Let \((R, \mathfrak{m})\) be a Noetherian local ring of prime characteristic \(p\) and \(M\) a finitely generated \(R\)-module. For every \(q = p^e\), denote by \(eM\) the derived \(R\)-module structure on \(M\) with scalar multiplication determined via \(r \cdot x := r^q x\) for \(r \in R, x \in M\). We assume \(R\) is \(F\)-finite so that \(eM\) is finite over \(R\). Hochster showed that if \(\dim(M) \leq 1\) then, for sufficiently large \(e\), \(eM\) can be written as a direct sum of two non-zero modules, i.e. \(eM\) is decomposable. In this talk, we show that the same is also true in the case of \(\dim(M) = 2\) provided that, for some \(P \in \text{Ass}_R(M)\) such that \(\dim(R/P) = 2\), the integral closure of \(R/P\) in a finite algebraic extension field of \((R/P)_P\) is strongly \(F\)-regular. (Received August 15, 2005)