The notions of congruence heredity and power heredity were recently introduced by Palfy and Hegedus. A congruence lattice L of a finite algebra A is hereditary if every 0-1 sublattice of L is the congruence lattice of an algebra with the same universe as A. L is power hereditary if every 0-1 sublattice of L^n is a congruence lattice on the universe of A^n for all n.

The author recently proved that every congruence lattice representation of N_5 is power hereditary.

In this talk, we will prove that if L is any finite lattice obtained from a distributive lattice by doubling a convex interval, then every congruence lattice representation of L is hereditary. (Received July 18, 2005)