A ring R is left morphic if R/Ra is isomorphic to $l(a)$ for every a in R. This requires that there is a b in R with $Ra=l(b)$ and $l(a)=Rb$. We modify this by asking that $Ra=l(b)$ and $l(a)=Rc$ for some b and c. This class of rings are called quasi morphic. Regular rings and morphic rings are quasi morphic. This weakened hypothesis allows us to establish properties shared by regular rings only under more general hypotheses. In particular finite intersections of principal left ideals in such rings are principal. Also two sided quasi morphic rings are Bezout: finite sums of principal one sided ideals are principal. (Received February 14, 2007)