

Random Fields and Random Geometry

I: Gaussian fields and Kac-Rice formulae

Robert Adler
Electrical Engineering
Technion - Israel Institute of Technology
and
many, many others

October 25, 2011

I do not intend to cover all these slides in 75 minutes!
(Some of the material is for your later reference, and some for the afternoon tutorial.)

Our heroes

Marc Kac
1914-1984

Stephen O. Rice 1907-1986

Real roots of algebraic equations (Kac, 1943)

$$
f(t)=\xi_{0}+\xi_{1} t+\xi_{2} t^{2}+\cdots+\xi_{n-1} t^{n-1}
$$

Real roots of algebraic equations (Kac, 1943)

$$
\begin{gathered}
f(t)=\xi_{0}+\xi_{1} t+\xi_{2} t^{2}+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{P}\left\{\xi=\left(\xi_{0}, \ldots, \xi_{n-1}\right) \in A\right\}=\int_{A} \frac{e^{-\|x\|^{2} / 2}}{(2 \pi)^{n / 2}} d x \quad\left(\xi \sim N\left(0, I_{n \times n}\right)\right)
\end{gathered}
$$

Real roots of algebraic equations (Kac, 1943)

$$
\begin{gathered}
f(t)=\xi_{0}+\xi_{1} t+\xi_{2} t^{2}+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{P}\left\{\xi=\left(\xi_{0}, \ldots, \xi_{n-1}\right) \in A\right\}=\int_{A} \frac{e^{-\|x\|^{2} / 2}}{(2 \pi)^{n / 2}} d x \quad\left(\xi \sim N\left(0, I_{n \times n}\right)\right)
\end{gathered}
$$

Theorem: $N_{n}=$ the number of real zeroes of f

$$
\mathbb{E}\left\{N_{n}\right\}=\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
$$

Real roots of algebraic equations (Kac, 1943)

$$
\begin{gathered}
f(t)=\xi_{0}+\xi_{1} t+\xi_{2} t^{2}+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{P}\left\{\xi=\left(\xi_{0}, \ldots, \xi_{n-1}\right) \in A\right\}=\int_{A} \frac{e^{-\|x\|^{2} / 2}}{(2 \pi)^{n / 2}} d x \quad\left(\xi \sim N\left(0, I_{n \times n}\right)\right)
\end{gathered}
$$

Theorem: $N_{n}=$ the number of real zeroes of f

$$
\mathbb{E}\left\{N_{n}\right\}=\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
$$

Approx'n: For large n

$$
\mathbb{E}\left\{N_{n}\right\} \sim \frac{2 \log n}{\pi}
$$

Real roots of algebraic equations (Kac, 1943)

$$
\begin{gathered}
f(t)=\xi_{0}+\xi_{1} t+\xi_{2} t^{2}+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{P}\left\{\xi=\left(\xi_{0}, \ldots, \xi_{n-1}\right) \in A\right\}=\int_{A} \frac{e^{-\|x\|^{2} / 2}}{(2 \pi)^{n / 2}} d x \quad\left(\xi \sim N\left(0, I_{n \times n}\right)\right)
\end{gathered}
$$

Theorem: $N_{n}=$ the number of real zeroes of f

$$
\mathbb{E}\left\{N_{n}\right\}=\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
$$

Approx'n: For large n

$$
\mathbb{E}\left\{N_{n}\right\} \sim \frac{2 \log n}{\pi}
$$

Bound: For large n

$$
\mathbb{E}\left\{N_{n}\right\} \leq \frac{2 \log n}{\pi}+\frac{14}{\pi}
$$

Zeroes of complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C} .
$$

Zeroes of complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C}
$$

Zcros of 60 Hammersley random polynomials of degree 15

Zeroes of complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C}
$$

Zcros of 60 Hammersley random polynomials of degree 15

Zeroes of complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C}
$$

Zcros of 60 Hammersley random polynomials of degree 15

Shiffman

Thinking more generally:
$1: f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, random

$$
\mathbb{E}\left\{\#\left\{t \in \mathbb{R}^{N}: f(t)=u\right\}\right\}=?
$$

Thinking more generally:
$1: f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, random

$$
\mathbb{E}\left\{\#\left\{t \in \mathbb{R}^{N}: f(t)=u\right\}\right\}=?
$$

2: $f: M \rightarrow N$, random, $\operatorname{dim}(M)=\operatorname{dim}(N)$

$$
\mathbb{E}\{\#\{p \in M: f(p)=q\}\}=?
$$

Thinking more generally:

$1: f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, random

$$
\mathbb{E}\left\{\#\left\{t \in \mathbb{R}^{N}: f(t)=u\right\}\right\}=?
$$

2: $f: M \rightarrow N$, random, $\operatorname{dim}(M)=\operatorname{dim}(N)$

$$
\mathbb{E}\{\#\{p \in M: f(p)=q\}\}=?
$$

3: In another notation:

$$
\mathbb{E}\left\{\#\left\{f^{-1}(q)\right\}\right\}=?
$$

Thinking more generally:

$1: f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, random

$$
\mathbb{E}\left\{\#\left\{t \in \mathbb{R}^{N}: f(t)=u\right\}\right\}=?
$$

2: $f: M \rightarrow N$, random, $\operatorname{dim}(M)=\operatorname{dim}(N)$

$$
\mathbb{E}\{\#\{p \in M: f(p)=q\}\}=?
$$

3: In another notation:

$$
\mathbb{E}\left\{\#\left\{f^{-1}(q)\right\}\right\}=?
$$

4: More generally:

$$
f: M \rightarrow N, \quad \operatorname{dim}(M) \neq \operatorname{dim}(N), \quad D \subset N
$$

In this case, typically,

$$
\operatorname{dim}\left(f^{-1}(D)\right)=\operatorname{dim}(M)-\operatorname{dim}(N)+\operatorname{dim}(D)
$$

and it is not clear what the corresponding question is.

The original (non-specific) Rice formula

$$
\text { - } U_{u} \equiv U_{u}(f, T) \triangleq \#\{t \in T: f(t)=u, \dot{f}(t)>0\}
$$

The original (non-specific) Rice formula

- $U_{u} \equiv U_{u}(f, T) \triangleq \#\{t \in T: f(t)=u, \dot{f}(t)>0\}$
- Basic conditions on f : Continuity and differentiability

The original (non-specific) Rice formula

- $U_{u} \equiv U_{u}(f, T) \triangleq \#\{t \in T: f(t)=u, \dot{f}(t)>0\}$
- Basic conditions on f : Continuity and differentiability
- Plus (boring) side conditions to be met later

The original (non-specific) Rice formula

- $U_{u} \equiv U_{u}(f, T) \triangleq \#\{t \in T: f(t)=u, \dot{f}(t)>0\}$
- Basic conditions on f : Continuity and differentiability
- Plus (boring) side conditions to be met later
- Kac-Rice formula:

$$
\begin{aligned}
\mathbb{E}\left\{U_{u}\right\} & =\int_{T} \int_{0}^{\infty} y p_{t}(u, y) d y d t \\
& =\int_{T} p_{t}(u) \int_{0}^{\infty} y p_{t}(y \mid u) d y d t \\
& =\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
\end{aligned}
$$

where $p_{t}(x, y)$ is the joint density of $(f(t), \dot{f}(t))$, $p_{t}(u)$ is the probability density of $f(t)$, etc.

The original (non-specific) Rice formula

- $U_{u} \equiv U_{u}(f, T) \triangleq \#\{t \in T: f(t)=u, \dot{f}(t)>0\}$
- Basic conditions on f : Continuity and differentiability
- Plus (boring) side conditions to be met later
- Kac-Rice formula:

$$
\begin{aligned}
\mathbb{E}\left\{U_{u}\right\} & =\int_{T} \int_{0}^{\infty} y p_{t}(u, y) d y d t \\
& =\int_{T} p_{t}(u) \int_{0}^{\infty} y p_{t}(y \mid u) d y d t \\
& =\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
\end{aligned}
$$

where $p_{t}(x, y)$ is the joint density of $(f(t), \dot{f}(t))$, $p_{t}(u)$ is the probability density of $f(t)$, etc.

- $T=[0, T]$ is an interval. M is a general set (e.g. manifold)

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

$$
\begin{aligned}
1=\int_{\mathbb{R}} \delta_{\varepsilon}(x-u) d x & =\int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
& =\lim _{\varepsilon \rightarrow 0} \int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
\end{aligned}
$$

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

$$
\begin{aligned}
& 1=\int_{\mathbb{R}} \delta_{\varepsilon}(x-u) d x=\int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
&=\lim _{\varepsilon \rightarrow 0} \int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
& U_{u}(f, T)=\lim _{\varepsilon \rightarrow 0} \int_{T}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
\end{aligned}
$$

The original (non-specific) Rice formula: The proof

- So far, everything is deterministic

$$
U_{u}(f, T)=\lim _{\varepsilon \rightarrow 0} \int_{T}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
$$

The original (non-specific) Rice formula: The proof

- So far, everything is deterministic

$$
U_{u}(f, T)=\lim _{\varepsilon \rightarrow 0} \int_{T}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
$$

- Take expectations, with some sleight of hand

$$
\begin{aligned}
\mathbb{E}\left\{U_{u}(f, T)\right\} & =\mathbb{E}\left\{\lim _{\varepsilon \rightarrow 0} \int_{T}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t\right\} \\
& =\int_{T} \lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t\right\} \\
& =\int_{T} \lim _{\varepsilon \rightarrow 0} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty}|y| \delta_{\varepsilon}(x-u) p_{t}(x, y) d x d y d t \\
& =\int_{T} \int_{0}^{\infty}|y| p_{t}(u, y) d y d t
\end{aligned}
$$

Constructing Gaussian Processes

- A (separable) parameter space M.

Constructing Gaussian Processes

- A (separable) parameter space M.
- A finite or infinite set of functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\sum_{j} \varphi_{j}^{2}(t)<\infty, \quad \text { for all } t \in M
$$

Constructing Gaussian Processes

- A (separable) parameter space M.
- A finite or infinite set of functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\sum_{j} \varphi_{j}^{2}(t)<\infty, \quad \text { for all } t \in M
$$

- A sequence ξ_{1}, ξ_{2}, \ldots, of independent, $N(0,1)$ random variables,

Constructing Gaussian Processes

- A (separable) parameter space M.
- A finite or infinite set of functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\sum_{j} \varphi_{j}^{2}(t)<\infty, \quad \text { for all } t \in M
$$

- A sequence ξ_{1}, ξ_{2}, \ldots, of independent, $N(0,1)$ random variables,
- Define the random field $f: M \rightarrow \mathbb{R}$ by

$$
f(t)=\sum_{j} \xi_{j} \varphi_{j}(t)
$$

Constructing Gaussian Processes

- A (separable) parameter space M.
- A finite or infinite set of functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\sum_{j} \varphi_{j}^{2}(t)<\infty, \quad \text { for all } t \in M
$$

- A sequence ξ_{1}, ξ_{2}, \ldots, of independent, $N(0,1)$ random variables,
- Define the random field $f: M \rightarrow \mathbb{R}$ by

$$
f(t)=\sum_{j} \xi_{j} \varphi_{j}(t)
$$

- Mean, covariance, and variance functions

$$
\begin{aligned}
\mu(t) \triangleq \mathbb{E}\{f(t)\} & & =0 \\
C(s, t) \triangleq\{[f(s)-\mu(s)] \cdot[f(t)-\mu(t)]\} & & =\sum \varphi_{j}(s) \varphi_{j}(t) \\
\sigma^{2}(t) \triangleq C(t, t) & & =\sum \varphi_{j}^{2}(t)
\end{aligned}
$$

Existence of Gaussian processes

Theorem

- Let M be a topological space.
- Let $C: M \times M$ be positive semi-definite.
- Then there exists a Gaussian process on $f: M \rightarrow \mathbb{R}$ with mean zero and covariance function C.
- Furthermore, f has a representation of the form $f(t)=\sum_{j} \xi_{j} \varphi_{j}(t)$, and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Existence of Gaussian processes

Theorem

- Let M be a topological space.
- Let $C: M \times M$ be positive semi-definite.
- Then there exists a Gaussian process on $f: M \rightarrow \mathbb{R}$ with mean zero and covariance function C.
- Furthermore, f has a representation of the form $f(t)=\sum_{j} \xi_{j} \varphi_{j}(t)$, and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Corollary

- If there is justice in the world (smoothness and summability)

$$
\dot{f}(t)=\frac{\partial}{\partial t} f(t)=\sum_{j} \xi_{j} \dot{\varphi}_{j}(t)
$$

and so if f is Gaussian, so is \dot{f}.

Existence of Gaussian processes

Theorem

- Let M be a topological space.
- Let $C: M \times M$ be positive semi-definite.
- Then there exists a Gaussian process on $f: M \rightarrow \mathbb{R}$ with mean zero and covariance function C.
- Furthermore, f has a representation of the form $f(t)=\sum_{j} \xi_{j} \varphi_{j}(t)$, and if f is a.s. continuous then the sum converges uniformly, a.s., on compacts.

Corollary

- If there is justice in the world (smoothness and summability)

$$
\dot{f}(t)=\frac{\partial}{\partial t} f(t)=\sum_{j} \xi_{j} \dot{\varphi}_{j}(t)
$$

and so if f is Gaussian, so is \dot{f}.
Furthermore

- $\mathbb{E}\{\dot{f}(s) \dot{f}(t)\}=\mathbb{E}\left\{\sum \xi_{j} \dot{\varphi}_{j}(s) \sum \xi_{k} \dot{\varphi}_{k}(t)\right\}=\sum \dot{\varphi}_{j}(s) \dot{\varphi}_{j}(t)$

Example: The Brownian sheet on \mathbb{R}^{N}

Example: The Brownian sheet on \mathbb{R}^{N}

$$
\begin{aligned}
\mathbb{E}\{W(t)\} & =0 \\
\mathbb{E}\{W(s) W(t)\} & =\left(s_{1} \wedge t_{1}\right) \times \cdots \times\left(s_{N} \wedge t_{N}\right)
\end{aligned}
$$

$$
\text { where } t=\left(t_{1}, \ldots, t_{N}\right) \text {. }
$$

Example: The Brownian sheet on \mathbb{R}^{N}

$$
\begin{aligned}
& \mathbb{E}\{W(t)\}=0 \\
& \mathbb{E}\{W(s) W(t)\}=\left(s_{1} \wedge t_{1}\right) \times \cdots \times\left(s_{N} \wedge t_{N}\right) . \\
& \text { where } t=\left(t_{1}, \ldots, t_{N}\right) .
\end{aligned}
$$

- Replace j by $j=\left(j_{1}, \ldots, j_{N}\right)$

$$
\Rightarrow \begin{aligned}
\varphi_{j}(t) & =2^{N / 2} \prod_{i=1}^{N} \frac{2}{\left(2 j_{i}+1\right) \pi} \sin \left(\frac{1}{2}\left(2 j_{i}+1\right) \pi t_{i}\right) \\
W(t) & =\sum_{j_{1}} \cdots \sum_{j_{N}} \xi_{j_{1}, \ldots, j_{N}} \varphi_{j_{1}, \ldots, j_{N}}(t)
\end{aligned}
$$

Example: The Brownian sheet on \mathbb{R}^{N}

$$
\begin{aligned}
& \mathbb{E}\{W(t)\}=0 \\
& \mathbb{E}\{W(s) W(t)\}=\left(s_{1} \wedge t_{1}\right) \times \cdots \times\left(s_{N} \wedge t_{N}\right) . \\
& \text { where } t=\left(t_{1}, \ldots, t_{N}\right) .
\end{aligned}
$$

- Replace j by $j=\left(j_{1}, \ldots, j_{N}\right)$

$$
\begin{aligned}
\varphi_{j}(t) & =2^{N / 2} \prod_{i=1}^{N} \frac{2}{\left(2 j_{i}+1\right) \pi} \sin \left(\frac{1}{2}\left(2 j_{i}+1\right) \pi t_{i}\right) \\
\Rightarrow \quad W(t) & =\sum_{j_{1}} \cdots \sum_{j_{N}} \xi_{j_{1}, \ldots, j_{N}} \varphi_{j_{1}, \ldots, j_{N}}(t)
\end{aligned}
$$

- $N=1$
W is standard Brownian motion.
The corresponding expansion is due to Lévy, and the corresponding RKHS is known as Cameron-Martin space.

Constant variance Gaussian processes

- We know that
- $f(t)=\sum \xi_{j} \varphi_{j}(t)$
- $\dot{f}(t)=\sum \xi_{j} \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{\dot{f}(s) \dot{f}(t)\}=\sum \dot{\varphi}_{j}(s) \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{f(s) \dot{f}(t)\}=\sum \varphi_{j}(s) \dot{\varphi}_{j}(t)$

Constant variance Gaussian processes

- We know that
- $f(t)=\sum \xi_{j} \varphi_{j}(t)$
- $\dot{f}(t)=\sum \xi_{j} \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{\dot{f}(s) \dot{f}(t)\}=\sum \dot{\varphi}_{j}(s) \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{f(s) \dot{f}(t)\}=\sum \varphi_{j}(s) \dot{\varphi}_{j}(t)$
- Thus, if

$$
\sigma^{2}(t)=\mathbb{E}\left\{f^{2}(t)\right\}=\sum \varphi_{j}^{2}(t)
$$

is a constant, say 1 ,

$$
\text { so that }\left\|\left\{\varphi_{j}(t)\right\}\right\|_{\ell_{2}}=1
$$

Constant variance Gaussian processes

- We know that
- $f(t)=\sum \xi_{j} \varphi_{j}(t)$
- $\dot{f}(t)=\sum \xi_{j} \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{\dot{f}(s) \dot{f}(t)\}=\sum \dot{\varphi}_{j}(s) \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{f(s) \dot{f}(t)\}=\sum \varphi_{j}(s) \dot{\varphi}_{j}(t)$
- Thus, if

$$
\sigma^{2}(t)=\mathbb{E}\left\{f^{2}(t)\right\}=\sum \varphi_{j}^{2}(t)
$$

is a constant, say 1 ,

- then

$$
\begin{aligned}
\mathbb{E}\{f(t) \dot{f}(t)\} & =\sum \varphi_{j}(t) \dot{\varphi}_{j}(t) \\
& =\frac{1}{2} \sum \frac{\partial}{\partial t} \varphi_{j}^{2}(t) \\
& =\frac{1}{2} \frac{\partial}{\partial t} \sum \varphi_{j}^{2}(t) \\
& =0
\end{aligned}
$$

Constant variance Gaussian processes

- We know that
- $f(t)=\sum \xi_{j} \varphi_{j}(t)$
- $\dot{f}(t)=\sum \xi_{j} \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{\dot{f}(s) \dot{f}(t)\}=\sum \dot{\varphi}_{j}(s) \dot{\varphi}_{j}(t)$
- $\mathbb{E}\{f(s) \dot{f}(t)\}=\sum \varphi_{j}(s) \dot{\varphi}_{j}(t)$
- Thus, if

$$
\sigma^{2}(t)=\mathbb{E}\left\{f^{2}(t)\right\}=\sum \varphi_{j}^{2}(t)
$$

is a constant, say $1, \quad$ so that $\left\|\left\{\varphi_{j}(t)\right\}\right\| \ell_{2}=1$

- then

$$
\begin{aligned}
\mathbb{E}\{f(t) \dot{f}(t)\} & =\sum \varphi_{j}(t) \dot{\varphi}_{j}(t) \\
& =\frac{1}{2} \sum \frac{\partial}{\partial t} \varphi_{j}^{2}(t) \\
& =\frac{1}{2} \frac{\partial}{\partial t} \sum \varphi_{j}^{2}(t) \\
& =0
\end{aligned}
$$

- $\Rightarrow f(t)$ and its derivative $\dot{f}(t)$ are INDEPENDENT. (uncorreated)

Constant variance Gaussian processes and Kac-Rice

- Generic Kac-Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
$$

Constant variance Gaussian processes and Kac-Rice

- Generic Kac-Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
$$

- But $f(t)$ and $\dot{f}(t)$ are independent!

Constant variance Gaussian processes and Kac-Rice

- Generic Kac-Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
$$

- But $f(t)$ and $\dot{f}(t)$ are independent!
- Notation

$$
1=\sigma^{2}(t), \quad \lambda(t) \triangleq \mathbb{E}\left\{[\dot{f}(t)]^{2}\right\}
$$

Constant variance Gaussian processes and Kac-Rice

- Generic Kac-Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
$$

- But $f(t)$ and $\dot{f}(t)$ are independent!
- Notation

$$
1=\sigma^{2}(t), \quad \lambda(t) \triangleq \mathbb{E}\left\{[\dot{f}(t)]^{2}\right\}
$$

- Rice formula $(+\varepsilon)$

$$
\mathbb{E}\left\{U_{u}\right\}=\frac{e^{-u^{2} / 2}}{2 \pi} \int_{T}[\lambda(t)]^{1 / 2} d t
$$

Constant variance Gaussian processes and Kac-Rice

- Generic Kac-Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\int_{T} p_{t}(u) \mathbb{E}\left\{|\dot{f}(t)| 1_{(0, \infty)}(\dot{f}(t)) \mid f(t)=u\right\} d t
$$

- But $f(t)$ and $\dot{f}(t)$ are independent!
- Notation

$$
1=\sigma^{2}(t), \quad \lambda(t) \triangleq \mathbb{E}\left\{[\dot{f}(t)]^{2}\right\}
$$

- Rice formula $(+\varepsilon)$

$$
\mathbb{E}\left\{U_{u}\right\}=\frac{e^{-u^{2} / 2}}{2 \pi} \int_{T}[\lambda(t)]^{1 / 2} d t
$$

- If $\lambda(t) \equiv \lambda$, we have the Rice formula

$$
\mathbb{E}\left\{U_{u}\right\}=\frac{T \lambda^{1 / 2}}{2 \pi} e^{-u^{2} / 2}
$$

Gaussian Kac-Rice with no simplification

$$
\begin{aligned}
\mathbb{E}\left\{U_{u}(T)\right\}=\int_{T} \lambda^{1 / 2}(t) & \sigma^{-1}(t)\left[1-\mu^{2}(t)\right]^{1 / 2} \varphi\left(\frac{m(t)}{\sigma(t)}\right) \\
& \times[2 \varphi(\eta(t))+2 \eta(t)[2 \Phi(\eta(t))-1]] d t
\end{aligned}
$$

Gaussian Kac-Rice with no simplification

$$
\begin{aligned}
& \mathbb{E}\left\{U_{u}(T)\right\}= \int_{T} \lambda^{1 / 2}(t) \sigma^{-1}(t)\left[1-\mu^{2}(t)\right]^{1 / 2} \varphi\left(\frac{m(t)}{\sigma(t)}\right) \\
& \times[2 \varphi(\eta(t))+2 \eta(t)[2 \Phi(\eta(t))-1]] d t \\
& m(t)= \mathbb{E}\{f(t)\} \\
& \sigma^{2}(t)=\mathbb{E}\left\{[f(t)]^{2}\right\} \\
& \lambda(t)=\mathbb{E}\left\{[\dot{f}(t)]^{2}\right\} \\
& \mu(t)=\frac{\mathbb{E}\{[f(t)-m(t)] \cdot[\dot{f}(t)]\}}{\lambda^{1 / 2}(t) \sigma(t)} \\
& \eta(t)=\frac{\dot{m}(t)-\lambda^{1 / 2}(t) \mu(t) m(t) / \sigma(t)}{\lambda^{1 / 2}(t)\left[1-\mu^{2}(t)\right]^{1 / 2}}
\end{aligned}
$$

Gaussian Kac-Rice with no simplification

$$
\begin{aligned}
\mathbb{E}\left\{U_{u}(T)\right\}= & \int_{T} \lambda^{1 / 2}(t) \sigma^{-1}(t)\left[1-\mu^{2}(t)\right]^{1 / 2} \varphi\left(\frac{m(t)}{\sigma(t)}\right) \\
& \times[2 \varphi(\eta(t))+2 \eta(t)[2 \Phi(\eta(t))-1]] d t \\
m(t)= & \mathbb{E}\{f(t)\} \\
\sigma^{2}(t)= & \mathbb{E}\left\{[f(t)]^{2}\right\} \\
\lambda(t)= & \left.\mathbb{E}\{\dot{f}(t)]^{2}\right\} \\
\mu(t)= & \frac{\mathbb{E}\{[f(t)-m(t)] \cdot[\dot{f}(t)]\}}{\lambda^{1 / 2}(t) \sigma(t)} \\
\eta(t)= & \frac{\dot{m}(t)-\lambda^{1 / 2}(t) \mu(t) m(t) / \sigma(t)}{\lambda^{1 / 2}(t)\left[1-\mu^{2}(t)\right]^{1 / 2}}
\end{aligned}
$$

- Very important fact: Long term covariances do not appear in any of these formulae.

Some pertinent thoughts

- Real roots of Gaussian polynomials The original Kac result now makes sense:

$$
\begin{aligned}
f(t) & =\xi_{0}+\xi_{1} t+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{E}\left\{N_{n}\right\} & =\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
\end{aligned}
$$

Some pertinent thoughts

- Real roots of Gaussian polynomials The original Kac result now makes sense:

$$
\begin{aligned}
f(t) & =\xi_{0}+\xi_{1} t+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{E}\left\{N_{n}\right\} & =\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
\end{aligned}
$$

- Downcrossings, crossings, critical points Critical points of different kinds are just zeroes of \dot{f} with different side conditions. But now second derivatives appear, calculations will be harder. $\left(f(t), f^{\prime \prime}(t)\right.$ are not independent.)

Some pertinent thoughts

- Real roots of Gaussian polynomials The original Kac result now makes sense:

$$
\begin{aligned}
f(t) & =\xi_{0}+\xi_{1} t+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{E}\left\{N_{n}\right\} & =\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
\end{aligned}
$$

- Downcrossings, crossings, critical points Critical points of different kinds are just zeroes of \dot{f} with different side conditions. But now second derivatives appear, calculations will be harder. ($f(t), f^{\prime \prime}(t)$ are not independent.)
- Weakening the conditions In the Gaussian case, only absolute continuity and the finiteness of λ is needed. (Itô, Ylvisaker)

Some pertinent thoughts

- Real roots of Gaussian polynomials The original Kac result now makes sense:

$$
\begin{aligned}
f(t) & =\xi_{0}+\xi_{1} t+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{E}\left\{N_{n}\right\} & =\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
\end{aligned}
$$

- Downcrossings, crossings, critical points Critical points of different kinds are just zeroes of \dot{f} with different side conditions. But now second derivatives appear, calculations will be harder. ($f(t), f^{\prime \prime}(t)$ are not independent.)
- Weakening the conditions In the Gaussian case, only absolute continuity and the finiteness of λ is needed. (Itô, Ylvisaker)
- Higher moments?

Some pertinent thoughts

- Real roots of Gaussian polynomials The original Kac result now makes sense:

$$
\begin{aligned}
f(t) & =\xi_{0}+\xi_{1} t+\cdots+\xi_{n-1} t^{n-1} \\
\mathbb{E}\left\{N_{n}\right\} & =\frac{4}{\pi} \int_{0}^{1} \frac{\left[1-n^{2}\left[x^{2}\left(1-x^{2}\right) /\left(1-x^{2 n}\right]^{2}\right]^{1 / 2}\right.}{1-x^{2}} d x
\end{aligned}
$$

- Downcrossings, crossings, critical points Critical points of different kinds are just zeroes of \dot{f} with different side conditions. But now second derivatives appear, calculations will be harder. ($f(t), f^{\prime \prime}(t)$ are not independent.)
- Weakening the conditions In the Gaussian case, only absolute continuity and the finiteness of λ is needed. (Itô, Ylvisaker)
- Higher moments?
- Fixed points of vector valued processes?

The Kac-Rice "Metatheorem"

The Kac-Rice "Metatheorem"

The Kac-Rice "Metatheorem"

- The setup

$$
\begin{aligned}
f & =\left(f^{1}, \ldots, f^{N}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
g & =\left(g^{1}, \ldots, g^{K}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{K}
\end{aligned}
$$

The Kac-Rice "Metatheorem"

- The setup

$$
\begin{aligned}
f & =\left(f^{1}, \ldots, f^{N}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
g & =\left(g^{1}, \ldots, g^{K}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{K}
\end{aligned}
$$

- Number of points:

$$
\begin{aligned}
N_{u} \equiv N_{u}(M) & \equiv N_{u}(f, g: M, B) \\
& \triangleq \mathbb{E}\{\#\{t \in M: f(t)=u, g(t) \in B\}\} .
\end{aligned}
$$

The Kac-Rice "Metatheorem"

- The setup

$$
\begin{aligned}
f & =\left(f^{1}, \ldots, f^{N}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
g & =\left(g^{1}, \ldots, g^{K}\right): M \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{K}
\end{aligned}
$$

- Number of points:

$$
\begin{aligned}
N_{u} \equiv N_{u}(M) & \equiv N_{u}(f, g: M, B) \\
& \triangleq \mathbb{E}\{\#\{t \in M: f(t)=u, g(t) \in B\}\}
\end{aligned}
$$

- The "metatheorem", or generalised Kac-Rice

$$
\begin{aligned}
\mathbb{E}\left\{N_{u}\right\} & =\int_{M} \int_{\mathbb{R}^{D}}|\operatorname{det} \nabla y| 1_{B}(v) p_{t}(u, \nabla y, v) d(\nabla y) d v d t \\
& =\int_{M} \mathbb{E}\left\{|\operatorname{det} \nabla f(t)| 1_{B}(g(t)) \mid f(t)=u\right\} p_{t}(u) d t
\end{aligned}
$$

$p_{t}(x, \nabla y, v)$ is the joint density of $\left(f_{t}, \nabla f_{t}, g_{t}\right)$
$(\nabla f)(t) \equiv \nabla f(t) \equiv\left(f_{j}^{i}(t)\right)_{i, j=1, \ldots, N} \equiv\left(\frac{\partial f^{i}(t)}{\partial t_{j}}\right)_{i, j=1, \ldots, j^{N}}$.

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

$$
\begin{aligned}
1=\int_{\mathbb{R}} \delta_{\varepsilon}(x-u) d x & =\int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
& =\lim _{\varepsilon \rightarrow 0} \int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
\end{aligned}
$$

The original (non-specific) Rice formula: The proof

- Take a (positive) approximate delta function, δ_{ε}, supported on $[-\varepsilon,+\varepsilon]$, and $\int_{\mathbb{R}} \delta_{\varepsilon}(x) d x=1$.

$$
\begin{aligned}
& 1=\int_{\mathbb{R}} \delta_{\varepsilon}(x-u) d x=\int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
&=\lim _{\varepsilon \rightarrow 0} \int_{t_{1}^{\ell}}^{t_{1}^{u}}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t \\
& U_{u}(f, T)=\lim _{\varepsilon \rightarrow 0} \int_{T}|\dot{f}(t)| \delta_{\varepsilon}(f(t)-u) 1_{(0, \infty)}(f(t)) d t
\end{aligned}
$$

The Kac-Rice Conditions (the fine print)

The Kac-Rice Conditions (the fine print)

Let f, g, M and B be as above, with the additional assumption that the boundaries of M and B have finite $N-1$ and $K-1$ dimensional measures, respectively. Furthermore, assume that the following conditions are satisfied for some $u \in \mathbb{R}^{N}$:
(a) All components of $f, \nabla f$, and g are a.s. continuous and have finite variances (over M).
(b) For all $t \in M$, the marginal densities $p_{t}(x)$ of $f(t)$ (implicitly assumed to exist) are continuous at $x=u$.
(c) The conditional densities $p_{t}(x \mid \nabla f(t), g(t))$ of $f(t)$ given $g(t)$ and $\nabla f(t)$ (implicitly assumed to exist) are bounded above and continuous at $x=u$, uniformly in $t \in M$.
(d) The conditional densities $p_{t}(z \mid f(t)=x)$ of $\operatorname{det} \nabla f(t)$ given $f(t)=x$, are continuous for z and x in neighbourhoods of 0 and u, respectively, uniformly in $t \in M$.
(e) The conditional densities $p_{t}(z \mid f(t)=x)$ of $g(t)$ given $f(t)=x$, are continuous for all z and for x in a neighbourhood u, uniformly in $t \in M$.
(f) The following moment condition holds:

$$
\sup _{t \in M} \max _{1 \leq i, j \leq N} \mathbb{E}\left\{\left|f_{j}^{i}(t)\right|^{N}\right\}<\infty
$$

(g) The moduli of continuity of each of the components of $f, \nabla f$, and g satisfy

$$
\mathbb{P}\{\omega(\eta)>\varepsilon\}=o\left(\eta^{N}\right), \quad \text { as } \eta \downarrow 0
$$

for any $\varepsilon>0$.

Higher (factorial) moments

- Factorial notation

$$
(x)_{k} \triangleq x(x-1) \ldots(x-k+1)
$$

Higher (factorial) moments

- Factorial notation

$$
(x)_{k} \triangleq x(x-1) \ldots(x-k+1)
$$

- Kac-Rice (again?)

$$
\begin{aligned}
\mathbb{E}\left\{\left(N_{u}\right)_{k}\right\} & =\int_{M^{k}} \mathbb{E}\left\{\prod_{j=1}^{k}\left|\operatorname{det} \nabla f\left(t_{j}\right)\right| 1_{B}\left(g\left(t_{j}\right)\right) \mid \tilde{f}(\tilde{t})=\tilde{u}\right\} p_{\tilde{t}}(\tilde{u}) d t \\
& =\int_{M^{k}} \int_{\mathbb{R}^{t} t} \prod_{j=1}^{k}\left|\operatorname{det} D_{j}\right| 1_{B}\left(v_{j}\right) p_{\tilde{t}}(\tilde{u}, \tilde{D}, \tilde{v}) d \tilde{D} d \tilde{v} d \tilde{t},
\end{aligned}
$$

Higher (factorial) moments

- Factorial notation

$$
(x)_{k} \triangleq x(x-1) \ldots(x-k+1)
$$

- Kac-Rice (again?)

$$
\begin{aligned}
\mathbb{E}\left\{\left(N_{u}\right)_{k}\right\} & =\int_{M^{k}} \mathbb{E}\left\{\prod_{j=1}^{k}\left|\operatorname{det} \nabla f\left(t_{j}\right)\right| 1_{B}\left(g\left(t_{j}\right)\right) \mid \tilde{f}(\tilde{t})=\tilde{u}\right\} p_{\tilde{t}}(\tilde{u}) d \tilde{t} \\
= & \int_{M^{k}} \int_{\mathbb{R}^{k D}} \prod_{j=1}^{k}\left|\operatorname{det} D_{j}\right| 1_{B}\left(v_{j}\right) p_{\tilde{t}}(\tilde{u}, \tilde{D}, \tilde{v}) d \tilde{D} d \tilde{v} d \widetilde{t}, \\
M^{k} & =\left\{\tilde{t}=\left(t_{1}, \ldots, t_{k}\right): t_{j} \in M, 1 \leq j \leq k\right\} \\
\widetilde{f}(\widetilde{t}) & =\left(f\left(t_{1}\right), \ldots, f\left(t_{k}\right)\right): M^{k} \rightarrow \mathbb{R}^{N k} \\
\tilde{g}(\tilde{t}) & =\left(g\left(t_{1}\right), \ldots, g\left(t_{k}\right)\right): M^{k} \rightarrow \mathbb{R}^{k k} \\
D & =N(N+1) / 2+K
\end{aligned}
$$

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields ($N=2,3$)

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields ($N=2,3$)
- Zero mean and constant variance (via the "induced metric")

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields ($N=2,3$)
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields ($N=2,3$)
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes
- Perturbed Gaussian processes
("Approximately")

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields $\quad(N=2,3)$
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes
- Perturbed Gaussian processes ("Approximately")
- $\mathbb{E}\{$ No. of critical points of index k above the level $u\}$

The Gaussian case: What can/can't be explicitly computed

- General mean and covariance functions
- Isotropic fields $\quad(N=2,3)$
- Zero mean and constant variance (via the "induced metric")
- Gaussian related processes
- Perturbed Gaussian processes ("Approximately")
- $\mathbb{E}\{$ No. of critical points of index k above the level $u\}$
- $\mathbb{E}\left\{\sum_{k=1}^{N}(-1)^{k}(\right.$ No. of critical points of index k above $\left.\left.u)\right)\right\}$

The Gaussian-related case

The Gaussian-related case

$$
f(t)=\left(f_{1}(t), \ldots, f_{k}(t)\right): T \rightarrow \mathbb{R}^{k} \quad F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}
$$

The Gaussian-related case

$$
f(t)=\left(f_{1}(t), \ldots, f_{k}(t)\right): T \rightarrow \mathbb{R}^{k} \quad F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}
$$

$$
g(t) \triangleq F(g(t))=F\left(g_{1}(t), \ldots, g_{k}(t)\right)
$$

The Gaussian-related case

$$
\begin{gathered}
f(t)=\left(f_{1}(t), \ldots, f_{k}(t)\right): T \rightarrow \mathbb{R}^{k} \quad F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d} \\
g(t) \triangleq F(g(t))=F\left(g_{1}(t), \ldots, g_{k}(t)\right), \\
F(x)=\sum_{1}^{k} x_{i}^{2}, \quad \frac{x_{1} \sqrt{k-1}}{\left(\sum_{2}^{k} x_{i}^{2}\right)^{1 / 2}}, \quad \frac{m \sum_{1}^{n} x_{i}^{2}}{n \sum_{n+1}^{n+m} x_{i}^{2}} .
\end{gathered}
$$

i.e. χ^{2} fields with k degrees of freedom, T field with $k-1$ degrees of freedom, F field with n and m degrees of freedom:

The Gaussian Kinematic Formula (GKF)

The Gaussian Kinematic Formula (GKF)

Jonathan's lecture

The perturbed-Gaussian case

- A physics approach

$$
\varphi(x)=\varphi_{G}(x)\left[1+\sum_{n=3}^{\infty} \operatorname{Tr}\left[\mathbb{E}_{G}\left\{h_{n}(X)\right\} \cdot h_{n}(x)\right]\right]
$$

φ_{G} is iid Gaussian

$$
h_{n}(x) \triangleq(-1)^{n} \frac{1}{\varphi_{G}(x)} \frac{\partial^{n} \varphi_{G}(x)}{\partial x^{n}}
$$

are Hermite tensors of rank n with coefficients constructed from the moments $\mathbb{E}_{G}\left\{h_{n}(X)\right\}$

The perturbed-Gaussian case

- A physics approach

$$
\varphi(x)=\varphi_{G}(x)\left[1+\sum_{n=3}^{\infty} \operatorname{Tr}\left[\mathbb{E}_{G}\left\{h_{n}(X)\right\} \cdot h_{n}(x)\right]\right]
$$

φ_{G} is iid Gaussian

$$
h_{n}(x) \triangleq(-1)^{n} \frac{1}{\varphi_{G}(x)} \frac{\partial^{n} \varphi_{G}(x)}{\partial x^{n}}
$$

are Hermite tensors of rank n with coefficients constructed from the moments $\mathbb{E}_{G}\left\{h_{n}(X)\right\}$

- A statistical (Gaussian related) approach

$$
f(t)=f_{G}(t)+\sum_{j=1}^{J} p_{j} \varepsilon_{j} f_{j}^{G R}(t)
$$

Applications I: Exceedence probabilities via level crossings

$$
\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\}
$$

Applications I: Exceedence probabilities via level crossings

$$
\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\}
$$

Applications I: Exceedence probabilities via level crossings

$\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\}$

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\} & =\mathbb{P}\{f(0) \geq u\}+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& =\mathbb{P}\{f(0) \geq u)+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& \leq \mathbb{P}\{f(0) \geq u)+\mathbb{E}\left\{N_{u}\right\} \\
& =\mathbb{E}\left\{\# \text { of connected components in } A_{u}(T)\right\}
\end{aligned}
$$

Applications I: Exceedence probabilities via level crossings

$\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\}$

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\} & =\mathbb{P}\{f(0) \geq u\}+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& =\mathbb{P}\{f(0) \geq u)+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& \leq \mathbb{P}\{f(0) \geq u)+\mathbb{E}\left\{N_{u}\right\} \\
& =\mathbb{E}\left\{\# \text { of connected components in } A_{u}(T)\right\}
\end{aligned}
$$

- Note: Nothing is Gaussian here!

Applications I: Exceedence probabilities via level crossings

$\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\}$

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{0 \leq t \leq T} f(t) \geq u\right\} & =\mathbb{P}\{f(0) \geq u\}+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& =\mathbb{P}\{f(0) \geq u)+\mathbb{P}\left\{f(0)<u, N_{u} \geq 1\right\} \\
& \leq \mathbb{P}\{f(0) \geq u)+\mathbb{E}\left\{N_{u}\right\} \\
& =\mathbb{E}\left\{\# \text { of connected components in } A_{u}(T)\right\}
\end{aligned}
$$

- Note: Nothing is Gaussian here!
- Inequality is usually an approximation, for large u.

Applications II: Local maxima on the line

- Number of local maxima above the level u

$$
M_{u}(T)=\#\{t \in[0, T]: \dot{f}(t)=0, \ddot{f}(t)<0, f(t) \geq u\}
$$

Applications II: Local maxima on the line

- Number of local maxima above the level u

$$
M_{u}(T)=\#\{t \in[0, T]: \dot{f}(t)=0, \ddot{f}(t)<0, f(t) \geq u\}
$$

- f stationary mean 0 , variance $1, \lambda_{4}=\mathbb{E}\left\{\left[f^{\prime \prime}(t)\right]^{4}\right\}$

$$
\mathbb{E}\left\{M_{-\infty}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}}
$$

Applications II: Local maxima on the line

- Number of local maxima above the level u

$$
M_{u}(T)=\#\{t \in[0, T]: \dot{f}(t)=0, \ddot{f}(t)<0, f(t) \geq u\}
$$

- f stationary mean 0 , variance $1, \lambda_{4}=\mathbb{E}\left\{\left[f^{\prime \prime}(t)\right]^{4}\right\}$

$$
\mathbb{E}\left\{M_{-\infty}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}}
$$

- Similarly, with $\Delta=\lambda_{4}-\lambda_{2}^{2}$ and $\lambda_{2} \equiv \lambda$.
$\mathbb{E}\left\{M_{u}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}} \Psi\left(\frac{\lambda_{4}^{1 / 2} u}{\Delta^{1 / 2}}\right)-T \frac{\lambda_{2}^{1 / 2}}{\sqrt{2 \pi}} \varphi(u) \Phi\left(\frac{\lambda_{2} u}{\Delta^{1 / 2}}\right)$,

Applications II: Local maxima on the line

- Number of local maxima above the level u

$$
M_{u}(T)=\#\{t \in[0, T]: \dot{f}(t)=0, \ddot{f}(t)<0, f(t) \geq u\}
$$

- f stationary mean 0 , variance $1, \lambda_{4}=\mathbb{E}\left\{\left[f^{\prime \prime}(t)\right]^{4}\right\}$

$$
\mathbb{E}\left\{M_{-\infty}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}}
$$

- Similarly, with $\Delta=\lambda_{4}-\lambda_{2}^{2}$ and $\lambda_{2} \equiv \lambda$.

$$
\mathbb{E}\left\{M_{u}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}} \Psi\left(\frac{\lambda_{4}^{1 / 2} u}{\Delta^{1 / 2}}\right)-T \frac{\lambda_{2}^{1 / 2}}{\sqrt{2 \pi}} \varphi(u) \Phi\left(\frac{\lambda_{2} u}{\Delta^{1 / 2}}\right),
$$

- An easy computation

$$
\lim _{u \rightarrow \infty} \frac{\mathbb{E}\left\{M_{u}(T)\right\}}{\mathbb{E}\left\{N_{u}(T)\right\}}=1
$$

Applications II: Local maxima on the line

- Number of local maxima above the level u

$$
M_{u}(T)=\#\{t \in[0, T]: \dot{f}(t)=0, \ddot{f}(t)<0, f(t) \geq u\}
$$

- f stationary mean 0 , variance $1, \lambda_{4}=\mathbb{E}\left\{\left[f^{\prime \prime}(t)\right]^{4}\right\}$

$$
\mathbb{E}\left\{M_{-\infty}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}}
$$

- Similarly, with $\Delta=\lambda_{4}-\lambda_{2}^{2}$ and $\lambda_{2} \equiv \lambda$.

$$
\mathbb{E}\left\{M_{u}(T)\right\}=T \frac{\lambda_{4}^{1 / 2}}{2 \pi \lambda_{2}^{1 / 2}} \Psi\left(\frac{\lambda_{4}^{1 / 2} u}{\Delta^{1 / 2}}\right)-T \frac{\lambda_{2}^{1 / 2}}{\sqrt{2 \pi}} \varphi(u) \Phi\left(\frac{\lambda_{2} u}{\Delta^{1 / 2}}\right),
$$

- An easy computation

$$
\lim _{u \rightarrow \infty} \frac{\mathbb{E}\left\{M_{u}(T)\right\}}{\mathbb{E}\left\{N_{u}(T)\right\}}=1
$$

which holds in very wide generality.

Applications III: Local maxima on $M \subset \mathbb{R}^{N}$

- $M_{u}(M)$ Number of local maxima on M above the level u

Applications III: Local maxima on $M \subset \mathbb{R}^{N}$

- $M_{u}(M)$ Number of local maxima on M above the level u
- $N=2 f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{6 \pi \sqrt{3}} \frac{\lambda_{4}}{\lambda_{2}}
$$

Applications III: Local maxima on $M \subset \mathbb{R}^{N}$

- $M_{u}(M)$ Number of local maxima on M above the level u
- $N=2 f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{6 \pi \sqrt{3}} \frac{\lambda_{4}}{\lambda_{2}}
$$

- $N=2, f$ stationary on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{2 \pi^{2}} \frac{d_{1}}{|\Lambda|^{1 / 2}} G\left(-d_{1} / d_{2}\right)
$$

Λ the covariance matrix of first order derivatives of f d_{1}, d_{2} eigenvalues of cov matrix of second order derivatives
G involves first and second order elliptic integrals

Applications III: Local maxima on $M \subset \mathbb{R}^{N}$

- $M_{u}(M)$ Number of local maxima on M above the level u
- $N=2 f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{6 \pi \sqrt{3}} \frac{\lambda_{4}}{\lambda_{2}}
$$

- $N=2, f$ stationary on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{2 \pi^{2}} \frac{d_{1}}{|\Lambda|^{1 / 2}} G\left(-d_{1} / d_{2}\right)
$$

Λ the covariance matrix of first order derivatives of f d_{1}, d_{2} eigenvalues of cov matrix of second order derivatives
G involves first and second order elliptic integrals

- $N=2, f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{u}\right\}=? ? ?
$$

Applications III: Local maxima on $M \subset \mathbb{R}^{N}$

- $M_{u}(M)$ Number of local maxima on M above the level u
- $N=2 f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{6 \pi \sqrt{3}} \frac{\lambda_{4}}{\lambda_{2}}
$$

- $N=2, f$ stationary on unit square

$$
\mathbb{E}\left\{M_{-\infty}\right\}=\frac{1}{2 \pi^{2}} \frac{d_{1}}{|\Lambda|^{1 / 2}} G\left(-d_{1} / d_{2}\right)
$$

Λ the covariance matrix of first order derivatives of f d_{1}, d_{2} eigenvalues of cov matrix of second order derivatives
G involves first and second order elliptic integrals

- $N=2, f$ isotropic on unit square

$$
\mathbb{E}\left\{M_{u}\right\}=? ? ?
$$

- Is there a replacement for

$$
\lim _{u \rightarrow \infty} \frac{\mathbb{E}\left\{M_{u}(T)\right\}}{\mathbb{E}\left\{N_{u}(T)\right\}}=1
$$

Applications IV: Longuet-Higgins and oceanography

Applications IV: Longuet-Higgins and oceanography

Applications IV: Longuet-Higgins and oceanography

- There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948-2010

Applications IV: Longuet-Higgins and oceanography

- There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948-2010

M.S. Longuet-Higgins, 1925-

Applications IV: Longuet-Higgins and oceanography

- There are precise computations for the expected numbers of specular points, mainly by M.S. Longuet-Higgins, 1948-2010

Applications V: Higher moments and complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C}
$$

Zecos of 10 Hemmestey radiom polynomials of digreo 50

Applications V: Higher moments and complex polynomials

$$
f(z)=\xi_{0}+a_{1} \xi_{1} z+a_{2} \xi_{2} z^{2}+\cdots+a_{n-1} \xi_{n-1} z^{n-1}, \quad z \in \mathbb{C}
$$

Zeros of 60 Hammersley mandom polynomials of dcgree 15

Zecos of 10 Hemmensley random polynomials of degre 50

2 2eos of 4 Hermmersey random polynomials of degrec 100

- Means tell us where we expect the roots to be, but variances are needed to give concentration information.

Applications VI: Poisson limits and Slepian models

Applications VI: Poisson limits and Slepian models

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Applications VI: Poisson limits and Slepian models

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Theorem
If f is stationary and ergodic although less will do

$$
\mathbb{P}\left\{\left.f(\tau) \in A\right|_{\text {correct }} \tau \text { is a local maximum of } f\right\}
$$

Applications VI: Poisson limits and Slepian models

Theorem

1: Sequences of increasingly rare events such as the existence of high level local maxima in N dimensions or level crossings in 1 dimension, looked at over long time periods or large regions so that a few of them still occur have an asymptotic Poisson distribution as long as dependence in time or space is not too strong.

2: The normalisations and the parameters of the limiting Poisson depend only on the expected number of events in a given region or time interval.

Theorem
If f is stationary and ergodic although less will do

$$
\begin{aligned}
& \mathbb{P}\left\{\left.f(\tau) \in A\right|_{\text {correct }} \tau \text { is a local maximum of } f\right\} \\
& \quad=\frac{\mathbb{E}\{\#\{t \in B: t \text { is a local maximum of } f \text { and } f(t) \in A\}\}}{\mathbb{E}\{\#\{t \in B: t \text { is a local maximum of } f\}\}}
\end{aligned}
$$

Applications VII: Eigenvalues of random matrices

- A a $n \times n$ matrix

Applications VII: Eigenvalues of random matrices

- A a $n \times n$ matrix
- Define

$$
f^{A}(t) \triangleq\langle A t, t\rangle, \quad t \in M
$$

If A is random, then f^{A} is a random field. If A is Gaussian (i.e. has Gaussian components) then f^{A} is Gaussian.

Applications VII: Eigenvalues of random matrices

- A a $n \times n$ matrix
- Define

$$
f^{A}(t) \triangleq\langle A t, t\rangle, \quad t \in M
$$

If A is random, then f^{A} is a random field. If A is Gaussian (i.e. has Gaussian components) then f^{A} is Gaussian.

- Algebraic fact

If A has no repeated eigenvalues, there are exactly $2 n$ critical points of f^{A}, which occur at \pm the eigenvectors of A. The values of f^{A} at critical points are the eigenvalues of M

Applications VII: Eigenvalues of random matrices

- A a $n \times n$ matrix
- Define

$$
f^{A}(t) \triangleq\langle A t, t\rangle, \quad t \in M
$$

If A is random, then f^{A} is a random field. If A is Gaussian (i.e. has Gaussian components) then f^{A} is Gaussian.

- Algebraic fact

If A has no repeated eigenvalues, there are exactly $2 n$ critical points of f^{A}, which occur at \pm the eigenvectors of A.
The values of f^{A} at critical points are the eigenvalues of M

- Finding the maximum eigenvalue

$$
\lambda_{\max }(A)=\sup _{t \in S^{n-1}} f^{A}(t)
$$

Applications VII: Eigenvalues of random matrices

- A a $n \times n$ matrix
- Define

$$
f^{A}(t) \triangleq\langle A t, t\rangle, \quad t \in M
$$

If A is random, then f^{A} is a random field. If A is Gaussian (i.e. has Gaussian components) then f^{A} is Gaussian.

- Algebraic fact

If A has no repeated eigenvalues, there are exactly $2 n$ critical points of f^{A}, which occur at \pm the eigenvectors of A.
The values of f^{A} at critical points are the eigenvalues of M

- Finding the maximum eigenvalue

$$
\lambda_{\max }(A)=\sup _{t \in S^{n-1}} f^{A}(t)
$$

- (Some) random matrix problems are equivalent to random field problems, and vice versa

Appendix I: The canonical Gaussian process

- Consider $f(t)=\sum_{j=1}^{\ell} \xi_{j} \varphi_{j}(t)$

Appendix I: The canonical Gaussian process

- Consider $f(t)=\sum_{j=1}^{\ell} \xi_{j} \varphi_{j}(t)$
- $\sigma^{2}(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t)=\left(\varphi_{1}(t), \ldots, \pi_{\ell}(t)\right) \in S^{\ell-1}$.

Appendix I: The canonical Gaussian process

- Consider $f(t)=\sum_{j=1}^{\ell} \xi_{j} \varphi_{j}(t)$
- $\sigma^{2}(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t)=\left(\varphi_{1}(t), \ldots, \pi_{\ell}(t)\right) \in S^{\ell-1}$.
- A crucial mapping

Appendix I: The canonical Gaussian process

- Consider $f(t)=\sum_{j=1}^{\ell} \xi_{j} \varphi_{j}(t)$
- $\sigma^{2}(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t)=\left(\varphi_{1}(t), \ldots, \pi_{\ell}(t)\right) \in S^{\ell-1}$.
- A crucial mapping

- Define a new Gaussian process \widetilde{f} on $\widetilde{\varphi}(M)$

$$
\widetilde{f}(x)=f\left(\widetilde{\varphi}^{-1}(x)\right)
$$

Appendix I: The canonical Gaussian process

- Consider $f(t)=\sum_{j=1}^{\ell} \xi_{j} \varphi_{j}(t)$
- $\sigma^{2}(t) \equiv 1 \Rightarrow \widetilde{\varphi}(t)=\left(\varphi_{1}(t), \ldots, \pi_{\ell}(t)\right) \in S^{\ell-1}$.
- A crucial mapping

- Define a new Gaussian process \widetilde{f} on $\widetilde{\varphi}(M)$

$$
\begin{aligned}
\widetilde{f}(x) & =f\left(\widetilde{\varphi}^{-1}(x)\right), \\
\mathbb{E}\{\widetilde{f}(x) \widetilde{f}(y)\} & =\mathbb{E}\left\{f\left(\widetilde{\varphi}^{-1}(x)\right) f\left(\widetilde{\varphi}^{-1}(y)\right)\right\} \\
& =\sum \varphi_{j}\left(\widetilde{\varphi}^{-1}(x)\right) \varphi_{j}\left(\widetilde{\varphi}^{-1}(y)\right) \\
& =\sum x_{j} y_{j}=\langle x, y\rangle
\end{aligned}
$$

The canonical Gaussian process on $S^{\ell-1}$

1: Has mean zero and covariance

$$
\mathbb{E}\{f(s) f(s)\}=\langle s, t\rangle
$$

for $s, t \in S^{\ell-1}$.
2: It can be realised as

$$
f(t)=\sum_{j=1}^{\ell} t_{j} \xi_{j}
$$

3: It is stationary and isotropic since the covariance is function of only the (geodesic) distance between s and t.

Exceedence probabilities for canonical process: $M \subset S^{\ell-1}$

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{t \in M} f_{t} \geq u\right\} & =\int_{0}^{\infty} \mathbb{P}\left\{\sup _{t \in M} f_{t} \geq u| | \xi \mid=r\right\} \mathbb{P}_{|\xi|}(d r) \\
& =\int_{0}^{\infty} \mathbb{P}\left\{\sup _{t \in M}\langle\xi, t\rangle \geq u| | \xi \mid=r\right\} \mathbb{P}_{|\xi|}(d r) \\
& =\int_{u}^{\infty} \mathbb{P}\left\{\sup _{t \in M}\langle\xi, t\rangle \geq u| | \xi \mid=r\right\} \mathbb{P}_{|\xi|}(d r) \\
& =\int_{u}^{\infty} \mathbb{P}\left\{\sup _{t \in M}\langle\xi / r, t\rangle \geq u / r| | \xi \mid=r\right\} \mathbb{P}_{|\xi|}(d r) \\
& =\int_{u}^{\infty} \mathbb{P}\left\{\sup _{t \in M}\langle U, t\rangle \geq u / r\right\} \mathbb{P}_{|\xi|}(d r)
\end{aligned}
$$

where U is uniform on $S^{\ell-1}$.

- We need

$$
P\left\{\sup _{t \in M}\langle U, t\rangle \geq u / r\right\}
$$

- We need

$$
P\left\{\sup _{t \in M}\langle U, t\rangle \geq u / r\right\}
$$

- Working with tubes

The tube of radius ρ around a closed set $M \in S^{\ell-1}$) is

$$
\begin{aligned}
\operatorname{Tube}(M, \rho) & =\left\{t \in S^{\ell-1}: \tau(t, M) \leq \rho\right\} \\
& =\left\{t \in S^{\ell-1}: \exists s \in M \text { such that }\langle s, t\rangle \geq \cos (\rho)\right\} \\
& =\left\{t \in S^{\ell-1}: \sup _{s \in M}\langle s, t\rangle \geq \cos (\rho)\right\}
\end{aligned}
$$

- We need

$$
P\left\{\sup _{t \in M}\langle U, t\rangle \geq u / r\right\}
$$

- Working with tubes

The tube of radius ρ around a closed set $M \in S^{\ell-1}$) is

$$
\begin{aligned}
\operatorname{Tube}(M, \rho) & =\left\{t \in S^{\ell-1}: \tau(t, M) \leq \rho\right\} \\
& =\left\{t \in S^{\ell-1}: \exists s \in M \text { such that }\langle s, t\rangle \geq \cos (\rho)\right\} \\
& =\left\{t \in S^{\ell-1}: \sup _{s \in M}\langle s, t\rangle \geq \cos (\rho)\right\}
\end{aligned}
$$

- And so....

$$
\mathbb{P}\left\{\sup _{t \in M} f_{t} \geq u\right\}=\int_{u}^{\infty} \eta_{I}\left(\operatorname{Tube}\left(M, \cos ^{-1}(u / r)\right)\right) \mathbb{P}_{|\xi|}(d r)
$$

and geometry has entered the picture, in a serious fashion!

Appendix II: Stationary and isotropic fields

- Definition: M has a group structure, $\mu(t)=$ const and $C(s, t)=C(s-t)$.

Appendix II: Stationary and isotropic fields

- Definition: M has a group structure, $\mu(t)=$ const and $C(s, t)=C(s-t)$.
- Gaussian case: (Weak) stationarity also implies strong stationarity.

Appendix II: Stationary and isotropic fields

- Definition: M has a group structure, $\mu(t)=$ const and $C(s, t)=C(s-t)$.
- Gaussian case: (Weak) stationarity also implies strong stationarity.
- $M=\mathbb{R}^{N}: C: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is non-negative definite \Longleftrightarrow there exists a finite measure ν such that

$$
C(t)=\int_{\mathbb{R}^{N}} e^{i\langle t, \lambda\rangle} \nu(d \lambda)
$$

ν is called the spectral measure and, since C is real, must be symmetric. i.e. $\nu(A)=\nu(-A)$ for all $A \in \mathcal{B}^{N}$.

Appendix II: Stationary and isotropic fields

- Definition: M has a group structure, $\mu(t)=$ const and $C(s, t)=C(s-t)$.
- Gaussian case: (Weak) stationarity also implies strong stationarity.
- $M=\mathbb{R}^{N}: C: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is non-negative definite \Longleftrightarrow there exists a finite measure ν such that

$$
C(t)=\int_{\mathbb{R}^{N}} e^{i\langle t, \lambda\rangle} \nu(d \lambda)
$$

ν is called the spectral measure and, since C is real, must be symmetric. i.e. $\nu(A)=\nu(-A)$ for all $A \in \mathcal{B}^{N}$.

- Spectral moments

$$
\lambda_{i_{1} \ldots i_{N}} \triangleq \int_{\mathbb{R}^{N}} \lambda_{1}^{i_{1}} \cdots \lambda_{N}^{i_{N}} \nu(d \lambda)
$$

ν is symmetric \Rightarrow odd ordered spectral moments are zero.

- Elementary considerations give

$$
\mathbb{E}\left\{\frac{\partial^{k} f(s)}{\partial s_{i_{1}} \partial s_{i_{1}} \ldots \partial s_{i_{k}}} \frac{\partial^{k} f(t)}{\partial t_{i_{1}} \partial t_{i_{1}} \ldots \partial t_{i_{k}}}\right\}=\frac{\partial^{2 k} C(s, t)}{\partial s_{i_{1}} \partial t_{i_{1}} \ldots \partial s_{i_{k}} \partial t_{i_{k}}} .
$$

- Elementary considerations give

$$
\mathbb{E}\left\{\frac{\partial^{k} f(s)}{\partial s_{i_{1}} \partial s_{i_{1}} \ldots \partial s_{i_{k}}} \frac{\partial^{k} f(t)}{\partial t_{i_{1}} \partial t_{i_{1}} \ldots \partial t_{i_{k}}}\right\}=\frac{\partial^{2 k} C(s, t)}{\partial s_{i_{1}} \partial t_{i_{1}} \ldots \partial s_{i_{k}} \partial t_{i_{k}}} .
$$

- When f is stationary, and $\alpha, \beta, \gamma, \delta \in\{0,1,2, \ldots\}$, then

$$
\begin{aligned}
\mathbb{E}\left\{\frac{\partial^{\alpha+\beta} f(t)}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j}}\right. & \left.\frac{\partial^{\gamma+\delta} f(t)}{\partial^{\gamma} t_{k} \partial^{\delta} t_{l}}\right\} \\
& =\left.(-1)^{\alpha+\beta} \frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j} \partial^{\gamma} t_{k} \partial^{\delta} t_{l}} C(t)\right|_{t=0} \\
& =(-1)^{\alpha+\beta} i^{\alpha+\beta+\gamma+\delta} \int_{\mathbb{R}^{N}} \lambda_{i}^{\alpha} \lambda_{j}^{\beta} \lambda_{k}^{\gamma} \lambda_{l}^{\delta} \nu(d \lambda) .
\end{aligned}
$$

- Elementary considerations give

$$
\mathbb{E}\left\{\frac{\partial^{k} f(s)}{\partial s_{i_{1}} \partial s_{i_{1}} \ldots \partial s_{i_{k}}} \frac{\partial^{k} f(t)}{\partial t_{i_{1}} \partial t_{i_{1}} \ldots \partial t_{i_{k}}}\right\}=\frac{\partial^{2 k} C(s, t)}{\partial s_{i_{1}} \partial t_{i_{1}} \ldots \partial s_{i_{k}} \partial t_{i_{k}}} .
$$

- When f is stationary, and $\alpha, \beta, \gamma, \delta \in\{0,1,2, \ldots\}$, then

$$
\begin{aligned}
\mathbb{E}\left\{\frac{\partial^{\alpha+\beta} f(t)}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j}}\right. & \left.\frac{\partial^{\gamma+\delta} f(t)}{\partial^{\gamma} t_{k} \partial^{\delta} t_{l}}\right\} \\
& =\left.(-1)^{\alpha+\beta} \frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j} \partial^{\gamma} t_{k} \partial^{\delta} t_{l}} C(t)\right|_{t=0} \\
& =(-1)^{\alpha+\beta} i^{\alpha+\beta+\gamma+\delta} \int_{\mathbb{R}^{N}} \lambda_{i}^{\alpha} \lambda_{j}^{\beta} \lambda_{k}^{\gamma} \lambda_{l}^{\delta} \nu(d \lambda) .
\end{aligned}
$$

- Write $f_{j}=\partial f / \partial t_{j}, \quad f_{i j}=\partial^{2} f / \partial t_{i} \partial t_{j}$ Then $f(t)$ and $f_{j}(t)$ are uncorrelated, $f_{i}(t)$ and $f_{j k}(t)$ are uncorrelated
- Elementary considerations give

$$
\mathbb{E}\left\{\frac{\partial^{k} f(s)}{\partial s_{i_{1}} \partial s_{i_{1}} \ldots \partial s_{i_{k}}} \frac{\partial^{k} f(t)}{\partial t_{i_{1}} \partial t_{i_{1}} \ldots \partial t_{i_{k}}}\right\}=\frac{\partial^{2 k} C(s, t)}{\partial s_{i_{1}} \partial t_{i_{1}} \ldots \partial s_{i_{k}} \partial t_{i_{k}}} .
$$

- When f is stationary, and $\alpha, \beta, \gamma, \delta \in\{0,1,2, \ldots\}$, then

$$
\begin{aligned}
\mathbb{E}\left\{\frac{\partial^{\alpha+\beta} f(t)}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j}}\right. & \left.\frac{\partial^{\gamma+\delta} f(t)}{\partial^{\gamma} t_{k} \partial^{\delta} t_{l}}\right\} \\
& =\left.(-1)^{\alpha+\beta} \frac{\partial^{\alpha+\beta+\gamma+\delta}}{\partial^{\alpha} t_{i} \partial^{\beta} t_{j} \partial^{\gamma} t_{k} \partial^{\delta} t_{l}} C(t)\right|_{t=0} \\
& =(-1)^{\alpha+\beta} i^{\alpha+\beta+\gamma+\delta} \int_{\mathbb{R}^{N}} \lambda_{i}^{\alpha} \lambda_{j}^{\beta} \lambda_{k}^{\gamma} \lambda_{l}^{\delta} \nu(d \lambda) .
\end{aligned}
$$

- Write $f_{j}=\partial f / \partial t_{j}, \quad f_{i j}=\partial^{2} f / \partial t_{i} \partial t_{j}$ Then $f(t)$ and $f_{j}(t)$ are uncorrelated, $f_{i}(t)$ and $f_{j k}(t)$ are uncorrelated
- Isotropy $(C(t)=C(\|t\|) \Rightarrow \nu$ is spherically symmetric \Rightarrow $\mathbb{E}\left\{f_{i}(t) f_{j}(t)\right\}=-\mathbb{E}\left\{f(t) f_{i j}(t)\right\}=\lambda \delta_{i j}$

Appendix III: Regularity of Gaussian processes

- The canonical metric, d

$$
d(s, t) \triangleq\left[\mathbb{E}\left\{(f(s)-f(t))^{2}\right\}\right]^{\frac{1}{2}}
$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$
B_{d}(t, \varepsilon) \triangleq\{s \in M: d(s, t) \leq \varepsilon\}
$$

Appendix III: Regularity of Gaussian processes

- The canonical metric, d

$$
d(s, t) \triangleq\left[\mathbb{E}\left\{(f(s)-f(t))^{2}\right\}\right]^{\frac{1}{2}}
$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$
B_{d}(t, \varepsilon) \triangleq\{s \in M: d(s, t) \leq \varepsilon\}
$$

- Compactness assumption

$$
\operatorname{diam}(M) \triangleq \sup _{s, t \in M} d(s, t)<\infty
$$

Appendix III: Regularity of Gaussian processes

- The canonical metric, d

$$
d(s, t) \triangleq\left[\mathbb{E}\left\{(f(s)-f(t))^{2}\right\}\right]^{\frac{1}{2}}
$$

A ball of radius ε and centered at $t \in M$ is denoted by

$$
B_{d}(t, \varepsilon) \triangleq\{s \in M: d(s, t) \leq \varepsilon\}
$$

- Compactness assumption

$$
\operatorname{diam}(M) \triangleq \sup _{s, t \in M} d(s, t)<\infty
$$

- Entropy Fix $\varepsilon>0$ and let $N(M, d, \varepsilon) \equiv N(\varepsilon)$ denote the smallest number of d-balls of radius ε whose union covers M. Set

$$
H(M, d, \varepsilon) \equiv H(\varepsilon)=\ln (N(\varepsilon))
$$

Then N and H are called the (metric) entropy and log-entropy functions for M (or f).

Dudley's theorem

Let f be a centered Gaussian field on a d-compact M Then there exists a universal K such that

$$
\mathbb{E}\left\{\sup _{t \in M} f_{t}\right\} \leq K \int_{0}^{\operatorname{diam}(M)} H^{1 / 2}(\varepsilon) d \varepsilon
$$

and

$$
\mathbb{E}\left\{\omega_{f, d}(\delta)\right\} \leq K \int_{0}^{\delta} H^{1 / 2}(\varepsilon) d \varepsilon
$$

where

$$
\omega_{f, d}(\delta) \triangleq \sup _{d(s, t) \leq \delta}|f(t)-f(s)|, \quad \delta>0
$$

Furthermore, there exists a random $\eta \in(0, \infty)$ and a universal K such that

$$
\omega_{f, d}(\delta) \leq K \int_{0}^{\delta} H^{1 / 2}(\varepsilon) d \varepsilon
$$

for all $\delta<\eta$.

Special cases of the entropy result

- If f is also stationary
f is a.s. continuous on M

$$
\begin{aligned}
& f \text { is a.s. bounded on } M \\
& \int_{0}^{\delta} H^{1 / 2}(\varepsilon) d \varepsilon<\infty, \quad \forall \delta>0
\end{aligned}
$$

Special cases of the entropy result

- If f is also stationary
f is a.s. continuous on $M \Longleftrightarrow f$ is a.s. bounded on M

$$
\Longleftrightarrow \int_{0}^{\delta} H^{1 / 2}(\varepsilon) d \varepsilon<\infty, \quad \forall \delta>0
$$

- If $M \subset \mathbb{R}^{N}$, and

$$
p^{2}(u) \triangleq \sup _{|s-t| \leq u} \mathbb{E}\left\{\left|f_{s}-f_{t}\right|^{2}\right\}
$$

continuity \& boundedness follow if, for some $\delta>0$, either

$$
\int_{0}^{\delta}(-\ln u)^{\frac{1}{2}} d p(u)<\infty \quad \text { or } \quad \int_{\delta}^{\infty} p\left(e^{-u^{2}}\right) d u<\infty
$$

Special cases of the entropy result

- If f is also stationary
f is ass. continuous on $M \Longleftrightarrow f$ is ass. bounded on M

$$
\Longleftrightarrow \quad \int_{0}^{\delta} H^{1 / 2}(\varepsilon) d \varepsilon<\infty, \quad \forall \delta>0
$$

- If $M \subset \mathbb{R}^{N}$, and

$$
p^{2}(u) \triangleq \sup _{|s-t| \leq u} \mathbb{E}\left\{\left|f_{s}-f_{t}\right|^{2}\right\}
$$

continuity \& boundedness follow if, for some $\delta>0$, either

$$
\int_{0}^{\delta}(-\ln u)^{\frac{1}{2}} d p(u)<\infty \quad \text { or } \quad \int_{\delta}^{\infty} p\left(e^{-u^{2}}\right) d u<\infty
$$

- A sufficient condition For some $0<K<\infty$ and $\alpha, \eta>0$,

$$
\mathbb{E}\left\{\left|f_{s}-f_{t}\right|^{2}\right\} \leq \frac{K}{|\log | s-t| |^{1+\alpha}}
$$

for all s, t with $|s-t|<\eta$.

Appendix IV: Borell-Tsirelson inequality

- Finiteness theorem: $\|f\| \triangleq \sup _{t \in M} f_{t}$

$$
\mathbb{P}\{\|f\|<\infty\}=1 \Longleftrightarrow \mathbb{E}\{\|f\|\}<\infty,
$$

Appendix IV: Borell-Tsirelson inequality

- Finiteness theorem: $\|f\| \triangleq \sup _{t \in M} f_{t}$

$$
\mathbb{P}\{\|f\|<\infty\}=1 \Longleftrightarrow \mathbb{E}\{\|f\|\}<\infty,
$$

- THE inequality: For all $u>0$,

$$
\begin{aligned}
& \mathbb{P}\{\|f\|-\mathbb{E}\{\|f\|\}>u\} \leq e^{-u^{2} / 2 \sigma_{M}^{2}} . \\
& \sigma_{M}^{2}=\sup _{t \in M} \mathbb{E}\left\{f_{t}^{2}\right\}
\end{aligned}
$$

Appendix IV: Borell-Tsirelson inequality

- Finiteness theorem: $\|f\| \triangleq \xlongequal{\Delta} \sup _{t \in M} f_{t}$

$$
\mathbb{P}\{\|f\|<\infty\}=1 \Longleftrightarrow \mathbb{E}\{\|f\|\}<\infty,
$$

- THE inequality: For all $u>0$,

$$
\begin{aligned}
& \mathbb{P}\{\|f\|-\mathbb{E}\{\|f\|\}>u\} \leq e^{-u^{2} / 2 \sigma_{M}^{2}} . \\
& \sigma_{M}^{2}=\sup _{t \in M} \mathbb{E}\left\{f_{t}^{2}\right\}
\end{aligned}
$$

- This implies

$$
\mathbb{P}\{\|f\| \geq u\} \leq e^{\mu_{u}-u^{2} / 2 \sigma_{M}^{2}}
$$

$$
\mu_{u}=\left(2 u \mathbb{E}\{\|f\|\}-[\mathbb{E}\{\|f\|\}]^{2}\right) / \sigma_{M}^{2}
$$

Appendix IV: Borell-Tsirelson inequality

- Finiteness theorem: $\|f\| \triangleq \sup _{t \in M} f_{t}$

$$
\mathbb{P}\{\|f\|<\infty\}=1 \Longleftrightarrow \mathbb{E}\{\|f\|\}<\infty
$$

- THE inequality: For all $u>0$,

$$
\begin{aligned}
& \mathbb{P}\{\|f\|-\mathbb{E}\{\|f\|\}>u\} \leq e^{-u^{2} / 2 \sigma_{M}^{2}} . \\
& \sigma_{M}^{2}=\sup _{t \in M} \mathbb{E}\left\{f_{t}^{2}\right\}
\end{aligned}
$$

- This implies

$$
\begin{gathered}
\mathbb{P}\{\|f\| \geq u\} \leq e^{\mu_{u}-u^{2} / 2 \sigma_{M}^{2}}, \\
\mu_{u}=\left(2 u \mathbb{E}\{\|f\|\}-[\mathbb{E}\{\|f\|\}]^{2}\right) / \sigma_{M}^{2}
\end{gathered}
$$

- Asymptotics: For high levels u, the dominant behavior of all Gaussian exceedence probabilities is determined by $e^{-u^{2} / 2 \sigma_{M}^{2}}$.

Places to start reading and to find other references

1. R.J. Adler and J.E. Taylor, Random Fields and Geometry, Springer, 2007
2. R.J. Adler, and J.E. Taylor, Topological Complexity of Random Functions, Springer Lecture Notes in Mathematics, Vol. 2019, Springer, 2010
3. D. Aldous, Probability Approximations via the Poisson Clumping Heuristic, Applied Mathematical Sciences, Vol. 77, Springer-Verlag, 1989.
4. J-M. Azaïs and M. Wschebor. Level Sets and Extrema of Random Processes and Fields, Wiley, 2009.
5. H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, 1967.
6. M.R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, 1983.
