We formulate four families of problem with which we aim at distinguishing different levels of randomness. The first one is completely non-random, being the ordinary Ramsey-Turán problem and in the subsequent three problems we formulate some randomized variations of it. These four levels form a hierarchy, the main topic of this work.

We formulate very briefly (and informally) the four questions for a special case. The questions are as follows:

Fix a family of graphs \mathcal{L} and an integer $r \geq 2$.

(DD) How many edges guarantee for a graph G_n that if we r-color its edges arbitrarily, we always find a monochromatic $L \in \mathcal{L}$?

(DR) How many edges guarantee for a graph G_n that in almost all r-edge-colorings, we find a monochromatic $L \in \mathcal{L}$?

(RD) How many edges guarantee for a random graph R_n?

(RR) How many edges guarantee for a random graph R_n almost surely, that r-coloring its edges at random, almost all the r-colorings contain a monochromatic $L \in \mathcal{L}$?

(Received February 09, 2005)