=0

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ).

I Write fj = ∂f /∂tj , fij = ∂2f /∂ti∂tj Then

f (t) and fj(t) are uncorrelated,

fi (t) and fjk(t) are uncorrelated

I Isotropy (C (t) = C (‖t‖) ⇒ ν is spherically symmetric ⇒
E {fi (t)fj(t)} = −E {f (t)fij(t)} = λδij



I Elementary considerations give

E
{

∂k f (s)

∂si1∂si1 . . . ∂sik

∂k f (t)

∂ti1∂ti1 . . . ∂tik

}
=

∂2kC (s, t)

∂si1∂ti1 . . . ∂sik∂tik
.

I When f is stationary, and α, β, γ, δ ∈ {0, 1, 2, . . . }, then

E
{
∂α+βf (t)

∂αti∂βtj

∂γ+δf (t)

∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C (t)

∣∣∣
t=0

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ).

I Write fj = ∂f /∂tj , fij = ∂2f /∂ti∂tj Then

f (t) and fj(t) are uncorrelated,

fi (t) and fjk(t) are uncorrelated

I Isotropy (C (t) = C (‖t‖) ⇒ ν is spherically symmetric ⇒
E {fi (t)fj(t)} = −E {f (t)fij(t)} = λδij



I Elementary considerations give

E
{

∂k f (s)

∂si1∂si1 . . . ∂sik

∂k f (t)

∂ti1∂ti1 . . . ∂tik

}
=

∂2kC (s, t)

∂si1∂ti1 . . . ∂sik∂tik
.

I When f is stationary, and α, β, γ, δ ∈ {0, 1, 2, . . . }, then

E
{
∂α+βf (t)

∂αti∂βtj

∂γ+δf (t)

∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C (t)

∣∣∣
t=0

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ).

I Write fj = ∂f /∂tj , fij = ∂2f /∂ti∂tj Then

f (t) and fj(t) are uncorrelated,

fi (t) and fjk(t) are uncorrelated

I Isotropy (C (t) = C (‖t‖) ⇒ ν is spherically symmetric ⇒
E {fi (t)fj(t)} = −E {f (t)fij(t)} = λδij



Appendix III: Regularity of Gaussian processes
I The canonical metric, d

d(s, t)
∆
=
[
E
{(

f (s)− f (t)
)2}] 1

2 ,

A ball of radius ε and centered at t ∈ M is denoted by

Bd(t, ε)
∆
= {s ∈ M : d(s, t) ≤ ε} .

I Compactness assumption

diam(M)
∆
= sup

s,t∈M
d(s, t) < ∞.

I Entropy Fix ε > 0 and let N(M, d , ε) ≡ N(ε) denote the
smallest number of d-balls of radius ε whose union covers M.
Set

H(M, d , ε) ≡ H(ε) = ln (N(ε)) .

Then N and H are called the (metric) entropy and log-entropy
functions for M (or f ).
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Dudley’s theorem
Let f be a centered Gaussian field on a d-compact M Then there
exists a universal K such that

E
{

sup
t∈M

ft
}
≤ K

∫ diam(M)

0
H1/2(ε) dε,

and

E {ωf ,d(δ)} ≤ K

∫ δ

0
H1/2(ε) dε,

where

ωf ,d(δ)
∆
= sup

d(s,t)≤δ
|f (t)− f (s)| , δ > 0,

Furthermore, there exists a random η ∈ (0,∞) and a universal K
such that

ωf ,d(δ) ≤ K

∫ δ

0
H1/2(ε) dε,

for all δ < η.



Special cases of the entropy result
I If f is also stationary

f is a.s. continuous on M ⇐⇒ f is a.s. bounded on M

⇐⇒
∫ δ

0
H1/2(ε) dε < ∞, ∀δ > 0

I If M ⊂ RN , and

p2(u)
∆
= sup

|s−t|≤u
E
{
|fs − ft |2

}
,

continuity & boundedness follow if, for some δ > 0, either∫ δ

0
(− ln u)

1
2 dp(u) <∞ or

∫ ∞
δ

p
(

e−u
2
)

du <∞.

I A sufficient condition For some 0 < K <∞ and α, η > 0,

E
{
|fs − ft |2

}
≤ K

|log |s − t| |1+α
,

for all s, t with |s − t| < η.
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Appendix IV: Borell-Tsirelson inequality

I Finiteness theorem: ‖f ‖ ∆
= supt∈M ft

P{‖f ‖ <∞} = 1 ⇐⇒ E{‖f ‖} < ∞,

I THE inequality: For all u > 0,

P{‖f ‖ − E{‖f ‖} > u
}
≤ e−u

2/2σ2
M .

σ2
M = supt∈M E{f 2

t }

I This implies

P{‖f ‖ ≥ u} ≤ eµu−u
2/2σ2

M ,

µu = (2uE{‖f ‖} − [E{‖f ‖}]2)/σ2
M

I Asymptotics: For high levels u, the dominant behavior of all
Gaussian exceedence probabilities is determined by e−u

2/2σ2
M .



Appendix IV: Borell-Tsirelson inequality

I Finiteness theorem: ‖f ‖ ∆
= supt∈M ft

P{‖f ‖ <∞} = 1 ⇐⇒ E{‖f ‖} < ∞,

I THE inequality: For all u > 0,

P{‖f ‖ − E{‖f ‖} > u
}
≤ e−u

2/2σ2
M .

σ2
M = supt∈M E{f 2

t }

I This implies

P{‖f ‖ ≥ u} ≤ eµu−u
2/2σ2

M ,

µu = (2uE{‖f ‖} − [E{‖f ‖}]2)/σ2
M

I Asymptotics: For high levels u, the dominant behavior of all
Gaussian exceedence probabilities is determined by e−u

2/2σ2
M .



Appendix IV: Borell-Tsirelson inequality

I Finiteness theorem: ‖f ‖ ∆
= supt∈M ft

P{‖f ‖ <∞} = 1 ⇐⇒ E{‖f ‖} < ∞,

I THE inequality: For all u > 0,

P{‖f ‖ − E{‖f ‖} > u
}
≤ e−u

2/2σ2
M .

σ2
M = supt∈M E{f 2

t }

I This implies

P{‖f ‖ ≥ u} ≤ eµu−u
2/2σ2

M ,

µu = (2uE{‖f ‖} − [E{‖f ‖}]2)/σ2
M

I Asymptotics: For high levels u, the dominant behavior of all
Gaussian exceedence probabilities is determined by e−u

2/2σ2
M .



Appendix IV: Borell-Tsirelson inequality

I Finiteness theorem: ‖f ‖ ∆
= supt∈M ft

P{‖f ‖ <∞} = 1 ⇐⇒ E{‖f ‖} < ∞,

I THE inequality: For all u > 0,

P{‖f ‖ − E{‖f ‖} > u
}
≤ e−u

2/2σ2
M .

σ2
M = supt∈M E{f 2

t }

I This implies

P{‖f ‖ ≥ u} ≤ eµu−u
2/2σ2

M ,

µu = (2uE{‖f ‖} − [E{‖f ‖}]2)/σ2
M

I Asymptotics: For high levels u, the dominant behavior of all
Gaussian exceedence probabilities is determined by e−u

2/2σ2
M .



Places to start reading and to find other references

1. R.J. Adler and J.E. Taylor, Random Fields and Geometry,
Springer, 2007

2. R.J. Adler, and J.E. Taylor, Topological Complexity of
Random Functions, Springer Lecture Notes in Mathematics,
Vol. 2019, Springer, 2010

3. D. Aldous, Probability Approximations via the Poisson
Clumping Heuristic, Applied Mathematical Sciences, Vol. 77,
Springer-Verlag, 1989.
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