Given a graph G, a well-known problem is to find the number of the shortest paths between a pair of vertices in G. A solution to this counting problem can serve as an important topological property for an interconnection network in terms of strong connectivity, effective fault-tolerance, lower communication cost and desired routing flexibility.

It turns out that the number of the shortest paths between v and e_k in an (n,k)-star graph equals the number of minimum factorizations of v in terms of (n,k)-star transpositions, which we enumerate in this talk. (Received February 26, 2010)