A graph G is *minimally k-connected* if G is k-connected and, for each edge $e \in E(G)$, $G\setminus e$ is not k-connected. Halin showed that a minimally k-connected graph has a vertex of degree k. The existence of vertices of degree k in minimally k-connected graphs has proven to be very useful in studying the structure of k-connected graphs.

A matroid M is *minimally k-connected* if M is k-connected, and for every $e \in E(M)$, $M\setminus e$ is not k-connected. It is conjectured that every minimally k-connected matroid with at least $2(k-1)$ elements has a cocircuit of size k. For $k = 2$ and 3, Murty (1974) and Wong (1978) resolved this conjecture affirmatively. We prove that a minimally 4-connected matroid has a cocircuit of size 4 unless it is isomorphic to a special matroid with 9 elements. We also construct a counterexample to the conjecture for each $k \geq 5$.

This is joint work with James Reid and Haidong Wu. (Received August 30, 2007)