Shoshana Abramovich* (abramos@math.haifa.ac.il), Department of Mathematics, University of Haifa, Mt. Carmel, 31905 Haifa, Israel, and Senka Banic and Marko Matic. Superquadratic functions in several variables.

A function $f: K_m \to \mathbb{R}$ is superquadratic if for every $x \in K_m$ there exists a vector $c(x) \in \mathbb{R}^m$ such that $f(y) \ge f(x) + \langle c(x), y - x \rangle + f(|y - x|)$ holds for all $y \in K_m$ ($K_m = [0, \infty)^m$). Superquadraticity for non negative functions is stronger than convexity unless f takes negative values. For superquadratic functions we establish refinements of Jensen's inequality and its counterpart. Let $f: K_m \to \mathbb{R}$ be superquadratic and f(0) = 0. Let $p_i \in \mathbb{R}$, $p_i \ge 0$, i = 1, ..., n, and $P_n = \sum_{i=1}^n p_i > 0$. Define $\bar{x} = (1/P_n) \sum_{i=1}^n p_i x_i, \bar{y} = (1/P_n) \sum_{i=1}^n p_i f(x_i)$. We prove that, for any $x \in K_m$, if c(x) is as above and $a, b \in K_m$ are arbitrary vectors then

$$f(a) + \langle c(a), \bar{x} - a \rangle + \frac{1}{P_n} \sum_{i=1}^n p_i f(|x_i - a|) \le \bar{y}$$

$$\leq f(b) + \frac{1}{P_n} \sum_{i=1}^n p_i < c(x_i), x_i - b > -\frac{1}{P_n} \sum_{i=1}^n p_i f(|x_i - b|).$$

Examples: 1) $f(x) = (||x||_p)^p$, $p \ge 2$ is superquadratic. 2) $f(x) = ||x||^2 ln||x||$ if $x \ne 0$, f(0) = 0 is superquadratic for m = 1 but not for m = 2. (Received February 05, 2006)