Let T be a rooted tree on n vertices. We use T to stand for the vertex set of T. An increasing labeling of T is a bijection $\ell : T \to \{1, 2, \ldots, n\}$ such that $\ell(v) \leq \ell(w)$ for all descendents w of v. Let f^T be the number of increasing labelings. The hooklength, h_v, of a vertex v is the number of descendents of v. The hook length formula for trees states that

$$f^T = \frac{n!}{\prod_{v \in T} h_v}.$$

There is a similar formula for the number of standard Young tableaux of given shape. Greene, Nijenhuis, and Wilf gave a beautiful probabilistic proof of the tableau formula where the hooklengths enter in a very natural way.

Recently, Han discovered a formula with the interesting property that hooklengths appear as exponents. Specifically, let $B(n)$ be the set of all n-vertex binary trees. Han proved algebraically that

$$\sum_{T \in B(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.$$

We show how to give a simple probabilistic proof of this equation as well as various generalizations. We also pose some open questions raised by this work. (Received August 16, 2009)