1058-18-230Caroline B. Wright* (cwright@math.arizona.edu), Department of Math University of
Arizona, 617 N. Santa Rita Ave., P.O. Box 210089, Tucson, AZ 85721. Computing Lie Algebra
Cohomology for p = 2. Preliminary report.

Title: Computing Lie algebra Cohomology for p = 2

Abstract: Let G be a simple simply connected affine algebraic group scheme defined over an algebraically closed field k of characteristic p, B be a Borel subgroup of G, and U be the unipotent radical of B. Let $\mathfrak{u} = \operatorname{Lie}(U)$. Let $F : G \to G$ be the Frobenius map and G_1 (respectively B_1, U_1) be the Frobenius kernel of G (respectively B, U). In my PhD thesis I computed $\operatorname{H}^2(U_1, k)$ when p = 2.

In this talk I will present how to compute the ordinary Lie algebra cohomology, $H^2(\mathfrak{u}, k)$ from the restricted Lie algebra cohomology, $H^2(U_1, k)$, specifically for the case when p = 2. (Received February 15, 2010)