An Explicit Construction of Universally Decodable Matrices.

Universally decodable matrices (UDMs) can be used for coding purposes when transmitting over slow fading channels. These matrices are parameterized by positive integers L and n and a prime power q: L matrices A_0, \ldots, A_{L-1} over \mathbb{F}_q and size $n \times n$ are (L, n, q)-UDMs if for every non-negative integers k_0, \ldots, k_{L-1} with $k_0 + \cdots + k_{L-1} \geq n$ they fulfill the UDMs condition which says that the $(\sum_{\ell=0}^{L-1} k_{\ell}) \times n$ matrix composed of the first k_0 rows of A_0, the first k_1 rows of A_1, \ldots, the first k_{L-1} rows of A_{L-1} has full rank. Based on Pascal’s triangle we give an explicit construction of universally decodable matrices for any non-zero integers L and n and any prime power q where $L \leq q + 1$. This is the largest set of possible parameter values since for any list of universally decodable matrices the value L is upper bounded by $q + 1$, except for the trivial case $n = 1$. For the proof of our construction we use properties of Hasse derivatives, and it turns out that our construction has connections to Reed-Solomon codes, algebraic-geometry codes, and so-called repeated-root cyclic codes. (Received August 22, 2005)