The geometric distribution on \(\mathbb{N} \) and the exponential distribution on \([0, \infty)\) both have the constant rate property: the upper probability function \(F \) and the probability density function \(f \) (with respect to counting measure in the first case and Lebesgue measure in the second) are related by \(f = \alpha F \) for some \(\alpha > 0 \). Moreover, these distributions are the only ones (on \(\mathbb{N} \) and \([0, \infty)\), respectively) with this property. The two distributions are the building blocks of other important distributions and random processes.

In this talk I will discuss probability distributions on general partially ordered sets that have the constant rate property. In spite the generality, and the lack of any other algebraic structure, a surprising amount of the theory stills goes through—constant rate distributions have nice moment properties and lead to “gamma” distributions and a “Poisson” process. In many respects, constant rate distributions describe the most random way to put points in the poset. Finally, I will discuss the characterization problem: when does a poset support constant rate distributions? (Received August 18, 2008)