William M. Singer* (singer@fordham.edu), Department of Mathematics, Fordham University, Bronx, NY 10458. Rings of Symmetric Functions as Algebras over the Steenrod Algebra.

We write P^\otimes_s for the polynomial ring on s letters over the field $\mathbb{Z}/2$, equipped with the standard action of Σ_s, the symmetric group on s letters. This paper deals with the problem of determining a minimal set of generators for the invariant ring $(P^\otimes_s)^{\Sigma_s}$ as a module over the Steenrod algebra A. That is, we would like to determine the graded vector spaces $\mathbb{Z}/2 \otimes_A (P^\otimes_s)^{\Sigma_s}$. Our main result is stated in terms of a “bigraded Steenrod algebra” H. The generators of this algebra H, like the generators of the classical Steenrod algebra A, satisfy the Adem relations in their usual form. However, the Adem relations for the bigraded Steenrod algebra are interpreted so that Sq^0 is not the unit of the algebra; but rather, an independent generator. Our main work is to assemble the duals of the vector spaces $\mathbb{Z}/2 \otimes_A (P^\otimes_s)^{\Sigma_s}$, for all $s \geq 0$, into a single bigraded vector space; and to show that this bigraded object has the structure of an algebra over H. (Received August 14, 2008)